
COMMUN. MATH. SCI. c© 2009 International Press

Vol. 7, No. 3, pp. 755–777

FAST ALGORITHM FOR EXTRACTING THE DIAGONAL OF THE

INVERSE MATRIX WITH APPLICATION TO THE ELECTRONIC

STRUCTURE ANALYSIS OF METALLIC SYSTEMS ∗

LIN LIN† , JIANFENG LU†, LEXING YING‡ , ROBERTO CAR§ , AND WEINAN E†¶

Abstract. We propose an algorithm for extracting the diagonal of the inverse matrices arising
from electronic structure calculation. The proposed algorithm uses a hierarchical decomposition of
the computational domain. It first constructs hierarchical Schur complements of the interior points
for the blocks of the domain in a bottom-up pass and then extracts the diagonal entries efficiently
in a top-down pass by exploiting the hierarchical local dependence of the inverse matrices. The
overall cost of our algorithm is O(N3/2) for a two dimensional problem with N degrees of freedom.
Numerical results in electronic structure calculation illustrate the efficiency and accuracy of the
proposed algorithm.

Key words. Diagonal extraction, hierarchical Schur complement, electronic structure calcula-
tion.

AMS subject classifications. 65F30, 65Z05.

1. Introduction

1.1. Motivation The focus of this paper is fast algorithms for extracting the
diagonal of the inverse of a given matrix. The particular application in our mind is
electronic structure calculation, especially for models based on effective one-electron
Hamiltonians such as the tight-binding models or density functional theory models.
Given a matrix H, coming from the discretization of a Hamiltonian operator, one
wants to evaluate

ρ=2diagφFD(H−µ)=diag
2

1+eβ(H−µ)
. (1.1)

Here H is the Hamiltonian given by H=− 1
2∆+V (x) with a potential V (x), φFD is

the Fermi-Dirac function: φ(z)=1/(1+eβz), β is the inverse temperature, and µ is
the chemical potential but can also be understood as a Lagrange multiplier for the
constraint that the total density equals to the total number of electrons in the system:∫
ρdx=K where K is the number of electrons in the system.

Direct evaluation of (1.1) requires the diagonalization of the matrix H, and hence
results in a O(N3) algorithm, where N is the dimension of the matrix H. Developing
algorithms with less cost has attracted a lot of attention in the past two decades.
Much progress has been made for developing more efficient algorithms for insulating
systems. But developing better algorithms for metallic systems has remained to be a
big challenge [12].

Among the various ideas proposed, methods based on polynomial and rational
expansion of the Fermi-Dirac function [1, 7, 12, 16] are particularly promising, since

∗Received: May 21, 2009; accepted: July 29, 2009. Communicated by Shi Jin.
†Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ

08544.
‡Department of Mathematics and ICES, University of Texas at Austin, 1 University Sta-

tion/C1200, Austin, TX 78712.
§Department of Chemistry and Princeton Center for Theoretical Science, Princeton University,

Princeton, NJ 08544.
¶Department of Mathematics, Princeton University, Princeton, NJ 08544.

755

756 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

they provide a unified framework for both insulating and metallic systems. The
Fermi operator can be represented using the pole expansion (Matsubara expansion in
physical terms) [18]:

ρ=1− 4

β
diagRe

∞∑

l=1

1

(H−µ)−(2l−1)πi/β
. (1.2)

The details and features of this representation will be summarized in section 3 below.
Using this, the problem is reduced to evaluating the diagonal elements of a series of
inverse matrices with poles on the imaginary axis. We also remark here that a more
efficient rational approximation for the Fermi-Dirac function was recently constructed
in [19].

1.2. Related work

For a typical quantum chemistry problem, the domain is taken to be a periodic box
[0,n]d (d is the dimension) after normalization, V (x) is a potential that oscillates on
theO(1) scale, and µ is often on the order ofO(nd). As a result, the operator (H−µ) is
far from being positive definite. In many computations, the Hamiltonian is sampled
with a constant number of points per unit length. Therefore, the discretization of
(H−µ)−(2l−1)iπ/β, denoted by M , is a matrix of dimension N =O(nd). In view
of (1.2), we are interested in extracting the diagonal of its inverse matrix G=M−1.

The most obvious algorithm is to first calculate the whole inverse matrix G, and
then extract the diagonal trivially. Of course, naive inversion leads to an algorithm
that scales as O(N3), the same as diagonalization. A better strategy would be to
explore the structure of the inverse matrix, and use an iterative method such as
Newton-Schulz iteration. For an insulating system, for which it is known that the
matrix elements of G decay exponentially fast away from the diagonal and hence can
be truncated, Newton-Schulz iteration gives rise to an O(N) algorithm, as was already
discussed in [18]. However, such algorithms cannot be used for metallic systems since
the elements of G decay slowly away from the diagonal. Consequently, such a trunca-
tion will introduce large error. Therefore, one needs to explore other representation
of the inverse matrix G.

For the case when M is a positive definite matrix, several ingenious approaches
have been developed to represent and manipulate G efficiently. One strategy is to
represent M and G using multi-resolution basis like wavelets [3, 4]. It is well known
that for positive definiteM , the wavelet basis offers an optimally sparse representation
for both M and G=M−1. Together with the Newton-Schulz iteration, it gives rise
to a linear scaling algorithm for calculating the inverse matrix G from M . In one
dimension, assuming that we use L levels of wavelet coefficients and if we truncate
the matrix elements that correspond to the wavelets which are centered at locations
with distance larger than R, then the the cost of matrix-matrix multiplication is
roughly O(R2L3N). In 2D, a naive extension using the tensor product structure will
lead to a complexity of O(R4L6N). This has linear scaling, but the prefactor is rather
large: Consider a moderate situation with R=10 and L=8, R4L6 is on the order of
109. This argument is rather crude, but it does reveal a paradoxical situation with the
wavelet representation: although in principle linear scaling algorithms can be derived
using wavelets, they are not practical in 2D and 3D, unless much more sophisticated
techniques are developed to reduce the prefactor.

Another candidate for positive definite M is to use the hierarchical matrices
[5, 14]. The main observation is that the off-diagonal blocks of the matrix G are

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 757

numerically low-rank and thus can be approximated hierarchically using low rank
factorizations. The cost of multiplying and inverting hierarchical matrices scales as
O(N). Therefore, by either combining with the Newton-Schulz iteration, or directly
inverting the hierarchical matrices with block LU decomposition, one obtains a linear
scaling algorithm.

Both of these two approaches are quite successful for M being positive definite.
Unfortunately as we pointed out earlier, for the application to electronic structure
analysis, our matrix M is far from being positive definite. In fact, the matrix elements
of G are highly oscillatory due to the shift of chemical potential in the Hamiltonian.
Consequently, the inverse matrix G does not have an efficient representation in either
the wavelet basis or the hierarchical matrix framework.

So far, we have focused our discussion on constructing the inverse matrix G.
Yet another line of research is the Monte Carlo approach for extracting the diagonal
using only the matrix vector product Gv=M−1v. One algorithm of this type was
introduced in [2]. This type of algorithm can be quite efficient if fast algorithms
for calculating Gv are available (without the explicit knowledge of G). Examples of
such fast algorithms include multigrid methods [6], the fast multipole method [13]
(combined with iterative solvers), and the discrete symbol calculus [9], to name a few.
One shortcoming of this approach is that the accuracy is relatively low for general G
due to its Monte Carlo nature. The accuracy can be greatly improved if G is banded
or its elements decay exponentially fast away from the diagonal. However, neither of
these conditions are satisfied for the kind of systems we are interested in.

1.3. Main observation and contribution of this work

Our algorithm is based on the following observation for extracting a particular
part of the inverse matrix of a symmetric matrix M . For clarity, let us assume for
the moment that M comes from the discretization of a differential operator in a two-
dimensional domain, on a grid shown in figure 1.1. Assume that the points in the
domain are indexed by I={1,··· ,N}, and I is partitioned into three disjoint sets
I=I1I2I3,1 as shown in figure 1.1. The matrix elements of M between I1 and I3 are
zero: M(I1,I3)=M(I3,I1)=0, i.e., M takes the form

M =




A B 0
BT C D
0 DT E



 . (1.3)

For instance, ifM is obtained from a finite difference discretization of the Hamilto-
nian operator using a five-point stencil or a tight-binding model with nearest-neighbor
interaction, then M is of the form (1.3) if the domain is partitioned as in figure 1.1.

Let G=M−1. Assume that we are only interested in G(I1,I1). For instance,
G(I1,I1) contains the diagonal elements of the inverse matrix for the vertices in I1.
We can calculate G(I1,I1) using block Gaussian elimination:

G=




I −A−1B 0
0 I 0
0 0 I








A−1 0 0
0
0

G1








I 0 0

−BTA−1 I 0
0 0 I



 , (1.4)

where

G1 =M−1
1 ,M1 =

(
C D
DT E

)
−
(
BTA−1B 0

0 0

)
. (1.5)

1Here and in the following, we will use the notation IJ to denote the union of the two index sets

758 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

Fig. 1.1. Partition of the domain. The corresponding matrix M has the structure of (1.3).

Here M1 is the Schur complement of A, and G1 is the inverse of M1. Note that
M1 differs from M(I2I3,I2I3) only for matrix elements that represent interactions
between grid points in I2. The interaction between points in I2 and I3 and the
self-interaction inside I3 are unchanged.

From (1.4) one can compute the matrix G explicitly as

G=

(
A−1 +

(
−A−1B 0

)
G1

(
−A−1B 0

)T (−A−1B 0
)
G1

G1

(
−A−1B 0

)T
G1

)
. (1.6)

Therefore

G(I1,I1)=A−1 +
(
−A−1B 0

)
G1

(
−A−1B 0

)T

=A−1 +
(
A−1B

)
·G1(I2,I2) ·

(
BTA−1

)
.

(1.7)

In order to compute G(I1,I1), one does not need the whole inverse G1 of the Schur
complement. It is only necessary to know the value of G1 on the domain that has in-
teraction in the direct matrix M , i.e., G1(I2,I2). The observation can be summarized
as

G(I1,I1) is determined by G1(I2,I2).
Note that, in terms of G1(I2,I2), our problem is again to seek a particular part

of an inverse matrix, but with the direct matrix changed from M to M1. Thus the
same strategy can be used recursively. For example, if I3 can be further decomposed
into two regions I4 and I5, with I5 not interacting directly with I2: M1(I2,I5)=0.
Then similarly, G1(I2,I2) can be computed if we have the inverse matrix of the
Schur complement restricted to the region I4. This suggests a hierarchical Schur
complements method based on a hierarchical domain decomposition strategy [11, 10,
20] in order to compute all diagonal elements of the inverse matrix of M .

We would like to mention that Li et al[17] have recently proposed an algorithm
that has a similar spirit to our approach. However, our algorithm is derived from
a different viewpoint, and the numerical results suggest that our approach is more
efficient for the problems considered here.

The rest of the paper is organized as follows. In section 2, the details of the
algorithm for extracting the diagonal of the inverse matrix are presented. We consider
application to electronic structure calculation in section 3. Section 4 contains the
numerical results.

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 759

2. The algorithm

The algorithm for extracting the diagonal of an inverse matrix has two steps. The
first step is bottom-up. Starting with a hierarchical decomposition of the physical do-
main, we construct the hierarchy of Schur complements by block Gaussian elimination.
The idea of constructing a hierarchy of Schur complements is not new. It has been
used in the context of numerical linear algebra for quite some time. They date back
to George [11] and were extended by various algorithms, e.g. multifrontal method
[10, 20]. Our presentation illustrates a more geometric picture for the construction.
The next step, which is new and the main contribution of this paper, is a top-down
pass in which we extract the diagonal of the inverse matrix using the hierarchy of
Schur complements constructed. Here, we do not need the whole inverse matrix for
the Schur complements, but only the diagonal blocks.

We will focus on 2D systems and postpone the discussion of 3D systems to the
end of this subsection.

2.1. Construction of the hierarchy of Schur complements

To explain the algorithm, we take our computational domain to be a 16×16
lattice, indexed by the index set J0 (e.g., row major ordering). For the sake of clarity,
we assume that the domain is partitioned into disjoint blocks hierarchically: on the
top level (Level 3), the domain is partitioned into 4 blocks, and each block is further
decomposed into 4 sub-blocks at the lower level. We stop at the bottom level (Level
1), where the domain is partitioned into 4×4=16 blocks, as shown in figure 2.1. A
more efficient version of the algorithm actually uses blocks with shared edges and is
implemented for real calculation. We will comment on this improvement later in this
section.

2.1.1. Level 1
The domain is partitioned into 4×4=16 blocks. In each block, we distinguish

“interior points” that do not interact directly with points in the other blocks, from
“boundary points” that may interact with points in the other blocks. We denote by
I1;ij the index set of the interior points for each block (white points in figure 2.1), and
J1;ij the index set of the boundary points of each block (black points in figure 2.1).
It follows that M(I1;ij ,I1;i′j′J1;i′j′)=0 if (i,j) 6=(i′,j′).

We will use block Gaussian elimination to eliminate the interior points and reduce
our problem to the boundary points only. To do so, let us permute the rows and
columns of the matrix M such that all the interior points are ordered before the
boundary points, i.e. the order of indices is changed from J0 to

J0
P1−→ (I1;11I1;12 ···I1;44|J1;11J1;12 ···J1;44). (2.1)

The notation of | is used to separate interior points and boundary points. This step
is done by introducing a permutation matrix P1 such that for the matrix M defined
according to the index set J0, and

M1 =P−1
1 MP1 (2.2)

is indexed according to (I1|J1). Here

I1 =I1;11I1;12 ···I1;44

is the union of all the interior points, and similarly for J1.

760 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

Fig. 2.1. The first level in the hierarchical domain decomposition. The interior points are
denoted as white points and boundary points are denoted as black points. The dash lines denote blocks
in the decomposition (only two are shown in the figure). In this and following figures, the domain
is partitioned into disjoint blocks, however, we emphasize again that in the actual implementation,
we use blocks with shared edges.

Let us write M1 as

M1 =P−1
1 MP1 =

(
A1 B1

BT
1 C1

)
. (2.3)

The interior points that belong to different blocks do not interact with each other,
and thus A1 is a block diagonal matrix.

A1 =M1(I1,I1)=





A1;11

A1;12

. . .

A1;44




(2.4)

with

A1;ij =M1(I1;ij ,I1;ij). (2.5)

Interior points inside each block only interact with the boundary points in the same
block, hence B1 is also block diagonal:

B1 =M1(I1,J1)=





B1;11

B1;12

. . .

B1;44




(2.6)

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 761

with

B1;ij =M1(I1;ij ,J1;ij). (2.7)

We do not assume any structure for C1, and just write

C1 =M1(J1,J1). (2.8)

Since A1 is block diagonal, its inverse is given by

A−1
1 =





A−1
1;11

A−1
1;12

. . .

A−1
1;44




. (2.9)

Therefore, by Gaussian elimination, the inverse of M−1
1 is given by

M−1
1 =

(
A1 B1

BT
1 C1

)−1

=

(
I −A−1

1 B1

0 I

)(
A−1

1 0
0 (C1−BT

1 A
−1
1 B1)

−1

)(
I 0

−BT
1 A

−1
1 I

)
.

(2.10)
To simplify notation, let us denote

L1 =

(
I 0

BT
1 A

−1
1 I

)
. (2.11)

Since BT
1 and A−1

1 are both block diagonal matrices, L1 can also be computed inde-
pendently within each block, as

BT
1 A

−1
1 =





BT
1;11A

−1
1;11

BT
1;12A

−1
1;12

. . .

BT
1;44A

−1
1;44




. (2.12)

Moreover, the matrix BT
1 A

−1
1 B1 is also block diagonal

BT
1 A

−1
1 B1 =





BT
1;11A

−1
1;11B1;11

BT
1;12A

−1
1;12B1;12

. . .

BT
1;44A

−1
1;44B1;44




. (2.13)

Using equation (2.10), we have

G=P1M
−1
1 P−1

1 =P1L
T
1

(
A−1

1 0
0 G−1

1

)
L1P

−1
1 , (2.14)

where G1 is the Schur complement of A1, given by

G1 =(C1−BT
1 A

−1
1 B1)

−1. (2.15)

We have now eliminated the interior points, and the problem reduces to a smaller
matrix C1−BT

1 A
−1
1 B1.

762 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

2.1.2. Level 2
At the second level, the problem is to find G1, defined on the index set J1 (bound-

ary points or black points in the first level). At this level, the domain is decomposed
into 4 blocks, we again distinguish interior points with boundary points in each block
so that interior points only interact with points in the same block. As in the first
level, we reindex J1 by a permutation matrix P2 as

J1
P2−→ (I2;11I2;12 ···I2;22|J2;11J2;12 ···J2;22)=(I2|J2). (2.16)

Here I2;ij are interior points (white points) and J2;ij are boundary points (black
points) inside the block (i,j) (see figure 2.2).

Fig. 2.2. The second level in the hierarchical domain decomposition. The interior points are
denoted as white points and boundary points are denoted as black points. The dash lines denote
blocks in the decomposition (only one is shown in the figure).

Following the same strategy as in the first level, denote

M2 =P−1
2

(
C1−BT

1 A
−1
1 B1

)
P2 =

(
A2 B2

BT
2 C2

)
(2.17)

with

A2 =M2(I2,I2), B2 =M2(I2,J2), C2 =M2(J2,J2). (2.18)

A2,B2 are block diagonal matrices (since in the first level, the update for C1 is block
diagonal). Then

M−1
2 =

(
A2 B2

BT
2 C2

)−1

=LT
2

(
A−1

2 0
0 G2

)
L2 (2.19)

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 763

with

L2 =

(
I 0

BT
2 A

−1
2 I

)
, G2 =(C2−BT

2 A
−1
2 B2)

−1. (2.20)

Combining the decomposition of G1 in the second level, we obtain

G=P1L
T
1




A−1

1 0

0 P2L
T
2

(
A−1

2 0
0 G2

)
L2P

−1
2



L1P
−1
1 . (2.21)

2.1.3. Level 3

At the top level, we set the interior and boundary points as shown in figure 2.3.
Again, we reindex the points in J2 into I3 and J3, by a permutation matrix P3:

J2
P3−→ (I3;11|J3;11)=(I3|J3). (2.22)

The final formula for G is

G=P1L
T
1





A−1
1 0

0 P2L
T
2




A−1

2 0

0 P3L
T
3

(
A−1

3 0
0 G3

)
L3P

−1
3



L2P
−1
2



L1P
−1
1 (2.23)

with

G3 =(C3−BT
3 A

−1
3 B3)

−1. (2.24)

At the top level, G3 is inverted directly.

2.1.4. Summary of construction

In order to construct a hierarchy of Schur complements for a matrix M on a
domain of size N×N , we start with a hierarchical domain decomposition scheme. At
each level, the points inside each block are distinguished into interior and boundary
points, so that interior points only interact with points inside the block. We reindex
the points accordingly. At each level, we eliminate the interior points. This reindexing
procedure is described as in figure 2.4.

We define for each level

Gi =

{
G=M−1, i=0,

(Ci−BT
i A

−1
i Bi)

−1, i>0.
(2.25)

The inverse of the Schur complements have the following recursive relation Gl−1 and
Gl as

Gl−1 =PlL
T
l

(
A−1

l 0
0 Gl

)
LlP

−1
l . (2.26)

Using this procedure, starting from the bottom level, we can construct the hierarchy
of Schur complements.

764 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

Fig. 2.3. The top level in the hierarchical domain decomposition. The interior points are
denoted as white points and boundary points are denoted as black points.

Fig. 2.4. The index structure for the hierarchical domain decomposition

2.2. Extracting the diagonal

Having obtained the hierarchy of Schur complements, we now apply the observa-
tion made in the introduction to extract the diagonal elements of the inverse matrix
G. The key is that we do not need to calculate the whole inverse of the Schur com-
plements Gl at each level.

Our observation, in more precise terms, states that

Gl−1(Il;ijJl;ij ,Il;ijJl;ij) is determined by Gl(Jl;ij ,Jl;ij).

Therefore, at each level l, we only need to compute Gl(Jl;ij ,Jl;ij), instead of the
whole matrix Gl. This enables us to develop an algorithm for extracting the diagonal
elements of G with a cost that scales as O(N3/2) (instead of N3).

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 765

2.2.1. Level 3 The extraction process starts from the top level (Level 3 in the
toy example). At the third level, given that G3 is computed directly, G2 is given by
the formula

G2 =P3L
T
3

(
A−1

3 0
0 G3

)
L3P

−1
3 =P3

(
A−1

3 +A−1
3 B3G3B

T
3 A

−1
3 −A−1

3 B3G3

−G3B
T
3 A

−1
3 G3

)
P−1

3 .

(2.27)
The matrix in the middle is indexed by (I3;11|J3;11). Due to the permutation matrix
P3, G2 is indexed according to

J2 =J2;11J2;12J2;21J2;22. (2.28)

We are climbing up the ladder in figure 2.4.
Since only G2(J2;ij ,J2;ij) is necessary for extracting the diagonal and we do not

need the off-diagonal blocks, we will write G2 as

G2 =





G2;11 ∗ ∗ ∗
∗ G2;12 ∗ ∗
∗ ∗ G2;21 ∗
∗ ∗ ∗ G2;22



 (2.29)

with G2;ij =G2(J2;ij ,J2;ij).

2.2.2. Level 2
Proceeding to the second level, we now have

G1 =P2L
T
2

(
A−1

2 0
0 G2

)
L2P

−1
2 =P2

(
A−1

2 +A−1
2 B2G2B

T
2 A

−1
2 −A−1

2 B2G2

−G2B
T
2 A

−1
2 G2

)
P−1

2 .

(2.30)
Note that A−1

2 and B2 are all block diagonal matrices, we have

A−1
2 B2G2B

T
2 A

−1
2 =





A−1
2;11B2;11G2;11B

T
2;11A

−1
2;11 ∗ ∗ ∗

∗ A−1
2;12B2;12G2;12B

T
2;12A

−1
2;12 ∗ ∗

∗ ∗ A−1
2;21B2;21G2;21B

T
2;21A

−1
2;21 ∗

∗ ∗ ∗ A−1
2;22B2;22G2;22B

T
2;22A

−1
2;22



 ,

(2.31)

A−1
2 B2G2 =





A−1
2;11B2;11G2;11 ∗ ∗ ∗

∗ A−1
2;12B2;12G2;12 ∗ ∗

∗ ∗ A−1
2;21B2;21G2;21 ∗

∗ ∗ ∗ A−1
2;22B2;22G2;22



 .

(2.32)
The matrix in the middle of the right hand side of (2.30) is indexed by (I2|J2).

By applying the permutation matrix P2, we climbed up another step in the ladder of
figure 2.4, now G1 is indexed by

J1 =J1;11J1;12 ···J1;44, (2.33)

and we only need to keep the diagonal blocks G1(J1;ij ,J1;ij).

766 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

It is helpful to see again why G1(J1;i′j′ ,J1;i′j′) is determined by the part of G2

that we have kept. Assume that the block (i′,j′) at level 1 is contained in block (i,j)
at level 2. By (2.30), (2.31) and (2.32), we have

G1(I2;ijJ2;ij ,I2;ijJ2;ij)=

(
A−1

2;ij +A−1
2;ijB2;ijG2;ijB

T
2;ijA

−1
2;ij −A−1

2;ijB2;ijG2;ij

−G2;ijB
T
2;ijA

−1
2;ij G2;ij

)
.

(2.34)
Therefore, to calculate G1(I2;ijJ2;ij ,I2;ijJ2;ij), only G2;ij =G2(J2;ij ,J2;ij) is needed.
Of course, since the index set J1;i′j′ is a subset of I2;ijJ2;ij , G1(J1;i′j′ ,J1;i′j′) is also
computed. Note that, again, we only need to compute and keep the diagonal blocks
of G1, indexed by J1 since this is the part we will need at the next level.

2.2.3. Level 1
Following the same procedure as in Level 2, one can compute G(J0;ij ,J0;ij) just

by knowing G1(J1;ij ,J1;ij) obtained from Level 2. Note that J0 is indeed the index
set for all the points in the domain, the diagonal elements of G is simply obtained by
combining all the diagonal elements of G(J0;ij ,J0;ij) together.

2.3. Summary

We start with a hierarchical decomposition of the domain. At each level from
the top, the points inside each block are divided into two groups: interior points
and boundary points. Interior points only interact with points in the same block,
and are eliminated using block Gaussian elimination. Necessary permutation of the
indices is done by a permutation matrix Pl as shown in figure 2.4. At each level, the
computational procedure for each block is independent, and hence can be trivially
parallelized. The recursive relation between the inverse of the Schur complements
{Gl} for different levels is given by (2.26).

For the extraction step, one goes backwards starting from the top level. We do not
compute the whole inverse matrix of the Schur complement Gl, but only its diagonal
blocks Gl(Jl;ij ,Jl;ij). We emphasize that these diagonal blocks are sufficient for the
computation of the diagonal blocks on the next level. Since the ordering of Gl−1 is
different from that of Gl, we also need to apply the permutation matrix in order to
get back to the ordering in level l−1, as shown in figure 2.4.

Finally, at the lowest level, we obtain G(J0;ij ,J0;ij), and hence the diagonal
elements of G.

We can organize the whole algorithm in Algorithm 1. Note that the reindexing is
implicitly included in the algorithm, when we use the index sets Jl;ij for Gl and use
the index sets Il;ij and Jl;ij for Ml.

2.4. Complexity

To analyze the complexity of the proposed algorithm, assume that the domain
contains N =

√
N×
√
N points. Set

√
N =2L and the number of levels in the hierar-

chical domain decomposition is given by lMAX<L.
First consider the construction step. Denoting the number of blocks at level l by

nB(l), and we have

nB(l)=22(lMAX−l). (2.35)

Also denote the number of points that each block contains as nP (l) (note that the
interior points of the previous levels have been already eliminated), we have

nP (l)=

{
22(L+1−lMAX), l=1;

2L+l−lMAX+3−16, l>1.
(2.36)

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 767

Algorithm 1 Extracting the diagonal of M−1

1: Determine lMAX and decompose domain hierarchically.
2: Generate index sets Il;ij and Jl;ij .
3: M1←M .
4: for l = 1 to lMAX do

5: Ml+1←Ml(Jl,Jl).
6: for (i,j)∈{block index at level l} do

7: Al;ij←Ml(Il;ij ,Il;ij).
8: Bl;ij←Ml(Il;ij ,Jl;ij) .
9: Calculate A−1

l;ij .

10: Calculate Kl;ij←−BT
l;ijA

−1
l;ij .

11: Calculate Ml+1(Jl;ij ,Jl;ij)←Ml+1(Jl;ij ,Jl;ij)+Kl;ijBl;ij .
12: end for

13: end for

14: Calculate GlMAX
←M−1

lMAX+1.
15: for l = lMAX to 1 do

16: for (i,j)∈{block index at level l} do

17: Calculate Gl−1(Il;ij ,Il;ij)←A−1
l;ij +KT

l;ijGl(Jl;ij ,Jl;ij)Kl;ij .

18: Calculate Gl−1(Il;ij ,Jl;ij)←KT
l;ijGl(Jl;ij ,Jl;ij).

19: Gl−1(Jl;ij ,Il;ij)←Gl−1(Il;ij ,Jl;ij)
T .

20: Gl−1(Jl;ij ,Jl;ij)←Gl(Jl;ij ,Jl;ij).
21: end for

22: end for

At level l, for each block, we need to invert Al;ij (step 9 in Algorithm 1), multiply
the inverse with BT

l;ij to get Kl;ij (step 10), and then update Ml+1(Jl;ij ,Jl;ij) (step

11). The computational cost for these steps is O(nP (l)3). Since there are nB(l) blocks,
the total cost for level l is O(nB(l)nP (l)3).

Since

lMAX∑

l=1

nB(l)nP (l)3≤22(lMAX−1)26(L+1−lMAX) +

lMAX∑

l=2

22(lMAX−l)23(L+l−lMAX+3)

≤C
(

26L−4lMAX +

lMAX∑

l=2

23L+l−lMAX

)

≤C
(
26L−4lMAX +23L

)
,

where C is a constant independent of L and lMAX. Let lMAX =O(L) (e.g., lMAX =L−
1, so that at the first level, each block has 16 points inside), the total computational
cost for the construction step is O(N3/2).

The dimension of the matrix MlMAX+1 is O(N1/2) (since there are O(N1/2) points
on the boundary for the whole domain), hence the cost of the inversion step 14 in
Algorithm 1 is also O(N3/2).

Now, let us look at the extraction step. At level l, for each block, we need to
calculate Gl−1(Il;ij ,Il;ij) (step 17) and Gl−1(Il;ij ,Jl;ij) (step 18), the computational
cost for these two steps is clearly O(nP (l)3). Hence, the total computational cost for
level l is O(nB(l)nP (l)3). A similar calculation as in the construction step shows that
the complexity for the extraction step is also O(N3/2).

768 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

Therefore, the total complexity for Algorithm 1 is O(N3/2). We would like to
emphasize that no approximation is taken in our algorithm and all calculations are
exact. Like the multifrontal algorithms, our approach relies only on the sparsity
structure of M .

So far the presentation assumes that all the blocks on the same level are disjoint
from each other. As we pointed out earlier, a more efficient version uses a decom-
position in which two adjacent blocks share an edge. The modifications are fairly
straightforward, the algorithm remains almost the same, and the computational com-
plexity is still O(N3/2). However, the prefactor is significantly reduced. For example,
the structure of the domain decomposition on the second level now takes the form
shown in figure 2.5 as opposed to figure 2.2 in the disjoint case (periodic boundary
condition is used). From figure 2.5, it is clear that the number of interior nodes to
be eliminated is roughly halved, and as a result we gain a speedup factor of 5–8 in
practice.

Fig. 2.5. The second level in the hierarchical domain decomposition using blocks with shared
edges. The interior points are denoted as white points and boundary points are denoted as black
points. The dash lines denote blocks in the decomposition (only one is shown in the figure). A
periodic boundary condition is assumed.

2.5. Extensions

2.5.1. Generalization to higher order finite difference stencil

The above discussion assumes that in the matrix M , a point only interacts with
its nearest neighbors. In other words, the matrix M comes from a discretization
of five-point stencil. It is straightforward to extend the algorithm for higher order
stencils: at each level, for each block, there will be fewer interior points, since the
interaction range becomes longer. The computational cost will still be O(N3/2),
however, the prefactor will be increased, since there will be more boundary points,
and hence matrices of larger dimension.

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 769

For this reason, it is of interest to use compact stencils instead of non-compact
ones. For example, if a compact nine-point stencil is used, the structure of the interior
points will remain the same as for the five-point stencil. However, for compact stencils,
the above algorithm needs some slight modifications as we discuss now.

Consider

(−∆+V)u=f. (2.37)

Denote by D5 the discretization of the Laplacian using the five-point stencil and D9

the discretization using a compact nine-point stencil (both understood as a matrix).
Using the five-point stencil discretization, we have the discretized equation

D5uh +Vhuh =fh, (2.38)

where Vh is a diagonal matrix with diagonal entries given by V evaluated at the grid.
The Green’s function is given by (D5 +Vh)−1, therefore, we may extract the diagonal
of the discrete Green’s function using Algorithm 1. For a compact nine-point stencil,
however, the discretized problem becomes

D9uh =(I+ 1
12D5)(−Vhuh +fh), (2.39)

or, moving uh terms to the left,

(D9 +(I+ 1
12D5)Vh)uh =(I+ 1

12D5)fh. (2.40)

The matrix M =D9 +(I+ 1
12D5)Vh has the same structure as a nine-point stencil: a

point only interacts with its surrounding eight points. However, the discrete Green’s
function is given by M−1(I+ 1

12D5), therefore, the diagonal of the Green’s function,
which is what we want, is not any more the diagonal elements of M−1, but the
diagonal elements of the product matrix.

Fortunately, since the matrix I+ 1
12D5 is a matrix for which points only interact-

ing with their nearest-neighbors, to evaluate the diagonal of M−1(I+ 1
12D5), we only

need the matrix elements of M−1 that represent interaction between the grid points
with itself (the diagonal) and with its nearest-neighbors.

Let us go back to (2.34) in the step of extracting the diagonal, note that when
going from an upper level to a lower level, the matrix elements between the boundary
points at the upper level will not be changed (the bottom-right block on the right
hand side is still G2;ij). Therefore, the matrix elements between the boundary points
at level l is determined by Gl, and will not be changed when we go to lower levels.

Therefore, to extract the matrix elements of G between a point with its neighbors,
we still proceed in the same way as we did for extracting the diagonal. However,
now at level l, if the point (say x) and one of its neighbors (say y) are both in the
set of boundary points Jl, we keep the matrix elements of Gl between these two
points. By the observation above, we have G(x,y)=Gl(x,y). At the bottom level, for
each block, we have actually calculated G(I1;ijJ1;ij ,I1;ijJ1;ij) for each block (i,j).
We have obtained the elements of the inverse matrix between the points in each
block. Therefore, for every point x, the matrix elements between that represent self-
interaction and interaction with its neighbors have been calculated from the Gl we
obtained at different levels, and hence, the diagonal of the matrix M−1(I+ 1

12D5) can
be calculated.

The extension to higher order compact stencil (e.g., 25-point compact stencil) is
also straightforward. The algorithm can be obtained by slight modifications of the
algorithm for higher order non-compact stencils as discussed above.

770 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

2.5.2. Linear scaling algorithm for elliptic problem

We can exploit additional structure of the matrices involved in the algorithm,
and further reduce the computational cost. For instance, in the case that the matrix
M comes from the discretization of an elliptic operator, it is known that for the
intermediate matrices, the off-diagonal blocks can be approximated by a low-rank
submatrix, known as hierarchical matrices [14] or hierarchical semi-separable matrices
[8, 22]. For such matrices, the complexity of inversion and multiplication operations
is O(n), where n is the dimension of the matrix. If these approximations have been
used, the computational cost for the algorithm is reduced to O(N). Hence we obtain
a linear scaling algorithm for extracting the diagonal of the inverse matrix.

2.5.3. Generalization to three dimension

For a quasi-2D system, namely, a 3D system with size
√
N×
√
N×m, where

m=O(1), it is clear that the algorithm described above can be easily generalized.
We decompose the domain according to the two significant dimensions, and proceed
with hierarchical Schur complements such that the interior points are eliminated at
each level. It is not hard to see that the complexity of such an extension will still be
O(N3/2) with prefactor depending on m. This would be the cost, for example, if the
algorithm is used on a Hamiltonian describing graphene sheets.

For real 3D systems with 3
√
N× 3
√
N× 3
√
N points (bulk system), the extension of

the algorithm starts with a hierarchical domain decomposition in three dimension: at
the top level, the domain is partitioned into 8 blocks with equal volume, and then each
block is partitioned into 8 blocks in the lower level. The algorithm is similar to the
2D algorithm, at each level, the interior points in each block are eliminated. Going
from the bottom level up to the top level, the problem is reduced to a problem defined
on the surface of the system. Now, on the top level, the matrix M is of dimension
O(N2/3), since we have O(N2/3) points on the surface. The computational cost of the
algorithm in 3D will be O(N2). While this naive extension to 3D still has a better
scaling then the direct inversion, which costs O(N3), the gain in performance is not
as substantial as in 2D.

3. Application to electronic structure

In density functional theory, at finite temperature, the system is completely deter-
mined by the two-body density matrix P , which is represented by the Fermi operator

P =
2

1+eβ(H−µ)
. (3.1)

Here β=1/kBT is the inverse temperature and µ is the chemical potential of the
system. The factor 2 comes from spin degeneracy. The diagonal elements of P in real
space, denoted by n, is called electronic density profile, and quantifies important con-
cepts such as chemical bonds etc. Another quantity of interest in electronic structure
analysis is the energy defined by

E=Tr[PH]. (3.2)

Electronic energy directly gives rise to potential energy surface for nuclei and plays
an central role in ab initio quantum chemistry.

Recently, a pole expansion algorithm was proposed in [18] (also called Matsubara
expansion in theoretical many body physics [21]) for electronic structure analysis.
The Fermi operator (3.1) is represented as a sum of infinite number of poles located

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 771

on the imaginary axis

P =1− 4

β
Re

∞∑

l=1

1

(H−µ)−(2l−1)πi/β
. (3.3)

1/[H−µ−(2l−1)πi/β] is called the l-th pole of the Fermi operator, and the imaginary
number µl =(2l−1)πi/β is called the Matsubara frequency. We remark that a similar
expansion is obtained in [16] based on grand canonical potential formalism. Other
rational expansions based on contour integrals, for example, those proposed in [23]
and [15] can also be used in this context.

Pole expansion cannot be calculated directly since (3.3) contains an infinite num-
ber of terms. In practice, (3.3) is split into a pole part and a tail part

P =− 4

β
Re

NPole∑

l=1

1

H−µ−µl
+Ptail(H;NPole). (3.4)

The tail part is therefore defined as

Ptail(H;NPole)=1− 4

β
Re

∞∑

l=NPole+1

1

H−µ−µl
. (3.5)

It should be emphasized that the tail part also has an explicit formula [18]

Ptail(H;NPole)=1− 2

π
Im ψ

(
NPole−

1

2
+

i

2π
β(H−µ)

)
. (3.6)

Here, ψ is the digamma function ψ(x)=Γ′(x)/Γ(x).
Using (3.4), we have the formula for electronic density

ρ=− 4

β
Re

NPole∑

l=1

diag

[
1

H−µ−µl

]
+diag[Ptail(H;NPole)]. (3.7)

For each pole, the diagonal of the matrix involved can be readily calculated using Al-
gorithm 1. The tail part can be calculated efficiently using standard Fermi operator
expansion method, e.g., Chebyshev expansion with truncated matrix-matrix multipli-
cation [12]. In each matrix-matrix multiplication, we truncate the resulting matrix A
(on a two dimensional domain) with cutoff radius RCut, i.e.,

A[(i,j),(i′,j′)]=0 if |i− i′|>RCut or |j−j′|>RCut. (3.8)

The electronic energy for the system is the sum of the diagonal elements of PH,
and we have

E=Tr[PH]=Tr

[
− 4

β
Re

NPole∑

l=1

(
1

H−µ−µl
H

)
+Ptail(H;NPole)H

]

=Tr

[
− 4

β
Re

NPole∑

l=1

(
1+

µ+µl

H−µ−µl

)
+Ptail(H;NPole)H

]

=−4NPole

β
− 4

β
Re

NPole∑

l=1

(µ+µl)Tr

[
1

H−µ−µl

]
+Tr[Ptail;NPole

(H)H].

(3.9)

772 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

The first term in (3.9) is a scalar. The second term has already been computed in the
calculation of ρ. For the third term, since Ptail(H;NPole) is expressed as polynomials
of H, another factor of H can be easily incorporated. Once the density function ρ is
calculated, the energy can also be calculated very efficiently.

We summarize the whole algorithm to calculate the electronic density and energy
in Algorithm 2.

Algorithm 2 Pole expansion based electronic structure algorithm

1: Determine NPole. Set electronic density profile ρ to be a zero vector, and electronic
energy E=0.

2: for l = 1 to NPole do

3: Calculate ρp (the diagonal of the l-th pole) using Algorithm 1.
4: Update density profile ρ←ρ− 4

β Re ρp.

5: Update electronic energy E← 4
β

{
1−
∫
dxRe [(µ+µl)ρp]

}
.

6: end for

7: Determine the target accuracy for Chebyshev expansion and RCut.
8: Calculate NCheb and corresponding Chebyshev expansion coefficients Ck,k=

1,... ,NCheb.
9: Set T1 = I,T2 =H.

10: Set Ptail =C1T1 +C2T2 .
11: for k = 3 to NCheb do

12: Calculate T3←2HT2−T1 using matrix matrix multiplication with truncation
at a cutoff radius RCut.

13: Update Ptail←Ptail +CkT3.
14: T1←T2;T2←T3.
15: end for

16: Update density profile ρ←ρ+diag[Ptail].
17: Update electronic energy with another truncated matrix matrix multiplication

E←E+Tr[PtailH].

We have analyzed the complexity for extracting the diagonal in section 2. The
computational cost for the tail part is determined by two quantities: one is the order of
Chebyshev polynomials needed to represent the scalar valued function Ptail(x;NPole),
denoted by NCheb. The other is the cutoff radius during matrix-matrix multiplication
RCut. It is easy to see that the complexity is O(NChebR

4
CutN). It has been shown

in [18] that NCheb is given by β∆E/NPole, where β is the inverse temperature of the
system and ∆E is the spectrum width of the discretized Hamiltonian. This can be
understood as by taking out NPole poles, the temperature for the tail part is effectively
increased by a factor of NPole.

The truncation radius RCut depends on the decay of the off diagonal elements
of Ptail. By the same observation of effective temperature increase, the decay is
exponential with rate proportional to NPole/β, since this is the decay behavior for the
density matrix for metal at finite temperature (see for example [12]). Hence, for a
given accuracy requirement, RCut decays exponentially with increasing NPole. Note
that the decay rate does not depend on system size, and therefore the cutoff radius
required does not depend on system size either.

Hence, the complexity of Algorithm 2 is

O
(
NPoleN

3/2 +
β∆E

NPole
N exp(−CNPole/β)

)
. (3.10)

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 773

We remark that although in principle one can directly use a Chebyshev polynomial
approximation for the original Fermi operator (set NPole =0) and achieve a linear
scaling algorithm, the prefactor will be quite large for metallic system. We need a
higher order Chebyshev polynomial and a larger RCut since the density matrix decays
much slowly (recall that RCut decays exponentially with increasing NPole). It is much
preferable in practice to use a larger NPole. This will be further illustrated in the next
section.

4. Numerical results

We test our algorithm on the Anderson model. The computational domain is a√
N×
√
N lattice with periodic boundary condition. Under the nearest neighbor tight

binding approximation, the matrix components of the Hamiltonian of the system can
be written as following. All parameters are reported using atomic units.

Hi′j′;ij =

{
2+Vij , i′ = i,j′ = j,

−1/2+Vij , i′ = i±1,j′ = j or i′ = i,j′ = j±1.
(4.1)

The on-site potential energy Vij is chosen to be a uniform random number between
0 and 10−3. The temperature is 300K. The chemical potential µ is set to satisfy the
condition that

TrP =NElectron. (4.2)

NElectron is proportional to system size. For example, for a 32×32 system, we choose
NElectron =32; therefore for a 64×64 system, NElectron =128 etc. The spectrum width
∆E≈4, the inverse temperature β=1/kBT ≈1000, and hence β∆E≈4000. The ran-
dom potential gives rise to an energy gap of the order 5×10−4, which is comparable
to the thermal energy kBT ≈10−3. With this tiny energy gap and low temperature,
the system is metallic in nature and the density matrix is a full matrix. Figure 4.1
visualizes the typical behavior of density matrix for this system. The domain size is
128×128. The plotted part is P (r0,r), with r0 =(1,1), and r=(1,j), j=1,... ,128. It
can be seen that the density matrix decays slowly in the off-diagonal direction.

Table 4.1 shows the computational time and accuracy of Algorithm 1, compared to
the O(N3) scaling dense matrix inversion algorithm, which is also referred to as direct

inversion. The computations are carried out with a MATLAB code on a machine with
Intel Xeon 3GHz CPU with 64GB memory. The accuracy is measured by relative
error of the diagonal elements in L1 norm. Direct inversion clearly scales as O(N3).
Algorithm 1 scales slightly better than O(N3/2). This is due to the fact that in the
bottom level our algorithm is indeed O(N), and the O(N3/2) part only dominates at
large N . Moreover, Algorithm 1 is already faster than direct inversion starting from√
N =32, in which case one can gain a speedup of a factor around 35. Note that it

takes only about 3 minutes for Algorithm 1 in the case of
√
N =1024, while direct

inversion becomes impractical starting from
√
N =256.

As for accuracy, Table 4.1 shows that the error introduced by the pole part is at
the level of machine accuracy. Therefore the error for the entire algorithm comes from
the tail part. In order to show that the tail part can also be computed effectively, we
first test our algorithm for

√
N =32.

We measure the accuracy by two quantities. One is the error of the energy per
electron defined by

∆ǫrel =
|Ê−E|
NElectron

. (4.3)

774 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

−64 −32 0 32 64

0

0.005

0.01

0.015

0.02

0.025

0.03

r−r
0

P
(r 0,r

)

Fig. 4.1. Elements of a typical density matrix P (r0,r). r0 =(1,64), r =(1,j),j =1,... ,128.
r−r0 is used as x-axis for better visualization. The density matrix decays slowly in the off-diagonal
direction and this is also the typical behavior for metallic system.

√
N Algorithm 1 time (sec) Direct inversion time L1 relative accuracy

32 0.03 1.07 secs 4.87×10−14

64 0.16 60.01 secs 1.18×10−14

128 0.86 3672.53 secs 5.16×10−14

256 4.68 2.72 days (est)
512 28.61 174.11 days (est)
1024 190.44 30.53 years (est)

Table 4.1. Comparison of the computational time between Algorithm 1 and the direct inversion
algorithm.

On the right hand side, E is the exact electronic energy and Ê is the energy computed
using Algorithm 2. The other is the L1 error of the electronic density profile per
electron

∆ρrel =
Tr|P̂ −P |
NElectron

. (4.4)

Table 4.2 compares the performance using different number of poles and at differ-
ent cutoff radius RCut. The target accuracy for the Chebyshev expansion is 10−5. If
standard Fermi operator expansion is used for this system (i.e., set NPole =0), about

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 775

NPole NCheb
RCut =4 RCut =8

∆ρrel ∆ǫrel ∆ρrel ∆ǫrel

20 354 7.47×10
−2

2.79×10
−2

5.74×10
−3

8.62×10
−4

40 178 3.96×10
−2

6.05×10
−3

2.71×10
−4

1.12×10
−4

80 90 5.30×10
−3

2.86×10
−3

2.35×10
−5

5.29×10
−6

Table 4.2. Comparison of accuracy for Algorithm 2 with different sets of parameters for a
32×32 system. Pole expansion allows the tail part to be represented by a small number of Chebyshev
polynomials. The resulting matrix for the tail part is also well localized, even when the whole density
matrix is a dense matrix.

Npole NCheb
RCut =4 RCut =8

∆ρ
(64)
rel −∆ρ

(32)
rel ∆ǫ

(64)
rel −∆ǫ

(32)
rel ∆ρ

(64)
rel −∆ρ

(32)
rel ∆ǫ

(64)
rel −∆ǫ

(32)
rel

20 354 −1.42×10
−5

5.08×10
−6

1.47×10
−5

−5.20×10
−6

40 178 1.94×10
−7

−1.31×10
−7

−1.17×10
−7

−4.29×10
−8

80 90 −2.22×10
−9

1.62×10
−8

2.43×10
−10

−1.28×10
−10

Table 4.3. Comparison of accuracy of electron density profile and energy for 32×32 and
64×64 system. Numerical results show that the accuracy of Algorithm 2 does not deteriorate with
increasing system sizes.

19000 order polynomials are needed for the same accuracy requirement. For the
Chebyshev expansion expansion of the tail part Ptail(H;20), the order of polynomial
terms drops quickly from 19000 to 354. Starting from 20, the linear relation between
NCheb and NPole is clear.

Table 4.2 also confirms the trade-off between RCut and NPole. In order to improve
the accuracy of the entire algorithm, one can either increase RCut or NPole. When
NPole is small, a large RCut is needed for the tail part and therefore leads to larger
computational cost (recall the R4

Cut dependence). We remark also that if NPole =0, we
need RCut to be so large that effectively the matrices involved are dense matrices, and
hence end up with computational cost O(N3). The tail part becomes more localized
with larger NPole. As RCut decays exponentially with respect to NPole, in practice,
NPole can be taken as a moderate number.

It should also be emphasized that the errors listed in Table 4.2 depend at most
weakly on the system size. Since the relative error measured scales the same way as
the average error per unit size. Thus the errors do not change with system size either.
This is confirmed by the results for

√
N =64. In Table 4.3, we list the difference of

∆ǫ
(64)
rel −∆ǫ

(32)
rel and ∆ρ

(64)
rel −∆ρ

(32)
rel . It can be easily observed that the error depends

weakly on the system size. Also note that the dependence becomes even weaker when
we involve more poles, since the tail part are more localized.

The result of Table 4.3 confirms the uniform accuracy of Algorithm 2 for different
system sizes. Therefore for

√
N =1024, if we choose Npole =40, NCheb =178, and use

a cutoff radius RCut =8, the relative error of energy and relative L1 error should be
less than 0.05%. For the computational time, the average cost of each pole is 190.44
secs, so 40 poles cost 7618 secs. The tail part costs 4162 secs. The total wall clock
time is 11780 secs ∼3.27 hours .

776 FAST ALGORITHM FOR EXTRACTING DIAGONAL OF INVERSE MATRIX

5. Conclusion and future work

We have proposed an algorithm for extracting the diagonal of matrices arising
from electronic structure calculation. Our algorithm is numerically exact and the
overall cost is O(N3/2) for a two dimensional problem with N degrees of freedom. We
have applied our algorithm to problems in electronic structure calculations, and the
numerical results clearly illustrate the efficiency and accuracy of our approach.

We have successfully addressed problems up to one million degrees of freedom.
However, many challenging problems arising from real applications involve systems
with even larger number of degrees of freedom. Therefore, one natural direction for
future work is to develop a parallel version of our algorithm.

We have mentioned a naive extension of our algorithm to three dimensional prob-
lems. However, the complexity becomes O(N2), which is not yet satisfactory. There-
fore, a more challenging task is to see whether the ideas presented here can be used
to develop more efficient three dimensional algorithms.

Acknowledgement. This work was partially supported by DOE under Contract
No. DE-FG02-03ER25587 and by ONR under Contract No. N00014-01-1-0674 (L. L.,
J. L. and W. E), by DOE under Contract No. DE-FG02-05ER46201 and NSF-MRSEC
Grant DMR-02B706 (L. L. and R. C.), and by an Alfred P. Sloan fellowship and a
startup grant from the University of Texas at Austin (L. Y.). We thank Laurent
Demanet from Stanford University for providing computing facility and Ming Gu and
Gunnar Martinsson for helpful discussions.

REFERENCES

[1] S. Baroni and P. Giannozzi, Towards very large-scale electronic-structure calculations, Euro-
phys. Lett., 17, 547–552, 1992.

[2] C. Bekas, E. Kokiopoulou, and Y. Saad, An estimator for the diagonal of a matrix, Applied
Numerical Mathematics, 57, 1214–1229, 2007.

[3] G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithms I,
Comm. Pure Appl. Math, 44, 141–183, 1991.

[4] G. Beylkin, N. Coult, and M.J. Mohlenkamp, Fast spectral projection algorithms for density-
matrix computations, J. Comput. Phys., 152, 32 – 54, 1999.

[5] S. Börm, L. Grasedyck, and W. Hackbusch, Hierarchical Matrices, Max-Planck-Institute Lec-
ture Notes, 2006.

[6] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31, 333–
390, 1977.

[7] M. Ceriotti, T.D. Kühne, and M. Parrinello, An efficient and accurate decomposition of the
Fermi operator, J. Chem. Phys, 129, 024707, 2008.

[8] S. Chandrasekaran, M. Gu, X. S. Li, and J. Xia, Superfast multifrontal method for structured
linear systems of equations, preprint, 2007.

[9] L. Demanet and L. Ying, Discrete symbol calculus, sumbitted, 2008.
[10] J.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equa-

tions, ACM Trans. Math. Software, 9, 302–325, 1983.
[11] J. A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10,

345–363, 1973.
[12] S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys., 71, 1085–1123,

1999.
[13] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73,

325–348, 1987.
[14] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-

matrices., Computing, 62, 89–108, 1999.
[15] N. Hale, N. J. Higham, and L. N. Trefethen, Computing Aα, log(A), and related matrix func-

tions by contour integrals, SIAM J. Numer. Anal., 46, 2505–2523, 2008.
[16] F.R. Krajewski and M. Parrinello, Stochastic linear scaling for metals and nonmetals, Phys.

Rev. B, 71, 233105, 2005.

LIN LIN, JIANFENG LU, LEXING YING, ROBERTO CAR, AND WEINAN E 777

[17] S. Li, S. Ahmed, G. Klimeck, and E. Darve, Computing entries of the inverse of a sparse
matrix using the FIND algorithm, J. Comput. Phys., 227, 9408–9427, 2008.

[18] L. Lin, J. Lu, R. Car, and W. E, Multipole representation of the Fermi operator with application
to the electronic structure analysis of metallic systems, Phys. Rev. B, 115133, 2009.

[19] L. Lin, J. Lu, L. Ying, and W. E, Pole-based approximation of the Fermi-Dirac function,
Chinese Ann. Math Ser. B (in press).

[20] J.W.H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM
Rev., 34, 82–109, 1992.

[21] G.D. Mahan, Many-particle Physics, Plenum Pub Corp, 2000.
[22] P. G. Martinsson, A fast direct solver for a class of elliptic partial differential equations, J. Sci.

Comp., 38, 316–330, 2009.
[23] T. Ozaki, Continued fraction representation of the Fermi-Dirac function for large-scale elec-

tronic structure calculations, Phys. Rev. B, 75, 035123, 2007.

