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Cameron has introduced a natural one-to-one correspondence
between infinite binary sequences and sets of positive integers
with the property that no two elements add up to a third. He
observed that, if a sum-free set is ultimately periodic, so is the
corresponding binary sequence, and asked if the converse also
holds. We present here necessary and sufficient conditions for
a sum-free set to be ultimately periodic, and show how these
conditions can be used to test specific sets. These tests produce
the first evidence of a positive nature that certain sets are, in
fact, not ultimately periodic.

1. INTRODUCTION

Infinite binary sequences are in natural one-to-one
correspondence with sum-free sets of positive inte-
gers, that is, sets of which no element is the sum of
two elements (Section 3). Cameron [1987] observed
that, if a sum-free set is ultimately periodic, the
corresponding binary sequence is ultimately peri-
odic, and asked whether the converse is also true.
This question is still open, but there is some indica-
tion that the answer is no: Some apparently aperi-
odic sets correspond to ultimately periodic binary
sequences. Although some of these sets are rela-
tively simple, a proof of their aperiodicity has been
elusive, because no method is known that will show
that a sum-free set is not ultimately periodic from
a consideration of only finitely many elements.

In this work (Section 4) we introduce two new
functions g and g, defined on the positive integers,
and we show that the behavior of these functions
determines whether a set is ultimately periodic or
not. More precisely, we prove that, if its corre-
sponding binary sequence is ultimately periodic, a
sum-free set is ultimately periodic if and only if g is
bounded, and that if g is not bounded, g(n) grows
at least as fast as logn.
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In Section 5 we summarize the results of our
systematic tests of periodicity over large classes of
sum-free sets.

2. DEFINITIONS

Let S be a sum-free set. This means that S is a
subset of N (the set of positive integers) and that
there are no x,y,z € S with x +y = 2. We do not
require x and y to be distinct. We denote the set
of sum-free sets of positive integers by 8.

S is wultimately complete if, for all sufficiently
large n, either n € S or there exist xz,y € S such
that z +y =n.

S is periodic if there exists a positive integer m
such that, for all n > 1, we have n € S if and only
ifn+mesS.

S is ultimately periodic if there exist positive in-
tegers m,ny such that, for all n > ny, we have
n € S if and ounly if n +m € S. In this case we
call ng a preperiod and m a period of S. There is
a unique minimum period, since the greatest com-
mon divisor of two periods is also a period, but we
usually won’t insist that either m or ny be minimal.
For fixed m and ny we set

S():Sﬂ{l, ...,’I’LO—].},
Sper =S N{ng, no+1, ...},
S = Syer mod m.
Then S = Sy U Sper and
Sper = {n €N:n >ng and n mod m € S}. (2.1)

For example, if S is the set of odd positive integers,
which is periodic, we have S = {1} mod 2. Re-
moving a finite number of elements from S makes
it only ultimately periodic, but does not change S.
For the ultimately periodic set S = {1} U{3n+2:
n € N} we have S = {2} mod 3, and so on.

3. THE BIJECTION BETWEEN BINARY SEQUENCES

AND SUM-FREE SETS

Let o be an element of 2V, say 0,0503 ..., where
o; € {0,1} for every i. We construct the sum-free

set S associated to o by testing one integer n at
a time, in increasing order, for the possibility of
inclusion in S. If n is a sum of integers already in
S, it obviously should not be included. Otherwise,
the next element of o dictates whether or not n is
included in S.

Formally, we define sets S; and U; inductively,
starting with Sy = Uy = &. Let n; be the least
element of N that is not in S; ;U(S; 1+S; 1)UU; 1,
where A+B = {a+b:a € A, b€ B}. Then define

S — Si,1 U {nl} if g; = ]_,
T Si,1 if g; = 0,
U o Ui,1 1f 0; = 1,
¢ Ui—l U {nz} if g; = 0.

Let S = |, Si; then, since each S; is sum-free, and
since S; C S;y1, the union § is also sum-free.

We write S = (o), defining a map 6 : 2% — 8.
For example,
6(1111111111...) = {1,3,5,7,9,11,13,15,.. .},
6(0101010101...) = {2,5,8,11,...},
6(1010101010...) = {1,4,7,10,...},
6(1010010101...) = {1,4,8,11,14,...}.

This map is a bijection. Indeed, if S is a sum-free
set, we define a ternary sequence 7 by setting

1 ifnes,
ifneS+S, 3.1

0 otherwise;

Ty = {4 %

then convert this to a binary sequence o by deleting
all x’s. It is an easy exercise to check that this
correspondence is inverse to . We formalize the *-
erasing procedure since the notation will be useful
later: Let v be the unique increasing bijection from
N onto the set N\ (S + S) = 771({0,1}); then
On = Ty(n)-

The bijection 6 : 2¥ — § is actually a homeo-
morphism if 2" is given the dyadic metric (two se-
quences are at distance 27* if they differ for the
first time at the (k+ 1)-st place) and 8 is given the
analogous metric (the distance between S; and S,
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is 27% if k+1 is the least element in the symmetric
difference S; A Ss).

We will see in Lemma 4.3 that, if S ¢s ultimately
periodic, so is 67(S9).

Proposition 3.1. S is ultimately complete if and only
if 071(S) contains only finitely many zeros.

Proof. In the construction of #(c), an element is not
included if and only if either it is a sum of smaller
elements already in the set, or the corresponding
term in the binary sequence is zero. Thus, if S
is ultimately complete, we can only have finitely
many elements excluded because of zeros in 67(5).

O

This implies that the set of ultimately complete
sum-free sets is countable. By contrast:

Proposition 3.2. There are uncountably many mazi-
mal sum-free sets.

Naturally, a sum-free set is mazimal if it cannot be
enlarged without destroying the sum-free property.

Proof. Consider the set {9,11,14,16,19,21,...} =
{bk +1: k = 2,3,...}, which is clearly sum-free.
If we add to this set the element 2, we find that
the only solutions to the equation z + y = z are of
the form 5k + 1 = (5k — 1) + 2. Now consider an
arbitrary partition of {2,3,4,5,...} into two parts
N; and N, and define

Snne = {2}U{bk—1:k € N }U{bk+1:k € N>}

This set is sum-free, since by definition N; N N, =
@. Then no integer of the form 5k — 1, for k € N,,
or of the form 5k + 1, for k¥ € N, can be ad-
joined to Sy, n,, since such integers are differences
or sums of pairs of elements in Sy, n,. Now ex-
tend Sy, ,n, to a maximal sum-free set Ty, n,, using
Zorn’s lemma. By the preceding comments, T'v, n,
and Tar, m, are distinct if Ny # M;. Since there
are uncountably many partitions of {2,3,4,...},
we have proved the proposition. ]

Since the lower asymptotic density of T, n, is at
least é, we get the following result, which answers
a question of Stewart (personal communication).

Corollary 3.3. There are uncountably many aperiodic
mazimal sum-free sets of positive lower density.

4. PERIODICITY OF SUM-FREE SETS

We shall now consider one of the most intriguing
questions regarding sum-free sets, namely the rela-
tionship between the periodicity of a binary string
o and that of the associated sum-free set (o).
Cameron (personal communication) has asked if
either of these statements is true:

Conjecture 4.1. A binary string o is ultimately pe-
riodic if and only if (o) is ultimately periodic.

Conjecture 4.2. A binary string o has only finitely
many zeros if and only if 6(o) is ultimately periodic
and ultimately complete (by Proposition 3.1, this
is the same as saying that any ultimately complete
sum-free set is ultimately periodic).

Clearly 4.1 implies 4.2, but not necessarily vice
versa. Lemma 4.3 below shows that the “if” part of
the first conjecture holds, and that of the second
follows of course from Proposition 3.1. The con-
verses are still open; however, since the questions
were first posed, we have found evidence to suggest
that Conjecture 4.1 is false, and Cameron [1987]
has found evidence that 4.2 may also be false.

Lemma 4.3 [Cameron 1987]. If S = 6(o) is ulti-
mately periodic, so is o.

Proof. Let ng be a preperiod and m a period of S.
Consider the ternary sequence 7 associated with S
via (3.1). For n>2ng, we have 7, =1 <= neS
<= n € Sper & nmodm € S by (2.1), and also

T,=*%<=neS+S5
<= n € (Sper + Sper) U (Sper +50)
<= nmodm € (S+S5)U (S + (Sy modm))

because n is too large to be in Sy + Sy. Thus
T,, depends solely upon the congruence class of n
mod m. This shows that 7 is ultimately periodic,
and therefore so is 0. A period of o is given by
v Y(n+m)—v !(n), where n € S exceeds 2n, (the
map v is defined after (3.1)). O
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Where will we run into difficulties when we try to
reverse this proof? The crucial step involves the
erasing of the *’s in 7: given a periodic sequence
o it is easy to insert *’s in such a way that the re-
sulting ternary sequence is aperiodic (for example,
insert a * after every pp-th 1, where p; is the k-th
prime). Of course, it is unlikely that such inser-
tions would leave a sum-free set: Conjecture 4.1
states essentially that only by inserting in a peri-
odic manner is it possible to ensure that .S is sum-
free.

In trying to prove the “only if” part of the con-
jectures, one might be helped by a sufficient crite-
rion that ensures that a sum-free set is ultimately
periodic. The following lemma is one such crite-
rion: it says that if a sum-free set S is ultimately
periodic, this fact can be proved by considering
only #71(S) and a finite prefix of S.

Lemma 4.4. Let S be a sum-free set, with associated
binary sequence o, and let m be an integer. Set

Se=8SN{km+1,km+2, ..., (k+1)m}

fork =1,2,3, and ty, = v!(max Sy). Suppose that
Ss = S2+m =51 +2m, and that 044+, = 041ty for
all t > 0—in particular, o is ultimately periodic of
period p = t3 —ty. Then S is ultimately periodic of
period m and preperiod m.

Proof. We show by induction that n > m is in §' if
and only if n4+m is in S. This is true of n = m+1,
..., 3m because S and S; are translates of Sj.
Therefore we can take n > 3m, and assume that
the claim is true for all lesser values of n (> m).

In fact we will show that 7,,,,, = 7,. Take first
the case 7, = *, that is, n ¢ S+ S. Then also
n+m ¢ S+S; otherwise, express n+m as z+y with
z,y € Sandz € {2m+1, ..., n—1} (using the fact
that n > 3m), and apply the induction assumption
to write n = (x —m) +y € S+ S. Analogously,
n+m ¢ S+ S implies n ¢ S 4+ S; otherwise, set
n=z+ywithz,y € Sandz € {m+1, ..., n—1},
and apply the induction assumption. This shows
that 7,1 = % <= 7, = *.

On the other hand, if 7, # * and 7,1, # *, we
have v !(n +m) = v~*(n) + p (by induction; the
base case is n = max .S, and n + m = max S3, and
n is in the image of v if and only n + m is). But
then 7,1m = 0y-1(ntm) = Ou-1(n)4p = Ov-1(n) = Tn,
where the second-to-last equality comes from the
lemma’s assumption. O

In order to test Cameron’s conjectures, we gener-
ated the sum-free sets corresponding to periodic
binary inputs with period at most seven. For all
inputs with periods of length at most four, the cor-
responding sum-free set was ultimately periodic,
with a small preperiod (usually fewer than 10) and
a small period (always less than 25). Of the thirty
inputs with periods of length five, all but three
(01001, 01010, 10010) gave sum-free sets that were
quickly periodic. The set

0(01001) =
{2,6,9,14,19,26,29,36,39,47,54,64,69,79,84,91,...},

certainly appears to be aperiodic: the sequence of
differences between consecutive elements up to 107
exhibits long strings that are repeated, separated
by short “glitches” that show no sign of settling
down to be periodic. Other potential counterex-
amples to Cameron’s conjecture will be exhibited
in Section 5.

This, of course, is all evidence of a rather flimsy
type: “We looked, but we couldn’t find anything”.
We shall now state theorems that lead to more pos-
itive evidence that certain sum-free sets, (01001)
among them, are aperiodic.

Define functions g and g on N by

[0 ifn¢gS+S,
9(n) = min{z € S: z+y =n for some y € S}
otherwise;

g(n) = max g(k).

Theorem 4.5. S is ultimately periodic if and only if
o is ultimately periodic and g is ultimately constant
(that is, g is bounded).
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Proof. For S ultimately periodic, with preperiod
ng and period m, we get g(n) < ny + m using the
equivalence 7, =% <= 1 € (Sper + Sper) U (Sper +S0)
from the proof of Lemma 4.3 (for n € Sper + Sper,
one of the summands can be taken less than ng+m,
by periodicity).

Conversely, suppose o = 671(S) is ultimately
periodic of period p, and take 7 large enough that
v~!(r) is in the periodic part of o. Suppose also
that g(n) < k for all n. Define S, = SN {n+1,
n+2, ..., n+k} forn > 0, sothat S+S5 = Sy +S.
Then, for n > r, the question whether n + k + 1
belongs to S, and thus to S,.1, depends only on
So, Sn, and o(j,), where j, = vr~!(maxS,); also
0(jn) depends only on j, mod p. Setting T, =
S, —n and %, = j, mod p, it follows that 7, ,; and
int1 are determined by T, and 4, (the dependence
being controlled by Sy and o, which are fixed). T,
has at most 2* values as n varies, and i, has at
most p values, so there exist ny and ny + m, both
in the interval {r, r + 1, ..., 7 + 2*p}, such that
Ty = Thgtm and i,, = ipy4m. Lhereafter, T;, and
T, ... coincide. This proves that S is ultimately
periodic with preperiod ny and period m. [l

In fact, Theorem 4.5 can be strengthened: for a
sum-free set that is not ultimately periodic, g must
grow at least logarithmically, as we now show.

Theorem 4.6. Suppose o = 01(S) is ultimately pe-
riodic, with period p, and take r > 2min S large
enough that v='(r) is in the periodic part of o. If
there exists N > 4r such that

B N —4r

then S is ultimately periodic.

Proof. Let N > 4r satisfy (4.1), and set k = g(N):
thus N > 4(r + 2*p). Then, copying the nota-
tion and reasoning from the proof of Theorem 4.5,
we can find ny and ng + m, both in the interval
{r,r+1, ..., r+2Fp}, such that T,,, = T, . m and
Ing = Ingtm- Lhereafter, T;, and T, coincide at
least until n + m = N. Replace m by the least
multiple of m greater than ng; this number is still
bounded by r + 2Fp < iN. But now m satisfies
the conditions of Lemma 4.4, proving that S is ul-
timately periodic. ]

Computing the values of g(n) for the set (01001),
for all n < 200000, we find that g appears to be
very far from bounded: in fact it seems to increase
in a roughly linear fashion, throughout the whole
range n < 107. See Table 1.

If it could be shown for such a set S that such
behavior continues, namely that there exist an in-
1

finite number of n such that g(n)/n is close to 3,

ngw | n g | n gm | o gw | n g | n g | n g
4 2 242 121 | 1820 597 4632 2068 | 14779 7104 47437 23304 121318 57969
12 6 274 137 1850 627 4945 2381 16129 7675 49313 24133 126698 63349
18 9 322 161 2028 805 5128 2564 19678 9839 50678 25180 137806 65796
33 14 348 174 | 2058 835 6053 2676 | 22914 11457 50996 25498 142928 71464
52 26 362 181 | 2103 880 6411 3034 | 24624 12312 65250 28709 171101 81091
72 36 637 237 | 2356 1133 6674 3297 | 27324 13394 68410 30974 188656 82178
94 47 647 247 | 2371 1148 6709 3332 | 30140 14127 75499 37613 199466 99733
133 54 690 345 2401 1178 6754 3377 40677 15179 82800 38422 | ................
182 91 885 430 | 2446 1223 | 10360 4014 | 43908 16281 88756 44378 605846 1211692
192 96 1288 445 3650 1522 11144 4798 43948 21974 111332 54455 | ...l
227 106 | 1457 577 | 4394 1795 | 12692 6346 | 46355 22222 | 112419 55542 | 4621889 9662060
TABLE 1. For S = #(01001), the table gives the points 7 < 200000 at which §(n) has just increased, and the

corresponding values §(n). Also given are the largest n < 107 for which g(n) = 3n (penultimate entry), and

the largest n < 107 for which g increases (last entry).
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say, it would follow immediately from Theorem 4.5
that S is aperiodic; it does not, however, appear
that it is a simple matter to prove this.

5. COMPUTATIONAL EVIDENCE

If we could prove #(01001) is aperiodic, there would
be no need to list further potential counterexam-
ples to Cameron’s conjecture. Since we couldn’t,
we found it to be of some value to test periodic-
ity over large classes of sum-free sets, in the hope
that a recognizable pattern to the counterexamples
might eventually emerge. Table 2 summarizes the
possible counterexamples we have found among all
periodic binary sequences o of periods 5, 6 or 7.
This includes the three potential counterexamples
mentioned earlier.

01001 010001 0010001 0101011

01010 011001 0010010 0101101
10010 011100 0100001 0110001
100010 0100010 1000010
101001 0100100 1000100
101011 0100101 1000110

0101010 1010100

TABLE 2. Periodic binary sequences whose associ-
ated sum-free sets are incomplete and appear to
be aperiodic (aperiodicity checked up to 107).

We note that periodicity in sum-free sets need
not arrive quickly. S = #(0110011) has minimal
period m = 10710, after a transient phase of ap-
proximately 89000 terms. Moreover, the largest
integer n € S for which n +m ¢ S is n = 489 115,
and the largest integer n ¢ S for which n +m € S
is n = 489 108.

In addition to periodic binary sequences of peri-
ods up to 7, we studied those having period 3 and
preperiod 2 (that is, of the form wvzyz), and those
having period 2 and preperiod 5. The potentially
aperiodic sum-free sets among them (also checked
up to 107) are 6(00001), #(0000110), #(1100001),
and #(0011001). These are the simplest such cases,
that is, the binary inputs simultaneously have min-
imal preperiod and minimal period.

Cameron [1987] found the first potentially aperi-
odic complete sum-free set; it is entry 1 in Table 4
(the notation will be explained shortly). The exis-
tence of such a set suggests that Dickson’s problem
[Dickson 1934; Guy 1980, Problem E32] may have a
negative solution. Queneau [1972] and Finch [1992]
have studied a variation of this problem involving
what are known as 0-additive sequences; an update
on this direction of research appears in [Guy 1993].

By the base of an ultimately complete sum-free
set S = {s; <83 <+ <8, <---} we mean the
minimal set of S-elements B = {sy, Sa, ..., S, } such
that recursive application of the greedy algorithm,
starting with B, gives the sum-free set S.

By the phrase “all sum-free bases up to p” we
mean the collection of all sets B that are bases
of ultimately complete sum-free sets S and whose
largest element is at most p. For example, the sum-
free bases up to 7 are

{1}, {2}, {3}, {4}, {5}, {6}, {7},
{1,4},{1,5},{1,6},{1,7},{2,5},{2,6},{2,7},
{3,5},{3,7},{4,6},{4,7}, {5, 7},
{1,3,7},{1,4,7},{4,5,7}.

We examined each of the 76 080 sum-free bases
up to 27 and determined whether each of the cor-
responding complete sum-free sets were periodic
(checked up to 107). We did the same for all sum-
free bases up to 35 with three or fewer elements.
All apparently aperiodic cases (for which g appears
to be unbounded and no pattern is seen) are listed
in Table 3. Table 4, by contrast, lists those cases
that we classify as tentatively periodic. Entry 1
in this table is Cameron’s example. Entry 6 is the
same, minus one term, as {15, 16, 18,21, 22,24, 27},
which is not listed to avoid duplication. Entry 7 is
unexpected: the maximum g-value is quite small,
but no clear signs of periodicity are apparent.

We stress that periodicity need not arrive quickly.
For example, the periodic complete sum-free set
S based on {10, 14,15,17,22} has minimal period
m = 2875722 after a transient phase of approxi-
mately 584 000 terms. The largest integer n € S for



{8,18, 30}
{8,27,32}
{9,16,29}
{9,26,32}
{9, 28,35}
{10,18, 34}
{11, 26, 35}
{12,21,35}
{9,21,24,27}
{11,16,17,26}

{1,3,8,20,26}

{2,15,16,23,27}

{5,6,14,23,27}

{3,12,17,19, 21,27}

{10,13,15,16,17, 24}
{10, 15,16, 18,22,27}
{12,15,17,18,19,25}
{14,16,17,18,21,27}

{6,14,17,18,22,25,27}

TABLE3. Apparently aperiodic complete sum-free
sets listed by base (checked up to 107).

{4,21,32}

770538

# base g(107)  est. per.
1 {3,4,13,18,24} 2037317 3274006
2 {8,14,15,17,26} 2898098 ?

3 {14,15,16,18,21,26} 1349528 ?

4 {14,15,18,20,22,24,26} 1424518 1291498
5 {4,17,18,19,24,27} 3132839 1022104
6 {15,16,18,22,24,27} 2330099 2673770
7

?

TABLE 4. Tentatively periodic complete sum-free
sets listed by base (g§(107) < 3.2 -10°). The last
column gives our best estimate of the period.
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which n+m ¢ S is n = 4562 648, and the largest
integer n ¢ S for which n+m € Sis n = 4453 256.
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