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We discuss scaling in the parameter space of a family of maps
arising from the iteration of a map of the two-torus defined in
terms of a Jacobian elliptic function. This map appears to show
a complex analog of the Feigenbaum—Kadanoff-Shenker scaling
found in bifurcation sequences of circle maps.

1. INTRODUCTION

We first review the Feigenbaum-Kadanoff-Shenker
scaling [Feigenbaum et al. 1982; Jensen et al. 1983;
Cvitanovi¢ et al. 1985] in the cubic critical family of
circle maps on R:

6 — fo(8) = Q +6 %sin(27r0). (a-1)
Vs

We thus have the fundamental property fo(6+n) =
fa(0) + n for all integer n. The average advance
in 0 per iteration is called the winding number wj.
Denoting the n-th iterate of f as f<"~, we define
wy as the limit:
<n>
we(Q) = lim M

n— 00 n

(1-2)

for some initial 6y. If w(€2) = p/q is rational, (here
p and ¢ are positive integers), the map represents
mode-locked behaviour with period gq.

If f is invertible, then w({2) is a monotonic in-
creasing function of 2 and is independent of the ini-
tial value 6,. It is, however, constant on an interval
surrounding each rational, and its graph forms a so-
called ‘devil’s staircase’.

To introduce the concept of scaling, recall that
every irrational number w can be represented by an
infinite regular continued fraction

w = |ay,az,as,...] = 1 ,

1
a, + e
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and the sequence of best rational approximations
Pn/qn is found by truncating the continued fraction:
Pn/dn = [a1,as,...,a,]. Considering now the case of
the sine map defined in equation (1-1), we may de-
fine a sequence {€,,} by means of f5%7(0) = p,, so
that there is a ¢,,-cycle containing zero with winding
number p,,/qy,.

We first consider the golden mean winding num-

ber, which has a continued fraction
Wy = [1,1,1,...].

By successively truncating this infinite fraction, one
generates a sequence of best rational approximations
1,3,2,2,... t0 wym. The n-th term in this sequence
is F,,_1/ F,, where the F,, are the Fibonacci numbers.
These are defined recursively by Fy = 0, F; = 1, and

Fn+1 :Fn+Fn—1a
forn =1,2,3,.... From this it follows that
Fn—l

lim
n—r oo

= Wym-
n

Using the corresponding sequence {€2, }, we find that
the limit
AQ;
§ = lim /
Jj—oo AQj+1
exists, and so defines the Feigenbaum-Kadanoff—
Shenker §, which has the approximate value —2.834.
There is also an orbit scaling: if ¢, is the value of
the nearest cycle element to zero in the ¢; cycle,
then

(1-3)

Pk

a = lim
k— oo (pk+1
exists, and is about —1.289. These are examples of
scaling laws.

The case of degree of inflection point equal to
three has been much studied (e.g. [Cvitanovié et al.
1985]), and generalizations to different degrees (in-
cluding infinity) of the point of inflection, and a dis-
cussion of higher-order scaling laws (corrections to
scaling) have been made in [Dixon et al. 1997; Briggs
et al. 1998].

2. TWO-DIMENSIONAL GENERALIZATIONS

There has been much speculation as to whether any
of this behaviour exists in higher dimensions [Hu
and Mao 1987], and several R*-analytic maps of the
two-dimensional torus T? (that is, the unit square

with opposite sides identified), have been studied
numerically, but no scaling has been found [Kim and
Ostlund 1986; Chen and Wang 1991].

Our intention here is to see if an analytic map of
C possesses different behaviour to the R*-analytic
case. A preliminary study was described in [Briggs
1995]. We consider the torus map defined by the
complex analytic family

fa(z) =Q+ 2z —sn(yz,m)/7, (2-1)

where sn is Jacobi’s elliptic function (see, for exam-
ple, [Lawden 1989], chapter 2), 2 is a complex con-
stant, and m and ~ are real constants. sn is doubly
periodic and we choose for convenience to make the
unit square [0,1]? the period parallelogram. Since
the periods of sn(z,m) are given by the complete
elliptic integral of the first kind [Lawden 1989] as

/2
4K(m):4/ dt/\/1 —msin®t
0
and 2i K (1—m), the choice m = (3—2v/2)? uniquely
enforces 4K (m) = 2iK(1 — m), so that with v =
4K (m), we have the desired relation fq(z + k) =
fa(2)+k for all Gaussian integers k (that is, complex
numbers with integer real and imaginary parts), and
for all z,€). This map is thus a natural generaliza-
tion of the sine circle map family, and being mero-
morphic has a large amount of relevant theory [Berg-
weiler 1993]. Note also that fgq is real whenever both
z and § are real. Thus this family can be consid-
ered as a complexification of the real sine map, as a
nonzero imaginary part is introduced to 2.
However, although we have maintained the desir-
able property of meromorphicity, several potential
disadvantages should be kept in mind:

(1) the presence of poles, in our case at % and %;
(2) sn maps the unit square twice over the entire
complex plane, so the map fq is thus not invert-

ible; and

(3) an arbitrary perturbation of our map will destroy
the double-periodicity, so that we cannot claim
that any observed scaling relations are universal.
A reasonable hypothesis would be that the fam-
ily fo:zm— 24+ Q+sn(4K(m)z,m)/(4K(m)) for
different real m defined on a appropriate rectan-
gle also have an analogous scaling behaviour to



that to be described, but we have not yet tested
this hypothesis numerically.

A consequence of (2) is that it is not possible to
define a winding number independently of the initial
point of the orbit. Thus, we will only study here
orbits starting at the origin.

3. THE PARAMETER SPACE

We first study the parameter space of the family fq.
Due to the symmetries of the function (fi_q(0) =
1 — fa(0) and f;_q(0) = i — fo(0)), it is sufficient
to study the region 0 < ReQ,ImQ < 1/2. For a
large number of values of 2 in this region, we com-
puted the orbit of zero under the map fq, that is,
the sequence {0, fo(0), fo(fa(0)) = f527(0),...}. If
convergence to a periodic orbit modulo the integer
lattice Z* was detected (that is, convergence to a
point z, satisfying f5% (20) = 20 + p for some inte-
ger g and Gaussian integer p), then the point {2 was
coloured. The result is shown in Figure 1. This can
be considered the Mandelbrot set for the family fq.

Each individual component appears to be just a
Mandelbrot set for the cubic family z®+¢, and these
Mandelbrot sets are nonintersecting. This can be
understood from the fact that the family fqo has a
cubic critical point at the origin [Briggs et al. 1991].
Each such component has constant ‘period’ ¢, and
varying p, depending on the bifurcation path fol-
lowed from the central region. That is, each com-
plete component, including ‘ears’, has constant q.

For example, the largest region, centered on the
origin, has winding number (0 + 07)/1, and moving
up the imaginary axis we have a bifurcation to a
winding number (0 4 07)/2. The other regions are
(in decreasing order of size) (0 + 07)/3, (0 + 0i)/4,
etc. Secondly, starting at 2 = 1/2, we have regions
of winding number (1+ 07)/3, (1+ 07)/4, (1+0i)/5
and so on in decreasing order of size along the real
axis. At approximately Q = 1/2 + 0.27, the region
has winding number (1 + )/4.

4. SCALING

Our aim is to look for possible scaling laws in the
family fo. Firstly, within each connected region of
Figure 1, we have the well-understood scaling be-
haviour of complex cubics described in [Briggs et al.
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1991]. To investigate more general scaling laws that
link different components, we consider third-order
recurrences [Kim and Ostlund 1986; Chen and Wang
1991; Hu and Mao 1987]. As part of a study of R”
maps, Hu and Mao [Hu and Mao 1987] generalized
the Fibonacci recurrence by using Fy = F; = 0,
F, =1, and

Fn+3:Fn+2+Fn+1+Fna (4_1)

for n = 0,1,2,..., on the grounds that it is ‘the
simplest possible ternary continued fraction expan-
sion’. On the other hand, Kim and Ostlund [1986]
used the same initial conditions but

Fn+3 = Fn+1 + Fn (4_2)

To unify these concepts it is useful to recall some el-
ementary number field theory: a cubic number field
is a set

{ao+ a1+ ax(’ | ag,a1,a2 € Q },

where ( is a root of a monic irreducible cubic polyno-
mial with integer coefficients. Every cubic number
field K has a discriminant denoted d(K), and the
discriminant of the defining cubic (that is,

((21 — 22)(21 — 23)(22 — 23))25

where 21, 25, 23 are the roots of the cubic) is always a
squared-integer multiple of d(K'). The cubic number
field is called cyclic if the discriminant of its defin-
ing cubic polynomial is a square. Thus the linear
recurrence (4-1) has characteristic polynomial
-2 —z—1,

which has discriminant —44 and generates a field
with the same discriminant, whereas the recurrence
(4-2) has characteristic polynomial

2—z—1

which has discriminant —23, again the discriminant
of the generated cubic number field. The number 23
is in fact the smallest possible absolute value of the
discriminant of any cubic number field, which is an
intriguing analog of the fact that the golden mean in
one dimension is associated with the quadratic num-
ber field Q(+/5) of smallest discriminant, namely 5.
In fact, all these authors neglected to consider an-
other cubic of small discriminant, namely

22— 221,
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FIGURE 1. One-quarter of the Mandelset of Q4 z —sn(yz,m)/v for m =
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(3—2\/5)2 and v = 4K (m). The coloured

regions are values of ) for which the orbit of the origin is bounded. The full figure is obtained by reflecting at

the edges of the square.

which generates a field with d(K) = —31. In any
case, all these polynomials have negative discrimi-
nant, a property not shared by the quadratic num-
ber field Q(v/5), which suggests that the analogy
mentioned above is inappropriate. In fact, the small-
est possible positive discriminant of a cubic number
field is 49, corresponding to the cyclic cubic field
Q(0) of 2°42?—2z—1, which has the nicely symmet-
ric roots {#; = 2cos(27/7), 0y = 2cos(4n/7), 03 =
2cos(6m/7)}. (Note that 2cos(2m/5) = (v/5 — 1)/2,
a very suggestive analogy!)

Thus, our computation was as follows: for each
polynomial x4+ a,x? + a1 + a, listed in Table 2, we
generated a sequence of rational winding numbers
(p1(n)+ip2(n))/q(n) by setting g(n) = r(n), p1(n) =
r(n—1), p2(n) = r(n—2), and

r(n+3) = —asr(n+2) — ayr(n+ 1) — apr(n)
forn =0,1,2,..., with arbitrarily chosen initial val-
ues (0) = 1, (1) = 1, r(2) = 2. Such a sequence

of winding numbers always converges to a complex
limit with irrational real and imaginary parts; this
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0.422150578 + 0.531228397 33 61 108
0.431512126 4 0.52147797: 61 108 197

TABLE 1.  values for the case of discriminant 49.
Compare Figure 2, right middle.

limit may easily be computed from the roots of the
polynomial. Table 2 includes polynomials generat-
ing cubic fields of all discriminants having absolute
value less than 82. Note, however, unlike the one-
dimensional case, these rational approximants do
not in general give the sequence of best approxi-
mants to the irrational limit.

Then for each rational winding numbers we found
a corresponding €2,, by solving

SAM>(0) = py + ips

numerically. We estimated ¢ both from (1-3) from
a second-order correction to scaling method [Briggs
1994]. The latter is a extrapolation method which
will be valid if the convergence of the estimates J
to 0 is itself geometric. A typical set of € values is
shown in Table 1. The ratio estimates are shown in
Table 2, and in each case the convergence of the limit
in equation (1-3) to § was rapid. The corresponding
paths in the € plane are shown in Figure 2.

This is our main result, since such § scaling has
not been observed before in families of maps of R?.

A natural question is whether there is any geomet-
ric scaling in the size of the orbits, analogous to the
a scaling in circle maps. To investigate this ques-
tion, we need some characteristic quantity to mea-
sure the size of orbits, which conceivably might be
the distance of the closest orbit point to the origin,
or a typical orbit point obtained from the recurrence
relations, perhaps the orbit point corresponding the
the ¢ value of the previous orbit. We tried both
ideas, but found no evidence at all of systematic or-
bit scaling.

Q P P2 q polynomial d  gmax g
0.500000000 + 0.27327863% 1 1 2 -z—1 -23 351  —1.05257—-0.7019334
0.510040518 + 0.668148441 1 2 3 | —31 277 —0.41029 —1.34655¢
0.333373483 + 0.50000000% 2 3 6 —z?-z-1 —44 274 —0.32905+3.41170¢
0.483926512 4 0.49638946¢ 3 6 10 3_2r2-1 —59 258 3.503074-4.271581
0.419720394 4 0.56365287% 6 10 19 3222 —76 200 0.119974-1.34173%
0.418427241 4 0.50625041% 10 19 33 23 —2?—2r+1 +49 197  —1.14601 —1.14434+
0.444036793 4+ 0.53076717% 19 33 61 3 —3x—1 +81 172 —0.32413+43.42384%

TABLE 2. Characteristic polynomials of the order-3
recurrences used in this study, the discriminant of
the corresponding cubic fields, the largest value of ¢
used, and the estimated scaling constant §.

APPENDIX

The accurate computation of the function sn pre-
sents some challenges. We used a representation in
terms of theta functions, which have rapidly conver-
gent series [Lawden 1989]. Setting ¢ := exp(—2m)
and v := 4K ((3 — 2v/2)?), the formula is

sn(yz, (3 - 2v3)?) = 20 br(2m2)

05(0) 04(272)

with
0:(z) =2 Z(fl)"q(”“/m2 sin (2n + 1)z,
n=0
0(0) =2y g/,
n=0
05(0) =142 ¢,
n=0
0s(2) =1+2 2:(—1)"q"2 cos 2nz.
n=0

These formulas were implemented in the C++ soft-
ware CLN [Haible 1998], which supports arbitrary
precision. We used a Newton—Raphson iteration for
computing {2 values corresponding to periodic or-
bits; computation with up to 1000 decimal places
was used to confirm the existence of these orbits.
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