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CONVERGENCE TO EQUILIBRIUM FOR A PHASE-FIELD MODEL
FOR THE MIXTURE OF TWO VISCOUS INCOMPRESSIBLE
FLUIDS*

LIYUN ZHAOT, HAO WU#, AND HAIYANG HUANGS

Abstract. In this paper, we study the existence and long-time behavior of global strong solutions
to a system describing the mixture of two viscous incompressible Newtonian fluids of the same density.
The system consists of a coupling of Navier-Stokes and Cahn-Hilliard equations. We first show the
global existence of strong solutions in several cases. Then we prove that the global strong solution
of our system will converge to a steady state as time goes to infinity. We also provide an estimate
on the convergence rate.
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1. Introduction
In this paper, we investigate the following coupled Navier-Stokes/Cahn-Hilliard
equations:

w+ (u-V)u+ Vp—2div(v(¢)D(u)) = —AV- (Vo R V), (1.1)
V-u=0,
¢r+(u-V)p=div(y(¢)Vp),
with p=—A¢p+F'(¢),

for (x,t) €Qx(0,+00). Here, QCR" (n=2,3) is a bounded domain with smooth
boundary I". Equation (1.1) is the linear momentum equation, where u is the velocity
field of the mixture, and ¢ and p denote the phase function and pressure, respectively.
D(u)= % (Vu+VuT) is the stretching tensor. V¢ ®@ V¢ denotes the induced elastic

stress, which is a n x n matrix whose (¢,7)-th entry is %% for 1 <1,7 <n. Equation
i J

(1.2) implies the incompressibility of both fluids in the mixture and equation (1.3)
is the phase equation of Cahn-Hilliard type. A\ is a positive constant which denotes
the surface tension. v(¢) and ~y(¢) are scalar functions of ¢ which represent the
kinematic viscosity and the mobility, respectively. We may refer to [1, 3, 20, 21]
and the references therein for detailed discussions of the above notations. System
(1.1)—(1.3) is subject to the initial data

uli—0=uo(z), ¢li=0=0o(x), TEQ, (1.4)
and boundary conditions
u(z,t)=0, (z,t)el x(0,400), (1.5)
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940 CONVERGENCE TO EQUILIBRIUM FOR A PHASE-FIELD MODEL
Ond(z,t) =Onp(x,t)=0, (x,t)€l x(0,+00). (1.6)

Here, n is the outward unit normal to the boundary I'. Equation (1.5) is the usual
no-slip boundary condition for viscous fluids. d,¢|r =0 describes a contact angle of
/2 of the diffused interface and the boundary T". Onp|r =0 means that there is no
flux of the components through the boundary, and thus the integral of ¢ is preserved
for t>0 (cf. [1, 24]).

Based on an energetic variational approach (EVA), the above system in the case
with constant viscosity and mobility was derived in [20] to model the mixture of two
fluids. Such an approach can also apply to more general cases with variable density,
viscosity and mobility (cf. [1, 21]). In [20], the authors considered a specific type of
mixture of two incompressible fluids with the same density and viscosity, which are
assumed to be macroscopically immiscible. Instead of the classical sharp interface
between both fluids, an interfacial region is imposed, whose length scale is measured
by a parameter 7 >0 (the width of the interface). Within this “thin” transition region,
the fluids are mixed and have to store certain amount of “mixing energy”

[ op, L
W(6,V) = /Q [QWS +F()| b

n can be viewed as a parameter indicating the competition between bulk energy
fQ F(¢)dz and the interface surface energy fQ |V@|>dx. The physical relevant energy
density function F' usually has a double-well structure, which represents the two
phases of the mixture. The most often used one has the following form (cf. [24, 20,
32, 34, 18, 3])

1
F(g)=7(6*~1)% (1.7)
Besides, in the literature, singular free energy density function like
F(¢)=ro—r16* +ra((1+9)In(1+¢) + (1) In(1-¢)), ;>0 (i=0,1,2) (1.8)

has also been widely studied (cf. [1, 2, 7, 3, 22]). Comparing with the smooth energy
density (1.7), it has the advantage that the phase function will stay in the physical
reasonable interval [—1,1].

As far as the mathematical analysis for system (1.1)—(1.3) is concerned, Boyer
[3] studied it as a model for the evolution of a binary alloy in a periodical channel
under shear. For a suitably smooth double-well potential, he showed the existence of
global weak solutions, which are strong and unique with regular initial data if n=2
or n=3 and t € (0,Tp) for a sufficiently small T > 0. Moreover, the case of the loga-
rithmic potential (1.8) was also considered in connection with a degenerate mobility
there. A more complete mathematical theory of existence, uniqueness, regularity and
asymptotic behavior of solutions to (1.1)—(1.3) with singular potential (1.8) as well
as variable viscosity and constant mobility was given in [1]. In the recent paper [9],
the authors considered system (1.1)—(1.6) in 2-D with constant viscosity and mobility.
They proved existence of a global attractor as well as an exponential attractor and
then showed the upper bound of fractal dimension of the global attractor (cf. [8] for
corresponding results on a 2-D Navier-Stokes-Allen-Cahn system). We also notice
that in [10], the long-time dynamics of these systems in 3-D was investigated in the
framework of trajectory attractors.
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In this paper, we first obtain some useful inequalities, which together with the
large viscosity assumption (also large mobility assumption for variable 7) indicate the
existence of global strong solutions to problem (1.1)—(1.6) with variable viscosity and
mobility in the three dimensional case. This is an extension of the recent result [38]
for constant viscosity and mobility. We also discuss the existence of global strong
solutions for initial data that are close to the absolute minimizer of the mixing energy
in the 3-D case.

Next, we are interested in the asymptotic behavior of strong solutions to system
(1.1)—(1.6), namely, whether the global strong solution will converge to an equilibrium
as time goes to infinity? How about the convergence rate?

In [3], the author proved an asymptotic stability of a specific constant stationary
solution (e, Poo) = (0,m(¢p0)), where m(¢o) = \S%Ifﬂ ¢o(x)dx. It was required that F'

is convex in a neighborhood of m(¢p), in other words, m(¢o) should lie in a metastable
region of F'. However, in general it is difficult to obtain the stability result of sta-
tionary solutions even for the single Cahn-Hilliard equation in the high dimensional
case. On the other hand, in recent years, the so-called Lojasiewicz-Simon approach
has been proven to be very useful in the study of long-time behavior of global solu-
tions to nonlinear evolution equations in high dimensional case (n>2). Under the
basic assumption that the nonlinear term is analytic in the unknown function, the
convergence of uniformly bounded global solutions to equilibria as time goes to infin-
ity can be proven (cf. [2, 5, 8, 9, 17, 18, 24, 25, 32, 33, 34] and references therein).
In particular, we refer to [24, 32, 34] for the convergence result concerning the single
Cahn-Hilliard equation subject to various boundary conditions. For the system (1.1)—
(1.3), a first result in this aspect was provided in [1], in the case with a singular free
energy density. Due to the regularity of weak solutions for large time (eventually reg-
ularity), the author applied the Lojasiewicz-Simon approach to show the convergence
to stationary solutions as t — oo. However, no estimate on the convergence rate was
given there. It is known that an estimate in a certain (lower order) norm can usually
be obtained directly from the Lojasiewicz-Simon approach (see, e.g., [14, 40]). Then,
one straightforward way to get estimates in higher order norms is to use interpolation
inequalities (cf. [14]). We notice that the decay exponent deteriorates in this case.

In this paper, we first apply the Lojasiewicz-Simon approach to prove the conver-
gence to equilibria of global strong solutions to (1.1)—(1.6) in both 2-D and 3-D. Then
we show that by using suitable energy estimates and constructing proper differential
inequalities, it is possible to obtain the same estimates on convergence rate in both
higher and lower order norms. Our approach in some sense improves the previous
results in the literature (see, for instance, [14, 40]) and it can apply to many other
problems (cf. [8, 9, 33, 34, 35, 36, 37]). We mention that in [36], the author studied
a simplified system of the Ericksen-Leslie equations for the flow of nematic liquid
crystals and achieved the convergence to steady state solutions with convergence rate
(cf. also [37] for a more general system). Instead of the Cahn-Hilliard equation (1.3),
the system considered there consists of a coupling of Navier-Stokes equation for the
velocity field and a second order equation of Ginzburg-Landau type for molecule di-
rector (cf. [19]). Using the idea in [19, 36], we introduce a new higher order energy
inequality for our system (1.1)—(1.6), which not only yields uniform bounds for the
global strong solution but also helps to obtain the convergence rate in a higher or-
der norm. After we finished the present work, we noticed that the convergence of the
weak solution to equilibrium was obtained for system (1.1)—(1.6) in 2-D with constant
viscosity and mobility in the recent manuscript [9]. However, we are now dealing with
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strong solutions to a more general system (1.1)—(1.6) with variable viscosity/mobility
in both 2-D and 3-D, the proof is much more involved.

For viscosity v and mobility v, we make the following assumptions:
(A1) v€ C%(R), v/, v"" are bounded on R, and there exists a constant vy >0 such that
v Z Vi,
(A2) ye C%(R), v/, v are bounded on R, and there exists a constant y; >0 such that
Y27
REMARK 1.1. For the sake of simplicity, we shall just treat the typical physical rel-
evant double-well energy density F(¢)=1(¢?—1)2. However, under the assumptions
(A1) and (A2), it is straightforward to check that our result holds true for more
general function F' satisfying the following conditions:

(F1) F(s) is analytic in s€R;

(F2)

|[F"(s)| <C(1+]s]?), VseR,

where C' >0, g€ [0,400) for n=2 and ¢€10,2) for n=3;
(F3)
liminf F"(s) > 0.

|s]—+o0

We relax the assumptions on the viscosity v and mobility v such that v and ~
are allowed to have a linear growth. As a result, comparing with the assumptions of
F in [3], the growth of F"’ should be weakened (in the 3-D case) to ensure the higher
order energy inequality (cf. (2.5)). A careful use of embedding theorems shows that
growth assumption (F2) will be enough for the arguments in [3] and thus the original
growth assumptions on F’,F” in [3] (also in [38]) can be relaxed. Assumption (F3)
means that the function F’(s) is monotonic increasing outside a bounded subset of
R. More precisely,

£1EliI£FI(S) >1, £1Ln1£10fF'(s) <-1.
Thus F(s)>0 outside a bounded subset of R. As a result, the energy functional
E(u,¢) (cf. (2.1)) is bounded from below (see, for instance, [11, Lemma 3.2] for a
detailed proof).

Before stating our main results, we introduce some functional spaces (cf. [1, 3]).
As usual, we denote H}(2) to be the closure of C§°(€2) in H(f2). Let Oain (€2) be
the space of all divergence free vectors in (C5°(2))" (n=2,3). We denote by H the
closure of C§%;,(€2) in (L*(2))". Moreover, we set

V=(Hy(2))"NH,

Vo= (H?(Q))" N (Hy ()" NH,

Py={pcH*(Q) | Oud|r=0},

y={¢p€ H'(Q) | udlr =0nulr =0, },
D:{¢GH2(Q) ‘/qudx:/gqbodx, an¢|p=0}.

THEOREM 1.1. Suppose n=2. Assume that (A1), (A2), and (F1)-(F3) are satisfied.
For any initial data ug €V and ¢g € o, system (1.1)—(1.6) admits a unique global
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strong solution (u,¢) such that (u,¢) converges to a certain equilibrium (0,¢.0) as
time goes to infinity:

i (Ol +160,6) — goc 152) =0, 19)

Here, ¢ is a solution to the stationary problem:

BAYNS +f(¢00) = oo, TELD,
Ondoo—0, z€T, (1.10)

fQ ¢oodx = fQ ¢Od$7

where
f=F

and s 98 a constant such that

1

Moreover, we have the following estimate on the convergence rate:
a6y +11¢(:t) = poo | gs <C(141) 020w > 1, (1.11)

C>0 is a constant depending on |uollv,|¢olle,,2 doc,v1,71 and X. 0€(0,1) is a
constant depending on ¢uo.

REMARK 1.2. Notice that (1.10) is the stationary Cahn-Hilliard equation with Neu-
mann boundary condition. Non-constant solutions of (1.10) have been studied exten-
sively, and various types of solution such as spike-like solutions and bubble solutions
have been constructed (see, for example, [4, 6, 29, 30, 31] and the references therein).
For the Cahn-Hilliard equation, further results can be obtained in the 1-D case, for
instance, the number of the steady states (i.e., solutions of (1.10)) can be counted
and then the convergence to equilibrium can be proven, because the time dependent
Cahn-Hilliard equation defines a gradient system in H~1(Q) (cf. [12, 23, 39]).

When the spatial dimension is three, due to the difficulties from Navier-Stokes
equation as well as Cahn-Hilliard equation with nonconstant mobility, we cannot
expect the same result as in 2-D. In what follows, we deal with some cases, in which
the global strong solutions will exist. The first result is concerning the large viscosity
(also large mobility) case:

THEOREM 1.3. Suppose n=3.

(1) Assume that v>0 is a constant and (A1), (F1)-(F3) are satisfied. For any
ug €V, ¢g € Pa, system (1.1)—(1.6) admits a unique global strong solution (u,¢) under
the large viscosity assumption v > vy > vo(\,7y,u0,00).

(2) Assume that (A1), (A2) and (F1)-(F3) are satisfied. For any ug €V, ¢g €
Dy, system (1.1)—(1.6) admits a unique global strong solution (u,¢) provided that the
viscosity and mobility are properly large such that v>1q >vo(Aug,Po) and v>y1 >
Yo(A, 10, o).

In the above two cases, the unique global strong solution enjoys the same asymp-
totic behavior as in Theorem 1.1.
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The second one is a “stability” result for the near equilibrium initial data:

THEOREM 1.4. Suppose that n=3 and (A1), (A2), (F1)-(F3) are satisfied. Let
¢* €D be an absolute minimizer of the functional

£(0)=5IVol*+ | Plo)da

in the sense that E(¢*) < E(P) for all p€D. For any ug €V, ¢o€ PoNH3(Q), there
is a constant o which may depend on A\, y1,v1, f, ¢* and ||uollv,||¢o| gz, such that
if Juol||+ |lpo — &* || zrr <o, then the problem (1.1)—(1.6) admits a unique global strong
solution, which enjoys the same asymptotic behavior as in Theorem 1.1.

REMARK 1.5. It is well known that the topology of equilibria set can be rather
complicated in the high dimensional case such that it may form a continuum (cf.
[13, 24]). Thus, even if the initial data is sufficiently close to an absolute minimizer
of the functional £, the global solution will converge to an equilibrium that may
not necessarily be the original minimizer. The result, Theorem 1.4, is in some sense
different from the usual concept of stability.

REMARK 1.6. Our results hold true for all parameters >0, so we just set n=1 in
the following text. It would be interesting to ask whether these results can be passed
to the limit case as n— 0. This goal is out of reach under our current approach.

REMARK 1.7. For the singular free energy density function F like (1.8), whose singular
points are {—1,1}, it has been shown that (cf. [1, Lemma 7.2]) the “separation”
property holds for the phase function. Namely, there exist some T'>0 and ¢ € (0,1)
such that when t>T, ¢(z,t) € (—1+5,1—6). As a result, the singular function F'(¢)
can be replaced by a bounded smooth function F(¢) such that F(®)|[-145,1-06] =
ﬁ'(¢)|[_1+571_5]. Hence, our arguments for convergence rate may also apply to this
case.

The remaining part of this paper is organized as follows. In section 2, we recall
some basic results in the literature. In section 3, we prove the global existence of
strong solutions in 3-D, provided that the viscosity and mobility are properly large.
In section 4, we derive a new high order energy inequality and study the global
existence of strong solutions in 3-D for initial data that are close to equilibrium. The
final section 5 is devoted to the convergence to equilibrium of global strong solutions
and the estimates on convergence rate.

2. Preliminaries

For a Banach space X, we denote its norm by ||-|x. For the sake of simplicity,
we use |-|| and (-,-) for the norm and the inner product on L?(Q2) (or (L%*(22))"),
respectively.

Given ¢ € L*(f2), we denote its mean value by

1
mwﬂﬁ4¢m

Set L3(Q)={¢pe L*(2):m(¢)=0}. We then denote HL(Q)=H'(Q)NL3(Q), and
let H=1(Q) be the dual space of H(2). We equip H}(Q) with the inner product
(u,v) g1 = (Vu,Vv). Denote —Ap to be the (negative) Laplace operator with ho-
mogeneous Neumann boundary condition. Then we have (cf. [1, 2])

<(7AN)u,v>H71’Hi:/(fAN)uvdx:(u,v)Hi:(Vu,Vv), u,v € HY,
Q
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(u,v) g1 = (V(=An)"'u, V(=Ax) " 10).

Next, we introduce the Stokes operator S, which is an unbounded operator with
domain D(S)=V, defined by Su=—Au+Vre€H, for all ue V,, where me H(Q).
Then the following property holds:

LEMMA 2.1. (cf. [27, 8]) There exists a constant C >0 such that for any ue Vs, it
holds

[allv, <Cl[Sull, |17z @\e <ClSull,  [I7]L2@)p\r < Cllullv.

LEMMA 2.2. [Korn’s inequality] (¢f. [15]) Let Q be an open and regular domain in
R™ and let ue (HE ()™ be a vector field on Q. We have

[Vul* <2[ D(w)[f?,
with the equality if we suppose divu=0.

Integrating (1.3) over © and using the boundary condition, it is easy to see that
m(¢(t)) is conserved for all time.
The total energy of system (1.1)—(1.6) is defined by

1 A
E(u,¢):/Q <2u2+2|V¢5|2+)\F(¢)> dx. (2.1)
Problem (1.1)—(1.6) is a dissipative system, such that the following basic energy law
holds (cf. [3, 20, 38]):

d

B0 == [ (@D +33(0) Vi) da. (22)

Hereafter in this section, we recall some results on the solutions to (1.1)—(1.6) which
easily follow from the argument in [3].

First, from the basic energy law (2.2), we can easily see that for weak solutions
to system (1.1)—(1.6), there holds

LEMMA 2.3. Suppose (F1)-(F3). Let ug € H and ¢o € H*(Q). Then
a@)l+ o) <C, V=0, (2.3)

where C' is a constant depending on ||ug||, ||dollz: and €.
Denote
At)=IVu®)|* +1Ae)]1%,
B(t) =[IVu(®)|* +[IVA¢)|* +1,
C(t)=Su(®)|*+[1A%6 ().
By using the uniform estimate (2.3) and a slight modification of the argument in [3],
one can obtain the following energy inequalities.

LEMMA 2.4. Assume that (F1)-(F3) are satisfied. Let ug €V and ¢g € Po. When
n=2, the following lemma holds.

%A(t) FaC(t) < CAWB(L) +C. (2.4)
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When n=3,
%A(t)—&—aC(t) <CAt)B(t)+CA5(t)+C. (2.5)

Here, a>0 is a small constant depending on vy and 1, and C is a constant depending
on |luoll, [I¢ollz, and |€2].

Based on Lemma 2.4, a similar argument to that in [3] yields the following well-
posedness result on strong solutions to (1.1)—(1.6):

PROPOSITION 2.5. Assume that Q CR™ (n=2,3) is a bounded domain with smooth
boundary and (A1), (A2), (F1)-(F3) are satisfied. Let ug €V and ¢o € 3. Then

(a) in the 2-D case, there exists a unique global strong solution to (1.1)~(1.6) such
that

ueC([0,00);V)NL?*(0,00;V2), ¢ €C([0,00);®2)NL*(0,00;Py).
Moreover, the following uniform estimate holds:
@)} + oI5, <C, V¥t=0, (2.6)

where C' is a constant depending on ||uollv, ||¢olls, and |€2].

(b) in the 3-D case, there exists a certain (small) To>0 depending on ||Juol|v,
lPollw,, and || such that there is a unique strong solution to (1.1)~(1.6) on the finite
time interval [0,Tp).

REMARK 2.1. Since the value of A does not play an important role in the proof, for
the sake of simplicity, we shall always assume that A=1 in the remaining part of this

paper.

3. Global Wellposedness under large viscosity assumption

Recently, the authors in [38] studied the global existence of strong solutions to
(1.1)—(1.6) with constant viscosity and mobility in 3-D. Different from the local ex-
istence in 3-D as in [3] (see also Proposition 2.5(b)), the global existence of strong
solutions was proven in [38], provided that the viscosity v is supposed to be properly
large.

We shall extend their result to the case with variable viscosity and (non-
degenerate) mobility. Similar to [3, 38], the following estimates are made for the
Garlerkin approximation of weak solutions. We can see that the entire calculation is
identical to that as we work with classical (smooth) solutions to (1.1)—(1.6) (cf. also
[19]). Hence, we shall just perform the estimates for smooth solutions.

Denote

A)=[IVa@®)|* + [ Ad(0)|> + 1= A(t) +1.
LEMMA 3.1. Suppose that n=3 and (A1), (A2), (F1)-(F3) are satisfied. There holds

S LA+ (= AM) [1SuDI+ (1~ Call A — ) [A%(1) | < CaAr). (3.)

Here, C; (i=1,...,4) are constants depending only on ||uo||, ||¢ollg: and |].
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Proof.  We multiply (1.1) by Su and multiply (1.3) by A%¢. Addition of the two
resultants and integration over Q) yield

1d
5 IVaP+1801)+ [ volsulars [ s@)|a%de

=—((u-V)u,Su) — (A¢Ve,Su) + (v(¢)Vr,Su)+2(V (¢) VD (u),Su)
—((u- V), A%¢) + (7(9) Af (), A%¢) — (Y (6) VOV A, A%¢)
+ (Y () VeV f(4),A%)). (3:2)

Now we estimate the right hand side term by term. Notice that the following inequal-
ities hold

18]z~ < Cliglz 18l 32 < CUIASIE +1), (3.3)

18]z~ < Clioli IA%G11% +Cl 6]l ars < CUIAS]F +1), (3.4)

IVl s <ClIVel | A%¢]|7 +C|[Ve] < C(|A%g]| % +1), (3.5)

IVl <ClIA26]| 2|V 2 +C|[ Vol < C(|A%]12 +1), (3.6)

IVol= <CIVElIZ Vel 2 <CUVAGIR[AGIE + A +1),  (3.7)

1AG] < CIIVo3[[A%¢]|5 +C Vel < C(|A%]|5 +1), (3.8)

IVAG] < C(|A%g]|2 ]| Ag] > +[| A2, (3.9)

where C'>0 is a constant depending on ||¢|g: and || at most. By Lemma 2.1,
Lemma 2.3 and the assumptions (A1), (A2), we have

[(u- V)u, Su)| < [[ull o) [V gy | Sull < Clful| [Vl [ Va # || Sul
<C[[Vul?||Sul? + Cful*| Vul]?

<C([|[Vul?+1) [|Sul*+C|Vul?, (3.10)
[(ApV ¢, Su)| <[|A||| Vo Lo | Sul < C(|A20]|5 +1)(|A2]|Z +1)[|Sul|
<C||A%*|* +C|Su|*+C, (3.11)
|(v(¢)Vm,Su) | <O+ |¢]| =) |V Sul| < C(1+[|Ag] 2)||Sul]?, (3.12)
2(v/(¢)VoD(u),Su) | < C| V|| [|Vul| [ Sul| < C(|A%¢]| = + 1) Vul||Sul|
<C||A%|]*+C||Vul]?||Sul]* +C, (3.13)
(0 V), A20)| < [ul|[| Vo] Low (0 | A20]| < C(| A% 7 +1)[| A2
<C|A%|*+C, (3.14)

V(@) (AF(), M%) <C(L+ ol =) | AF (D) A%

<CA+[I8lle) (I @)= IAS] + [ £ (8) | o [V 13.6) | A2
<C(1+][8l3) 126[[1A28]|+C (1+ 6] <) Vel A%
<c(1+]a%]#) (1+1a%)}) A%
<C|A?%g|2+C, (3.15)

(7 (6) VoV A, A2)| < C|| Vo 1~ | VA A%
<C(IVAGIIZ|Ag] 2 +[|Ag] +1) | VA A%)|
< C||A2g||T]|Agl|T +Cl|Ag|(|A%g] + C[| A% 5 [|Ag||*
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<ClA%|* +Cllad A% +CllAg]1* +C, (3.16)
|(Y(8)VeVF(9),A%8) [ =] (+' (&) (0)I VS, %) [ < CIf ()| L= IVl 7 [ A%

<c(la%]3 +1) (I1a%]2 +1) A%

<CO|A%¢)*+C. (3.17)
Collecting the above estimates, we infer from (3.2) that (3.1) holds. d

If the mobility v is assumed to be a positive constant, by a modification of the
above proof we obtain

LEMMA 3.2. Suppose that n=3, the mobility v is a positive constant and (A1),
(F'1)-(F3) are satisfied. There holds

S LA+ (O AM) ISP+ LIA% 0P <CoAlr). (319)

Here, C1,Cy are constants depending on ||[uo||, ||¢ollgt, and |Q|, and Co also depends
on .

Based on Lemma 3.1 and Lemma 3.2 respectively, one can use the argument in
[19, 37, 38] to conclude the existence and uniqueness of global strong solutions to
system (1.1)—(1.6). The crucial step is to prove the uniform bound of A(¢) such that

At)<C, Yt>0. (3.19)
For the reader’s convenience, we shall sketch the proof here for the case in Lemma 3.1.

Without loss of generality, we assume that v1 >1,77 >1. By Lemma 2.2 and (2.2),
one can see that

t+1
/ [Vu(r)||?dr<C, V¥ t>0,
t
and
t+1
/ Vu(r)|?dr<C, ¥ t>0.
t

By (2.3) , (F2), Poincaré’s inequality, the Sobolev embedding theorem, and the Young
inequality, we have

A <[l + [ F (DI < ClIVE+Clm(p)|+ | ()]
<C|Vul +Cll¢*rr +Cllg* | +C < ClIVpll+Cllé s +C

1 1
<C|IVull+C(][Agl +1)+C§CHVM||+§||A¢II+C,
which indicates that
t+1
/ |AG()|Pdr<C, ¥ t>0.
t

As a result,

41 t+1
/ A(r)dr < (r)dr+1<M, VYt>0, (3.20)
t t
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where M >0 is a constant depending on ||ugl|, ||do| g1, and |€].
Take

v1 > 201 (A(0) 4204 M +4M) +1, 71 >205(A(0)+2C,M +4M)+2C5+1. (3.21)
Since
v1>CLA0), 71 >CyA(0)+Cs,
there exists certain Tp > 0 such that for ¢ € [0,Tp],
1 > CLA(L), v >CoA(t)+Cs>Col|Ad(t)||* +Cs, (3.22)
and thus

%fl(t) <204 A(t). (3.23)

Let T* =supTy. We claim that T* > 1. If not, we have
1
A(T*) < A(0)+2C, / A(r)dr < A(0) +2C4 M.
0

Then we can see that (cf. (3.21))
v1>CLA(T), 1 >CA(T*)+Cs, (3.24)

which contradict the definition of T*.

If T* < +00, it follows from (3.20) that there is a t* € [T* — 3,7*] such that

A(t*) <4M.
Then

A(T*)g[l(t*)+204/ A(T)dr <4M +2C4 M,
-

which again implies (3.24). This leads to a contradiction and we conclude that 7™ =

~+00. Summing up, for all t >0, (3.22) is satisfied, namely, A(t) is uniformly bounded.
The proof is complete.

REMARK 3.1. We remark that in the above argument the choice of lower bounds for
v1,v1 (cf. (3.21)) is actually not optimal but it is sufficient for the global existence of
strong solutions.

The proof for the case in Lemma 3.2 is simpler, so we omit it here. From the
above discussion, we can prove the following theorem:
THEOREM 3.2. Suppose n=3.

(a) Assume that v>0 is a constant and (A1), (F1)-(F3) are satisfied. For any

ug €V, ¢ € Dy, system (1.1)—(1.6) admits a unique global strong solution (u,¢) under
the large viscosity assumption that v >y > vy(A,v,40,00)-

(b) Assume that (A1), (A2), (F1)-(F3) are satisfied. For any ug€V, ¢g€ Do,
system (1.1)~(1.6) admits a unique global strong solution (u,$) provided that the
viscosity and mobility are properly large such that v>wv1 >vo(Aug,¢0) and v>y1 >

Yo(A, uo, Po).
Moreover, for both cases (a) and (b), the uniform estimate holds for all t>0,

1% +lle)5, <C, (3.25)

where C' is a constant depending on ||uollv, ||¢olls, and |€2].
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4. Global existence of strong solutions for near equilibrium initial data
In this section, we try to derive a new higher order energy inequality, which
will provide us information about the asymptotic behavior of global strong solutions.
We also show the existence of global strong solutions for near equilibrium initial data.
As before, we shall just perform the calculation for smooth solutions and it can be
justified by proper approximation procedure.
Define

o (t)=[IVa®)|* +[Vu@®)]?, (4.1)
B(t) =1 Su®)|* +7 [ VAu@®)|*. (4.2)

LEMMA 4.1. For the global strong solutions obtained in Proposition 2.5(a) (2-D) or
Theorem 3.2 (3-D), there holds

%d(t) +B()<CH*(t)+C, V>0, (4.3)

where constant C depends on A\,y1,v1,||uollv,||¢olle,, and |].

Proof. Here we only provide a proof for the 3-D case. For the 2-D case, the proof
can be carried out in a similar way with minor modifications. A direct calculation
yields that

i 2 2 2
G UV IVaIP) + [ vo)lsuPde+ [ 2V AP

t
—((u-V)u,Su) = (ApVe,Su) — (' (¢) Vo, mSu) +2 (' (¢) Vo D(u), Su)

+ (VALY ((u-V)9) = (VALY (¢) VOVt (¢) VoV 1)

—(VALA (@) VOV 14+ (¢)VOAL) — (Ap, f'(§) (¢) VPV 1)

+(Ap, f(@)(a-V)) — (A, f1(9)v(d) Ap)

=Li+I+---+1. (4.4)

N —

We now estimate I1,...,J19 term by term. The following inequalities in 3-D case will
be frequently used in the subsequent proofs (cf. [3, 38]):

lullz= < CllAu) juflZ, +Clullzs < ClAu|? [Vul? +C[Vull,  (4.5)
l6llL < CllglZn Il (4.6)
IVllLs <CIIV2¢l|7 [Vl T +C Ve, (4.7)
V6]~ < CIIVS|2:[VAG|? +CIIV |15, (4.8)
V2012 <CIVAG|2 V262 +C V29, (4.9)
IAG]|Ls <CIVAG||T | Ag]| T +C|lAg), (4.10)
IVpll e < CUVIIFIV AL F +C[ V], (4.11)
1AL < CIIVul| = IV A= +C|[Vpll. (4.12)

Besides, from the definition of p and uniform estimate (2.3), we can see that
IVAS <[Vl + IV F( ) < IVull+C(oll7 = + 1)V
3 1 2
<19l +C (161 IVAGIE + 18] ) I196]+ IV
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1 1
< IVl +C (IVAGIE +1) < SIVAG| +]|Vpll +C.

Namely,

IVAg| <2[|Vul+C,

where C' depends on ||, ||ug|| and ||¢o||g:-
Always keeping the uniform estimate (2.6)/(3.25) in mind, we can obtain

L] <[]l o< | Vul[||Sul| < C[|Vul 2 ||Sul| 2 +C[|[Vul?[|Sul|
<el|Sul|2+C(e) (| Vu®+||Vul?),

L] <[|Sul|[[Ag][[| Ve = <[|Sull| Ag]| (cnwu AN E: +c||v¢||m)
<O|Sul|(|VA|Z +1) <el|Sul?+C(e) (| VA +1)
<e||Sul>+C )|Vl + 0,

I3 < C|[Vo o || 7| | Sul| < C|V | £ |[u]|v || Sul
gc(cnwn 2 |[VAg|z +cnv¢um) IVl || Sull
<e||Sull?+C )|Vl + C ()| Vul* + C(e)[|Vul?,

14| < C||V | o || D(w)|[[|Su]| < C (||m¢||% +1) [Vul|[|Sull
<e||Sull?+C () ||Vl +C ()| Vul* + C(e) || Vul?,

I5] = | (VAp, VuVe + (u-V)Ve)|
< IVAul (IVull|Vel Lo + [[ull 6|Vl £2)

<clvaullival (IV26l2IVAS|E +[Vgllzs +11V26]))
<clvaulivul (Ivas| +1)
<elIV AR +C(E) |Vl +C(e) [Tull +C(e) [ Tul?,
15 < CIV AV I3 V1l + CIV Al V261V
<CIV AU (CIVOl LIV AGI + OVl ) [Vl
+C VA (CIVullt VAU +C) Vi)

<CIVAU(IVASI+1) [Vall+CIV Aul [ Vall* +CIV Al Vil
el VAR +CE) | Vall +C @) Val,

I < CIV AR V6= | An]
<clvaull (Ivas)t +1) (CIVull} IVAul: +Clvul )
<el[ VAU +C(@)[Vall* +Ce)IVall* +C(e) [ Vull?,

15| < CUF (@)= I Aull Vol IV u]
<C(loll=) (CIValt IV ault +CIVul) (IVAG]E +1) [ Vpl
<el| VAU +C(E)IVullP +Ce) I VulP+C,

o] < 1Al (@)l 24 V6 o

951

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

<C(loll=) (CITult IV ault +CIval) Ivul (19613 1V26)1F +1V6])
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eIV AR +C(E) |Vl +C(e) [ Tul?, (4.22)
1ol < I(6) e 1 (8) | oo | gl < (18] <) | Al
1 1 2
< (Ivul¥ IV aul? +ClIval)
<elIV AU +C(E) |Vl (4.23)

Combining all these estimates, and taking € >0 sufficiently small, we conclude from
(2.6)/(3.25) that

d
7 (IValP +[Vul?) o[ Sul® + 1 [VAR|* < CI V| + IVl + C V| +C,
where the constant C' depends on 1, A, v, ||uo||v, || ¢olle,, and |Q].
The proof is complete. ad

Based on Lemma 4.1, we can deduce the following result:

LEMMA 4.2. The global strong solution (u,$) obtained in Proposition 2.5 (2-D) or
Theorem 3.2 has the following properties

Jim ([ 9a(t)+ [V (t) ) =0. (1.24)

lully +ll¢(0)lgs <C, 21, (4.25)

where the constant C depends on y1,A\,v1, || uo||v,||dolle,, and ||

Proof. Lemma 4.1 tells us that

d
asz%(t) <C*(t)+C for all t>0. (4.26)

On the other hand, from the basic energy law (2.2), there exists a constant M de-
pending on ||ug|, ||[¢ol|z1, and || such that
—+oo
o (t)dt < M. (4.27)
0

Applying [40, Lemma 6.2.1], we conclude that

(t)<C forall t>1, (4.28)
t_l}grnoosa/(t) =0. (4.29)
(2.6)/(3.25), (4.13), and (4.28) imply (4.25). The proof is complete. O

Comparing with the stability result in [3], we have the following conclusion, which
will be helpful to understand the asymptotic behavior of global solutions in the 3-D
case (cf. [25, 19, 36, 37]).

THEOREM 4.3. Assumen=3,ug €V, ¢o€ PoNH?(Q). For any R€ (0,00), whenever

/(0)=|Vu()[* + | Vu(0)|* < R, (4.30)
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there is a small constant eo € (0,1) depending only on v1,\,v1,Q,R, and f with the
following property: either

(i) Problem (1.1)-(1.6) has a unique global strong solution (u,¢) in Qx (0,+00)
or

(i) there is a T, € (0,400) such that
E(T,) < E(0) —eo,

where (cf. (2.1))
1 2 1 2
B(t) 1= B(a(t)0(0) = 5 [ + 5 IVo(0)* + | Plo(t)de.

Moreover, in case (i), the global strong solution has the same properties as in Lemma

4.2.

Proof.  The proof follows from the idea in [19]. Based on the uniform estimate
Lemma 2.3, we can proceed as Lemma 4.1 but using different interpolation inequalities
and Sobolev embedding theorems to conclude that (we omit the details here)

%%(t) <Cu((t)*+1), (4.31)
where C, is a constant that only depends on v1, A1, f, |2, |[uo]| and ||dol| g -

If the initial data satisfies (4.30), applying the standard argument in ODE theory
to (4.31) yields that there exists a to =to(R,Cx) >0 such that </ (¢) is bounded on
[0,t]. The bound only depends on ty, R and C,. This fact together with (4.13) and
the argument in [3] implies the local existence of a unique strong solution to problem
(1.1)—(1.6) in the time interval [0,to].

If (ii) is not true, we have

E(t) > E(0)—¢g for all £>0.

From the basic energy law (2.2), we infer that

/0 " @ ID) P+ Va0 ?) dt < .

In particular,

/Loo (2 [ID((t) 1>+ IV i()]?) dt < 0.

2

Hence, there exists a t, € [%,%o] such that
260

- (4.32)

20| D(u(t))I? + 71 Va(t)|* <

From the Korn’s inequality (cf. Lemma 2.2), we infer that

260
vil|Va(t)l® +y1 | Valt)lI? < 0
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Let g¢ satisfy

280
—— <
min{vyy,v1 }to
Then we have «7(t.) <R. Taking ¢, as the initial time, we infer from the above

argument that < (t) is bounded at least on [0, 2] C [0,¢, +1o]. Moreover, the bound of
4/ (t) remains the same as that on [0,o]. Furthermore, the bounds of ||ul| e (¢, ¢, +40;v)>

lull 22t tett0;v2)s 191 Loe (bt +10:85) - @0 [|@][ 22, 1. +1;04) are also the same as those
in the time interval [0,tg]. Hence we can extend the local unique strong solution step
by step to infinity such that

o (t)<C for all t >0, (4.33)

where C' is uniform in time. (4.24) follows from (4.31), (4.33) and (4.27). Combining
Lemma 2.3 and (4.13) with (4.33), we conclude (4.25). The proof is complete. O

Denote
1
E(d)==||Vo|? F(¢)dx.
(@)= 5IV0l + [ Pz

Then we have a “stability” result for the near equilibrium initial data.

COROLLARY 4.4. Suppose n=3. Let ¢* €D be an absolute minimizer of E(¢) in the
sense that E(¢*) <E(¢) for all p€D. For any ug€V, ¢po€PoNH3(Q), there is a
constant o which may depend on \,vy1,v1, f and |[uo||v,||dollms, such that if |[ugl|+
[P0 — @*|| ;1 < o, then problem (1.1)—(1.6) admits a unique global strong solution which
enjoys the same properties as in Lemma 4.2.

Proof.  Without loss of generality, we assume that o <1. Since ¢* is the absolute
minimizer of functional £, from our assumption, we can show that for all t >0, F(0) —
E(t) < E(0)—&(¢*) < K10, where K is a positive constant that only depends on ¢y,
bw, A, f, but not on o (cf. [37]). Besides, set Ko:=|Vu(0)|*+||Vu(0)]|? <oco. We
take R= K5, eg=K;0, and choose

U:min{l, szin{'yl,l/l}to(Kz,C*)}. (4.34)
2K,

Since now E(0)— E(t) <eo for all >0, we know that case (ii) in Theorem 4.3 will
not take place. As a consequence, the conclusion follows from Theorem 4.3. ]

5. Long-time behavior of global strong solutions

In this section, for the global strong solutions (u,¢) obtained in Proposition 2.5(a)
(2-D), Theorem 3.2, and Corollary 4.4 (3-D), we prove the convergence to equilibrium
as well as estimates on the convergence rate.

5.1. Convergence to equilibrium. The w-limit set of (ug,p0) €V x Py is
defined as follows:

w(ug,d0) ={(Ueo(x),do0(x)) | there exists {t,} /oo such that
(u(tn),@(tn)) = (Uoo,Poo) In V x By, as t, — +00}.

Let
S={(0,¢) | —Ao+ f(¢p)=Const.=m(f(¢)), a.e. in Q, ¢p€D}.
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We can prove that

ProposiTIiON 5.1.  Under the assumptions in Theorem 1.1-1.3, the w-limit set
w(ug, o) is a nonempty compact subset in V x ®y. Besides, all asymptotic limiting
points (Ueo,doo) of problem (1.1)—(1.6) belong to S, i.e., w(ug,do) CS.

Proof.  Since our system admits a Lyapunov functional E(u,¢), the proof follows
from the argument in [1]. Or we can simply proceed as follows. Equation (4.24) and
the Poincaré inequality indicate that

Jlim_u(t)yv =0, (5.1)

namely, u,, =0.
Due to (4.25) and the compact embedding H?3(§2) < ®,, there exist a function
$oo € P2 and an increasing unbounded sequence {t,}°2; such that

lim [6(t0) — buclla, 0. (5:2)

We infer from Proposition 2.5, Theorem 3.2, Lemma 4.2, and Corollary 4.4 that
for all the cases we consider, there holds [|[Vu(t)|| = ||V (—A¢+ f(4)) (t)|| — 0 as t — oo.
Then Poincaré inequality implies that || — A¢(t) + f(o(¢)) —m(f(#(2)))]| — 0 as t — 0.
This and (5.2) yield that || —A¢oo + f(Poo) —m(f(¢oo))||=0. The proof is complete.
0

From the above discussion, we have already known the convergence of velocity
field u (cf. (5.1)). Next, we discuss the convergence of ¢(t). Due to Proposition 5.1,
there exists an equilibrium ¢, satisfying (1.10) and an increasing sequence {t, }5°
such that

m ([6(tn) = oo lle, =0 (5.3)
n—T1T00
We shall apply the Lojasiewicz-Simon approach to prove the convergence of ¢(t)
to ¢ as t goes to infinity. First, we introduce the following Lojasiewicz-Simon type
inequality. Let P: L2(Q2)— L2(£2) be a projection operator such that for any u € L?(12),
Pu=u—m(u). We have

LEMMA 5.2 (Lojasiewicz-Simon Inequality). Let ¢oo €D be a solution to (1.10).
Then there exist constants 0 € (O,%) and B>0 depending on ¢oo such that for any
w €D satisfying ||w— duo|| gz < B, it holds

[P(=Aw+ f(w))]| > [E(w) —E(doo)' . (5-4)

Proof.  'The proof follows from the general result [7] (cf. also [24, 32]. For related
results concerning singular free energy density, cf. [1, 2]). d

It follows from (2.2) that E(u,¢) is non-negative and decreasing in time. More-
over, E(u,¢) >&(¢oo), for all £>0. As a result, it has a finite limit as time goes to
infinity. It follows from (5.1) and (5.3) that

lim  E(u(tn),¢(tn)) =E(deo)- (5.5)

tn—+o0

Equations (1.3) and (4.25) imply that (cf. also [1, 24])

[@ell - < (- V)|l -2 + V() Vil <[ullLs [Vl 5 + ClI8ll =) [ Vil
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<C([Vul+[[Vpl). (5.6)

Hence, if there is a t; €RT such that E(u(t1),¢(t1)) =&(¢oo), then [[Vu(t)||=
(IVu(t)]| =0 for all t>¢; by virtue of (2.2) and Lemma 2.2. Together with (5.6),
it implies that ¢ is independent of time for all ¢ >¢;. From (5.3), we conclude that

i [[6(1) ~ duclle, =0. (5.7)

Therefore, we only need to consider the case that E(u(t),¢(t)) > E(¢oo) for all t >
0. By a contradiction argument introduced in [17], we can show that there is a tg >0
such that for all t > g, ¢(t) satisfies the condition of Lemma 5.2, i.e., ||¢(t) — pooll@, <O
(cf. [40, 17, 32, 36, 35, 37] for details). Then for the constant 6 € (0,3) in Lemma 5.2,
we apply Lemma 5.2 to obtain

1-60
(B(1.6)-(6))' ™" < (Gl +E@-£(0.)))

1 L 1-6
< (Gl +IP-20+ £ ) <CORal+ITAD. 69
From (2.2) and Lemma 2.2, there holds

d d
— 2 (B(1,0) = ()" = —0(E(u,6) — £ ()"~ - B(w, )
o CO@|ID@)|P + 7| Val?)  COw IVl +7]|Vpe?)

- IVull+[Val IVl lival

>C(IVull +[IVull), ¥ t=to, (5.9)

where C is a constant depending on |lug]|, ||¢o || 71,9, 1,71, A and 6. Integrating from
top to 0o, we obtain

[ U9al+ 1) < +oc, (5.10
to
which together with (5.6) yields

/Oo||¢t(7')HH—1dT<+oo. (5.11)

to

Thus, we can conclude that ¢(t) converges in H~! as t— +oo. This fact together
with the compactness in ®5 and (5.3) indicates that (5.7) holds.
Similar to [1], the uniform estimate (4.25) implies the weak convergence

H(t) = poo in H? ast— —+oo. (5.12)

However, the decay of o7 (t) (see (4.24)) can tell us more information (cf. also [35, 36,
37]). Since

IVA(¢ = o) | < IVall+IV(f () = f (@I IVl +Cllg = bocllzr,  (5.13)
it follows from (4.24) and (5.7) that

i [6() = o 10 =0. (5.14)
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5.2. Estimate on the convergence rate. The required estimate on the
convergence rate (1.11) is achieved in several steps.

Step 1. H l-estimate for ¢ — doo. In view of (5.8) and (5.9), we have

d

2 (E(1,0) = E(do0)) + C(E(u,0) — E(poe))* D <0, t =10,

which implies
E(1,0) — E(¢oo) SC(14+) 71720 >4,

Integrating (5.9) from ¢ to oo, (where ¢t >1p), and using (5.6), we obtain
/ el gr—rdt <C(1+)"9 =20 >4,
¢

By adjusting the constant C' properly (ref. Lemma 2.3), we have
¢ = ool -1 <C(L+1)~/ 729 ¢ >0. (5.15)

In order to obtain the same estimates on convergence rate in both higher and
lower order norms, the basic idea is to derive suitable energy estimates and proper
differential inequalities (cf. [33, 34, 35, 36, 37]).

Step 2. Estimates on ||¢ — ¢oo||r and |Ju||. The difference function ¢ — ¢, satisfies

= uoo——A<¢>—<z>oo>+f<> I(90).
On (¢ ¢oo)|r O (11— o) |1 =0, (5.16)
Jo (o( $oo(x))dz=0.

REMARK 5.1. Since o is a constant, it is obvious that Vi=Vpu.

Taking the inner product of (1.1) with u in L?(Q2), we obtain

32 [ @D Pdr =~ (w.V60) (517

Taking the inner product of (¢ — ¢ ), With i in L?(2), we have

1 2 2
5100l + [ @y~ [ roniot|+ [ 2@t
=((u-V)9,A¢) = ((u- V)9, f(¢)) = (0 V)$, Ao — f (o)) (5.18)
Taking the inner product of (—Ax) ™! (¢ — doo), With ¢ — ¢ in L?(£2), using (5.16),
we obtain
%dinqun%{_ﬁ RGNS

—(f(9) = f(d0), (¢)(¢_¢oo))_(v(¢_¢oo)v7l(¢)v¢(¢_¢oo))

+ (i ( v¢v AN)THd— b))

—(V( (u- V)3, V(=AN) " (3= o)) (5.19)
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Adding (5.17), (5.18), and (5.19) together, we obtain
d |1 1 1
&[0+ 510 0l + 519G 0P+ [ Feora— [ Flo)aa
+ [ Homyomda= [ foxyoc) | +2 [ @p@IPars [ S@)1vutas

+ /Q ()Y (D — boo) Pl

== (f(¢) = f(¢o0): YD) (¢ = ¢o0)) = (V(¢— b0), 7 (#) V(¢ — b))
+ (1A (9)VOV(=AN) (9~ ¢))
—(V(=AN) "1 (- V)$, V(-AN) " (9~ ¢x)) (5.20)

where we use the fact that

(-V)¢,f(9)) = (u,VF(¢)) == (V-u,F(¢)) =0,

(0 V)$, Adoe — f(doo)) = — oo (1, VD) = pi (V- 1,0) = 0.
Let

D1(1) = gl + 316~ Gucllf+ 3 IV (660l
+ [ (P0) = F6) + 1(6)00~ F(0c) ). (5.21)

Applying Newton-Leibniz formula F(u)=F(¢)+ f(1)(u—1) —|—f01 fol f(szu+(1—
52))z(u—1)?dsdz, we have

/Q<F<¢> F(e) + f (o) oo — f(d00) )

< Cll9—buellfe < IV (D= bo0) I+ Cllg— bocl” (522)

In a similar way,
(£(6) = F(6s0),1(8) (9= 600))]

<Ih@le=| [ /0 (56 (1 3)h)(6— o) d

<elV(6— 6002 +C(E) 16— bucl (5.23)

Besides,

[(V(¢—0c),7 (9) V(S —bo0))| S ClIVO 16 V(¢ — boo) [l — Poc [ 2
<e| V(@) P+ CEo—duc®.  (5.24)

From (4.25) and (4.8), using the Poincaré inequality we obtain

IIﬁI—IIM—uooIISC(IIVMIIJr‘ /Q (o)

gcnvmu\ [0 romis
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SC|Vul[+Cll¢ = pooll- (5.25)

As a result,

(71,7 (D) VOV (~AN) " P~ b))
<CVllL=jilll¢— pocll -1 SC(CIIV ||+ Cll¢p = pooll) |16 — Poo | -1
<e[VulP+CE)l¢—doolfi-1 +Cllo—dosl®,  t>1. (5.26)

[(V(=2ANn) " (u- V), V(=AN) T d— o)) |
<N(-V)Bllg-l6 = bocllz-2 <Vl 3 llull Lo | — dooll -
<C|Vulll¢ = dooll -1 <ellVul* +C(e) |6 — poolFr-1- (5.27)

Taking ¢ small enough, we conclude from Lemma 2.2 and (5.20)—(5.27) that

da Y1 2. N 2, N 2
2 0+ 21Vl + 2 Va2 + 2 (6= o0
<COllp—dool* +Cllo = doc -1, t21. (5.28)

On the other hand, it follows from (5.21) and (5.22) that
<OIVUIP+ 26— o2y 1 + 2T (D doo) 2+ C16— oo >0. (5.29
(O IV + 516~ 0l + SV (6= 6u) P+ Cllo— bl 120, (529

Moreover, we have

||¢_¢00H2 < CH(ZS_(ZSOOHH—l ||¢_¢oo||H1 §C||¢_¢oo||H—1 ”V((b_qsoo)ll
<[V (¢ = doo) 2+ C(8) ]| ¢ = poollFr-1- (5.30)

Taking ¢ sufficiently small in (5.30), we conclude from (5.28), (5.29), (5.30), and (5.15)
that there exists «; >0 such that

%yl(t)"’alyl(t)§C||¢_¢OOH%I*1§C(1+t)_29/(1_20), t>1. (5.31)
Therefore, we obtain (cf. [33, 34])
Y (1) <C(1+1)720/0720) >,
Noticing (5.29) and adjusting the constant C properly, we have
Y1 (1) SC(1+1)720/0=20) 4>, (5.32)
From (5.21) and (5.22), we also obtain
()2 Sl + 20— el + T IV(G—00) P~ Cllo =l (5.3

Taking 0 small in (5.30), it follows from (5.33) that there exists a constant C' >0 such
that

D1 (0) P+ IV (6~ o) P~ Cllo— by (531
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Combining (5.32) with (5.15) and (5.34), we have
]|+ 1|6 — ool a1 <C(141)78/0=20) "> (5.35)

Step 3. Higher-order estimates. In order to obtain a further estimate on convergence
rate, we shall revisit Lemma 4.1. For this propose, we only need to redo the estimate
of Ir (cf. (4.15)) as follows

12| =1((1 1) V6, 5) — (F(6) V6, 50) + (10 V6, S0)|
< ISullla— poc V2~
< C|Sull (174l + =6 ) (CITSI £ IVAGIE +CIV 10 )
<C|Sul (IVAG]} +1)(| V4l + - 6=l
< el Sull? + ) (194l + DIV al+ 6= o) (5.36)

In the above, we have used the facts (f(¢)V@,Su)= (1o Vp,Su)=0 and estimates
(4.13) and (5.25). Collecting the other estimates in the proof of Lemma 4.1 and
applying the uniform bounds (4.28), we can improve the inequality (4.3) to obtain

& ()<t ()4 Cllo—6mel, ¥ 121 (5.37)

Choose k>0 such that

kCq Smin{%,%}.

Multiplying (5.37) by &, then adding the resultant to (5.28), we infer from (5.29) and
(5.35) that there exists a small constant as >0 such that

&l (0)+ 5 ()] + a2 s () 5 (6] < O~ 0o P
<C(141)~2/0-20) vy ¢>1, (5.38)
Similar to (5.32), we can obtain
Y1 (1) 4+ ke () <C(A+1)72/0720) 'y >, (5.39)
It follows from (5.32) and (5.39) that
A (1) <C(141)720/0720) "y ¢ >1, (5.40)
Namely,
[Vu(@)[P+ (V@) |* <C(1+1) 2029 v ¢ >1. (5.41)

By (2.6), the Sobolev embedding theorem and (5.35), we can obtain that

1 (@) = F(do0) i1 SCllp = pooll i CL+) /0720, W 121, (5.42)
From the definition of the constant g, (cf. (1.10)), we know that
_A(¢_¢oo):ﬂ_um_f(¢)+f(¢oo)v (543)

On(¢—¢oo)lr =0. (5.44)
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Besides, it follows from (5.25), (5.41), and (5.35) that
i — oo || mn <C(A+1)700720) v ¢ >1, (5.45)

Thus, from the elliptic regularity theorem for problem (5.43)—(5.44), using (5.42),
(5.45), and (5.35), we can conclude that

¢ = booll s < C([|pp— pooll 2 + £ (9) = f (Do) 11 + |0 — o)
<CA+t)78/0=20) v >, (5.46)

We complete the proof.
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