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We construct closed, embedded, totally geodesic surfaces in
two hyperbolic manifolds obtained as knot complements.

1. INTRODUCTION

There is considerable interest in the question of
existence of m-injective closed surfaces, immersed
or embedded, in three-manifolds. If a three-mani-
fold is endowed with a metric, we may ask whether
such a surface exists which is totally geodesic with
respect to the given metric.

In the case of hyperbolic three-manifolds, Long
[1987] has shown that if such immersed surfaces
exist there is a finite cover containing an embed-
ded totally geodesic closed surface. Menasco and
Reid [1992] have obtained results on the nonewis-
tence of embedded totally geodesic closed surfaces
in certain link complements in the three-sphere.

For link complements admitting an arithmetic
structure, examples of closed immersed totally geo-
desic surfaces are fairly easy to construct when the
link has more than one component. At a more al-
gebraic level, Maclachlin [1986] has proved the ex-
istence of Fuchsian subgroups of arithmetic groups
PSL(2,04), but without describing their realiza-
tions as compact or noncompact surfaces in three-
manifolds.

Alan Reid [1991b] has shown by arithmetic argu-
ments that the complement of the figure-eight knot
in S®, with its complete hyperbolic metric, contains
infinitely many commensurability classes of totally
geodesic immersed closed surfaces. Commensura-
bility classes in the arithmetic case are also dis-
cussed in [Maclachlan and Reid 1987]. The figure-
eight knot is the only arithmetic knot, a result also
due to Reid [1991a]. No other hyperbolic knot
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complements were known to contain immersed to-
tally geodesic closed surfaces. No explicit descrip-
tion of those in the figure-eight knot complement
have appeared in the literature.

We describe two knots containing such surfaces,
the dodecahedral knots D, and D,. The knot Dy
was constructed by Thurston in 1982 [Riley 1989].
We describe an orientation-reversing involution on
the complement of Thurston’s knot Dy, as well
as one on D,. Our approach derives partly from
conversations with Bill Thurston and is construc-
tive. The knot D, should be named “Long’s knot”,
since its construction derives from the question “Is
there. .. ?”, asked of the authors by Long.

This paper is organized as follows. We start by
giving a nonanalytic direct argument for the exis-
tence of closed totally geodesic immersed surfaces
in these knot complements, and recall the knots’
original construction. Two pictures of the view
from infinity of an ideal dodecahedron are given,
the first with a vertex at infinity. This enables us
to see directly the cusp and trace fields described
in [Neumann and Reid 1992], but is also an excuse
to draw some beautiful pictures related to stellated
Platonic solids and the face structure of icosahedra.
We calculate the dihedral angles for the immersed
surfaces, and matrix representatives for the tessel-
lation {5, 6} of the immersed surface. The second
view, again in the upper-half space model for hy-
perbolic space, has an endpoint of a fivefold axis of
symmetry at oo, and derives metrically from two
nested pentagrams associated to an immersed non-
regular decagon. Finally we present the initial seg-
ments of the length spectra of these knots, without
offering any explanation for their surprising simi-
larity.

This work first appeared as a University of Mel-
bourne Research Report in 1990. Our motivation
was the belief that a high degree of symmetry of the
tessellation of the universal cover of a hyperbolic
knot complement might yield an equivariant collec-
tion of hyperbolic planes giving a closed orientable
immersed totally geodesic surface in the knot com-
plement. Since the two dodecahedral knots arise

from the same tessellation, it is natural to com-
pare other geometric properties potentially shared
by them, such as degree of symmetry, and length
spectra. Amusingly, both knot complements ad-
mit nontrivial symmetries, whereas a motivation
for Riley’s examination of the complement of the
knot 93, was a claim made by Thurston in 1981
that the knot D admitted no such nontrivial sym-
metry.

2. THE TESSELLATION {5; 3; 6} OF HYPERBOLIC
SPACE

Consider the unit-ball model for H?, with hyper-
bolic space modelled by the interior of the unit ball
in R*. We use the standard Euclidean coordinates
z, y and z, with the z-axis vertical.

Take a Euclidean dodecahedron with two faces
parallel to the zy-plane, with vertices lying on 4
meridians of the unit sphere, also parallel to the xy-
plane. The z-axis is an axis for a fivefold rotational
symmetry of the dodecahedron.

Keeping the same vertices, convert this Euclidean
dodecahedron to an ideal hyperbolic dodecahedron
D. The dihedral angles become /3, and H? can be
tessellated by isometric copies of D by reflections in
faces. This gives the tessellation {5, 3, 6}, with 6
dodecahedra about each edge [Coxeter 1956]. Note
that each edge is a geodesic axis of sixfold rota-
tional symmetry of the tessellation. Denote by I'
the infinite group of symmetries of this tessella-
tion. T' is generated by the 120 symmetries of D,
together with reflections in the faces of D.

The zy-plane intersects D in a decagon. If we
translate D upwards along the z-axis, we can ar-
range for D to have its bottom face F lying in the
zy-plane as a regular ideal pentagon. The vertices
of D still lie on horizontal meridians. At this stage,
the zy-plane is tessellated by faces of dodecahe-
dra, which thus induce the 2-dimensional hyper-
bolic tessellation {5, 00} [Coxeter 1956].

Choose one of the 5 edges of D, designated &,
emanating from a vertex V of F, with € not an edge
of F. The other endpoint of € lies on a meridian
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with positive z-coordinate, and consequently & is
disjoint from the z-axis, but coplanar with it.

Slide D back down the z-axis until the edge & lies
symmetrically about the xy-plane, and is therefore
orthogonal to it. At this stage, the zy-plane is
orthogonal to two distinct axes of rotational sym-
metry of the tessellation. Hence rotating about
either the z-axis, or &, both the tessellation and
the zy-plane are preserved. The intersection of
the zy-plane with D is now a regular m/3-angled
pentagon, since the plane is orthogonal to € and
the other four edges emanating from the vertices
of F. Hence the intersections of the zy-plane with
all dodecahedra of the tessellation {5,3,6} induce
the tessellation {5,6} on the plane [Coxeter 1956].
The circle on the sphere at infinity corresponding
to this plane is therefore disjoint from all ideal ver-
tices of the tessellation {5,3,6}.

By symmetry, there is an infinite [-invariant
family of planes in H®, the intersection each of
which with any dodecahedron being either empty
or a regular pentagon parallel to a unique face.
Each dodecahedron contains 12 such pentagons of
intersection. As an immediate consequence, we
have the result:

Theorem 2.1. Suppose that G is a torsion-free sub-
group of I' of finite index. Then the finite-volume
noncompact hyperbolic three-manifold Mg = H*/G
contains an immersed, totally geodesic closed sur-
face.

Corollary 2.2. Each of the dodecahedral knots Dy,
Dy constructed in [Aitchison and Rubinstein 1992]
contains an immersed closed surface in its com-
plement in S3, totally geodesic with respect to the
complete constant curvature metric.

Proof. These knots are shown in [Aitchison and Ru-
binstein 1992] to arise as in the theorem. O

3. THE DODECAHEDRAL KNOTS

We recall the construction of the two dodecahe-
dral knots Dy and D, [Aitchison and Rubinstein
1992]. Take two copies of an ideal regular hyper-

bolic dodecahedron, and colour the faces of one us-
ing two colours, so that no vertex is surrounded by
faces all of the same colour. Identify correspond-
ing faces of the two copies by isometries, rotations
of £27/5, with sign determined by the colour of
the face. There are essentially two choices for such
colourings, as shown in Figure 1, and the resulting
topological spaces after face identifications are the
complements of the two knots D; and D;. The
knots Dy and D; are illustrated in Figure 2.

FIGURE 1. The two ways to shade the faces of a
dodecahedron with two colors so that no vertex is
surrounded by faces all of the same color.

Proposition 3.1. The two knots D and Dy are dis-
tinct.

Proof. The Seifert surfaces determined by apply-
ing Seifert’s algorithm to the given projections are
minimal [Murasugi 1963], and of different genus.
The knot Dy is fibred [Aitchison and Rubinstein
1992], with fibre surface that from the projection,
and hence is distinct from D,, which has lower
genus. U

Neumann and Reid [1992] have demonstrated some
remarkable properties of these knots:

(i) These are the first known examples of knots
with cusp field and trace field differing (respec-
tively Q(v/=3) and Q(v/=3, vV5)).

(ii) They are the only known nonarithmetic knots
with cusp field Q(v/—3), that of the figure-eight
knot.

(iii) They are the only known nonarithmetic knots
with hidden symmetries. (Equivalently, the knot
complements nonnormally cover some orbifold.)
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FIGURE 2. The knots D; (left) and Dy (right).

Aspects of these properties will emerge later.

4. IT,-INJECTIVE SURFACES

In [Aitchison and Rubinstein 1992], it is shown that
these knot complements admit singular polyhedral
metrics, with respect to which there exist immersed
mi-injective totally geodesic closed surfaces 8, S;.
Each of these surfaces arises topologically by iden-
tifying edges of the 24 pentagons parallel to the
24 faces of the two dodecahedra. The surfaces so
obtained are topologically exactly those appearing
in the smooth construction.

Theorem 4.1. The surfaces 85 and 8; are reqularly
homotopic to totally geodesic closed surfaces in the
standard complete hyperbolic metric on S*—D, and
S* — Dy respectively.

5. IDEAL REGULAR DODECAHEDRA IN HYPERBOLIC
SPACE

Coxeter [1948; 1949] described the four possible
tessellations of H® by regular ideal Platonic solids.
The tessellation {5,3, 6}, corresponding to the reg-
ular ideal dodecahedron D, has symmetry group

I" the tetrahedral group 75,2, 2; 2, 3, 6] [Neumann
and Reid 1992; Lee 1985a]. This is generated by
rotations in the edges of one of the 120 isomet-
ric tetrahedra of the barycentric subdivision of D.
Thus I' is also generated by reflections in the faces
of D, together with the order-120 group of symme-
tries of D. There are six dodecahedra around each
edge, so the dihedral angles are all /3.

We determine matrices in SL(2;C) correspond-
ing to generators of I'. The tetrahedron has ver-
tices v, e, f, ¢, with v at infinity, and with e, f and
¢ corresponding to an edge, a face and the centre
of D respectively.

We use the upper-half space model for H?, with
the ideal vertex v of the tetrahedron at oco. The
geodesic edges ev, fv and cv become parallel ver-
tical lines in this model, with dihedral angles /6,
/2 and 7/3 respectively. Viewed from oo, as in
Figure 3, the vertices e, f and c¢ project to the
vertices of the triangle E/, F' and C arranged to
be at the points 0, —7/2 and 7¢°/v/3 where ¢ =
expin/6 = V/3/2 +i/2 in the complex plane, and
7 = (14 v/5)/2 is the golden mean.
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FIGURE 3. Elements of the hyperbolic tetrahedron
D, with vertices ¢, e, f, and v (at infinity).

The face ecf of the tetrahedron is the intersec-
tion of the triangular chimney over EC'F with the
hyperbolic plane corresponding to the circle in the
complex plane of radius 1, centred at £ = 0. It
is a straightforward calculation to show that the
dihedral angles at the edges ec, c¢f and fe are re-
spectively w/2, m/5 and 7/2. This completes the
construction of the tetrahedron [5,2,2; 6,3,2]. See
Figure 3.

6. TETRAHEDRAL GROUP GENERATORS

The tetrahedral group T'[A;, Ay, Az; por, oo, p3] de-
termined by positive integers Ay, A, Az, fh1, fho, i3
has presentation [Lee 1985b]

<x7 y7 Z:
oM === (e = () = () =),

In this notation, we have T'[5, 2, 2; 6, 3, 2] generated
by these Mobius transformations:
-7 -1
0

rotation about ¢f by 27/5 =z = (
. 0 ¢
rotation about fe by 27/2 =y = ( . >

rotation about ec by 27/2 =2z =

. 0
rotation about ev by 27/6 =y 'z = <g 5_1>
_. _. 71
rotation about cv by 27/3 =2z = ( Sf Z;i >

rotation about fv by 27/2 =2y = <_OZ _Z'ZT>

The fixed points on the sphere at oo correspond-
ing to these elliptic elements are oo, E, C and F,
corresponding to the latter 3 elements, and the in-
tersections of the unit circle with the straight lines
determined by C'F, FE and EC. From the dodec-
ahedral symmetry, we know that the hyperbolic
plane in H?® determined by ecf contains two edges,
meets another two edges orthogonally, bisects four
faces and contains four ideal vertices. Similarly
the endpoints of the geodesic determined by vc are
both ideal vertices.

7. CUSP AND TRACE FIELDS

We can obtain a view of the cusp structure by a
slight elaboration of Figure 3, enabling the cusp
and trace fields to be seen directly. Coxeter [1948;
1949] does not treat stereographic projection, so
we give a fairly complete description.

In Figure 4, left, we have constructed an equilat-
eral triangle E, P, () of base length 7. The circle
of radius 1 centred at E = 0 intersects the edges
of this triangle at the points Ry and Sg. Simi-
larly, unit circles centred at P and () determine the
points Rp, Sp, Ry and S;. Next we add the edges
joining vertices of the equilateral triangle to the
two points just constructed on the opposite edge.
These segments intersect in twelve points, six of
which are labelled Ay, ..., Ag, and three B;, B, B3
in the figure. Points Ag and A; are, like Sg and
Rp, at distance 1 from E. We draw segments join-
ing the B; to the center C of the original triangle,
and the segments A; Ag, A2 A3, and A As.

Erasing superfluous lines (Figure 4, right) we are
left with a pattern of nine pentagons:

QRpA;A,Sp, ERpA;A,So, PRoA, AgS
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at the vertices of the original triangle;
RSqAByA3, RpSAgB3sAs, RogSpA;B1 Ay
at the edges; and
Ay A3 ByCBy, AjAsB;CB,, AgA1B1CB3

at the centre.

Together with the three pentagons coPRoSpQ,
00QRSGFE and co ERpS P, we have the twelve faces
of the ideal dodecahedron D.

Viewed from the parabolic fixed point at infinity,
we see the tessellation of the plane by equilateral
triangles, each of which corresponds to an ideal
dodecahedron with a vertex at co. We see directly
that the cusp field is Q(v/—3). Moreover, from
[Neumann and Reid 1992] we know that the trace
field is generated by parabolic fixed points in the
plane, after three of which have been conjugated to
lie at the points 0, £1, co. From the matrix gener-
ators of the symmetry group I', and the existence
of a parabolic fixed point at +7, we conclude as

P

in [Neumann and Reid 1992] that the trace field is
Qv=3,V5).

The reader may have observed the similiarity
between Figure 4 and the diagram appearing in
[Coxeter 1956, p. 97], showing the 18 lines of inter-
section of planes determined by faces of a regular
Euclidean icosahedron with the plane of a distin-
guished face. These 18 lines are depicted in Fig-
ure 5. The three lines of the equilateral triangle,
together with the remaining six lines through the
vertices so determined, give nine lines from which
the dodecahedron is constructed.

That this diagram arises can be understood as
follows. Consider a spherical dodecahedron, and
take the metric on the graph of vertices and edges,
with all edges of length 1. Choose any vertex v,
and consider the circle C, passing through the six
vertices at distance 2 from v. This circle lies in a
plane orthogonal to the axis vv*, where v* is the
vertex antipodal to v. Dually, the six circles about
the vertices at distance 2 from v, all pass through
v. Another three planes passing through v are de-

P

Q Rg So

E Q Rp So E

FIGURE 4. Left: Triangle EPQ has side length 7 = (1++/5)/2. On the edges we mark Sp and Rp at

distance 1 from FE, etc.

Connecting these points to the opposite vertices creates nine additional points

Ay, ..., Aq,B,...,Bs. Together with the center of the construction, all these points form 19 of the vertices of
a dodecahedron, seen in stereographic projection from the last vertex (right).
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FIGURE 5. The 18 lines of intersection of planes
determined by faces of a regular Euclidean icosa-
hedron with the plane of a distinguished face.

termined by the three faces of the dodecahedron
incident at v. Stereographically projecting the do-
decahedron onto a plane from the point v, the 3
faces determine the equilateral triangle, and the
six circles give rise to the six lines throught the
vertices of the equilateral triangle. These six lines
intersect in points corresponding to the vertices of
the dodecahedron at which the circles intersect.

The icosahedron can be constructed by truncat-
ing the vertices of a dodecahedron by planes or-
thogonal to radial lines from the centre of the do-
decahedron to the vertices. The six lines above
thus correspond to six faces of the icosahedron.

The existence of these six circles through each
vertex of the dodecahedron facilitates the construc-
tion of the diagram directly. The regular Euclidean
or spherical dodecahedron, stereographically pro-
jected from a vertex onto the tangent plane of the
sphere at the antipodal vertex, appears as in Fig-
ure 4, right, since there are straight lines containing
six vertices, such as QA3zBsAsRpoo. Calculating
the tangent of the angle RpQF in different ways
leads to a simple quadratic equation whose solution
involves the golden mean.

8. DIHEDRAL ANGLES

We have given a geometric argument for the exis-
tence of the family of hyperbolic planes in section 2,
using the ball model for hyperbolic space. In this
section we consider some analytic aspects, in order
to calculate the dihedral angle between any two
such planes.

We have associated a hypersurface H(D, F, E;)
to each triple (D, J,E;), where D D F and &; has
an ideal vertex in common with F. By rotational
symmetry about the fivefold axis yr orthogonal to
F, this hypersurface is independent of edge choice
(TR

Now consider the family Hp of all hypersurfaces
arising in this fashion. We use the view from infin-
ity to calculate the dihedral angle between any two
intersecting planes in Hp. Without loss of gener-
ality we may consider the following situation.

Denote by v the geodesic axis of fivefold rota-
tional symmetry preserving the ideal pentagonal
face § = A3B,A,SgRE of the dodecahedron D of
Figure 4. Thus v also passes through the centre
of the face PRgyA;AsSE. The hyperbolic plane
H(D,TF) is orthogonal to the edges QRg, AsA,,
B,C, A4A;, SoE, as well as to the adjacent faces
to F. Hence H(F) = H(D,TF) has F as its cen-
tre for the corresponding limit circle C) at infinity,
by symmetry. This circle meets the (planar) edges
just mentioned orthogonally, and inverting in the
circle interchanges the endpoints of these edges.
This explains why the edges, extended into the in-
teriors of pentagons, are concurrent. In particular,
we see another reason why the centre of C is the
point F.

To calculate the radius p; of C}, change coordi-
nates so that F' is the origin, and @, E lie at the
points £7/2 on the z-axis. Then S; and R are
respectively £(2 — 7)/2. Hence

Another hyperbolic plane in Hr is orthogonal to
the sixfold axis ev, and thus has its circle at infinity
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C, centred at E, and orthogonal to the edges Eoo,
RpSg, A; B3, AyBy; SgRp. We calculate its radius
p» analogously, since inversion in C, interchanges
Rp and Sg.

ps=|1—1|.1=(r-1).

The angle at which the circles C; and Cs intersect
in the plane is exactly the dihedral angle at which
the corresponding planes in hyperbolic space meet.
Since the centres of these circles are at distance 7/2
apart, we calculate this angle as

2 2 _22/4
C080:M:(27—_3)I:1_1
2p1p2 2 2
_3 _4‘/5 ~ 0.190983006,
so 0 ~ 79°.

Remark 8.1. Hass and Scott [1992] have shown that
immersed surfaces meeting at such an angle auto-
matically satisfy their 4-plane, 1-line property.

We have drawn circles determining such hypersur-
faces in Figure 6. Note that there are six pentagons
sliced off by the hypersurface orthogonal to the six-
fold z-axis.

FIGURE 6. The circle C and six copies of C, on the
sphere at infinity (as seen from one point thereof).

9. ANOTHER VIEW OF THE DODECAHEDRON

That the surfaces constructed above slice off pen-
tagons parallel to the faces of dodecahedra can also
be seen by a different view of the dodecahedron,
again in the upper-half plane model, but conju-
gated so that the endpoints of an axis of fivefold
rotation lie at 0 and co. We will eventually de-
scribe a simple construction of the stereographic
projection of a regular dodecahedron based on an
irregular decagon.

We begin with a ruler and compass construction
(Figure 7), and then reconcile the emergent picture
with the tessellation using cross-ratios. We start by
constructing two lines through an initial point O,
at an angle of /5 (recall that the regular pentagon
is constructible!). Choose a point A on one of these
lines, and construct B as the intersection of the
other line with the line AB at an angle of 7/3 to
OA. Similarly construct C' on the line OA using
a line at angle 7/3 to AB at B. With a compass
centred at B, construct the isosceles triangle CBD,
with BC' = BD. Counstruct a line through D at
angle /3 to OB at D, thereby finding £ on OA.
Finally construct ' on OB, so that ZDEF = 7/3.

Choose orthogonal axes through O and a scale
so that F' is the point 1 in the complex plane. The
point D is thus at the point w satisfying the quad-
ratic equation

w* +w(2—-37)+1=0. (9.1)
A

O F X D B

FIGURE 7. A ruler and compass construction.
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This can be obtained by dropping a perpendicular
from E to X on OB, and calculating cos7/5 =
OX/OE: if |OX| = z, and |OD| = w, then
|0X| = (z +w)/2,
|EX| = V3|FX| = V3(w — 2)/2
|OE|> = |OX|* + |[EX|?
T=2cos7/5 =|EX|/|OE|.

FIGURE 8. The points F, D, C, A of Figure 7,
plus their images under five-fold rotation about O,
correspond to the vertices of an ideal regular hy-
perbolic dodecahedron D.

Now take the four points F,D,C, A and their
images under fivefold rotation about O. This gives
us the twenty points in Figure 8. It turns out that
these twenty points are the vertices of a regular
ideal dodecahedron in the upper half-space model,
with fivefold axis of symmetry having endpoints at
0 and oo.

To see this, note that, by symmetry considera-
tions, the distribution of points of an ideal regular
dodecahedron D in the required arrangement must
be similar to that of Figure 8. It suffices to verify
that Figure 8 is metrically correct.

Each face of D is a regular pentagon, so each
four consecutive vertices on any face must have
the same cross-ratio as corresponding points of the
standard Euclidean regular pentagon. (Recall that
the cross-ratio of four ordered points z, z», 23, 24 in
the Riemann sphere is

Z1 T 23 B2 — 24

[Z17Z27Z37Z4] — )
Z1 — R4 B9 — 23

and that the cross-ratio is preserved under Mobius
transformations.) Setting n = exp 27i/5, one can
easily verify that the cross-ratio [1,7,n?, n?] of four
consecutive vertices of a regular pentagon, taken
counter-clockwise, equals 7. Also by direct com-
putation, we see that the cross-ratio

= [nwa 7,1, w]

of the four labeled points in Figure 8 satisfies the
linear equation

w? +w(2 —3t) +1=0;

comparing with (9.1), we see that ¢t = 7.

To verify that the other points are correctly dis-
tributed, observe that, by construction, there are
circles (whose circles are the points £ and B of Fig-
ure 7) going through five points as a time. Symme-
try considerations then show that point C of Fig-
ure 7 is a vertex, and similarly for the other points.
Thus Figure 8 does describe the vertex distribution
of a regular ideal dodecahedron.

It is now a simple matter to explicitly find the
equations for planes orthogonal to the fivefold and
sixfold axes described above. We seek a circle, cen-
tre the origin and of radius o, inversion in which
interchanges the points 1 and w. This requires

o = w, w? + (2 —37)w+1=0.

It is now obvious that this plane slices through D
as a pentagon parallel to a face, and that edges of
D are met symmetrically. Since the hypersurface
meets each edge orthogonally, the dihedral angle
/3 at each edge is also the angle at the vertex of
each pentagon in the induced tessellation of this
plane.
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10. YET ANOTHER DESCRIPTION

Consider again the stereographic projection of the
dodecahedron from the north pole viewed as the
endpoint of a fivefold symmetry axis. Take any face
adjacent to the bottom face, and consider the circle
Coy at infinity of hyperbolic space passing through
the ideal vertices of this face. If we take a fam-
ily C, of meridianal circles on S?, parallel to Cj,
and with C] passing through the vertices of the
opposite face of the dodecahedron, for some ¢t = 7
we must have the north pole lying on C,. Each
of these circles projects to a circle in the plane,
with C, projecting to a straight line. Each of these
circles defines an inversion interchanging the same
two points, the endpoints of the axis of the dodec-
ahedron orthogonal to the hyperbolic planes corre-
sponding to the circles. The FEuclidean centres of
the projections of the circles C; describe a straight
line on the complex plane, with one point at infin-
ity, whereas the hyperbolic axis about which they
are simultaneously symmetric has fixed endpoints.
The Euclidean centres of Cy and C; can be found
as the intersections of the perpendicular bisectors
of the edges of the respective pentagons.

Thus an interesting aspect of the projections of
the dodecahedron we have given has been brought
to light by the family of hyperbolic planes we have
been constructing.

The hyperbolic plane parallel to a face, meet-
ing edges orthogonally, determines a reflection of
hyperbolic space which interchanges the endpoints
of these intersected edges. In the plane, inversion
in the corresponding circle interchanges the end-
points of the straight-line segments corresponding
to these edges. Accordingly, each of these edges is
orthogonal to the circle, so the centre of the circle
is the common point of intersection of these edges
extended into the pentagon. This is true for each
of the pentagons. This leads to both the conve-
nient means of calculating the dihedral angle of
two of these hyperbolic planes, given above, and
also an alternative way of constructing a stereo-
graphic projection of a regular dodecahedron.

Counstruct an immersed decagon in the plane by
taking ten edges of equal length and laying them
end to end with interior angles alternately equal
to m/3 and 77/15. The configuration so obtained
is shown in Figure 9, left.  The interior of this
figure is a nonregular decagon. Construct a regu-
lar pentagram with vertices at the vertices of this
decagon of smaller angle. The interior pentagon is
one of the faces of the dodecahedron. Construct
a larger pentagon by extending all edges through
the 7m/15-vertices, and taking vertices determined
by the intersections of such extended edges on ei-
ther side of a 7/3 vertex. Construct a pentagram
on these vertices. The pentagon interior to this
pentagram has 5 edges, with an irregular pentagon
based on each edge, in the interior of the pentagon.
The construction is illustrated in Figure 9, middle.
Finally, Figure 9, right, we delete some extraneous
edges, to obtain the projected dodecahedron with
edges extended to intersect concurrently in the in-
teriors of faces.

That this configuration really is the regular do-
decahedron can be seen by studying the various
angles in Figure 9, and comparing with Figure 7.

11. MATRIX GENERATORS FOR THE TESSELLATION
{5;6}

That totally geodesic surfaces might exist in the

dodecahedral knot complements was suggested in

part by the great similarity of their length spectra,

calculated by SnapPea [Weeks 1990-96].

The immersed surfaces in the knot complements
are covered by hyperbolic planes, tessellated by
m/3-angled pentagons. The group generated by a
fivefold and sixfold rotation, about coplanar dis-
joint axes, acts transitively on the cells of this tes-
sellation. In the upper half space model, the sixfold
rotation with fixed points at co and u is determined

by the matrix
& —iu
0 ¢t )
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FIGURE 9. Left: An immersed decagon with alternating angles 7/3 and 77 /15. Middle: The extended decagon.
Right: Erasing certain lines leads again to the pattern of the ideal regular dodecahedron, as in Figure 8.

For convenience, we may take as generators for the
tessellation the two matrices

—7 -1 & iré?
(1 0) and (0 5_1>.

The latter defines a rotation with fixed points at
—7€2 = —7/2 + /37 /2i and co.

12. LENGTH SPECTRA

The symmetry of the the universal cover of the
dodecahedral knots had suggested the possibility
of existence of immersed totally geodesic surfaces.
This viewpoint was reinforced by the similarity of
length spectra for the two knot complements, ob-
tained using SnapPea [Weeks 1990-96]. We have
listed these spectra in Table 1, since their intrigu-
ing similarity is not yet understood.

It is a remarkable empirical fact that the spec-
trum for D, appears as a subset of the spectrum
of Dy, at least up to a cutoff of 6.0 with a radius
of 7.0. The complex lengths common to both are
indicated with “sym”. Although only four signifi-
cant places are given, the agreement is actually to
twelve decimal places. The gaps in the table thus

correspond to complex lengths occuring for D, but
not for D,. Note that the first difference between
the fibred and symmetric knots occurs for an ele-
ment with 7 rotational part, with length that of a
totally-geodesic surface element.

Proposition 12.1. For both D; and D,, the knot
complement admits an orientation-reversing invo-
lution. Hence all complex lengths occur in conju-
gate pairs.

Proof. Each knot can be arranged on the graph of a
dodecahedron on a two-sphere in S®. In each case,
the involution interchanges the centres of the ideal
dodecahedra of the complement.

For Dy, take the equator as a Hamiltonian cir-
cuit for a nonregular dodecahedron. Twisted bands
are added along five arcs in each hemisphere (from
which structure we know the knot fibres). The five
arcs at the back and front are interchanged by a ro-
tation of the sphere, and a further reflection in the
sphere gives the desired involution; the plumbings
at the back and front occur with different parity.
The shading of the dodecahedron giving rise to D
is the more symmetric. Rotate the sphere by an
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1.9848
2.7432
2.8211
2.9016
3.0687
3.1284
3.2043
3.4739
3.5759
3.6071
3.6647
3.7358
3.7854
3.8794
3.9449
3.9451
3.9696
4.0869
4.1730
4.2444
4.2859
4.3357
4.3357
4.3425
4.4031
4.4374
4.5334
4.5370
4.5462
4.5506
4.5663
4.5725
4.5829
4.5829
4.5934
4.6233
4.6250
4.6366
4.6674
4.6701

TABLE 1. Lengths of closed geodesics for the complements of Dy (all entries) and D, (entries marked with
an asterisk). Each entry consists of real and imaginary parts; the real part is the translation distance of the
corresponding hyperbolic transformation, and the imaginary part gives the torsion in units of 2. The imaginary
part can be taken with either sign, since, due to the existence of an orientation-reversing involution, all complex

0.4276*
0.2107*
0.1184*
0.2446*
0.0000*
0.4604*
0.3442*
0.0819*
0.4151*
0.0000*
0.4285*
0.2546*
0.2463*
0.1349*
0.4647*
0.4152*
0.1446*
0.4179*
0.2691*
0.1706*
0.5000*
0.0000*
0.4000

0.1179*
0.2756*
0.2265*
0.2791

0.0468*
0.3930*
0.4776

0.1959*
0.3189*
0.4382*
0.1533*
0.4743*
0.1693*
0.1497

0.2008*
0.0166

0.3257*

4.6758
4.6917
4.7136
4.7235
4.7272
4.7681
4.7836
4.7983
4.8029
4.8113
4.8132
4.8306
4.8507
4.8644
4.8659
4.8690
4.8704
4.9058
4.9058
4.9080
4.9234
4.9279
4.9284
4.9505
4.9563
4.9567
4.9649
4.9709
4.9877
4.9892
5.0083
5.0147
5.0318
5.0344
5.0381
5.0478
5.0562
5.0753
5.0782
5.0796

lengths occur in conjugate pairs.

0.4505*
0.1444*
0.0695*
0.2239*
0.4645*
0.3513

0.0670*
0.2951*
0.3106*
0.2122%*
0.4966*
0.4575*
0.2147*
0.0000*
0.2963*
0.4550*
0.4235*
0.0000*
0.2879*
0.0874

0.1020*
0.3353*
0.0474*
0.1955

0.0613*
0.1251

0.4836*
0.0000*
0.4092*
0.4475*
0.2901*
0.3800*
0.2852*
0.1862*
0.2628

0.4069*
0.0582

0.3133*
0.3567*
0.2557*

5.0821
5.0910
5.0945
5.0982
5.1039
5.1115
5.1167
5.1195
5.1393
5.1449
5.1729
5.1754
5.1904
5.1911
5.1938
5.1968
9.2012
5.2083
5.2144
9.2145
5.2153
9.2182
5.2194
9.2252
5.2334
9.2452
5.2473
5.2508
9.2521
5.2547
9.2636
9.2662
5.2690
5.2748
5.2752
9.2782
5.2848
9.2862
5.2903
5.2977

0.4421%*
0.0436*
0.1307*
0.3832*
0.2291*
0.3777*
0.4401*
0.1436
0.3219
0.4334
0.3556
0.1339*
0.4718*
0.3808*
0.4662*
0.3222
0.2732*
0.0539*
0.3425*
0.4430
0.1681
0.1826*
0.1446*
0.0000
0.4857
0.1653*
0.1796*
0.0732*
0.4540
0.2949
0.0323*
0.1193*
0.3272
0.1680
0.2426*
0.2707
0.4263
0.1312
0.2047
0.4180*

9.2995
5.3042
5.3087
5.3119
9.3152
5.3213
9.3238
9.3256
9.3285
9.3312
9.3329
9.3333
5.3374
5.3405
9.3555
9.3596
9.3675
5.3686
5.3818
9.3820
9.3847
9.3859
5.3932
5.3945
5.3968
5.4035
5.4120
5.4124
5.4161
5.4251
9.4257
5.4308
5.4326
5.4340
5.4382
5.4389
5.4408
5.4423
5.4606
5.4649

0.2389

0.0712*
0.2959*
0.4793*
0.3153*
0.4047*
0.0952

0.4572

0.2917

0.2404*
0.3775*
0.4489*
0.3967

0.4284*
0.3274*
0.4274*
0.0000*
0.1544*
0.0493*
0.0999*
0.0610

0.4785*
0.2974*
0.2742

0.3716*
0.4018*
0.2933*
0.0983

0.1851*
0.1294*
0.0070*
0.2450*
0.0481

0.0296*
0.0182

0.4236

0.2190*
0.1823*
0.0959*
0.4367*

5.4649
5.4682
5.4736
5.4745
5.4761
5.4770
5.4809
5.4865
5.4878
5.4929
9.4935
5.4951
5.5002
5.5006
9.5038
5.5041
9.5048
5.5082
5.5160
5.5222
9.5249
9.5302
9.5305
9.5322
9.5359
9.5370
9.5387
5.5406
5.5422
5.5436
9.5439
9.5511
9.5519
5.5527
9.5539
9.5551
9.5556
9.5597
9.5598
9.5599

0.0291
0.0655*
0.1069*
0.3454
0.3056
0.2696*
0.3167*
0.4214*
0.4399*
0.0759*
0.1985
0.4976
0.0000*
0.2592
0.3236*
0.4696*
0.3452*
0.2483*
0.2234
0.0748
0.4449*
0.0000*
0.0390
0.0566
0.4082*
0.2496*
0.4862*
0.0107*
0.0347*
0.3729
0.4189*
0.4618*
0.3238
0.3449*
0.1837*
0.3686
0.0803*
0.0451*
0.1960*
0.0000
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involution interchanging faces of opposite colour,
and again compose with a reflection of S® in the
two-sphere. This gives the desired involution of
S3 — D,. O

If one considers only the real parts, and conjectures
the existence of a ['-invariant locally finite fam-
ily of hyperbolic planes in the universal cover, the
similarity of length spectra does not seem unrea-
sonable. However, a Fuchsian element has vanish-
ing rotational part, and only a few of the complex
lengths have this property. Only some of those in
Table 1 arise as multiples of lengths corresponding
to the tessellation {5,6}.

13. OPEN PROBLEMS

Problem 13.1. The two subgroups of I' producing
these knots are of the same index, and have the
same fundamental domain. The spectra are thus
both subsets of a common set, but appear to be
closer than one might expect. Explain the similar-
ity of length spectra of the dodecahedral knots.

Problem 13.2. The length spectra of the dodeca-
hedral knots contain several complex lengths with
vanishing imaginary part which do not correspond
to the surface constructed in this paper. Do they
arise from some other immersed totally geodesic
surface? Note that there are several naturally oc-
curing noncompact immersed surfaces. Moreover,
some of the lengths corresponding to potential im-
mersed surfaces occur for Dy. Does Dy contain
some other compact surface not arising from the
tessellation?

Problem 13.3. Determine whether or not each of the
dodecahedral knots contain infinitely many com-
mensurability classes of immersed totally geodesic
closed surfaces.

Problem 13.4. By [Long 1987], each of the dodecahe-
dral knot complements has a finite cover containing
an embedded totally geodesic surface. Character-
ize such covers.

Problem 13.5. In [Aitchison and Rubinstein 1992], it
is shown that every three-manifold arising by non-
trivial Dehn surgery on each of the dodecahedral
knots contains a m;-injective immersed closed sur-
face, satisfying the 4-plane, 1-line condition [Hass
and Scott 1992]. Determine which of these are vir-
tually Haken, in light of the preceding problem.

ACKNOWLEDGEMENTS

We thank Craig Hodgson, Darren Long, Alan Reid,
and Bill Thurston for helpful conversations.

REFERENCES

[Aitchison and Rubinstein 1992] I. R. Aitchison and
J. H. Rubinstein, “Combinatorial cubings, cusps, and
the dodecahedral knots”, pp. 17-26 in Topology 90
(Columbus, OH, 1990), edited by B. Apanasov et al.,
de Gruyter, Berlin, 1992.

[Coxeter 1948; 1949] H. S. M. Coxeter, Regular
Polytopes, Methuen & Co. Ltd., London, 1948; 1949.
Third edition, Dover, New York, 1973.

[Coxeter 1956] H. S. M. Coxeter, “Regular honeycombs
in hyperbolic space”, pp. 155-169 in Proceedings
of the International Congress of Mathematicians
(Amsterdam, 1954), vol. III, Erven P. Noordhoff
N.V., Groningen, 1956.

[Hass and Scott 1992] J. Hass and P. Scott, “Homotopy
equivalence and homeomorphism of 3-manifolds”,
Topology 31:3 (1992), 493-517.

[Lee 1985a] Y. W. Lee, “Abelian rank of normal torsion-
free finite index subgroups of polyhedral groups”,
Trans. Amer. Math. Soc. 290:2 (1985), 735-745.

[Lee 1985b] Y. W. Lee, “Abelian rank of normal
torsion-free finite index subgroups of polyhedral
groups”, Trans. Amer. Math. Soc. 290:2 (1985), 735~
745.

[Long 1987] D. D. Long, “Immersions and embeddings
of totally geodesic surfaces”, Bull. London Math.
Soc. 19:5 (1987), 481-484.

[Maclachlan 1986] C. Maclachlan, “Fuchsian subgroups
of the groups PSL*(04)”, pp. 305-311 in Low-
dimensional topology and Kleinian groups (Coven-
try/Durham, 1984), edited by D. B. A. Epstein,



150 Experimental Mathematics, Vol. 6 (1997), No. 2

London Math. Soc. Lecture Note Ser. 112, Cam-
bridge Univ. Press, Cambridge, 1986.

[Maclachlan and Reid 1987] C. Maclachlan and
A. W. Reid, “Commensurability classes of arithmetic
Kleinian groups and their Fuchsian subgroups”,
Math. Proc. Cambridge Philos. Soc. 102:2 (1987),
251-257.

[Menasco and Reid 1992] W. Menasco and A. W. Reid,
“Totally geodesic surfaces in hyperbolic link com-
plements”, pp. 215-226 in Topology 90 (Columbus,
OH, 1990), edited by B. Apanasov et al., de Gruyter,
Berlin, 1992.

[Murasugi 1963] K. Murasugi, “On a certain subgroup
of the group of an alternating link”, Amer. J. Math.
85 (1963), 544-550.

[Neumann and Reid 1992] W. D. Neumann and A. W.

Reid, “Arithmetic of hyperbolic manifolds”, pp. 273—
310 in Topology 90 (Columbus, OH, 1990), edited by
B. Apanasov et al., de Gruyter, Berlin, 1992.

[Reid 1991a] A. W. Reid, “Arithmeticity of knot
complements”, J. London Math. Soc. (2) 43:1 (1991),
171-184.

[Reid 1991b] A. W. Reid, “Totally geodesic surfaces in
hyperbolic 3-manifolds”, Proc. Edinburgh Math. Soc.
(2) 34:1 (1991), 77-88.

[Riley 1989] R. F. Riley, “Parabolic representations
and symmetries of the knot 932”7, pp. 297-313
in Computers in geometry and topology (Chicago,
1986), edited by M. C. Tangora, Lecture Notes in
Pure and Appl. Math. 114, Dekker, New York, 1989.

[Weeks 1990-96] J. R. Weeks, “SnapPea — (software
for the study of hyperbolic three-manifolds)”, 1990—
96. See http://www.geom.umn.edu/locate/snappea.

Tain R. Aitchison, University of Melbourne, Department of Mathematics, Parkville, Victoria 3052, Australia

(iain@ms.unimelb.edu.au)

J. Hyam Rubinstein, University of Melbourne, Department of Mathematics, Parkville, Victoria 3052, Australia

(rubin@ms.unimelb.edu.au)

Received April 17, 1996; accepted September 14, 1996



