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We characterize all cyclotomic polynomials of even degree with
coefficients restricted to the set {+1, —1}. In this context a cy-
clotomic polynomial is any monic polynomial with integer co-
efficients and all roots of modulus 1. Inter alia we characterize
all cyclotomic polynomials with odd coefficients.

The characterization is as follows. A polynomial P(x) with coef-
ficients £1 of even degree N—1 is cyclotomic if and only if

P(X) = £0p, (2X) O, (FxP) - - - by, (EXPIP2 P,

where N = pip, ---p; and the p; are primes, not necessarily
distinct, and where ¢,(x) := (x*—1)/ (x—1) is the p-th cyclotomic
polynomial.

We conjecture that this characterization also holds for poly-
nomials of odd degree with +1 coefficients. This conjecture
is based on substantial computation plus a number of special
cases.

Central to this paper is a careful analysis of the effect of Graeffe’s
root squaring algorithm on cyclotomic polynomials.

1. INTRODUCTION

We are interested in studying polynomials with coef-
ficients restricted to the set {+1,—1}. This particu-
lar set of polynomials has drawn much attention and
there are a number of difficult old questions concern-
ing it. Littlewood [1968] raised a number of these
questions and so we call these polynomials Little-
wood polynomials and denote them by L. A Little-
wood polynomial of degree n has L, norm on the
unit circle equal to v/n + 1. Many of the questions
raised concern comparing the behavior of these poly-
nomials in other norms to the L, norm. One of the
older and more intriguing of these asks whether such
polynomials can be “flat”. Specifically, do there ex-
ist two positive constants C; and C, so that for each
n there is a Littlewood polynomial of degree n with

Civn+1<|p(z)| < Covn+1

© A K Peters, Ltd.
1058-6458/1999 $0.50 per page
Experimental Mathematics 8:4, page 399



400 Experimental Mathematics, Vol. 8 (1999), No. 4

for each z of modulus 17 This problem, which has
been open for more than forty years, is discussed
in [Borwein 1998], where there is an extensive bibli-
ography. The upper bound is satisfied by the so-
called Rudin-Shapiro polynomials. It is still un-
known whether there is a sequence satisfying just
the lower bound (this problem has been called one
of the “very hardest problems in combinatorial op-
timization”).

The size of the L, norm of Littlewood polynomials
has been studied from a number of points of view.
The problem of minimizing the L, norm (or equiv-
alently of maximizing the so-called “merit factor”)
has also attracted a lot of attention.

In particular, can Littlewood polynomials of de-
gree n have L, norm asymptotically close to vn+17
This too is still open and is discussed in [Borwein
1998].

Mabhler [1963] raised the question of maximizing
the Mahler measure of Littlewood polynomials. The
Mahler measure is just the Ly norm on the circle and
one would expect this to be closely related to the
minimization problem for the L, norm above. Of
course the minimum possible Mahler measure for a
Littlewood polynomial is 1 and this is achieved by
any cyclotomic polynomial. In this paper we define
a cyclotomic polynomial as any monic polynomial
with integer coefficients and all roots of modulus 1,
and denote by @, (z) the n-th irreducible cyclotomic
polynomial, that is, the minimum polynomial of a
primitive n-th root of unity.

This paper addresses the question of characteriz-
ing the cyclotomic Littlewood polynomials of even
degree. Specifically, we show that a polynomial P(x)
with coefficients +1 of even degree N — 1 is cyclo-
tomic if and only if

P(J}) = :|:<I>p1 (:l:l’) épz(ixm) . Q)pr(ixplpz---prq),

where N = pip,---p, and the p; are primes (not
necessarily distinct). The “if” part is obvious since
®,,. (z) has coefficients +1.

We also give an explicit formula for the number
of such polynomials.

This analysis is based on a careful treatment of
Graeffe’s root squaring algorithm. It transpires that
all cyclotomic Littlewood polynomials of a fixed de-
gree have the same fixed point on iterating Gra-
effe’s root squaring algorithm. This also allows us

to characterize all cyclotomic polynomials with odd
coeflicients.

Substantial computations, as well as a number of
special cases, lead us to conjecture that the above
characterization of cyclotomic Littlewood polynomi-
als of even degree also holds for odd degree. One of
the cases we can handle is when NV is a power of 2.

It is worth commenting on the experimental as-
pects of this paper. (As is perhaps usual, much of
this is carefully erased in the final exposition). It
is really the observation that the cyclotomic Little-
wood polynomials can be explicitly constructed es-
sentially by inverting Graeffe’s root squaring algo-
rithm that is critical. This allows for computation
over all cyclotomic Littlewoods up to degree several
hundred (with exhaustive search failing far earlier),
a construction which is of interest in itself. Indeed
it was these calculations that allowed for the conjec-
tures of the paper and suggested the route to some
of the results.

The paper is organized as follows. Section 2 exam-
ines cyclotomic polynomials with odd coefficients.
Section 3 looks at cyclotomic Littlewood polynomi-
als with a complete analysis of the even degree case.
The last section presents some numerical evidence
and other evidence to support the conjecture that
the odd case behaves like the even case.

2. CYCLOTOMIC POLYNOMIALS WITH ODD
COEFFICIENTS

In this section, we discuss the factorization of cyclo-
tomic polynomials with odd coefficients as a product
of irreducible cyclotomic polynomials. To do this,
we first consider the factorization over Z,[z], where
p is a prime number. The most useful case is p = 2
because every Littlewood polynomial reduces to the
Dirichlet kernel

l4z+--- 42!

in Zs[z]. In Zy[z], ®,(z) is no longer irreducible
in general but ®,(z) and ®,,(z) are still relatively
prime to each other.

Lemma 2.1. Suppose n and m are distinct positive in-
tegers relatively prime to p. Then ®,(z) and ®,,(z)
are relatively prime in Z,|x].
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Proof. Suppose e and f are the smallest positive in-
tegers such that

p°=1 (modn) and p’/ =1 (modm).

Let F,. be the field of order p*. Then F,. contains
exactly ¢(n) elements of order n and over Z,, ®,(z)
is a product of ¢(n)/e irreducible factors of degree e
and each irreducible factor is a minimal polynomial
for an element in Fj. of order n over Z,; see [Lidl
and Niederreiter 1983]. So ®,(z) and ®,,(z) cannot
have a common factor in Z,[z] since their irreducible
factors are minimal polynomials of different orders.
This proves our lemma. O

The following lemma tells which @, (x) can possibly
be factors of polynomials with odd coefficients.

Lemma 2.2. Suppose P(z) is a polynomial with odd
coefficients of degree N — 1. If ®,,(x) divides P(x),
then m divides 2N.

Proof. Since ®,,(x) divides P(z), so ®,,(x) also di-
vides P(x) in Zy[x]. However, in Z,[z], P(z) equals
tol+x+---+ 2" and can be factored as

P(z) = &, (2) " [ 2 (@),
d|M

where N = 2!M, t > 0 and M is odd. In view of
Lemma 2.1, @4 (x) and Py, (x) are relatively prime
in Zs[z] if d; and dy are distinct odd integers. So if
m is odd, then ®,,(z) is a factor in the right hand
side of (2-1) and hence m = d for some d|M. On
the other hand, if m is even and m = 2'm’' where
[ > 1 and m’' is odd, then

0, (1) = Oy (22 ) = Dy (2% ) = By ()

in Zy[x]. Thus, in view of (2-1), we must have m' =
d for d| M and | < t+ 1. Hence in both cases we
have m divides 2/V. O

(2-1)

In view of Lemma 2.2, every cyclotomic polynomial,
P(z), with odd coefficients of degree N — 1 can be
written as

P(z) = [] @i (),

d|2N

(2-2)

where the e(d) are nonnegative integers.
For each prime p let T, be the operator defined
over all monic polynomials in Z[x] by
N

T,[P()] = [[(@ - al)

=1

for every P(x) = Hf;l(a} —q;) in Z[z]. By Newton’s
identities [Borwein and Erdélyi 1995, p. 5], T,[P(x)]
is also a monic polynomial in Z[z]. We extend T}, to
be defined over the quotient of two monic polynomi-
als in Z[x] by T,[(P/Q)(@)] = T,[P())/Tr[Q(x)]
This operator obviously takes a polynomial to the
polynomial whose roots are the p-th powers of the
roots of P. Also we let M, be the natural projection
from Z[x] onto Z,[x]:

My[P(z)] = P(z) (mod p).

Lemma 2.3. Suppose that n is a positive integer rela-
tively prime to p and @ > 2. Then

(i) Tp[@n(2)] = P (),

(i) Tp[®pn(2)] = @p(2)PH,
(iii) Tp[q)p"n(x)] = q)p"‘ln(x)p'

Proof. (i) is trivial because if (n,p) = 1 then T}, just

permutes the roots of ®,(z). To prove (ii) and (iii),
we consider

T,[P(z")] =T,

—

(z" — ai)]

1

J

=

p
_ Tp H(I _ 62m‘l/pal1/p)]
j=11=1
N p
=]11[@-a)
j=11=1
= P(x)’.

Thus (ii) and (iii) follow from (i) and the equalities
q)pn(x) = q)n(xp)/q)n(x) and q)p"n(x) = q)p"‘ln(xp)
[Hungerford 1974, §5.8]. O

When P(z) is cyclotomic, the iterates T,'[P(z)] con-
verge in a finite number of steps to a fixed point of
T, and we define this to be the fixed point of P(x)
with respect to T,.

Lemma 2.4. If P(z) is a monic cyclotomic polynomial
in Zx], then

in Zy[z].

Proof. Since both T, and M, are multiplicative, it
suffices to consider the primitive cyclotomic polyno-
mials ®,(z). Let n be an integer relatively prime
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to p. Then (2-3) is true for P(zx) = ®,(x) by (i) of
Lemma 2.3. For P(z) = ®,,(x), we have
M, [T, [ @y (2)]] = M, [ ()] = M, [@, ()]
by (ii) of Lemma 2.3. However,
My[@,(a7)]  M,[@.) ()
B VA ) I AN D)
= M, [, (x)]""
This proves that (2-3) is also true for
®,,(z). Finally, P(z) = ®,:,(x) implies
My [T, [@pin(@)]] = My [Ppimin()"]
= M,[Dyirn(")]
= My [®yin ()]

in Z,[z].

P(x) =

by (iii) of Lemma 2.3. This completes the proof of
our lemma. O

Lemma 2.4 shows that T,[P(z)] = T,[Q(z)] implies
M,[P(z)] = M,[Q(z)]. The next result shows that

the converse is also true.

Theorem 2.5. P(x) and Q(x) are monic cyclotomic
polynomials in Zlx] and M,[P(x)] = M,[Q(z)] in
Zy[x] if and only if both P(x) and Q(z) have the
same fized point with respect to iteration of T),.

Proof. Suppose

H (I)e(d) e(pd)( ) . @;Egtd) ($)
deD
and
H q)e(d) e(pd) (I) . @Z%td)/(aj)7
deD

!

where t,e(j),e(j)" > 0 and D is a set of positive
integers relatively prime to p. Then using parts (i)
(iii) of Lemma 2.3, we have for [ > ¢

)] =[] ®ale)’®,

deD ’ (2-4)
)] = [] ®ala)’ ",
deD
where
fld) = p=1) pr fe(p'd),
fd) = e p—1) pr te(p’d)'.

From Lemma 2.4, we have

M,[T,[P(2)]] = M,[P(x)] = M,[Q(x)]
= M,[T,[Q(2)]],

for any [ > ¢t. From this and (2-4),

HM [®y(x HM [®y(x

deD deD

]f(d)

However, with Lemma 2.1, we know that M,[®4(z)]
and M, [®4 (x)] are relatively prime if d # d'. So we
must have f(d) = f(d)' for all d € D and hence from
(2-4), P(z) and Q(x) have the same fixed point with
respect to T),. g

From Theorem 2.5, we can characterize the monic
cyclotomic polynomials by their images in Z,[z] un-
der the projection M,. They all have the same fixed
point under T),. In particular, when p = 2 we have:

Corollary 2.6. All monic cyclotomic polynomials with
odd coefficients of the degree N — 1 have the same
fized point under iteration of Ty. Specifically, if N =
2!M where t > 0 and M is odd then the fized point
occurs at the (t+1)-th step of the iteration and equals

@ =1 (@ = 1)

Proof. The first part follows directly from Theorem
2.5 and the fact that

in Zy[z] if P(x) is a monic polynomial with odd
coefficients of degree N — 1. If N = 2'M, then from
(272)7

e(2tt1
¢2Eild d) (x)

Hée(d) e(Zd( ) .

d|M
Over Z,[z],
l+a+-- 42Vt = A6
d|M
SO
t+1
d) + > 27 'e(2'd)
=1
ford| M, d > 1,

215
= { (2-5)
2t —1 ford=1.



Borwein and Choi: On Cyclotomic Polynomials with £1 Coefficients 403

Therefore, from (2-5) and Lemma 2.3,

T [P(x)] = [ @1 (2) = @1(2)* ] 2% (2)

d|M d|M
= (M -1 (z —1)"". 0

Corollary 2.6, when N is odd (¢t = 0), shows that
Ty[P(z)] equals 1 + 2+ - -+ 2N~ for all cyclotomic
polynomials with odd coefficients. From (2-2) and
(2-5), we then have the following characterization
of cyclotomic polynomials with odd coefficients.

Corollary 2.7. Let N = 2'M with t > 0 and M odd.
A polynomial, P(z), with odd coefficients of degree
N — 1 1s cyclotomic if and only if

e e e(2tt!
P(z) =[] 259 (2) 257" () - - 255, (),
d|M

and the e(d) satisfy the condition (2-5).

Furthermore, if N is odd, then any polynomial,
P(x), with odd coefficients of even degree N — 1 is
cyclotomic if and only if

P(x) =[] 25 (xa),
d|N
d>1

where the e(d) are nonnegative integers.

Corollary 2.7 allows us to compute the number of
cyclotomic polynomials with odd coefficients. Let
B(n) be the number of partitions of n into a sum
of terms of the sequence {1,1,2,4,8,16,...}. Then
B(n) has generating function

(o9}
k

Fz)=(1—-2)7 JJa—2>)"

k=0

Corollary 2.8. Let N = 2'M with t > 0 and M odd.
The number of cyclotomic polynomials with odd co-
efficients of degree N — 1 s

C(N) = B(2H)*M-1p(2t —1), (2-6)

where d(M) denotes the number of divisors of M.
Furthermore,

(log(2" —1))*
log 4 ’
(2-7)

log C(N) ~ (3t°1log2)(d(M) — 1) +

Proof. Formula (2-6) follows from (2-5) and Corol-
lary 2.7. To prove (2-7), we use de Bruijn’s asymp-
totic estimation for B(n) in [de Bruijn 1948]:

B(n) ~ exp((logn)?/log4).
Now (2-7) follows from this and (2-6). O

3. CYCLOTOMIC LITTLEWOOD POLYNOMIALS

We now specialize the discussion to the case where
the coeflicients are all +1 or —1.

One natural way to build up Littlewood polyno-
mial of higher degree is as follows: if P;(x) and Py (x)
are Littlewood polynomials and P;(z) is of degree
N —1 then P (x)P,(2") is a Littlewood polynomial
of higher degree. In this section, we show that this
is the only way to produce cyclotomic Littlewood
polynomials, at least for even degree.

Proving this is equivalent to showing that the co-
efficients of P(z) are “periodic” in the sense that
it P(z) = Zg;ol a,z"™, then there is a “period” ¢
such that a;,, = a; for all 1 < n < ¢ —1 and
0 <! < N/i—1. This is our Theorem 3.3 below.

Suppose P(z) = 252—01 a,x" is a cyclotomic poly-
nomial in £ and let S}, be the sum of the k-th powers
of all the roots of P(x). Since P(x) is cyclotomic,
we have x¥ "1 P(1/z) = £P(x). Thus it follows from

Newton’s identities that

Sk+a15k_1+“‘+ak_151+kak =0 (3-1)

for £ < N — 2. We may further assume that ay =
a; = 1 by replacing P(x) by —P(z) or P(—z) if
necessary. We now let

"':aif]_:l and

ap = a; = a; = —1,

for some integer ¢ > 2. From (3-1), we have

Sl = —Qa) = —1.
We claim that
51:,5’2:---: 2-71:—]_7
(3-2)
Suppose S; = --- = 5; = —1 for j <i—1. Then
from (3-1) again,
Sjipr = —aS; — - — ;51 — (j + Dajn

—j-(G+D =1
So S =+
Si=—a15i

= S; 1 = —1. Similarly, from (3-1),

—---—ai_lsl—ial-:%—l.
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Lemma3.1. Let 2 < k < % —1 and suppose ayy,, =
ap for1<n<i—1and 0<I<k—2. Then

k—2

Z Qg (S(k—l)i+j+1 - S(k—l—l)i+j+1)

-0
+ (ki + 5+ 1)(agitjr1 — Qrits)
i1

+ Z A(k—1)itn(Sitjmn+1

n=0
for0 <53 <i—2.

= Sitjn) =0 (3-3)

Proof. Suppose 0 < j < i —2. From (3-1) and (3-2)
we have

k—1 i—1

= Z Z WitnS(k-)i+j—n
=0 n=0
+ ZakH-n j—n
i— i—1
= Z a; Z Sth=tyitj—n t Z A(k—1)itnSitj—n
=0 n=0 n=0

— Z Ahitn + (ki + 7 + Dagig;-

k/lz + ])akl+j

n=0
(3-4)
Similarly,
k-2 i—1 i1
0= Z ay; Z Sth—t)itj—nt1t Z A(k—1)itnSiti—nt1
=0 n=0 n=0
- Z itn + (ki + J 4 1)apipj41- 3-5)
Hence, on subtracting (3-5) from (3-4), we have
k-2
0= Qg (S(kfl)i+j+1 - S(k7171)1+j+1)
1=0
+ (kZ +] + 1)(aki+j+1 — aki+j)
i-1
+ Z A(k—1)itn (Sitjmns1 — Sitjn)-
n=0
This proves (3-3). O

Lemma3.2. Let 0 < k < =2 —1. Suppose ajir,, = ay;
for1<n<i—1and0<I1<k. Then

Sli+n:_]-
fori1<n<i—1and0<I<k.

(3-6)

Proof. We prove this by induction on k. We have
proved that (3-6) is true for £ = 0. Suppose (3-6)
is true for £k — 1. Then, for any 0 < j <1¢—2,

0= ao(ski+j+1 - S(kfl)i+j+1)
i—1

+ a1y Z(SiJrjfnJrl — Sitj—n)
n=0
= Skitjt1 + L+ ae-1)i(Sitrj1 — Sj1)
= Skitj+1 + 1,

by (3-3). Hence Sg;4j41 = —1for 0 <j<i—2. O
Theorem 3.3. Suppose N is odd. If ap =a; = --- =
a;_1 =1 and a; = —1, then

Aitn = Qi
for1<n<i-—1 andOSlSTN—l.
Proof. We first show that Sy, = —1for1 <k < N-1

and hence 7 is odd because S; = 2¢ — 1. Since N is
odd, from Corollary 2.7,

H(I)E(d)

dIN
where e(d) +e(2d) =1ifd > 1 and e(1) =
If1<k<N -1, then

Sor = Y (e(d)Ca(2k) + €(2d)Cau(2K))

d|N

= Culk) = Cy(k)
d|N
= —]_7

e(zd (2)

e(2) =0.

+ 6 2d Cd(k)

(3-7)

where the Ramanujan sum, Cy(k), is the sum of the
k-th powers of the primitive d-th roots of unity and
hence »_, v Cu(k) is the sum of k-th powers of the
roots of [, v ®u(z) =
when 1 <k <N —1.

We continue our proof by using induction on k.
Suppose

2™ — 1, which is equal to zero

Apign = @4

forl1<n<i—1land0<[<k—1wherel <k<

# — 1. From Lemmas 3.1 and 3.2 we have

Skitj+1 + 14 (ki + 7+ 1) (hitjt1 — arirg) =0 (3-8)
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and hence from (3-3) again

0 = ao(Str+1)irsr —=Skitjr1) + @i (Skirj1 =Sth—1)itj4+1)
+ s (Sip1—Si)Fapip i (Si—Si—1)
+ (A+1)i4541) (@k1) b+ — A kt1)its)
= (Stkrvyitjrr—2kirjr1—1) +2i(ahipjr1—rir;)
+ (AL +1) (@) itj+1 A k1))
= Sth)iritr T 1+ 2((k+1)i+7+1) (akit 1 —rits)
+ (k1) iH7+1) (@r41) i1 — (k1) i45) (3-9)
for 0 < j <i—2. Suppose k is even. Then in view of

(3*7), S/“‘+j+1 =-1 lf] is odd and S(k+1)i+j+1 =-1
if j is even. So from (3-8) and (3-9), we have

Aitj+1 = Akitj
fory=1,3,...,2—2 and
—2(@ritj41 = Qhivj) = Qet1)itsit1 — Aet1)idg (3-10)

for j =0,2,...,7—3. However, since the a;’s are +1
or —1, Equation (3-10) implies that

Qitj+1 = Qhir;  ANA Qet1)itj1 = Qht1)its

for j = 0,2,...,7—3. Hence ayj, = ay; for n =
1,2,...,i—1. The case of k odd can be proved in
the same way. t

Theorem 3.4. Suppose N is odd. A Littlewood poly-
nomial, P(x), of degree N — 1 is cyclotomic if and
only if

P(I) = iq)pl(ix) <I>p2 (ixm) e q)pr,-(ixplpzmpril)a
(3-11)
where N = pips---p, and the p; are primes, not

necessarily distinct.

Proof. 1t is clear that if P(x) is of the form (3-11),
then P(z) is a cyclotomic Littlewood polynomial.
Conversely, suppose P(z) is a cyclotomic Littlewood
polynomial. As before we may assume that ay =
a; =---=a;_1 =1 and a; = —1. We prove our re-
sult by induction on N. From Theorem 3.3, we have
P(z) = P, (z)Py(z"), where P, (z) = 1+z+--- 42!
and P,(r) is a cyclotomic Littlewood polynomial of
degree less than N — 1. By induction, P;(z) and
P,(x) are of the form (3-11) and hence so is P(x)
because the degree of P;(x) is i — 1. 0

Corollary 3.5. Suppose N is odd. Then P(x) is cy-
clotomic in L of degree N — 1 if and only if
ﬁ xNi + (_1)s+i
INi_l + (_1)€+’L
where e = 0 or 1, Ng = 1,N, = N and N,_, is a
proper divisor of N; fori=1,2,...t.

P(z) =+

=1

Proof. Without loss of generality, we may assume
that P(x) = 142 + apz® + - -. From Theorem 3.4,
P(z) is cyclotomic in £ if and only if

P(.CL‘) = (:p) (I)I02 (j:;ppl) ) (i$p1---p,~_1)

- tp Pr
=@, (z)--- @pnl (g Pmt)

X B, (—aP ) By (—gPh e

Pni+1 Pnoy

X e
(T
q)p”t ((_]‘)till‘pl“'p”tfl)a

where N =p; ---p,,. Since ®,(z) = (2#—1)/(z—1),
the preceding equation becomes

i 4+ (=1)°
Pla)= || S
i (=1)
where Ng = 1 and N; = py---p,, fori =1,... .
This proves our corollary. g

Using Corollary 3.5, we can count the number of
cyclotomic Littlewood polynomials of given even de-
gree. For any positive integers N and ¢, define

r(N,t) = #{(Ni,Na,...,N;) : Ny [ Na | -+ | N,
1<N, <N, <---<N, =N}

and for ¢ > 1,
d;(N) = di_i(n) (3-12)
n|N
where do(N) = 1.
Lemma 3.6. For [,t > 0 and p prime, we have
I+t
di(p') = ( Jtr ) (3-13)

Proof. We work by induction on t. Equality (3-13) is

clearly true for ¢ = 0 because do(N) = 1. We then

suppose (3-13) is true for t — 1 where ¢ > 1. Then
!

d:(p') = Zdt,l(n) = Zdtfl(pi) _ Z<21_i11)

n|pt i=0
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So d,(p') is the coefficient of z*~! in
2+ 1D+ (41D 4+ (@ + 1)
oy (U

x
(1‘ + 1)l+t _ (1‘ + l)tfl

x
Hence d,(p') is the coefficient of z' in (z 4+ 1)+ —
(x + 1)'='. Therefore, dt(pl) _ (l-:t)' .

Since d;(N) is a multiplicative function of N, we
have

Corollary 3.7. If N = pi* ---pls where r; > 1 and p;
are distinct primes, then

S

d,(N) = H(Tiz_t)

=1

Lemma 3.8. For any positive integers N and t, we
have

(N1 -—{0
AL () () di ()

if N =1,
if N > 1.
(3-14)
Proof. We again prove by induction on ¢. It is clear
from the definition that r(1,¢) = 0 and r(N,1) =1

for any ¢,N > 1. We then suppose N > 1 and
(3-14) is true for t — 1 where ¢ > 2. Then

r(N,t) = > r(N/Ny, t—1)

Ni|N
= Z r(N/Ny, t—1)
N1|N
-y (ti(_l)“1(t‘il)di_1(N/N1)>
NN N =1
- ()
_ j:(_ly—i(jj)d“(zv)

from (3-12) and the fact that (!Z}) + (*7') = (!).

(3 (3

0

Corollary 3.9. The number of cyclotomic polynomials
win L of degree N — 1, where N = pi* ---pls,r; > 1
and the p; are distinct odd primes, is

rite s

Db 3T (k)]

Proof. From Corollary 3.5, the number of cyclotomic
polynomials in £ of degree N — 1 is

Tt

4 Z (N, ).

The corollary now follows from Corollary 3.7 and
Lemma 3.8. U

4. CYCLOTOMIC LITTLEWOOD POLYNOMIALS OF
ODD DEGREE

We conjecture explicitly that Theorem 3.4 also holds
for polynomials of odd degree.

Conjecture 4.1. A Littlewood polynomial, P(x), of
degree N — 1 s cyclotomic if and only if

P(x) = £®), (£2) p, (£27) - - Oy (272771,

(4-1)
where N = pipy---p, and the p; are primes, not
necessarily distinct.

We computed up to degree 210 (except for the case
N —1=191). The computation was based on com-
puting all cyclotomic polynomials with odd coeffi-
cients of a given degree and then checking which
were actually Littlewood and seeing that this set
matched the set generated by the conjecture. For
example, for N — 1 = 143 there are 6773464 cyclo-
tomic polynomials with odd coefficients of which 416
are Littlewood. For N—1 = 191 there are 697392380
cyclotomic polynomials with odd coefficients (which
was too big for our program).

We can generate all the cyclotomics with odd co-
efficients from Corollary 2.7 quite easily so the bulk
of the work is involved in checking which ones have
height 1. The set in the conjecture computes very
easily recursively.
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Some special cases also support the conjecture.
Most notably the case where NV is a power of 2. The
proof is as follows. From Corollary 2.7, we have

e e(2 e(2tt!
P(x) = &1 (2) 57 () - - @55, (),

Again, we assume ay = a; = 1. Since @, (z)Py(x) =
x? — 1 and
@21(3)) = @2($2 )

for [ > 2, we have e(2) — e(1) = 1 and hence
P(z) = @3(2)Q(a?),

for some cyclotomic Littlewood polynomial Q(z).
Therefore, by induction, P(x) satisfies (4-1).
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