
COMMUN. MATH. SCI. c© 2010 International Press

Vol. 8, No. 4, pp. 835–850

SOME DECAY ESTIMATES OF SOLUTIONS FOR THE 3-D

COMPRESSIBLE ISENTROPIC MAGNETOHYDRODYNAMICS∗

JIANWEN ZHANG† AND JUNNING ZHAO‡

Abstract. This paper is concerned with the time-asymptotic behavior of solutions to the three-
dimensional magnetohydrodynamics (MHD) for viscous compressible isentropic fluids. By exploiting
some Lp-Lq estimates of solutions for the heat equation and the linearized Navier-Stokes system,
the optimal decay estimates of the solution in Lq with 2≤ q≤6 and its first order derivative in L2

are obtained when the initial perturbation around a constant state is sufficiently small in H3 and
is bounded in Lp with any given 1≤p<6/5. As a byproduct, the global existence theorem is also
proved.

Key words. compressible isentropic MHD, decay estimates, Lp-Lq estimates, global existence.

AMS subject classifications. 76W05, 76N10, 35B40, 35B45.

1. Introduction

Magnetohydrodynamics (MHD) concerns the motion of a conducting fluid
(plasma) in an electromagnetic field with a very wide range of applications. Due
to the interaction between the dynamic motion of the fluid and the evolutions of the
magnetic field, the hydrodynamic and electrodynamic effects are strongly coupled.
The governing equations for three-dimensional compressible magnetohydrodynamic
flows, derived from fluid mechanics with appropriate modifications to account for
electrical forces, have the following form (see, e.g., [3, 15, 30, 31, 42]):















ρt+div(ρu)=0,

(ρu)t+div(ρu⊗u)+∇p(ρ)= (∇×B)×B+λ∆u+(λ+λ′)∇divu,

Bt−∇×(u×B)=−∇×(ν∇×B), divB=0,

(1.1)

where the unknown functions ρ, u∈R
3, B∈R

3, and p=p(ρ) are the density, the
velocity, the magnetic field, and the pressure of flows, respectively, λ and λ′ are
the viscosity coefficients of flows satisfying λ> 0 and 2λ/3+λ′≥ 0, and ν > 0 is the
resistivity constant acting as the magnetic diffusion coefficient of magnetic field.

There have been a lot of studies on MHD by many physicists and mathematicians
due to its physical importance, complexity, rich phenomena, and mathematical chal-
lenges; see, for example, [3]–[5], [11]–[13], [15], [18]–[20], [23]–[26], [30, 31], [41]–[43],
and the references cited therein. In particular, when there is no electromagnetic field,
that is, B≡ 0, the system (1.1) reduces to the compressible Navier-Stokes equations
for isentropic fluids, which have been studied by many researchers; see, for example,
[14, 33, 36, 38] among others. Compared with the Navier-Stokes equations, the pres-
ence of magnetic field and its interaction with the hydrodynamic motion in MHD flows
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will cause serious difficulties. Thus, the extension of results known for the compress-
ible Navier-Stokes equations to the magnetohydrodynamic equations doesn’t always
appear a simple matter. For example, even for the one-dimensional case, the global
smooth (classical) solution to the full perfect MHD equations with large initial data
is still unknown when all the viscosity, heat conductivity, and magnetic diffusivity
coefficients are constants, although the corresponding problem of the Navier-Stokes
equations for compressible fluids was successfully solved by Kazhikhov and Shelukhin
(cf. [27]) about thirty years ago.

In this paper, we consider an initial value problem of (1.1) in the whole space R
3

with the initial data

(ρ,u,B)(x,0)= (ρ0,u0,B0)(x)→ (ρ∞,0,0) as |x|→∞, (1.2)

where ρ∞> 0 is a given constant. It is assumed throughout this paper that p=p(ρ)
is smooth in a neighborhood of ρ∞ with p′(ρ∞)> 0.

The main purpose of this paper is to study the decay estimates of solutions to
the initial value problem (1.1) and (1.2). For this purpose, we need the following
proposition concerning the global existence of solutions.

Proposition 1.1. (Global existence) There exists a constant ε> 0 such that if the
initial data satisfies

‖(ρ0−ρ∞,u0,B0)‖3≤ ε,

then the initial value problem (1.1) and (1.2) admits a unique global-in-time solution
(ρ,u,B) satisfying ρ> 0 and

ρ−ρ∞∈C(0,∞;H3(R3))∩C1(0,∞;H2(R3)),

u,B∈C(0,∞;H3(R3))∩C1(0,∞;H1(R3)).

Moreover, there exists a constant K> 0 such that for any t≥ 0, it holds that

‖(ρ−ρ∞,u,B)(t)‖23+
∫ t

0

(

‖∇ρ(τ)‖22+‖∇(u,B)(τ)‖23
)

dτ ≤K‖(ρ0−ρ∞,u0,B0)‖23.

In [23], Kawashima considered the global smooth solutions of the two-dimensional
MHD when the initial data is close to a constant state. So, Proposition 1.1 extends
Kawashima’s existence result to the three-dimensional magnetohydrodynamic equa-
tions for viscous compressible isentropic fluids.

Our main aim is to prove some decay properties of the solution obtained in Propo-
sition 1.1 under the additional condition that the initial perturbation (ρ0−ρ∞,u0,B0)
is bounded in Lp with any given p∈ [1,6/5). More precisely, our main result can be
stated as follows.

Theorem 1.2. (Decay estimates) Let the conditions of Proposition 1.1 be satisfied
and let (ρ,u,B) be a global classical solution in H3(R3) of the problem (1.1), (1.2).
Assume further that

‖(ρ0−ρ∞,u0,B0)‖Lp <∞, 1≤p< 6/5.

Then there exist constants ε0> 0 and K0> 0 such that for any 0<ε≤ ε0, it holds that

‖∇(ρ−ρ∞,u,B)(t)‖2≤K0(1+ t)−σ(p,2;1),

‖∂t(ρ,u,B)(t)‖1≤K0(1+ t)−σ(p,2;1),
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and

‖(ρ−ρ∞,u,B)(t)‖Lq ≤K0(1+ t)−σ(p,q;0), 2≤ q≤ 6,

where the decay exponent σ(p,q;k) is given by

σ(p,q;k)=
3

2

(

1

p
− 1

q

)

+
k

2
. (1.3)

A lot of works on the time-asymptotic behavior of solutions for the compressible
Navier-Stokes equations have been done for either isentropic or heat-conductive flu-
ids, see [6]–[9], [16, 17, 22, 21, 28, 29, 34, 40] and the references cited therein. Here,
we would like to mention the papers [8, 9, 40], in which the authors considered the
convergence rates of solutions to the compressible Navier-Stokes equations with po-
tential external force. Roughly speaking, under the analogous conditions in Theorem
1.2 on initial data, as well as the smallness conditions on the external force in some
Sobolev spaces, the (almost) optimal convergence rates of solutions for compressible
Navier-Stokes equations were obtained in [8, 9, 40] by using the energy estimates and
some Lp-Lq estimates (cf. [28, 29]) for the linearized Navier-Stokes system. However,
compared with these works, the situation for the MHD problem is completely different
due to the additional presence of magnetic field and its strong interaction on the hy-
drodynamic motion. The reason is that the magnetic field B is an unknown function
depending strongly on the velocity u, so we can not treat the additional nonlinear
term (∇×B)×B (acting as the magnetic pressure) in (1.1)2 as the (known) potential
external force in the Navier-Stokes equations. To overcome this difficulty, we observe
that the equation (1.1)3 for the magnetic field,

Bt−ν∆B=∇×(u×B),

is in the form of linear parabolic equation with a nonhomogeneous term ∇×(u×B).
Thus, by using Young’s inequality and the estimates of the standard heat kernel, we
can obtain some a priori decay properties of B from the above equation. These decay
estimates strongly depend on the derivatives ∇u and ∇B. Combining these estimates
with the Lp-Lq estimates of solutions from spectral analysis on the linearized Navier-
Stokes system (cf. [28, 29]), we can prove the decay estimates stated in Theorem 1.2
in a manner similar to that in [8, 9, 40].

Remark 1.3. By comparison, we find that the decay rates for the solution in
Lq-norm with 2≤ q≤ 6 and the one for the first order derivative in L2-norm are the
same as those for the linearized Navier-Stokes system (see Lemma 2.3) and the heat
equation (see [39]). Therefore, these decay estimates are optimal.

Remark 1.4. It is worth pointing out that the constant K0 in Theorem 1.2 depends
only on p and ‖(ρ0−ρ∞,u0,B0)‖Lp∩H3 . Moreover, we also note that p=6/5, which
comes from the inequality σ(p,2;1)> 1 when p< 6/5, is the critical case. In other
words, the constant K0 may tend to infinity when p approaches 6/5.

In the remainder of this section, we reformulate our problem. To do so, we
introduce the change of unknown functions

(ρ,u,B)→ (ρ+ρ∞,αu,B) with α=
√

p′(ρ∞)/ρ∞.

Here and hereafter, for the notational simplicity we still denote the transformed func-
tions by ρ, u, and B, and their corresponding initial data by ρ0, u0, and B0. Then,
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the initial value problem (1.1)–(1.2) in R
3×R+ is reduced to the following problem:















ρt+βdivu= f,

ut− λ̃∆u− µ̃∇divu+β∇ρ=g,

Bt−ν∆B=h, divB=0,

(1.4)

with initial conditions

(ρ,u,B)(x,0)= (ρ0,u0,B0)(x)→ (0,0,0) as |x|→∞, (1.5)

where λ̃=λ/ρ∞, µ̃=µ/ρ∞, µ=λ+λ′, β=
√

p′(ρ∞) are positive constants, and

f =−αρdivu−α(u ·∇)ρ,

g=

(

λ

ρ+ρ∞
− λ

ρ∞

)

∆u+

(

µ

ρ+ρ∞
− µ

ρ∞

)

∇divu−α(u ·∇)u

− 1

α

(

p′(ρ+ρ∞)

ρ+ρ∞
− p′(ρ∞)

ρ∞

)

∇ρ+
α−1

ρ+ρ∞
(∇×B)×B,

h=α(B ·∇)u−α(u ·∇)B−αBdivu.

Clearly, for smooth solutions in H3(R3), the initial value problem of (1.1), (1.2)
are equivalent to that of (1.4), (1.5). Thus, to prove Theorem 1.2, it suffices to show
the following proposition.

Proposition 1.5. Let (ρ,u,B) be a global smooth solution in H3(R3) to the initial
value problem (1.4) and (1.5). Assume that for some small constant ε> 0, there holds

‖(ρ0,u0,B0)‖3≤ ε, (1.6)

and that for any given 1≤p< 6/5, there holds

‖(ρ0,u0,B0)‖Lp <∞. (1.7)

Then there are positive constants ε0 and K0 such that for any 0≤ ε≤ ε0, we have

‖∇(ρ,u,B)(t)‖2≤K0(1+ t)−σ(p,2;1), (1.8)

‖∂t(ρ,u,B)(t)‖1≤K0(1+ t)−σ(p,2;1), (1.9)

and

‖(ρ,u,B)(t)‖Lq ≤K0(1+ t)−σ(p,q;0), 2≤ q≤ 6, (1.10)

where σ(p,q;k) is the same as in (1.3).

The paper is organized as follows. Some a priori decay estimates on the magnetic
field and some elementary inequalities are proved in section 2, where the well-known
Sobolev inequalities and Moser-type calculus inequalities are also recalled. The main
results are proved in section 3, where we first derive some global a priori estimates
in subsection 3.1, then prove the global existence (Proposition 1.1) in subsection 3.2,
and finally give the proof of Proposition 1.5 and complete the proof of Theorem 1.2
in subsection 3.3.
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Notation 1.6. Let Hk(R3) and W k,p(R3) with k∈Z
+, p≥ 1 be the usual Sobolev

spaces with norms denoted by ‖·‖k and ‖·‖k,p, respectively. In particular, when k=0,
we denote the norms by ‖·‖L2 and ‖·‖Lp, respectively. 〈·, ·〉 is used to denote the L2-
inner product. As usual, ∇=(∂1,∂2,∂3), ∂i=∂xi, i=1,2,3, and ∇lf denotes all the
derivatives of l-th order on f . For a multi-index k=(k1,k2,k3) with |k|=k1+k2+k3,
we set Dk =∂k1

1 ∂k2

2 ∂k3

3 . For simplicity, we shall use C and Ci (i=1,2,3, . . .) to denote
various positive constants which may vary from line to line.

2. Some auxiliary lemmas

In this section, we list some auxiliary lemmas which will be used later. First of
all, we recall the Young inequality which can be found in [2].

Lemma 2.1. (Young inequality). For 1≤ r≤∞, 1≤p≤ r′, and r′= r/(r−1), assume
that K ∈Lr(Rn) and f ∈Lp(Rn). Then,

‖K ∗f‖Lq ≤‖K‖Lr‖f‖Lp ,

where “∗” denotes convolution, and q> 0 satisfies

1

q
=

1

p
+

1

r
−1.

With the help of Lemma 2.1, we can make use of the standard heat kernel to
deduce some a priori decay properties of the magnetic field from equation (1.4)3.

Lemma 2.2. For smooth functions B0, h(·,t)∈Lp(R3)∩H3(R3) with 1≤p≤ 2, let
B=B(x,t) be a smooth solution of (1.4)3 with initial data B0. Then for k=1,2,3, it
holds that

‖∇kB(t)‖L2 ≤C(1+ t)−σ(p,2;k)‖B0‖Lp∩Hk

+C

∫ t

0

(1+ t−τ)−σ(p,2;k)‖h(τ)‖Lp∩Hkdτ, ∀ t≥ 0,

where C> 0 depends only on p and k and σ(p,2;k) is defined as in (1.3).

Proof. By scaling technique, we may assume that ν≡ 1 in (1.4)3. It follows from
(1.4)3 and the classical theory of linear parabolic equations (see, for example, [39])
that the magnetic field B is given by

B(x,t)=S(t)B(0)+

∫ t

0

S(t−τ)h(·,τ)dτ, (2.1)

where S(t) :ϕ→u(·,t) is the solution semigroup defined by S(t)= e−t∆, that is,

u(x,t)=S(t)ϕ=
1

(2
√
πt)3

∫

R3

exp

{

−|x−x′|2
4t

}

ϕ(x′)dx′.

Clearly, u(x,t)=S(t)ϕ is the unique solution of the heat equation

{

ut−∆u=0, (x,t)∈R
3×R+,

u(x,0)=ϕ(x), x∈R
3.

Moreover,

∇ku=∇k(S(t)ϕ)=∇kK(t)∗ϕ,
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where K :=K(t) is the heat kernel

K(x,t)=
1

(2
√
πt)3

exp

{

−|x|2
4t

}

.

Thanks to the estimate ‖K(t)‖L1 =1, we have from a direct computation that

‖∇kK(t)‖Lr ≤Ct−(3/2)(1−1/r)−k/2, k=1,2,3.

From this and the Young inequality in Lemma 2.1 with q=2 and 1/r=1+1/2−1/p,
we obtain that

‖∇ku(t)‖L2 =‖∇kK(t)∗ϕ‖L2 ≤‖∇kK(t)‖Lr‖ϕ‖Lp

≤Ct−(3/2)(1−1/r)−k/2‖ϕ‖Lp =Ct−σ(p,2;k)‖ϕ‖Lp .

On the other hand, using the standard energy method, we find

‖∇ku(t)‖L2 = ‖∇kS(t)ϕ‖L2 ≤‖∇kϕ‖L2 , k=1,2,3.

Collecting these two estimates together, we conclude that

‖∇kS(t)ϕ‖L2 ≤C(1+ t)−σ(p,2;k) (‖ϕ‖Lp +‖ϕ‖k) , k=1,2,3.

Applying the above estimates to the integral formula (2.1), we immediately obtain
the desired estimates of Lemma 2.1. �

To deal with ρ and u, we recall the following lemma concerning the decay prop-
erties of the solution to the linearized system of (1.4)1 and (1.4)2 (see [17, 28, 29]).

Lemma 2.3. Let k≥ 0 be an integer and 1≤p≤ 2≤ q<∞. Then for any t≥ 0, it
holds that

‖∇kE(t)U(0)‖Lq ≤C(1+ t)−σ(p,q;k)‖U(0)‖Lp∩Hk ,

where σ(p,q;k) is the same as in (1.3), U(t) :=E(t)U(0) is the solution of the linear
equations

Ut+AU=0

with

A=

(

0 βdiv

β∇ − λ̃∆− µ̃∇div

)

,

and E(t)= e−tA is the solution semigroup generated by −A.

By virtue of Lemmas 2.3 and Duhamel’s principle, we have

Lemma 2.4. For any given 1≤p≤ 2, assume that ρ0,u0,f,g∈Lp(R3)∩H3(R3). Let
(ρ,u) be a smooth solution of equations (1.4)1 and (1.4)2 with initial data (ρ0,u0).
Then for k=1,2,3, it holds that

‖∇k(ρ,u)(t)‖L2 ≤C(1+ t)−σ(p,2;k)‖(ρ0,u0)‖Lp∩Hk

+C

∫ t

0

(1+ t−τ)−σ(p,2;k)‖(f,g)(τ)‖Lp∩Hkdτ, ∀ t≥ 0,
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where C> 0 depends only on p and k, and σ(p,2;k) is given by (1.3) with q=2.

Proof. Duhamel’s principle implies that the solution (ρ,u) of (1.4)1 and (1.4)2 is
given by

(ρ,u)(x,t)=E(t)(ρ0,u0)+

∫ t

0

E(t−τ)(f,g)(τ)dτ.

Thus, the application of Lemma 2.3 with q=2 immediately leads to Lemma 2.4. �

For the derivation of a priori estimates, we need some Sobolev inequalities and
the Moser-type calculus inequalities, which are well-known and can be found in [1]
and [35], respectively.

Lemma 2.5.

(A) (Sobolev inequalities.) For any f ∈H2 and q∈ [2,6], it holds that

‖f‖Lq ≤C‖f‖1, ‖f‖L6 ≤C‖∇f‖L2, ‖f‖L∞ ≤C‖f‖W 1,6 ≤C‖∇f‖1.
(B) (Commutator estimate.) For f ∈Hs, Df ∈L∞, and g∈Hs−1∩L∞, it holds that

∑

|α|≤s

‖Dα(fg)−fDαg‖L2 ≤C (‖f‖s‖g‖L∞+‖Df‖L∞‖g‖s−1).

(C) (Product estimate.) For f,g∈Hs∩L∞, it holds that
∑

|α|≤s

‖Dα(fg)‖L2 ≤C (‖f‖L∞‖g‖s+‖f‖s‖g‖L∞) .

Here, s∈Z
+ is an integer, and α is the standard multi-index with |α|=α1+α2+α3.

Finally, we state the following elementary inequalities, which will be used in the
proof of decay estimates.

Lemma 2.6. Let a,b,c∈R be such that 0≤a≤ b, b> 1, and c> 0. Then for any t≥ 0,
we have

∫ t

0

(1+ t−τ)−a(1+τ)−bdτ ≤C(1+ t)−a,

∫ t

0

(1+τ)−a exp{−c(t−τ)}dτ ≤C(1+ t)−a,

where C> 0 only depends on a, b, and c.

Proof. The proof of the first inequality can be found in [32]. Indeed, a direct com-
putation gives

∫ t

0

(1+ t−τ)−a(1+τ)−bdτ =

(

∫ t/2

0

+

∫ t

t/2

)

(1+ t−τ)−a(1+τ)−bdτ

≤
(

1+
t

2

)−a∫ t/2

0

(1+τ)−bdτ

+

(

1+
t

2

)−b∫ t

t/2

(1+ t−τ)−adτ

≤ C(1+ t)−a+C(1+ t)−b

∫ t

t/2

(1+ t−τ)−adτ

:=C(1+ t)−a+I,
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where the second term I can be bounded by

I≤































C(1+ t)−b

(

1−
(

1+ t
2

)1−a
)

≤C(1+ t)−b≤C(1+ t)−a, if a> 1,

C(1+ t)−b

(

(

1+ t
2

)1−a

−1

)

≤C(1+ t)1−a−b≤C(1+ t)−a, if a< 1,

C(1+ t)−b ln
(

1+ t
2

)

≤C(1+ t)−b ln(1+ t)≤C(1+ t)−a, if a=1.

Here, we have used b≥a, b≥ 1, and the fact that b>a when a=1. This completes
the proof of the first inequality. As a result, one obtains the second one since it is
easy to verify that (1+ t−τ)be−c(t−τ)≤C for any b≥ 0, c> 0, and 0≤ τ≤ t. �

3. Global existence and decay estimates

3.1. A priori estimates. Suppose that (ρ,u,B) is a solution in H3(R3) to the
initial value problem (1.4) and (1.5) on the interval [0,T ] with some T > 0. Further-
more, for some δ> 0 small enough, we also make the following a priori assumption

sup
t∈[0,T ]

‖(ρ,u,B)(t)‖3≤ δ. (3.1)

Then, by virtue of Lemma 2.5 and (3.1), we can prove

Lemma 3.1. For enough small δ> 0, there are suitably large constants K1,K2> 0
such that for any t≥ 0 it holds that

d

dt

(

K1‖(ρ,u,B)(t)‖2L2 +〈∇ρ,u〉
)

+C‖∇(ρ,u,B)(t)‖2L2 ≤C‖∇2u(t)‖2L2 , (3.2)

d

dt

(

K2‖∇(ρ,u,B)(t)‖22+
∑

1≤|l|≤2

〈

∇Dlρ,Dlu
〉

)

+C
(

‖∇2ρ(t)‖21+‖∇2(u,B)(t)‖22
)

≤Cδ‖∇(ρ,u,B)(t)‖2L2 . (3.3)

Proof. Multiplying (1.4)1, (1.4)2, and (1.4)3 by ρ, u, and B in L2, respectively, and
integrating by parts, we obtain after adding them together that

1

2

d

dt
‖(ρ,u,B)(t)‖2L2 + λ̃‖∇u‖2L2 + µ̃‖divu‖2L2 +ν‖∇B‖2L2

= 〈f,ρ〉+〈g,u〉+〈h,B〉. (3.4)

The terms on the right-hand side can be bounded as follows, using Sobolev inequalities
in Lemma 2.5 (i) and the a priori Assumption (3.1).

|〈f,ρ〉|= α

2

∣

∣

〈

ρ2,divu
〉∣

∣≤C‖ρ‖L3‖ρ‖L6‖divu‖L2 ≤Cδ
(

‖∇ρ‖2L2 +‖∇u‖2L2

)

,

|〈g,u〉|≤C
{

|〈ρ∇u,∇u〉|+ |〈∇ρ∇u,u〉|+ |〈ρdivu,divu〉|+ |〈∇ρdivu,u〉|

+|〈(u ·∇)u,u〉|+ |〈ρ∇ρ,u〉|+ |〈(∇×B)×B,u〉|
}

≤C
{

‖ρ‖L∞‖∇u‖2L2 +‖∇ρ‖L3‖∇u‖L2‖u‖L6 +‖u‖L3‖∇u‖L2‖u‖L6

+‖ρ‖L3‖∇ρ‖L2‖u‖L6 +‖B‖L3‖∇B‖L2‖u‖L6

}

≤Cδ
(

‖∇ρ‖2L2 +‖∇u‖2L2 +‖∇B‖2L2

)

,
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and

|〈h,B〉|≤C (‖∇u‖L2‖B‖L6 +‖u‖L6‖∇B‖L2)‖B‖L3 ≤Cδ
(

‖∇B‖2L2 +‖∇u‖2L2

)

.

Since δ> 0 is small enough, plugging these estimates into (3.4), we obtain

d

dt
‖(ρ,u,B)(t)‖2L2 +‖∇(u,B)(t)‖2L2 ≤Cδ‖∇ρ(t)‖2L2. (3.5)

To estimate ‖∇ρ‖2L2, we first observe from (1.4)2 that

β‖∇ρ‖2L2 =−〈ut,∇ρ〉+ λ̃〈∆u,∇ρ〉+ µ̃〈∇divu,∇ρ〉+〈g,∇ρ〉,

which together with the identity

〈ut,∇ρ〉= d

dt
〈u,∇ρ〉−〈u,∇ρt〉=

d

dt
〈u,∇ρ〉+〈f,divu〉−β‖divu‖2L2,

implies that

β‖∇ρ‖2L2 +
d

dt
〈u,∇ρ〉= 〈λ̃∆u+ µ̃∇divu,∇ρ〉+〈g,∇ρ〉−〈f,divu〉+β‖divu‖2L2 . (3.6)

By virtue of Hölder inequality, Sobolev inequalities, and (3.1), we see that

|〈λ̃∆u+ µ̃∇divu,∇ρ〉|≤ β

2
‖∇ρ‖2L2 +C‖∇2u‖2L2 ,

and

|〈g,∇ρ〉|+ |〈f,divu〉|≤C‖(ρ,u,B)‖L∞

(

‖∇2u‖L2 +‖∇(ρ,u,B)‖L2

)

‖∇ρ‖L2

+C‖(ρ,u)‖L∞‖∇(ρ,u)‖L2‖∇u‖L2

≤C‖(ρ,u,B)‖2
(

‖∇u‖21+‖∇B‖2L2 +‖∇ρ‖2L2

)

≤Cδ
(

‖∇u‖21+‖∇B‖2L2 +‖∇ρ‖2L2

)

,

which inserted into (3.6) yield

β

2
‖∇ρ‖2L2 +

d

dt
〈u,∇ρ〉≤C

(

‖∇2u‖2L2 +‖∇u‖2L2 +δ‖∇B‖2L2

)

. (3.7)

Now, multiplying (3.5) by a suitably large constant K1> 0 and adding it to (3.7),
we obtain the desired estimate indicated in (3.2) since δ> 0 is small enough.

In the following, we give the proof of (3.3). Applying Dk with 1≤|k|≤ 3 to (1.4)1,
(1.4)2, and (1.4)3, multiplying the resulting equations by Dkρ, Dku, and DkB in L2,
respectively, and then adding them together, we obtain

1

2

d

dt
‖∇(ρ,u,B)(t)‖22+ λ̃‖∇2u‖22+ µ̃‖∇divu‖22+ν‖∇2B‖22

=
〈

Dkf,Dkρ
〉

+
〈

Dkg,Dku
〉

+
〈

Dkh,DkB
〉

. (3.8)

Here and in the following proof, a repeated index denotes summation over the index.
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We now have the task of estimating each term on the right-hand side of (3.8).
First, recalling the definition of f , we obtain

〈

Dkf,Dkρ
〉

=−α
〈

Dk(ρdivu),Dkρ
〉

−α
〈

(u ·∇)Dkρ,Dkρ
〉

−α
〈

Dk(u ·∇)ρ−(u ·∇)Dkρ,Dkρ
〉

.

Using the product estimate and Sobolev inequalities, we deduce from (3.1) that
∣

∣

〈

Dk(ρdivu),Dkρ
〉∣

∣≤C (‖ρ‖L∞‖divu‖3+‖ρ‖3‖divu‖L∞)‖∇ρ‖2
≤C‖ρ‖3‖∇u‖3‖∇ρ‖2≤Cδ

(

‖∇ρ‖22+‖∇u‖23
)

.

After integrating by parts, we infer from Sobolev inequalities and (3.1) that

∣

∣

〈

(u ·∇)Dkρ,Dkρ
〉∣

∣≤ 1

2
‖divu‖L∞‖∇ρ‖22≤Cδ‖∇ρ‖22.

By virtue of the commutator estimate and Sobolev inequalities, we obtain
∣

∣

〈

Dk(u ·∇)ρ−(u ·∇)Dkρ,Dkρ
〉
∣

∣≤C (‖u‖3‖∇ρ‖L∞+‖∇u‖L∞‖∇ρ‖2)‖∇ρ‖2
≤C‖u‖3‖∇ρ‖22≤Cδ‖∇ρ‖22.

Therefore,
∣

∣

〈

Dkf,Dkρ
〉∣

∣≤Cδ
(

‖∇ρ‖22+‖∇u‖23
)

, 1≤|k|≤ 3. (3.9)

Similarly, we also have that for 1≤|k|≤ 3,
∣

∣

〈

Dkh,DkB
〉∣

∣≤C‖(u,B)‖3‖∇u‖3‖∇B‖3≤Cδ
(

‖∇u‖23+‖∇B‖23
)

. (3.10)

Finally, in order to estimate 〈Dkg,Dku〉, we first notice that

∑

|k|≤3

∣

∣

∣

∣

Dk

(

1

ρ+ρ∞
− 1

ρ∞

)∣

∣

∣

∣

∼
∑

|k|≤3

|Dkρ|+ |Dρ|2+ |Dρ|3+ |Dρ||D2ρ|,

which together with Sobolev inequalities and (3.1) leads to
∥

∥

∥

∥

(

1

ρ+ρ∞
− 1

ρ∞

)∥

∥

∥

∥

3

≤C
{

‖ρ‖3+
(

‖∇ρ‖L∞ +‖∇ρ‖2L∞

)

‖∇ρ‖1
}

≤C
(

1+‖ρ‖23
)

‖ρ‖3≤C‖ρ‖3.

Thus, similar to the derivation of (3.9), we can utilize Lemma 2.5 to deduce that
∣

∣

∣

∣

〈

Dk

[(

λ

ρ+ρ∞
− λ

ρ∞

)

∆u+

(

λ

ρ+ρ∞
− λ

ρ∞

)

∇divu

]

,Dku

〉
∣

∣

∣

∣

≤C
(

‖ρ‖3‖∇2u‖2‖∇u‖2+‖ρ‖L∞‖∇u‖23
)

≤Cδ‖∇u‖23.

In the same way, using Lemma 2.5, (3.1), and integrating by parts, we find
∣

∣

∣

∣

〈

Dk

[(

p′(ρ+ρ∞)

ρ+ρ∞
− p′(ρ∞)

ρ∞

)

∇ρ

]

,Dku

〉
∣

∣

∣

∣

≤C (‖ρ‖3‖∇ρ‖L∞+‖∇ρ‖L∞‖∇ρ‖2)‖∇u‖2+C‖(ρ,∇ρ)‖L∞‖∇ρ‖2‖∇u‖3

≤C‖ρ‖3‖∇ρ‖2‖∇u‖3≤Cδ
(

‖∇ρ‖22+‖∇u‖23
)

.
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By using the product estimate and Sobolev inequalities, it follows from (3.1) that

∣

∣

〈

Dk(u ·∇)u,Dku
〉∣

∣≤C (‖u‖L∞‖∇u‖3+‖u‖3‖∇u‖L∞)‖∇u‖2≤Cδ‖∇u‖23.

Due to the product estimate and Sobolev inequalities, we have from (3.1) that

∥

∥

∥
(ρ+ρ∞)

−1
B

∥

∥

∥

3
≤C (1+‖ρ‖3)‖B‖3≤C‖B‖3≤Cδ,

whence
∣

∣

∣

∣

〈

Dk

(

α−1

ρ+ρ∞
(∇×B)×B

)

,Dku

〉
∣

∣

∣

∣

≤Cδ
(

‖∇u‖23+‖∇B‖23
)

.

Collecting these estimates together, we arrive at

∣

∣

〈

Dkg,Dku
〉∣

∣≤Cδ
(

‖∇ρ‖22+‖∇u‖23+‖∇B‖23
)

, 1≤|k|≤ 3. (3.11)

With the help of (3.9)–(3.11), we deduce from (3.8) that

d

dt
‖∇(ρ,u,B)(t)‖22+‖∇2(u,B)(t)‖22≤Cδ

(

‖∇ρ‖22+‖∇(u,B)‖23
)

. (3.12)

On the other hand, if we apply Dl with 1≤|l|≤ 2 to (1.4)2, multiply it by ∇Dlρ
in L2, and then perform the computations similar to those used in the derivations of
(3.7) and (3.12), we can show that

β

2
‖∇2ρ‖21+

d

dt

〈

∇Dlρ,Dlu
〉

≤C‖∇2u‖22+Cδ
(

‖∇ρ‖22+‖∇(u,B)‖23
)

. (3.13)

Since δ> 0 is small enough, multiplying (3.12) by a suitably large constant K2> 0
and adding it to (3.13) leads to (3.3) at once. This ends the proof of Lemma 3.1. �

3.2. Proof of global existence.

Proof. It follows from (3.5), (3.7), (3.12), and (3.13) that for enough small δ> 0,
it holds that

K3
d

dt
‖(ρ,u,B)(t)‖23+C1

d

dt

∑

|l|≤2

〈

∇Dlρ,Dlu
〉

+C2

(

‖∇ρ(t)‖22+‖∇(u,B)(t)‖23
)

≤ 0,

for a suitably large constant K3> 0. Since

∑

|l|≤2

∣

∣

〈

∇Dlρ,Dlu
〉
∣

∣≤C
(

‖ρ(t)‖23+‖u(t)‖23
)

,

choosing K3> 0 large enough we obtain that

‖(ρ,u,B)(t)‖23+
∫ t

0

(

‖∇ρ(τ)‖22+‖∇(u,B)(τ)‖23
)

dτ ≤K‖(ρ0,u0,B0)‖23

for some positive constant K> 0. So, if the initial data satisfies ‖(ρ0,u0,B0)‖3≤ ε
with ε> 0 sufficiently small, we have

‖(ρ,u,B)(t)‖23≤K‖(ρ0,u0,B0)‖23≤ δ, 0≤ t≤T,
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which in particular implies that the a priori assumption (3.1) is reasonable. So, the
existence of a global-in-time solution (ρ,u,B)∈H3 to the initial value problem (1.4)
and (1.5) with small initial data follows immediately from the local existence result
(see [35] for the study of local existence on more general conversation laws) and the
standard continuity argument (see, for example, [36, 37]). This in turn yields the
global existence theorem for the initial value problem (1.1) and (1.2), and completes
the proof of Proposition 1.1. Note that, based on the standard energy method, the
uniqueness of the solution can be easily proved. �

3.3. Proof of decay estimates.

Proof. In this subsection, we turn to the proof of the decay estimates. For this
purpose, we first infer from Proposition 1.1, (1.6), and (3.3) that the solution (ρ,u,B)
of the problem (1.4), (1.5) satisfies

‖(ρ,u,B)(t)‖3≤C‖(ρ0,u0,B0)‖3≤Cε, (3.14)

and

d

dt

(

K2‖∇(ρ,u,B)(t)‖22+
∑

1≤|l|≤2

〈

∇Dlρ,Dlu
〉

)

+C
(

‖∇2ρ(t)‖21+‖∇2(u,B)(t)‖22
)

≤Cε‖∇(ρ,u,B)(t)‖2L2 (3.15)

for some constant K2> 0 which can be chosen to be sufficiently large. Moreover, using
Lemmas 2.2 and 2.4, we find for any given 1≤p< 6/5 that

‖∇k(ρ,u,B)(t)‖L2 ≤C(1+ t)−σ(p,2;k)‖(ρ0,u0,B0)‖Lp∩Hk

+C

∫ t

0

(1+ t−τ)−σ(p,2;k)‖(f,g,h)(τ)‖Lp∩Hkdτ. (3.16)

Thanks to the interpolation inequality, Hölder inequality and Sobolev inequalities,
we deduce from (3.14) that for any given 1≤p< 6/5,

‖f‖Lp ≤C‖f‖θL1‖f‖1−θ
6/5

≤C (‖ρdivu‖L1 +‖(u ·∇)ρ‖L1)
θ
(‖ρdivu‖L6/5 +‖(u ·∇)ρ‖L6/5)

1−θ

≤C (‖ρ‖L2‖∇u‖L2 +‖u‖L2‖∇ρ‖L2)
θ
(‖ρ‖L3‖∇u‖L2 +‖u‖L3‖∇ρ‖L2)

1−θ

≤C (‖ρ‖L2‖∇u‖L2 +‖u‖L2‖∇ρ‖L2)
θ
(‖ρ‖1‖∇u‖L2 +‖u‖1‖∇ρ‖L2)

1−θ

≤C‖(ρ,u)‖1‖∇(ρ,u)‖L2 ≤Cε‖∇(ρ,u)‖L2 , θ=(6−5p)/p.

Similarly,

‖g‖Lp ≤C‖g‖θL1‖g‖1−θ
6/5

≤C
(

‖ρ‖L2‖∇2u‖L2 +‖u‖L2‖∇u‖L2 +‖ρ‖L2‖∇ρ‖L2 +‖B‖L2‖∇B‖L2

)θ

×
(

‖ρ‖L3‖∇2u‖L2 +‖u‖L3‖∇u‖L2 +‖ρ‖L3‖∇ρ‖L2 +‖B‖L3‖∇B‖L2

)1−θ

≤C‖(ρ,u,B)‖1‖∇(ρ,u,B)‖1≤Cε‖∇(ρ,u,B)‖1,

and

‖h‖Lp ≤C‖h‖θL1‖h‖1−θ
6/5 ≤C‖(u,B)‖1‖∇(u,B)‖1≤Cε‖∇(u,B)‖1.
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Consequently,

‖(f,g,h)(t)‖Lp ≤Cε‖∇(ρ,u,B)(t)‖1. (3.17)

On the other hand, using Sobolev inequalities, we easily obtain

‖(f,g,h)‖1≤C‖(ρ,u,B)‖W 1,∞‖∇(ρ,u,B)‖2
≤C‖(ρ,u,B)‖3‖∇(ρ,u,B)‖2≤Cε‖∇(ρ,u,B)‖2. (3.18)

Thus, putting (3.17) and (3.18) into (3.16) with k=1, one obtains

‖∇(ρ,u,B)(t)‖L2 ≤CM0(1+ t)−σ(p,2;1)

+Cε

∫ t

0

(1+ t−τ)−σ(p,2;1)‖∇(ρ,u,B)(τ)‖2dτ, (3.19)

where ε> 0 is a small constant, and M0= ‖(ρ0,u0,B0)‖Lp∩H1 .
With these preparations, we can now prove Proposition 1.5. To this end, we

define

M(t)= sup
0≤τ≤t

(1+τ)2σ(p,2;1)H(τ), (3.20)

where

H(t) :=K2‖∇(ρ,u,B)(t)‖22+
∑

1≤|l|≤2

〈

∇Dlρ,Dlu
〉

with a suitably large constant K2> 0.
It follows from (3.15) that H(t) satisfies

dH(t)

dt
+C‖∇2(ρ,u,B)(t)‖21≤Cε‖∇(ρ,u,B)(t)‖2L2 .

Adding ‖∇(ρ,u,B)(t)‖2L2 to both sides of this inequality results in

dH(t)

dt
+C1‖∇(ρ,u,B)(t)‖22≤C2‖∇(ρ,u,B)(t)‖2L2 .

Since |〈∇Dlρ,Dlu〉|≤C‖∇(ρ,u)‖22 for 1≤|l|≤ 2, taking K2> 0 sufficiently large we
find that H(t) is equivalent to ‖∇(ρ,u,B)(t)‖22, that is, there exists a constant C> 1
such that

C−1‖∇(ρ,u,B)(t)‖22≤H(t)≤C‖∇(ρ,u,B)(t)‖22, (3.21)

from which we see that

dH(t)

dt
+C1H(t)≤C2‖∇(ρ,u,B)(t)‖2L2 . (3.22)

To deal with the term on the right-hand side of (3.22), we utilize (3.20), (3.21),
and Lemma 2.6 to get from (3.19) that

‖∇(ρ,u,B)(t)‖L2 ≤CM0(1+ t)−σ(p,2;1)

+Cε
√

M(t)

∫ t

0

(1+ t−τ)−σ(p,2;1)(1+τ)−σ(p,2;1)dτ

≤C(1+ t)−σ(p,2;1)
(

M0+ε
√

M(t)
)

, (3.23)
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since M(t) is non-decreasing in t and σ(p,2;1)> 1 when 1≤p< 6/5.
Putting (3.23) into (3.22) and keeping in mind that M(t) is non-decreasing, we

have from Lemma 2.6 that

H(t)≤H(0)e−C1t+C
(

M2
0 +ε2M(t)

)

∫ t

0

(1+τ)−2σ(p,2;1)e−C1(t−τ)dτ

≤C(1+ t)−2σ(p,2;1)
(

H(0)+M2
0 +ε2M(t)

)

. (3.24)

So, if ε> 0 is taken to be small enough, then it follows from (3.24) and (3.20) that

M(t)≤C
(

H(0)+M2
0

)

,

which combined with (3.21) and (3.24) implies that

‖∇(ρ,u,B)(t)‖2≤C
√

H(t)≤C(1+ t)−σ(p,2;1), ∀ t≥ 0. (3.25)

This completes the proof of (1.8).
To obtain the decay estimates of ‖(ρ,u,B)(t)‖Lq (2≤ q≤ 6), we first utilize (3.17),

(3.18), (3.25), and Lemma 2.6 to infer from (3.16) that

‖(ρ,u,B)(t)‖L2 ≤CM0(1+ t)−σ(p,2;0)+Cε

∫ t

0

(1+ t−τ)−σ(p,2;0)‖∇(ρ,u,B)(τ)‖2dτ

≤CM0(1+ t)−σ(p,2;0)+Cε

∫ t

0

(1+ t−τ)−σ(p,2;0)(1+τ)−σ(p,2;1)dτ

≤C(1+ t)−σ(p,2;0). (3.26)

On the other hand, using Sobolev’s inequality and (3.25), we find

‖(ρ,u,B)(t)‖L6 ≤‖∇(ρ,u,B)(t)‖L2 ≤C(1+ t)−σ(p,2;1). (3.27)

By virtue of (3.26) and (3.27), we have from the interpolation inequality that

‖(ρ,u,B)(t)‖Lq ≤‖(ρ,u,B)(t)‖(6−q)/(2q)
L2 ‖(ρ,u,B)(t)‖3(q−2)/(2q)

L6

≤C(1+ t)−σ(p,q;0), 2≤ q≤ 6.

This proves the desired decay estimates indicated in (1.10).
Finally, using (3.18) and (3.25), it is easy to see from (1.4) that

‖∂t(ρ,u,B)(t)‖L2 ≤C‖∇(ρ,u,B)(t)‖1+‖(f,g,h)‖L2

≤C‖∇(ρ,u,B)(t)‖2≤C(1+ t)−σ(p,2;1)

and

‖∂t∇(ρ,u,B)(t)‖L2 ≤C‖∇(ρ,u,B)(t)‖2+‖∇(f,g,h)‖L2

≤C‖∇(ρ,u,B)(t)‖2≤C(1+ t)−σ(p,2;1).

Consequently,

‖∂t(ρ,u,B)(t)‖1≤C(1+ t)−σ(p,2;1),

which proves the decay estimate in (1.9). Therefore, the proof of Proposition 1.5 is
complete, and so is Theorem 1.2. �
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