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We discuss scaling in the parameter space of a family of maps

arising from the iteration of a map of the two-torus defined in

terms of a Jacobian elliptic function. This map appears to show

a complex analog of the Feigenbaum–Kadanoff–Shenker scaling

found in bifurcation sequences of circle maps.

1. INTRODUCTIONWe �rst review the Feigenbaum{Kadano�{Shenkerscaling [Feigenbaum et al. 1982; Jensen et al. 1983;Cvitanovi�c et al. 1985] in the cubic critical family ofcircle maps on R :�� f
(�) = 
 + � � 12� sin(2��): (1–1)We thus have the fundamental property f
(�+n) =f
(�) + n for all integer n. The average advancein � per iteration is called the winding number wf .Denoting the n-th iterate of f as f<n>, we de�newf as the limit:
wf(
) = limn!1 f<n>
 (�0)� �0n (1–2)for some initial �0. If wf(
) = p=q is rational, (herep and q are positive integers), the map representsmode-locked behaviour with period q.If f is invertible, then w(
) is a monotonic in-creasing function of 
 and is independent of the ini-tial value �0. It is, however, constant on an intervalsurrounding each rational, and its graph forms a so-called `devil's staircase'.To introduce the concept of scaling, recall thatevery irrational number w can be represented by anin�nite regular continued fractionw = [a1; a2; a3; : : :] = 1a1 + 1a2 + � � �+ 1an + � � �

;
c
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and the sequence of best rational approximationspn=qn is found by truncating the continued fraction:pn=qn = [a1; a2; : : : ; an]: Considering now the case ofthe sine map de�ned in equation (1{1), we may de-�ne a sequence f
ng by means of f<qn>
n (0) = pn; sothat there is a qn-cycle containing zero with windingnumber pn=qn.We �rst consider the golden mean winding num-ber, which has a continued fractionwgm = [1; 1; 1; : : :]:By successively truncating this in�nite fraction, onegenerates a sequence of best rational approximations11 ; 12 ; 23 ; 35 ; : : : to wgm. The n-th term in this sequenceis Fn�1=Fn where the Fn are the Fibonacci numbers.These are de�ned recursively by F0 = 0, F1 = 1, andFn+1 = Fn + Fn�1;for n = 1; 2; 3; : : :. From this it follows thatlimn!1 Fn�1Fn = wgm:Using the corresponding sequence f
ng, we �nd thatthe limit � � limj!1 �
j�
j+1 (1–3)exists, and so de�nes the Feigenbaum{Kadano�{Shenker �, which has the approximate value �2:834.There is also an orbit scaling: if 'k is the value ofthe nearest cycle element to zero in the qk cycle,then � � limk!1 'k'k+1exists, and is about �1:289. These are examples ofscaling laws.The case of degree of in
ection point equal tothree has been much studied (e.g. [Cvitanovi�c et al.1985]), and generalizations to di�erent degrees (in-cluding in�nity) of the point of in
ection, and a dis-cussion of higher-order scaling laws (corrections toscaling) have been made in [Dixon et al. 1997; Briggset al. 1998].
2. TWO-DIMENSIONAL GENERALIZATIONSThere has been much speculation as to whether anyof this behaviour exists in higher dimensions [Huand Mao 1987], and several R 2-analytic maps of thetwo-dimensional torus T 2 (that is, the unit square

with opposite sides identi�ed), have been studiednumerically, but no scaling has been found [Kim andOstlund 1986; Chen and Wang 1991].Our intention here is to see if an analytic map ofC possesses di�erent behaviour to the R 2-analyticcase. A preliminary study was described in [Briggs1995]. We consider the torus map de�ned by thecomplex analytic familyf
(z) � 
+ z � sn(
z;m)=
; (2–1)where sn is Jacobi's elliptic function (see, for exam-ple, [Lawden 1989], chapter 2), 
 is a complex con-stant, and m and 
 are real constants. sn is doublyperiodic and we choose for convenience to make theunit square [0; 1]2 the period parallelogram. Sincethe periods of sn(z;m) are given by the completeelliptic integral of the �rst kind [Lawden 1989] as
4K(m) = 4Z �=20 dt=p1�m sin2 t

and 2iK(1�m), the choicem = (3�2p2)2 uniquelyenforces 4K(m) = 2iK(1 � m), so that with 
 =4K(m), we have the desired relation f
(z + k) =f
(z)+k for all Gaussian integers k (that is, complexnumbers with integer real and imaginary parts), andfor all z;
. This map is thus a natural generaliza-tion of the sine circle map family, and being mero-morphic has a large amount of relevant theory [Berg-weiler 1993]. Note also that f
 is real whenever bothz and 
 are real. Thus this family can be consid-ered as a complexi�cation of the real sine map, as anonzero imaginary part is introduced to 
.However, although we have maintained the desir-able property of meromorphicity, several potentialdisadvantages should be kept in mind:
(1) the presence of poles, in our case at i2 and 1+i2 ;
(2) sn maps the unit square twice over the entirecomplex plane, so the map f
 is thus not invert-ible; and
(3) an arbitrary perturbation of our map will destroythe double-periodicity, so that we cannot claimthat any observed scaling relations are universal.A reasonable hypothesis would be that the fam-ily f
 : z 7! z+
+sn(4K(m)z;m)=(4K(m)) fordi�erent real m de�ned on a appropriate rectan-gle also have an analogous scaling behaviour to
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that to be described, but we have not yet testedthis hypothesis numerically.A consequence of (2) is that it is not possible tode�ne a winding number independently of the initialpoint of the orbit. Thus, we will only study hereorbits starting at the origin.
3. THE PARAMETER SPACEWe �rst study the parameter space of the family f
.Due to the symmetries of the function (f1�
(0) =1 � f
(0) and fi�
(0) = i � f
(0)), it is su�cientto study the region 0 < Re
; Im
 < 1=2. For alarge number of values of 
 in this region, we com-puted the orbit of zero under the map f
, that is,the sequence f0; f
(0); f
(f
(0)) � f<2>
 (0); : : : g. Ifconvergence to a periodic orbit modulo the integerlattice Z 2 was detected (that is, convergence to apoint z0 satisfying f<q>
 (z0) = z0 + p for some inte-ger q and Gaussian integer p), then the point 
 wascoloured. The result is shown in Figure 1. This canbe considered the Mandelbrot set for the family f
.Each individual component appears to be just aMandelbrot set for the cubic family z3+c, and theseMandelbrot sets are nonintersecting. This can beunderstood from the fact that the family f
 has acubic critical point at the origin [Briggs et al. 1991].Each such component has constant `period' q, andvarying p, depending on the bifurcation path fol-lowed from the central region. That is, each com-plete component, including `ears', has constant q.For example, the largest region, centered on theorigin, has winding number (0 + 0i)=1, and movingup the imaginary axis we have a bifurcation to awinding number (0 + 0i)=2. The other regions are(in decreasing order of size) (0 + 0i)=3, (0 + 0i)=4,etc. Secondly, starting at 
 = 1=2, we have regionsof winding number (1+ 0i)=3, (1+ 0i)=4, (1+ 0i)=5and so on in decreasing order of size along the realaxis. At approximately 
 = 1=2 + 0:27i, the regionhas winding number (1 + i)=4.
4. SCALINGOur aim is to look for possible scaling laws in thefamily f
. Firstly, within each connected region ofFigure 1, we have the well-understood scaling be-haviour of complex cubics described in [Briggs et al.

1991]. To investigate more general scaling laws thatlink di�erent components, we consider third-orderrecurrences [Kim and Ostlund 1986; Chen andWang1991; Hu and Mao 1987]. As part of a study of R 2maps, Hu and Mao [Hu and Mao 1987] generalizedthe Fibonacci recurrence by using F0 = F1 = 0,F2 = 1, andFn+3 = Fn+2 + Fn+1 + Fn; (4–1)for n = 0; 1; 2; : : : , on the grounds that it is `thesimplest possible ternary continued fraction expan-sion'. On the other hand, Kim and Ostlund [1986]used the same initial conditions butFn+3 = Fn+1 + Fn: (4–2)To unify these concepts it is useful to recall some el-ementary number �eld theory: a cubic number �eldis a set f a0 + a1� + a2�2 j a0; a1; a2 2 Q g;where � is a root of a monic irreducible cubic polyno-mial with integer coe�cients. Every cubic number�eld K has a discriminant denoted d(K), and thediscriminant of the de�ning cubic (that is,�(z1 � z2)(z1 � z3)(z2 � z3)�2;where z1; z2; z3 are the roots of the cubic) is always asquared-integer multiple of d(K). The cubic number�eld is called cyclic if the discriminant of its de�n-ing cubic polynomial is a square. Thus the linearrecurrence (4{1) has characteristic polynomialz3 � z2 � z � 1;which has discriminant �44 and generates a �eldwith the same discriminant, whereas the recurrence(4{2) has characteristic polynomialz3 � z � 1which has discriminant �23, again the discriminantof the generated cubic number �eld. The number 23is in fact the smallest possible absolute value of thediscriminant of any cubic number �eld, which is anintriguing analog of the fact that the golden mean inone dimension is associated with the quadratic num-ber �eld Q (p5) of smallest discriminant, namely 5.In fact, all these authors neglected to consider an-other cubic of small discriminant, namelyz3 � z2 � 1;
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FIGURE 1. One-quarter of the Mandelset of 
+z�sn(
z;m)=
 form = (3�2p2)2 and 
 = 4K(m). The colouredregions are values of 
 for which the orbit of the origin is bounded. The full �gure is obtained by re
ecting atthe edges of the square.which generates a �eld with d(K) = �31. In anycase, all these polynomials have negative discrimi-nant, a property not shared by the quadratic num-ber �eld Q (p5), which suggests that the analogymentioned above is inappropriate. In fact, the small-est possible positive discriminant of a cubic number�eld is 49, corresponding to the cyclic cubic �eldQ (�) of z3+z2�2z�1, which has the nicely symmet-ric roots f�1 = 2 cos(2�=7), �2 = 2 cos(4�=7), �3 =2 cos(6�=7)g. (Note that 2 cos(2�=5) = (p5� 1)=2,a very suggestive analogy!)

Thus, our computation was as follows: for eachpolynomial x3+a2x2+a1x+a0 listed in Table 2, wegenerated a sequence of rational winding numbers(p1(n)+ip2(n))=q(n) by setting q(n) = r(n), p1(n) =r(n�1), p2(n) = r(n�2), andr(n+ 3) = �a2r(n+ 2)� a1r(n+ 1)� a0r(n)for n = 0; 1; 2; : : : , with arbitrarily chosen initial val-ues r(0) = 1, r(1) = 1, r(2) = 2. Such a sequenceof winding numbers always converges to a complexlimit with irrational real and imaginary parts; this
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 p1 p2 q0:500000000 + 0:27327863i 1 1 20:510040518 + 0:66814844i 1 2 30:333373483 + 0:50000000i 2 3 60:483926512 + 0:49638946i 3 6 100:419720394 + 0:56365287i 6 10 190:418427241 + 0:50625041i 10 19 330:444036793 + 0:53076717i 19 33 610:422150578 + 0:53122839i 33 61 1080:431512126 + 0:52147797i 61 108 197
TABLE 1. 
 values for the case of discriminant 49.Compare Figure 2, right middle.

limit may easily be computed from the roots of thepolynomial. Table 2 includes polynomials generat-ing cubic �elds of all discriminants having absolutevalue less than 82. Note, however, unlike the one-dimensional case, these rational approximants donot in general give the sequence of best approxi-mants to the irrational limit.Then for each rational winding numbers we founda corresponding 
n by solving
f<q(n)>
n (0) = p1 + ip2

numerically. We estimated � both from (1{3) froma second-order correction to scaling method [Briggs1994]. The latter is a extrapolation method whichwill be valid if the convergence of the estimates �kto � is itself geometric. A typical set of 
 values isshown in Table 1. The ratio estimates are shown inTable 2, and in each case the convergence of the limitin equation (1{3) to � was rapid. The correspondingpaths in the 
 plane are shown in Figure 2.This is our main result, since such � scaling hasnot been observed before in families of maps of R 2.A natural question is whether there is any geomet-ric scaling in the size of the orbits, analogous to the� scaling in circle maps. To investigate this ques-tion, we need some characteristic quantity to mea-sure the size of orbits, which conceivably might bethe distance of the closest orbit point to the origin,or a typical orbit point obtained from the recurrencerelations, perhaps the orbit point corresponding thethe q value of the previous orbit. We tried bothideas, but found no evidence at all of systematic or-bit scaling.

polynomial d qmax �x3�x�1 �23 351 �1:05257�0:701933ix3�x2�1 �31 277 �0:41029�1:34655ix3�x2�x�1 �44 274 �0:32905+3:41170ix3�2x2�1 �59 258 3:50307+4:27158ix3�2x�2 �76 200 0:11997+1:34173ix3�x2�2x+1 +49 197 �1:14601�1:14434ix3�3x�1 +81 172 �0:32413+3:42384i
TABLE 2. Characteristic polynomials of the order-3recurrences used in this study, the discriminant ofthe corresponding cubic �elds, the largest value of qused, and the estimated scaling constant �.

APPENDIXThe accurate computation of the function sn pre-sents some challenges. We used a representation interms of theta functions, which have rapidly conver-gent series [Lawden 1989]. Setting q := exp(�2�)and 
 := 4K�(3� 2p2)2�, the formula issn�
z; (3� 2p2)2� = �3(0)�2(0) �1(2�z)�4(2�z)with �1(z) = 2 1Xn=0(�1)nq(n+1=2)2 sin (2n+ 1)z;
�2(0) = 2 1Xn=0 q(n+1=2)2 ;�3(0) = 1 + 2 1Xn=0 qn2 ;�4(z) = 1 + 2 1Xn=0(�1)nqn2 cos 2nz:These formulas were implemented in the C++ soft-ware CLN [Haible 1998], which supports arbitraryprecision. We used a Newton{Raphson iteration forcomputing 
 values corresponding to periodic or-bits; computation with up to 1000 decimal placeswas used to con�rm the existence of these orbits.
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