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Homotopies provide computational evidence for a challenging
instance of a conjecture about whether all solutions are real.
By a homotopy we mean a family of polynomial systems that
describes algebraically the geometric transition from an easier
configuration in special position into the general configuration
for the problem we want to solve. The solutions to our problem
lie at the end of the solution paths we trace with numerical con-
tinuation methods starting at the solutions of the easier, special
problem. The numerical difficulties are overcome if we work in
the true synthetic spirit of the Schubert calculus, selecting the
numerically most favorable equations to represent the geomet-
ric problem. Since a well-conditioned polynomial system allows
perturbations on the input data without destroying the reality of
the solutions we obtain not just one instance, but a whole man-
ifold of systems that satisfy the conjecture. Also an instance that
involves totally positive matrices has been verified. The opti-
mality of the solving procedure is a promising first step towards
the development of numerically stable algorithms for the pole
placement problem in linear systems theory.

1. INTRODUCTION

Solving a polynomial system numerically means
computing approximations to all isolated solutions
of the system. Having an approximate root, as in
[Blum et al. 1998], implies that Newton’s method
doubles its accuracy in each step. Homotopy con-
tinuation methods provide paths to all isolated ap-
proximate roots. The references [Morgan 1987; Li
1997; Cox et al. 1998] treat polynomial homotopies
respectively from within the fields of engineering,
numerical analysis and computational algebraic ge-
ometry. Path-following methods are described in
[Allgower and Georg 1990; 1997].

Optimal homotopies for solving polynomial sys-
tems arising in the Schubert calculus of enumera-
tive geometry were proposed by Birk Huber, Frank
Sottile and Bernd Sturmfels in [Huber et al. 1998].
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These homotopies are optimal in that every path
leads to a solution when applied to a generic problem
instance, whereas the standard homotopies force one
to trace many diverging solution paths.

The results described in this article were obtained
with SAGBI homotopies [Huber et al. 1998]. Their
implementation leads to a three-stage solver con-
catenating polyhedral continuation, flat deformation
and cheater’s homotopy. Polyhedral homotopies
[Huber and Sturmfels 1995; Verschelde et al. 1994]
are optimal for systems with generic coefficients.
The flat deformations defined by the SAGBI ho-
motopies transform a generic intersection problem
into a polynomial system with generic coefficients.
Cheater’s homotopy [Li et al. 1989; Li and Wang
1992], or coefficient-parameter polynomial contin-
uation [Morgan and Sommese 1989], ensures that
singularities may only occur at the end of the solu-
tion paths. This last stage is invoked when solving
a specific real problem instance.

The specific problem we wish to solve represents
the geometric problem of enumerating all p-planes
that meet mp given m-planes in C"™"?. When those
given m-planes are in general position, the number
of solution p-planes is finite. An explicit formula to
count the solutions was derived by Schubert [1891].
Brocket and Byrnes [1981] showed that every so-
lution to this classical problem of enumerative ge-
ometry corresponds to a feedback law to control an
m-input, p-output machine whose evolution is de-
scribed by a linear system. This establishes the geo-
metric interpretation of the so-called pole placement
problem in linear systems theory [Byrnes 1989]. Ev-
ery solution path defined by the homotopies devel-
oped in [Huber et al. 1998] ends at a p-plane and
corresponds to a feedback law. The optimality of
the homotopies is a promising first step to providing
numerical algorithms for the pole placement, formu-
lated as one of the open problems in [Rosenthal and
Willems 1999].

The purpose of this paper is to report on veri-
fied large instances of some conjectures of Boris and
Michael Shapiro. They proposed specific choices for
the input m-planes and conjectured that for those
specific input data all solution p-planes would be
real. Having real solutions is important because the
machines are specified with real data, and real feed-
back laws are required for control. Note that, if all

feedback laws are real, then to control the machine
it suffices to compute just one solution to the geo-
metric problem, which can simply be done by follow-
ing one single solution path. To verify the conjec-
tures, we have to find all solutions to the polynomial
systems, but for engineering applications [Kailath
1980] finding just one solution is enough. We refer
to [Faugere et al. 1998; Rosenthal and Sottile 1998;
Sottile 2000b] for other tests and related work on
these conjectures. Note that Sottile [1999] devel-
oped an asymptotic choice of inputs for which he
proved that all solutions are real.

The type of polynomial system that needs to be
solved is presented in the next section, followed by a
survey on standard root-counting methods. There-
after come implementational aspects for the homo-
topies and a derivation of the equations in the pole
placement problem. A report on the main numer-
ical difficulties and solutions is given in the sixth
section. The last part of the paper contains a short
description of the freely available software package
PHC developed by the author. Execution times are
listed, illustrating the performance of the methods.

2. TESTING A CONJECTURE OF BORIS AND MICHAEL
SHAPIRO

Our problem instance is encoded as (m,p) = (2, 8);
see [Faugere et al. 1998; Rosenthal and Sottile 1998;
Sottile 2000b; 1999] for other cases and related work.
The formulation used here is as a problem in enu-
merative geometry.

Given 16 2-planes osculating a rational normal
curve, we look for 8-planes in C'° that meet these
16 given 2-planes nontrivially. The intersection is

nontrivial if and only if, for + = 1,2,...,16,
rl 0 T11 L1z t T18]
Si I ®myy o -+ g
s 28, 1 0 -+ 0
fil@)=det | 3 352 o 1 0| @D
Ls? 9% 0 0 -+ 1]
=0.

The given 2-planes are spanned by the first two
columns of the matrix; the second column is the
derivative of the first. This makes it tangent to a
space curve, whence we call it ‘osculating’.
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The last eight columns of (2-1) span the unknown
8-planes. Local coordinates are chosen fixing the
lower-right block of the matrix as the identity ma-
trix. The 16 unknowns z;; are determined by 16
equations that come from choosing 16 distinct s;-
values and expanding the determinant (2-1). This
distinct choice implies to have a generic problem in-
stance with a finite number of solutions.

Schubert [1891] computed that there are generi-
cally 1430 solutions to this problem. The Shapiro—
Shapiro conjecture is that all solutions to the poly-
nomial system (2-1) are real. Another version of
this conjecture involving totally positive matrices is
described at the end of section six.

3. WHY WE NEED NEW HOMOTOPIES

The standard homotopies perform poorly when ap-
plied directly to our problem because the bounds on
the number of solutions are too high. We now review
various standard root-counting methods, which give
a priori bounds that determine the number of paths
in the homotopies.

Definition 3.1. The total degree D of F(x) =0 is
D= H deg(f:).
i=1

Theorem 3.2 (Bézout). F(x) = 0 has at most D iso-
lated complex solutions, counted with multiplicities.

In [Morgan 1987], the theorem is proved by differ-
ential geometry. A proof based on projective elimi-
nation theory appears in [Cox et al. 1997]. In [Blum
et al. 1998] we find another proof with a treatment
of the complexity.

Expanding (2-1) we obtain 16 quadratic polyno-
mials. Applying Bézout’s theorem gives D = 2'¢ =
65,536. A homotopy based on this bound requires
thus the tracing of 65,536 solution paths with only
1430 (= Schubert’s bound) converging ones.

The application of multihomogeneous homotopies
was introduced in [Morgan and Sommese 1987] and
has been applied with great success to various prob-
lems in mechanism design; see [Wampler et al. 1990;
1992], for example.

Definition 3.3. Denote {z;,xs,...,2,} by X. Con-
sider S C X. The degree deg(f,S) of f in S is
deg(f(x|z;=1,i¢s))-

Definition 3.4. Let Z = {Z,,Z,,...,Z,} be a parti-
tion of X. For F, the degree matriz M € N™** is
defined as M;; := deg(fi, Z;). The k-homogeneous
Bézout number B is the permanent of M.

The permanent of the degree matrix M counts the
number of solutions of a random linear-product start
system. Every equation is the product of #Z fac-
tors. The j-th factor for the i-th equation is the
product of M;; linear equations in the unknowns
of Z;, with random coefficients.

Theorem 3.5. For any partition Z of X we have
k = #Z. The corresponding k-homogeneous Bézout
number B bounds the number of isolated complex
solutions of F(x) = 0, counted with multiplicities.

A multihomogeneous homotopy (see [Morgan and
Sommese 1987]) reaches all isolated solutions of a
polynomial system.

Different partitions give different Bézout numbers
B. A partition with the minimal B is hard to find in
general. See [Wampler 1992] for exhaustive search
algorithms. In applications the optimal partition
follows from the meaning of the variables. Here
we naturally group according to rows or columns.
For the (2, 8)-case, the partition {{z1;, Z12, ..., Z1s},
{Za1, a2, ..., 228} } gives B = 12,870.

Polyhedral methods have led to a computational
breakthrough in solving polynomial systems. See
[Sturmfels 1998] for developments and open prob-
lems on counting roots with polytopes.

Definition 3.6. Consider f(x) = > ., cax®, with
cq € C and x® = z{'25*---z%. The set A = {a €
Z"™ | cq # 0} is the support of f. The convex hull of

A is the Newton polytope of f.

Definition 3.7. Let P = (Py, P»,..., P,) be a tuple of
polytopes. The mized volume V,,(P) of P is

V.(P) = ) (—1)”#Ivoln<ZR>, (3-1)

1C{1,2,...,n} i€l
where vol,, is the usual volume.

Theorem 3.8 (Bernshtein). A system F(x) = 0 with
Newton polytopes P has no more than V,(P) isolated

complex solutions in (C*)™ counted with multiplici-
ties (where C* = C \ {0}).
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p 2 3 4 5 6 7 8 9 2 3 4 5
D 16 64 256 1024 4096 16384 65536 262144 64 19683 531441 14348907
B 6 20 70 252 924 3432 12870 48620 20 1680 34650 756756
%4 4 17 66 247 918 3425 12862 48611 17 642 22148 ?
N 2 5 14 42 132 429 1430 4862 5 42 462 6006

TABLE 1. Standard root counts and the actual number of roots N for various (m, p)-systems.

The proof in [Bernshtein 1975] is constructive, and
was implemented in [Verschelde et al. 1994]. See
also [Cox et al. 1998].

We see from (2-1) that all supports are equal,
so P = P, for i = 1,2,...,n, and then V,(P) =
n!vol,(P), which is the case of Kushnirenko’s the-
orem [1976]. The direct application of Bernshtein’s
theorem leads to a homotopy with vol, (P) = 12,862
solution paths.

For this (2, 8)-instance, only 1430 solution paths
converge using homotopies based on the above root
counts, as predicted by Schubert’s formula [1891].
Table 1 summarizes the performance of the root
counts. More such tables can be found in [Sottile
2000b].

If p < m, separating the unknowns that belong
to different rows gives the minimal B. Otherwise,
we better group unknowns that belong to the same
columns. For m = 2, B is remarkably close to V.
For m = 3, the gap widens. The calculation of B
requires a permanent computation which is a #P-
hard problem. This means that there is no nonde-
terministic polynomial time algorithm available to
solve this problem for general dimensions. Despite
this, the algorithms in [Wampler 1992] outperform
the volume computation.

4. SAGBI HOMOTOPIES

SAGBI homotopies are one of the three homotopies
proposed in [Huber et al. 1998|. Here we summarize
the method emphasizing the algorithmic aspects.
The general principles are illustrated with a running

Binomial | polyhedral Generic flat Generic cheater’s Specific
Syst ——— | Complex - Complex Real
ystems homotopy System deformation Problem homotopy Problem

example. At each stage characteristics in solving the
(2, 8)-case are listed.

To implement SAGBI homotopies we concatenate
three different homotopies, see Figure 1. Table 2
defines the polynomial systems at each stage. Com-
plex arithmetic in this concatenation is necessary
because of singularities that otherwise may occur.
In solving several real problem instances, we recycle
the solutions of one generic complex problem using
cheater’s homotopy.

Example 4.1 (Running example). The system for

(m,p) = (25 2)
consists of four equations:
1 0 T11 T2
o Si 1 T21 To2 |
fi(x) = det £ 25 1 0 | = 0, (4-1)
s 3s7 0 1

for i =1,2,3,4. To create a specific real problem we
choose four different values for s; and apply Laplace
expansion in terms of 2-by-2 minors. The polyno-
mials in the SAGBI homotopy are

~

fi(a:,t) = C?Ef;) ($115C22 - t$12$21) - Céi)(_xlg)
+ Cg(g)ﬂ311 + C{?(*.’L‘zz) — Cf?l‘n + 01(22) =0, 4-2)

fori = 1,2,3,4. The lower indices in the coefficients
C,ﬁ? refer to the choice of rows of the matrix in the
elaboration of (4-1). The SAGBI homotopy starts
at t = 0 and ends at t = 1. At ¢t = 1 the generic
complex problem has coefficients C{? which are 2-
by-2 minors of a 4-by-2 matrix of random complex
coefficients.

FIGURE 1. Concatenation of three homotopies. The central part in the chain is the SAGBI homotopy.
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Binomial System

Generic Complex System
Generic Complex Problem
Specific Real Problem

exactly two monomials in every equation
coefficients are randomly chosen complex numbers
problem with randomly chosen complex planes
real osculating planes as in the conjecture

TABLE 2. The end points in the homotopies are four different types of polynomial systems.

Our running example is a classical problem in enu-
merative geometry. Note that 2-planes in C* corre-
spond to lines in P3. The question is then to find
all lines that intersect four given lines nontrivially.
In general, two lines satisfy this condition; see Fig-
ure 2, where the positive real orthant of projective
3-space corresponds to the interior of the tetrahe-
dron. Note that this problem is fully real: both the
input and output lines are real lines.

FIGURE 2. The case m = 2 = p. Given four lines
(drawn thin and black) in general position there are
exactly two lines that intersect all four (thicker and

gray).

The special position of two of the four input lines
is adapted from the Pieri homotopy algorithm [Hu-
ber et al. 1998]. Another choice of local coordinates,
unlike those in (4-1), for the output planes enables
to solve this instance.

4A. Newton Polytopes and Polyhedral Continuation

To compute the mixed volume we need a subdivision
of the polytopes. A regular subdivision is obtained
by lifting the polytopes into a higher-dimensional
space and projecting the facets of the lower hull of
the sum of the lifted polytopes down to the original
space. The key idea of [Huber and Sturmfels 1995]
is that this lifting induces the so-called polyhedral
homotopy, starting at binomial systems whose New-
ton polytopes match the cells in the subdivision. We
refer to [Li 1997] for numerical aspects.

For our problem we compute the volume of one
Newton polytope, for which the dynamic lifting al-
gorithm [Verschelde et al. 1996] is well-suited. This
algorithm incrementally updates the triangulation
each time selecting the lowest possible lifting value
for the added point. The induced homotopies have
a minimal power in the continuation parameter. For
the (2, 8)-case, the highest lifting value is 133.

Example 4.2 (continuation of Example 4.1). The poly-
hedral homotopy that is induced by the dynamic
lifting algorithm consists of the equations

gi(m, t) = Cgi)iElll'zQ + Cgi)l'llt + Cgi)$12
+C[(f).'1721 + Cél).'L'QQ + C((;) = 0, (4—3)

for i = 1,2,3,4. The coeflicients cg-i) are random
complex constants. The triangulation has two cells
and correspondingly there are two homotopies. The
first homotopy equals (4-3). At t = 1 we have the
system we want to solve. At ¢ = 0 we have a system
of four equations, each with exactly five terms. By
Gaussian elimination we obtain a binomial system
that can be solved efficiently [Verschelde et al. 1994].
So at t = 0 we know the solutions and we can start
following the paths defined by the homotopy (4-3).
Ordering the variables as (211, 12, a1, a2, t), the
support of (4-3) is the lifted point configuration A =
{(1,0,0,1,0), (0,1,0,0,0), (1,0,0,0,1), (0,0,0,1,0),
(0,0,1,0,0), (0,0,0,0,0)}. The other cell in the
triangulation consists of the points a € A for which
the inner product (a,v) with v = (—1,0,0,1,1) is
minimal. To set up the second homotopy we replace
x® by £ot(@v):
ﬁi(m, t) = cgi):nnmzz + cgi)xn + cgi)xu
+C§i)$21 + Céi)fﬂzgt + céi) =0,
for i = 1,2,3,4. At t = 1 we have the system we
want to solve. At t = 0 we can again reduce the
system to a binomial system whose solutions are the

starting points of the paths defined by the homotopy
in the preceding equation.
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We have found all roots for the system we wanted
to solve since (0,0,0,0,1) and (—1,0,0,1,1) are the
only two vectors (unique upon scaling) for which the
selection of points with minimal inner product leads
to a cell with nonzero volume and a homotopy that
has solutions in (C*)* at ¢t = 0.

The triangulation for the (2, 8)-case consists of 1430
simplices because the Newton polytope is the order
polytope [Sturmfels 1996] which is unimodular.

4B. Flat Deformations arising from Grobner and SAGBI
Bases

The first homotopy of the three presented in [Huber
et al. 1998] is the Grobner homotopy. Although its
efficiency is inferior compared to the SAGBI homo-
topy, it helps understanding the latter.

Grobner basics [Sturmfels 1996] teach us that for
any term order < and ideal I, there exists a weight
vector w € N" defining a monomial order <,, (as:
T <y ¥ <= (a,w) > (b,w) or (a,w) = (b,w)
and % <jex m”) that induces the same initial ideal:
in,(I) =in, (7). In [Eisenbud 1995], given a Gréb-
ner basis, a homotopy is defined to deform the zero
set of the ideal I into the zero set of in_ (7). In
particular, the parameter ¢ in the flat deformation
is introduced substituting each xz; by z;t¥(®), where
w(z;) is the weight of z;. Hereby x“ is replaced
by x2t{®®)  All systems in that homotopy have the
same initial ideal, whence the same Hilbert function,
whence the same structure of the zero set for all .

The unknowns in the Grébner homotopy are p-by-
p minors, denoted by brackets. A bracket is a vector
of indices to the rows that have been selected in con-
structing the minor. The monomials are products of
brackets. We see monomials as tableaux that have
brackets in their rows. A tableau is standard if its
columns are sorted, otherwise it is nonstandard. The
straightening algorithm provides relations to rewrite
a nonstandard tableau as a linear combination of
standard ones. The combinatorics of tableaux and
the relation with the Schubert calculus are treated
in [Fulton 1997].

Example 4.3 (a straightening syzygy). A 2-by-2 minor
that selects the ¢-th and j-th row of a matrix, ¢ < 7,
is represented by the bracket [i j|. Expanding the
determinant in (4—4) along the first row, we see that
we always obtain two equal columns. With Laplace

expansion into 2-by-2 minors we obtain in bracket
notation a straightening syzygy. Thus,

T11 T19 0 0
To1 T22 T21 T22
T31 T32 T31 T32

det

Il
o

Ta1 T42 Ta1 Ta2

is equivalent to

L34 —[13)24+ 1423 =0 4

We can rewrite the nonstandard monomial [1 4][2 3]
as a linear combination of standard ones.

The defining ideal of the Grassmann manifold is
generated by all straightening syzygies needed to
rewrite all possible nonstandard tableaux. Sturm-
fels [1993] proved that these rewriting rules consti-
tute a Grobner basis for the term order that selects
the monomials corresponding to the nonstandard
tableaux as the leading ones. In [Huber et al. 1998]
we find a recipe to assign weights and to set up the
flat deformation. The initial ideal is squarefree so
that the start solutions are regular. Except for coef-
ficients that belong to an algebraic set, all solutions
are regular.

Example 4.4 (continuation of Example 4.2). The Grob-
ner homotopy consists of five equations, homoge-
neous in the six brackets, namely

[14][23]-[13][24)t+[12][34]t°=0 (45

and
(1) (@) (1)
C31[1 2] — G54 [1 3] + Ca5[1 4]
+C2 3] - Y24+ CP[3 4] =0, (4-6)

for i = 1,2,3,4. The first of these equations comes
from (4-4). The coefficients C{) are minors selecting
the k-th and I-th row of a 4-by-2 matrix with random
complex coefficients. At ¢ = 0, there are two start
solutions.

Note that the parameter ¢ only appears in the equa-
tion that defines the Grassmann manifold. The lin-
ear equations of the intersection condition remain
invariant under the flat deformation.

In the (2,8)-case, the coefficients are 2-by-2 mi-
nors and the unknowns are brackets representing
8-by-8 minors, (180) = 45 unknowns in total. Ex-
panding (2-1) leads to a 16-by-16 linear system in
the brackets constrained by 210 quadratic equations
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that define Grassmann manifold. The Groébner ho-
motopy solves the (2,8)-problem as an overdeter-
mined system of 226 equations in 45 unknowns.

When the minors are expanded in terms of the
x;;’s the equations that define the Grassmann man-
ifold are automatically satisfied. Therefore we are
left with fewer equations than in the Grobner ho-
motopy, which explains the superior efficiency of the
SAGBI homotopy. In particular, for the (2,8)-case
we are left with 16 equations in 16 unknowns.

After the expansion in the z;;’s we no longer have
an ideal but polynomials that form a subalgebra
in the polynomial ring Clz;;]. SAGBI stands for
Subalgebra Analogue to Grobner Bases for Ideals.
The term order we use selects as leading monomial
the product of elements on the diagonal of the ma-
trices. In [Sturmfels 1996] flat deformations are ex-
tended to SAGBI bases. The general recipe for the
flat deformation in [Huber et al. 1998] is given by
substituting z;; by z;;#¢~Y®=7) and dividing out the
lowest power of t, minor per minor. The leading
monomials with this term order have minimal pow-
ers of ¢ and are products of diagonal elements in the
minors.

Example 4.5 (continuation of Example 4.4). The SAGBI
homotopy (4-2) in determinantal form is

@ )

Wy omoTe
C2Z1 6212 xglt To9o
; = i i 4-7
fle)=detl ooy 1 o @7
cfff cz(fz) 0 1

for 1,2,3,4, where the coefficients c,(fl) are random
complex constants. The brackets are expanded as
follows:

[1 2] ¢ &11Z9 — X1 T 10t [2 3] « —x9
[13] ¢ —21 2 4] < 2o
[14] [34] «1

Substituting the brackets into the linear equations

of (4-5) and (4-6) gives the SAGBI homotopy (4-2).

The SAGBI homotopies are nonlinear in ¢. For the
(2, 8)-case, the highest power of ¢ equals 7.

4C. The Cheater’s Homotopy

In [Li et al. 1989] the so-called cheater’s homotopy
was presented to solve repeatedly a polynomial sys-

tem with coefficients as functions of parameters for
several instances of these parameters. The proce-
dure assumes that one has solved the polynomial
system once (this is the cheating part) for a generic
complex choice of the parameters. See [Morgan and
Sommese 1989] for a similar idea.

The parameters in our problem are the minors
from the m-planes. To avoid repeated evaluation of
minors we apply the result of [Li and Wang 1992].
The start system is a problem instance for a generic
choice of the parameters ¢® € C*. For any ¢ € C*,
the following homotopy is guaranteed to reach all
solutions of F(¢,x) = 0:

H(c,t) = F((1—[t—t(1—t)y])’+(t—t(1-t)y)e, )
=0, (4-8)

for t € [0,1] and v € C. This homotopy avoids the
evaluation of the parameters during path following.

Example 4.6 (continuation of Example 4.5). Take the
homotopy H(x,t) = 0 in (4-8). At ¢t = 0, the pa-
rameters ¢’ consist of all 2-by-2 minors C,S) of a
4-by-2 random complex matrix. This system has
been solved by the SAGBI homotopy. At t = 1,
the parameters ¢ consist of the maximal minors of
the first two columns of the matrix in (4-1). The
two solution paths converge to two distinct real so-
lutions that span 2-planes intersecting the two given
2-planes nontrivially.

Using cheater’s homotopy, the conjecture can be
tested systematically, deforming so that every sys-
tem in the family is a real problem instance. If sin-
gular solutions occur where two real solution paths
join into a complex conjugate pair of solutions, then
the conjecture is false.

5. THE POLE PLACEMENT PROBLEM

In this section we describe how to translate the pole
placement problem of linear systems theory [Byrnes
1989; Rosenthal and Schumacher 1997] into the ge-
ometric formulation (2-1). This connection was es-
tablished in [Brockett and Byrnes 1981]. First we
give a classical example [Kailath 1980] of control.
In Figure 3 we consider the balancing of a pointer.
The controller has to bring the pointer back to up-
right position after a slight deviation. In deriving
the evolution equation we assume that all mass m
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is located at the top of the pointer. Furthermore,
the controller only moves in the direction of the z-
axis. To obtain a linear system, we assume that the
deviation angle « is small.

(?-\

I o

01 o(t) p(t) v
FIGURE 3. Balancing a pointer of length L with mass
m at top.

If the pointer has base point b(¢), the projection
of the top on the z-axis has position p(t):

p(t) = b(t) + Lsin(a(t)) ~ b(t) + La(t).

The projection of the gravitational force onto the
pointer is mgcos(a(t)) &~ mg, as cos(a(t)) ~ 1 for
a(t) ~ 0. Denote by F the magnitude of the force
acting at the bottom end of the pointer. To com-
pensate for gravity, F' = mg. The x-component of
F is F,(t) = mp(t), so:

(5-1)

mp(t) = mgsin(a(t)) ~ mg a(t). (5-2)

Elimination of the position of the projected center
of mass yields ga(t) = b(t) + La(t), or, equivalently,

G(t) = %a(t) - ?
This second-order differential equation is equivalent
to a system of first-order differential equations, in-
troducing the states (z1,z2) = (o, &). As input u,
we take the impulse u = b(t)/L and copy the states
to the output (yi,y2). Then the state-space descrip-

tion is given by the evolution equation

2]=Lh ol 5]+ [3]m

the output of the system

Y1 . 1 0 al
Y2 o 0 1 T ’
and the input-to-output feedback

== -£1[2].

(5-3)

In closed form, the system becomes
T
Ty |
0 1 0 10 T,
(Lot o]+ [ 1= =21 [52]) 2]

To stabilize the system, all eigenvalues of the ma-
trix represented by the expression in parentheses
must all have a negative real part. If all eigenvalues
have a pure imaginary part, the pointer oscillates.
For eigenvalues with a positive real part, the system
spins out of control. In this simple situation, we can
determine the feedback laws by identification of the
coeflicients of the characteristic polynomial.

In general we consider a system with input uw €
R™, output y € RP, and internal states € R",
where n = m + p, whose evolution in time ¢ is gov-
erned by the first-order linear differential equation

z(t) = Ax(t)+Bu(t) with A€ R™", B e R"™"™,
y(t) = Cx(t) with C € RP*",
u(t) = Fy(t) with F' € R™*?,

where the last part expresses the control of the input
by constant output feedback F.

Substitution into the first of these three equations
yields @(t) = (A + BFC) x(t), whose characteristic
polynomial is

@o(s) = det(sl,, — A— BFC).

The roots s; (i = 1,2,...,n) of ¢(s) = 0 are the
natural frequencies of the controlled system.

The pole placement problem is an inverse prob-
lem: given A, B, C, and ¢ (determined by the fre-
quencies s;), compute the feedback laws F' that sat-
isfy p(s;) =0, fori =1,2,...,n.

We rewrite the characteristic equation ¢(s) = 0in
several stages. First, a determinantal identity shows
that det(sl,, — A — BFC) =0 is equivalent to

sl,-A 0 -B
det —C I, 0 | =0,
0 -F I,
where [, and I, represent identity matrices of rank

p and m. Secondly, we see that this is further equiv-
alent to

(5-4)

(5-5)

det [(0 —F I,)
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by applying the fact that

det [ ]\Z((i))] — ¢ det [M(s)Q(s)]

for nonzero ¢ € R, where

_ _ X(s)
o=t ) ao-[3]

and P(s)Q(s) = 0. The (n+p+m)-by-m polynomial
matrix Q(s) describes the the behavior of the sys-
tem explicitly; that is, it gives for an m-input the
new states, output and feedback. Finally, a simple
elaboration transforms the characteristic equation
of the pole placement problem into,

det [gg‘;; I};] —0,

the familiar geometric form that we have used in
solving the problem.

6. SYMBOLIC-NUMERIC CALCULATIONS

Singularities do not occur for generic complex prob-
lems. To solve the real problem, we choose orthog-
onal representations for the planes and obtain well-
conditioned polynomial systems.

6A. Localizing before Expanding, Expanding before
Cheating

The equations (2-1) are already written in local co-
ordinates. But any 8-by-8 submatrix using the last
8 columns can serve as unit matrix. Setting up
the equations we better first fix this choice before
expanding the determinants. Otherwise, see what
happens in the (2,8)-case: every 8-by-8 minor has
in its expansion 8! = 40,320 terms and there are 45
such minors.

One can implement the cheater’s homotopy in two
ways. Either one can introduce the continuation
parameter ¢ inside the matrix (2-1) or one can do
this after the expansion of the minors. The first
way [Li et al. 1989] leads to homotopies that require
the elaboration of determinants each time evalua-
tion is needed. The second way [Li and Wang 1992]
uses (4-8) which does not require the evaluation of
the parameters which leads to a much more efficient
cheating procedure.

To illustrate this last point, the determinantal
cheater’s homotopy for the case (4,2) requires 384
seconds of CPU time, versus 30 seconds for the ho-
motopy which avoids the evaluation of determinants
in every step.

6B. Using Chebyshev Polynomials as Basis

Generating values for s in equation (2-1) quickly
leads to huge numbers when s > 1 or very tiny num-
bers when s < 1. The calculation of minors in the
expansion of (2-1) amplifies this effect. We cannot
take all values for s too close to 1 because then the
input planes lie too close to each other.

To approximate a function by a polynomial with
minimal error the basis of Chebyshev polynomials
(see [Gerald 1978], for example) is commonly used
instead of the basis of standard monomials

{1,z,2%,...,2"}.

The n-th Chebyshev polynomial T, (x) is defined as
cos(n arccos(z)), whence T, (z) € [-1,+1], for z €
[—1,+1]. Therefore we obtain nice numbers for the
coefficients in the polynomials generated by (2-1).
We show the equivalence of problem formulations by
example.

Example 6.1 (reformulation of Example 4.1). Multiplying
the 4-by-2 matrix by a nonsingular matrix gives an

equivalent representation for the 2-plane. As the
result of the multiplication
1 0 00 1 0 1 0
0 1 00 s 1 S 1
-1 0 2 0| |s* 25 252 -1 4s

0 -3 0 4 s3 3s? 4s®—3s 12s2-3

we recognize the first four Chebyshev polynomials
and their derivatives.

Note that this modification of the system (2-1)
does not change the problem, but only its represen-
tation as polynomial system. Actually, this refor-
mulation gives rise to a wider class of polynomial
systems whose solutions are all expected to be real.

Polynomials in the Chebyshev basis have more
real roots on average than polynomials in the stan-
dard basis. In [Bharucha-Reid and Sambandham
1986] we read that a polynomial of degree d with in-
dependent, normally distributed random coeflicients
written in the Chebyshev basis is expected to have
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d/+/3 real roots, as d — oo, whereas this asymptotic
bound is only (2/7)logd for a random polynomial
denoted in the standard basis. See [Cucker and Roy
1990] for more on the implication of the number of
average real roots on complexity issues in computer
algebra. In our case, Chebyshev polynomials lead to
a numerically better formulation of a problem that
is expected to have all its solutions real.

6C. Orthonormal Representations of the Planes

Using Chebyshev polynomials suffices in case m = 2,
because the function values are bounded. However,
it is hard to get bounded derivatives. In the (8,2)-
case we must differentiate 7 times and compute 8-
by-8 minors with the results of this differentiation.
Without reformulation, only the cases where m = 2
are numerically tractable.

The column vectors in orthogonal matrices form
an orthogonal basis. Orthonormal matrices are the
best conditioned representations of the input planes.
The QR factorization [Golub and Van Loan 1996] of
the matrix A € C™*" rewrites A as the product

A=QR,

where Q € C™*™ is orthonormal and R € C™*"™ up-
per triangular. If A has full column rank, then the
first n columns of ) form an orthonormal basis for
the space spanned by the columns of A. This fac-
torization is computed by the QR algorithm [Golub
and Van Loan 1996]. Adopting this representation,
there is no difference between the cases (3,4) and
(4,3).

Carrying this much further would be to develop
a Newton’s method for the Grassmann manifold,
which would —instead of fixing the localization in
advance —exploit the freedom of additional vari-
ables to work with orthogonal bases for the p-planes
throughout the path following. As mentioned in
[Edelman et al. 1999], there has never before been
an explicit study of Newton’s method on the Grass-
mann manifold. In our case we would have to ap-
proximate the Jacobian matrix to avoid dealing with
the huge expanded polynomials before the localiza-
tion. This is an interesting application of the secant
method for which an a-theory has recently been de-
veloped [Yakoubsohn 1999.

6D. Total Positivity

Another conjecture of Boris and Michael Shapiro in-
volves totally positive matrices, and is also described
and tested in [Sottile 2000b]. A real matrix is totally
positive [Ando 1987] if all its minors are positive.
Upper triangular matrices are called totally positive
when all minors are positive, except for those minors
which vanish on all upper triangular matrices. For
all upper triangular totally positive matrices T" con-
sidered here we assume T;; = 1.

The sequence of m-planes proposed in this Shapiro—
Shapiro conjecture for which all solutions are ex-
pected to be real is defined as follows. The first
m-plane can be spanned by any (m+p)-by-m ma-
trix. The next m-plane is generated by the last m
columns of the product of the previous m-plane with
any (m+p)-by-(m+p) random totally positive ma-
trix. Repeat this generation until mp m-planes are
obtained.

Since totally positive matrices have all their en-
tries positive, a multiplication with a totally posi-
tive matrix increases the size of the numbers. Geo-
metrically, the limiting position of the planes in the
sequence defined above corresponds to moving from
the plane spanned by the first m standard basis vec-
tors to the so-called opposite flag, spanned by the
last m standard basis vectors. For example, in Fig-
ure 2, we see the first and last line in the sequence
as those lines spanned by the corners of the tetrahe-
dron. With a localization as in (4-1) the intersection
condition for the opposite flag is

1 0 =i 22
0 1 o1 To2 .
det 00 1 o= 0,

00 0 1

which reduces to 1 = 0. This geometric interpreta-
tion exhibits the extremal cases of numerical trou-
bles with this localization. So we use a localization
that has in every row and column at least one free
variable to represent any point of intersection. The
expansion leads to polynomials of degree p.
Whitney’s reduction theorem [1952], in the form
of Loewner [1955], is used to generate the upper tri-
angular totally positive matrices. For every n-by-n
matrix we generate %n(n—l) positive random num-
bers. Tuning the size of those random numbers al-
lows us to control the speed by which the sequence
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moves to the opposite flag. There is the follow-
ing tradeoff. A selection of small random numbers
leads to input planes that lie too close to each other,
whereas with large numbers we end up with a cluster
of planes too close to the opposite flag. The actual
input to the cheater’s homotopy consists in the or-
thonormal part of the QR-factorization applied to
the generated sequence of m-planes.

The case (3,4) verified by the SAGBI homotopies
has total degree D = 4'2 = 16,777,216 and 4-homo-
geneous Bézout number B = 369, 600 with the parti-
tion {{5511, Ts51, m71}, {1‘22, L2, l‘72}, {11033, Lg3, $73},
{Z44, T4, T74}}, whereas we know there are only
462 solutions. All 462 solutions are different from
each other, with condition numbers less than 108,
and as conjectured, are all real. The components of
the solution p-planes all have the same sign pattern.
The matrices that represent those solutions are not
totally positive, although all corresponding minors
have the same sign.

7. AVAILABLE SOFTWARE AND EXECUTION TIMES

This section describes programming and computa-
tional experiences with the author’s software PHC
(Polynomial Homotopy Continuation). See [Ver-
schelde 1999] for a complete description of PHC.

7A. A new driver added to PHC

Homotopy continuation methods have two parts:

1. Bounds for the number of roots are obtained by
applying the theorems of Bézout or Bernshtein.
For sparse systems, the mixed volume yields a
much sharper bound and polyhedral homotopies
are invoked to solve a start system with random
coefficients. For general dense systems or when
the degrees are used to count the roots, the con-
struction of a start system does not require con-
tinuation.

2. The path tracker exploits the fact that solution
paths of polynomial homotopies do not turn back,
so that the continuation parameter is fixed dur-
ing the correction stage. Path crossing is avoided
enforcing Newton’s method to converge quadrati-
cally when correcting the solutions. At the end of
the solutions paths, condition numbers are com-
puted and mathematical certificates of divergence
[Huber and Verschelde 1998] can be obtained.

The implemented homotopy methods are powerful
and reliable enough to operate as a general-purpose
solver in black-box mode for small and medium-
sized problems. This is illustrated in [Verschelde
1999] on the test suite of about eighty polynomial
systems from a wide variety of sources that are in
the distribution of the package. Of course, given the
poor performance of the standard root counts, the
black-box solver is not recommended for the (2, 8)-
problem.

The SAGBI homotopies are implemented in a sep-
arate module of PHC, which generates the equa-
tions, calls the dynamic lifting algorithm and the
path-tracking routines. Besides the driver, the new
implementation consists of Laplace expansion, the
assignment of the powers of the continuation pa-
rameter in the flat deformation, and the genera-
tion of the osculating planes. The new public ver-
sion of PHC offers this driver when calling phc -e.
Another new feature in PHC is the multi-precision
arithmetic to evaluate and refine the solutions of a
polynomial system.

7B. Computational Experiences

In Table 3 the timing results for the main compu-
tation are summarized. Calculations are done on a
166 MHz Pentium II processor with 64 Mb internal
memory running Linux.

In Table 3 we see that the most expensive stage
is the cheater’s homotopy to a specific real problem
instance. The (4,3)-case is given to illustrate how
the computations scale up when going from a 12-
dimensional to a 16-dimensional system, from 462
to 1430 roots. Dividing total time by 1430 paths,
the cost for each path is about 1 minute user CPU
time. The (3,4)-case with totally positive matrices
is harder because of the fourth-degree polynomials.

The systems with their solutions are available via
the author’s web page. The condition numbers of
the Jacobian matrices evaluated at the end of the
paths range between 10* and 108, which is in the
worst-case scenario still sufficient to guarantee the
correctness to eight decimal places. The distance
between two roots is at least 108.

Moreover, these condition numbers are complex in
the sense that they reflect the sensitivity of pertur-
bations with complex numbers. The real condition
numbers must be much smaller, because the largest
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stages of computation (4,3) (2,8) (3,4)TP
regular triangulation Oh Om 7s 250ms Oh Om 56s 860ms Oh Om 6s 910ms
polyhedral continuation 1h 21m 21s 630ms 8h 1m 37s 330ms 1h 32m 28s 790ms
flat deformation 1h 2m 6s Oms 4h 24m 49s 590ms 3h 51m 8s 50ms

cheater’s homotopy 2h 42m 15s 340ms

13h 23m 7s 330ms 13h 33m 29s 410ms

total solving time 5h 6m 21s 110ms

25h 52m 55s 150ms 18h 57m 13s 160ms

TABLE 3. User CPU times for solving the cases (4, 3), (2

imaginary parts of the solutions are of order 10~2°,
After application of Newton’s method (using QR
decomposition followed by least squares approxima-
tion to solve the linear systems) ten times to each
solution, the imaginary parts shrunk below 107100,

8. CONCLUSIONS

For the (2,8)-case we computed a polynomial sys-
tem with all 1430 solutions real, well-conditioned
and distinct from each other. Homotopy continua-
tion extends this real problem instance to a manifold
of polynomial systems that have all their solutions
real.

The results of the calculations described in this
paper are relevant for the following reasons:

1. The class of systems constitutes an interesting
benchmark for polynomial system solvers. We
can exploit the synthetic nature of enumerative
geometry questions to choose the most favorable
numerical representation of the problem.

2. In addition to providing computational evidences
for conjecture in real algebraic geometry, these
tools and experiences may become useful to the
engineering community. Providing stable numer-
ical algorithms for the pole placement problem
is one of open problems listed in [Rosenthal and
Willems 1999]. This paper shows that homotopy
continuation is a first promising step.

3. Almost all computations in algebraic geometry
are exact as implemented in computer algebra
systems.
per show that meaningful results (in the spirit of
[Stetter 1998]) are obtained from numerical ap-
proximations.

4. The practical efficiency of homotopies for solv-
ing polynomial systems that arise from expand-
ing determinants is demonstrated. How to ap-
ply the theory of [Dedieu and Shub 2000] to the

The calculations reported in this pa-

,8), and (3,4) with total positivity.

overdetermined homotopies that arise in the Pieri
homotopies [Huber et al. 1998] is an interesting
future research project.

Finally we remark that the Pieri homotopies pre-
sented in [Huber et al. 1998] have been implemented
in [Huber and Verschelde 2000]. Those Pieri homo-
topies have been extended to compute the feedback
laws of the dynamic pole pole placement problem,
which is equivalent [Rosenthal 1994] to enumerating
all curves of degree ¢ that produce p-planes which
meet mp + g(m + p) given m-planes in C™*" at
specified interpolation points. One analogue of the
Shapiro conjectures for the case ¢ > 0 does not hold;
see [Sottile 2000a] for a counterexample.
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