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LINEAR DISPERSIVE DECAY ESTIMATES FOR VORTEX SHEETS
WITH SURFACE TENSION ∗

DANIEL SPIRN† AND J. DOUGLAS WRIGHT‡

Abstract. We consider the amplitude decay for the linearized equations governing irrotational
vortex sheets and water waves with surface tension. Using oscillatory integral estimates, we prove
that the magnitude of the amplitude decays faster than t−1/3.

Key words. Water waves, surface tension, vortex sheets, oscillatory integrals, dispersive esti-
mates, Strichartz estimates.

AMS subject classifications. 35Q35, 76B45, 76B47, 76B07, 76B15, 35B45.

1. Introduction
Consider a two dimensional, ideal, irrotational fluid with a free interface, denoted

by Γ(t). The interface is given as the graph of a nonself-intersecting parameterized
curve z(α,t) = (x(α,t),y(α,t)) where α∈R is the parameter and t is time. The fluids
may shear past one another at the interface but in the bulk of each fluid the flow
is assumed to be irrotational. In particular, the vorticity is entirely concentrated on
Γ(t). Since the velocity is curl-free there is a harmonic potential in the bulk that can
be determined if the domain and boundary data along Γ(t) is known. Part of the
boundary conditions are determined by the kinematic condition in that the interface
does not break. This implies the component of the velocity field normal to the surface
is continuous across the surface. The remainder of the boundary data is inferred from
Euler’s equations of motion for inviscid fluids

ut+(u ·∇)u+
1
ρ
∇p= f

and the Laplace-Young formula for surface tension

[p] =Sκ.

Here, p is pressure, [p] is the jump in pressure across Γ, f is the sum of body forces
(specifically the effects of gravity), S is a constant, ρ is the fluid density and κ is
the curvature of Γ. In this way, the equations of motion for the fluid can be posed
entirely in terms of quantities evaluated on the free surface, see (A.8). We include a
self-contained derivation of the governing equations for this system in Appendix A.

Hou-Lowengrub-Shelley [15, 16] developed a highly accurate numerical scheme to
study the evolution of z by using, as coordinates, the angle that the surface makes
with respect to the horizontal, denoted θ(α,t), and the jump in tangential velocity
across Γ(t), denoted γ(α,t). Their choice of coordinates was motivated by a desire
to reduce the stiffness of numerical simulations. While the curvature κ is a nonlinear
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function of zα, it is proportional to θα. These coordinates are also well-suited for
rigorous analysis, see for example [2, 3, 5, 13].

Since the vortex sheet equations (A.8) are nonlinear at the highest order, well-
posedness theory poses difficulties; however, local-in-time existence for water waves
without surface tension was established by Wu [30]. When surface tension is added,
the system gains increased regularity and local well-posedness can be established—
Iguchi [17] does so via a graph method and Ambrose [2] uses a more Lagrangian
approach. Both authors employ an energy method, and their proofs take particular
advantage of structure that is apparent at the linear level. Building on the methods of
Ambrose, Ambrose-Masmoudi [3], and Guo-Hallstrom-Spirn [13] improved the energy
bounds to the form:

Ė≤CE (1+E)k

for suitably defined E and a fixed value k. However, these bounds are far from
implying small data global-in-time existence. Hence, establishing nonlinear stability
of two dimensional vortex sheets remains elusive. In certain physical situations, such
as when a heavier fluid is placed above a lighter fluid or when there is a large amount
of shear, the flat equilibrium state is not stable. Linear instability in these cases
has been studied by Hou-Lowengrub-Shelley [15, 16] and nonlinear instability was
established by Guo-Hallstrom-Spirn [13]. In higher dimensions there have been local-
in-time results due to Ambrose-Masmoudi [3] on local well-posedness of irrotational
vortex sheets and to Cheng-Coutand-Shkoller [8] on local well-posedness of vortex
sheets with vorticity in the interior of the fluids.

It is natural to ask whether there exist small-data global-in-time solutions. Typ-
ically global existence for nonlinear dispersive equations requires Strichartz estimates
in a critical interpolation space and some form of local smoothing. This methodol-
ogy is well understood for many equations which are closely related to vortex sheets,
such as the Korteweg-de Vries (KdV) and nonlinear Schrödinger (NLS) equations—
see Bourgain [7], Constantin-Saut [10], Kato [18], Kenig-Ponce-Vega [19], and Tao
[27]. Such estimates arise from a conserved energy and a dispersive decay estimate on
the linearized equation, so a starting point would be to rigorously establish dispersive
estimates for the linearized vortex sheet problem. In particular, one would like to
show solutions of the linearized equations decay to zero at an algebraic rate as time
evolves, which is the main goal of this paper.

When the physical situation is one in which a heavy fluid, such as water, is below
a more rarefied one, such as air, then there are heuristic arguments which indicate
that solutions disperse; see for example Chapter 13 of Whitham [29]. In more general
situations there is a complicated interplay between the effects of surface tension and
gravity, which tend to cause dispersion, and the shear, which tends to cause roll-up of
the surface. Such interactions can be sorted out by means of techniques which arise in
the study of oscillatory integrals. We consider dispersive estimates on the linearized
equations describing vortex sheets with surface tension and gravity in two dimensions.

1.1. Linear dispersive estimates. The vortex sheet system is in equi-
librium when the two fluids shear past one another along a perfectly flat interface,
that is, when θ(α,t) = 0 and γ(α,t) =γ. The equations can be found at (A.8). The
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linearization of the equations of motion about this equilibrium is given by

∂tθ=
1
2
H(∂αγ)

∂tγ=
1
W
∂ααθ+

γ2

2
H(∂αθ)−

A

2
γ∂αγ−2Agθ; (1.1)

see also Siegel [23]. Here W is the Weber number and is inversely proportional to the
strength with which surface tension acts. The constant g is the acceleration due to

gravity and A :=
ρ2−ρ1

ρ1 +ρ2
where ρj is the density of fluid j. The Hilbert transform H

is given by the singular integral

Hf(α) :=
1
π
P.V.

∫
R

f(α′)
α−α′

dα′.

The main result of this paper establishes linear dispersion for (1.1) in the case
when the background flow is quiescent, i.e. γ̄= 0.

Theorem 1.1. Suppose that A>0, g>0, 1/W >0, and γ̄= 0. If θ(α,t) and γ(α,t)
solve (1.1) with initial data θ(α,0) =θ0(α) and γ(α,0) =γ0(α), then for any 1≤p≤∞:

‖θ(t)‖L∞+‖γ(t)‖L∞ ≤Ct
−1/3

(
‖θ0‖

L1∩Ḃ
2+ 1

p
p,1

+‖γ0‖
L1∩Ḃ

1
2 + 1

p
p,1

)
,

for t≥1. (Here C>0 is a nonessential constant.)

Remark 1.1. Though Theorem 1.1 is specialized to γ̄= 0, we expect the same result
for γ̄ in a range determined by the strength of gravity and surface tension. See the
discussion below.

Remark 1.2. That the inital data is forced to lie in the intersection of L1 and
some Besov space may seem somewhat unnatural. We are free to choose p however.
The most fitting choice is p= 1 since in this case Bs1,1⊂L1 and thus we only require

θ0∈B3
1,1 and γ0∈B3/2

1,1 . Similarly if we take p= 2 and note that Hs⊂Bs2,1 then we
need θ0∈L1∩H5/2 and γ0∈L1∩H1.

1.2. Methodology. The first step towards proving linear dispersive estimates
is to compute the explicit solution of Equ. (1.1) by means of the Fourier transform.
It is

θ̂(ξ,t) =eic1ξt
[(
− ic1ξ sin(λ(ξ)t)

λ(ξ)
+cos(λ(ξ)t)

)
θ̂0(ξ)+

|ξ|sin(λ(ξ)t)
λ(ξ)

γ̂0(ξ)
]

γ̂(ξ,t) =eic1ξt
[
c21−λ2(ξ)
|ξ|λ(ξ)

sin(λ(ξ)t)θ̂0(ξ)+
(
− ic1ξ sin(λ(ξ)t)

λ(ξ)
+cos(λ(ξ)t)

)
γ̂0(ξ)

]
,

(1.2)

where c1 :=−Aγ̄/4 and

λ2(ξ) :=
1

2W
|ξ|3− γ̄

2

4

(
1− A

2

4

)
|ξ|2 +Ag |ξ| . (1.3)

By examining λ(ξ), one sees how the interaction of gravity, surface tension, and
shear affects growth of solutions (see [1, 23]). For example, in the absence of surface
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tension one has 1/W = 0. This implies that λ2(ξ)<0 for ξ sufficiently large and thus
eiλ(ξ)t grows extremely fast for large frequencies. It is this fact that is responsible
for the Kelvin-Helmholtz instability and also the ill-posedness of the full nonlinear
problem (see [12]). If solutions of (1.1) are to decay, it is necessary that λ2(ξ)>0 for
all ξ. This occurs if and only if the inequality

1
8
Wγ̄4

(
1− A

2

4

)2

<4Ag (1.4)

is met. Equivalently, this tells us that gravitation suppresses low frequency modes in
much the same way that surface tension suppresses those at high frequencies.

In order to simplify the appearance of the solution operator in (1.2) and the
dispersion relation λ(ξ) we make the following change of variables:

α′= (2WAg)1/2α, t′= 21/4W 1/4(Ag)3/4t, γ′=
(
W

8Ag

)1/4

γ.

Doing so, setting γ̄= 0, and dropping the “prime” notation results in the equation

∂tθ=H∂αγ
∂tγ=∂2

αθ−θ. (1.5)

The solution of this equation is

θ̂(ξ,t) = cos(λ(ξ)t)θ̂0(ξ)+
|ξ|sin(λ(ξ)t)

λ(ξ)
γ̂0(ξ)

γ̂(ξ,t) =−λ(ξ)sin(λ(ξ)t)
|ξ|

θ̂0(ξ)+cos(λ(ξ)t)γ̂0(ξ), (1.6)

with

λ(ξ) =
√
|ξ|+ |ξ|3.

If we define the operators

S1(t)f :=F−1
[
eiλ(ξ)tf̂(ξ)

]
S2(t)f :=F−1

[
eiλ(ξ)t |ξ|

λ(ξ)
f̂(ξ)

]
S3(t)f :=F−1

[
eiλ(ξ)tλ(ξ)

|ξ|
f̂(ξ)

]
,

(1.7)

then Theorem 1.1 is an immediate consequence of

Theorem 1.2. There exists t0≥0 such that for all t≥ t0

‖S1(t)f‖L∞ ≤
C

t1/3
‖f‖

L1∩Ḃ
1
2 + 1

p
p,1

‖S2(t)f‖L∞ ≤
C

t1/3
‖f‖L1
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and

‖S3(t)f‖L∞ ≤
C

t1/3
‖f‖

L1∩Ḃ
2+ 1

p
p,1

.

(Here p is any number in [1,∞] and C is a nonessential constant.)

Remark 1.3. The rate of decay of t−1/3 is the (formally) optimal rate of decay for
our system. Notice that for any situation in which (1.4) is met, λ′(ξ)→∞ as ξ→0+

and also as ξ→+∞. This implies the existence of a point at which λ′′(ξ) = 0. (This
is also connected to the experimentally observed [26] existence of a “slowest wave” in
the presence of surface tension.) Thus this problem is more akin to the Airy equation
(where the dispersion relation is ξ3 and has a decay rate of t−1/3) than the Schrödinger
equation (where the dispersion relation is ξ2 and has a decay rate of t−1/2). If either
surface tension or gravitation is left out, then the decay rate is t−1/2—see section
3. Finally, in [24] we prove that for three-dimensional fluids the analogous dispersive
decay rate is t−5/6.

We divide our proof into three separate sections that handle S1 to S3 in order. Our
primary method is to use oscillatory integral estimates, such as those of Constantin
[9] or Kenig-Ponce-Vega [19]. Such tools are called Van der Corput estimates, see
for example Stein [25], and they control integrals of highly oscillatory functions by
the size of high derivatives of the phase function. In our case the phase function has
a more unusual structure than those found in [6, 19], therefore we need to develop
slightly more general methods.

The oscillatory integrals that we need to control are generally of the form∫ b

a

eih(ξ,κ)

g(ξ)
dξ. (1.8)

Here h(ξ,κ) is the phase and g is an additional factor. This is an example of an oscilla-
tory integral of the second kind and the goal will be to estimate it independently
of the parameter κ. The theory for controlling such integrals is well-developed, but
the methods typically require 1/g(ξ) to have compact support (see [14, 25, 28]). This
is not the case here and in our application there is the further complication that the
function 1/g(ξ) may diverge to ∞ near the origin or alternately as |ξ|→∞. As such,
it is extremely important that we keep track of the interplay between the growth of
1/g(ξ) and the delicate cancellations due to the complex exponential. We prove a
generalization of the Van der Corput estimate (Lemma 2.2 below) which allows us to
control (1.8) by the size of gh′ (the modified phase) and its derivatives. The proof
of this lemma can be found in Appendix B.

Unlike more conventional phase functions, the Van der Corput lemmas are not suf-
ficient to finish the oscillatory integral estimates. In general good dispersive estimates
are related to large curvature in the phase function, see [19, 25] etc. Unfortunately
the curvature of the modified phase for S1 and S3 goes to zero for large |ξ| and so
we truncate the domain of integration so that we exclude the high frequencies where
our decay estimates start to fail. This is a strategy similar to one employed in [22] to
prove dispersive estimates for wave equations and is the reason why the Besov spaces
appear in Theorem 1.1.

We briefly summarize the rest of the paper. Section 2 describes the Van der
Corput lemmas that are used throughout the proof of the theorem along with a
lemma for controlling the high frequency pieces. Section 3 contains formal derivation
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of the dispersive decay rate in a variety of scenarios. Sec. 4–6 handle the L∞ estimates
on S1 through S3. Sec. 7 contains the statement and proof of Strichartz estimates
based on our dispersive decay estimates. Appendix A has a self-contained derivation
of the irrotational vortex sheet equation with surface tension. Finally, Appendix B
contains the proofs of the lemmas in Section 2.

1.3. Notations and definitions. In this document we define the Fourier
transform of a function f(α) by

f̂(ξ) :=F[f ](ξ) :=
1√
2π

∫
R

e−iαξf(α)dα.

The Sobolev space of order s is denoted by Hs and we use as its norm ‖f‖2Hs :=∫
R

(1+ξ2)s |f(ξ)|2dξ. We denote the inverse Fourier tranform of a function g(ξ) by
ǧ(α). The convolution of f(α) and g(α) is

f ∗g(α) :=
∫
R

f(α−α′)g(α′)dα′.

We note that f̂ ∗g(ξ) =
1√
2π
f̂(ξ)ĝ(ξ). The Lebesgue spaces Lp are equipped with

their standard norms, which we denote by ‖·‖Lp . We will occasionally write Hs
? or Lp?

where ? stands for the independent variable over which the norm is taken.
We also make use of the homogeneous Besov spaces Ḃsp,q with norm defined as

‖u‖Ḃsp,q :=

 ∞∑
j=−∞

(
2sj‖uj‖Lp

)q 1
q

.

Here uj :=F−1[ϕj(ξ)u(ξ)] =Cϕ̌j ?u and the functions ϕj form a partition of unity
attached to the dyadic intervals |ξ|∈ [2j ,2j+1], j∈N. (See Shatah-Struwe [22].)

2. Preliminary estimates
As we shall demonstrate in the subsequent sections, controlling the operators

Sj(t) boils down to controlling the following three oscillatory integrals uniformly in
κ: ∫ t2/3

t−2/3
eit(κξ+λ(ξ))dξ

∫
R

eit(κξ+λ(ξ)) |ξ|
λ(ξ)

dξ

∫ t2/9

t−2/9
eit(κξ+λ(ξ))λ(ξ)

|ξ|
dξ.

To do so we will employ the Van der Corput Lemma (see [25]), which states:

Lemma 2.1. Let h(ξ) be Ck on [a,b] with −∞≤a<b≤+∞ and k≥2. Suppose that
h(k)(ξ) is either always positive or always negative on [a,b]. Then∣∣∣∣∣

∫ b

a

eih(ξ)dξ

∣∣∣∣∣≤Ck
{

min
[a,b]

∣∣∣h(k)
∣∣∣}−1/k

(2.1)
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where Ck is a positive constant which depends only on k (and not on a or b).

In this document we will need the following generalization of this lemma:

Lemma 2.2. a. Let h(ξ) be Ck and g(ξ) be Ck−1 on [a,b] with −∞≤a<b≤+∞ and
k≥2. Suppose that in [a,b], (gh′)(k−1) is either always positive or always negative
and g 6= 0. Then∣∣∣∣∣

∫ b

a

eih(ξ)

g(ξ)
dξ

∣∣∣∣∣≤Ck
{

min
[a,b]

∣∣∣(gh′)(k−1)
∣∣∣}−1/k{

min
[a,b]
|g|
}−1+1/k

(2.2)

where Ck is a positive constant which depends only on k (and not on a or b).
b. Additionally, if min[a,b]{|gh′|}>0 and (gh′)′= 0 at a finite number of points

in [a,b] we have ∣∣∣∣∣
∫ b

a

eih(ξ)

g(ξ)
dξ

∣∣∣∣∣≤C1

{
min
[a,b]
|gh′|

}−1

. (2.3)

The proof of this lemma is in Appendix B.
Notice that we estimate the oscillatory integrals above on truncated frequency

domains. The following lemma will be used to control the operators outside of these
regions:

Lemma 2.3. Fix s≥0, s′≥0, β>0, and 1≤p≤∞. Suppose that σ(ξ)∈C∞ and
|σ(ξ)|≤C|ξ|s′ . Then, for all t≥1,∫

|ξ|≥tβ

∣∣∣σ(ξ)f̂(ξ)
∣∣∣≤Ct−sβ ‖f‖

Ḃ
s+s′+ 1

p
p,1

.

The proof of this lemma is also in Appendix B.

3. Formal stationary phase estimates
In this section we compute at a formal level the expected dispersive decay rate

for the operator S1(t) when (1.4) is met in different physical circumstances.

3.1. Purely gravity waves: g= 1, 1/W = 0, γ̄= 0, A= 1. In this case, notice
that that λ(ξ) = |ξ|1/2 and thus

S1(t)f(α) =
1√
2π

∫
R

ei(αξ+|ξ|
1/2t)f̂(ξ)dξ.

In particular we will have to estimate oscillatory integrals of the form∫ b

a

ei(αξ+|ξ|
1/2t)dξ=

∫ b

a

eit(κξ+|ξ|
1/2)dξ

where κ=α/t. Notice that

∂2

∂ξ2

(
κξ+ |ξ|1/2

)
=−1

4
|ξ|−3/2

and is independent of κ. Importantly, this function is bounded away from zero on
any bounded interval [a,b]. Thus we have from Lemma 2.1 (with k= 2) that∣∣∣∣∣

∫ b

a

ei(αξ+|ξ|
1/2t)dξ

∣∣∣∣∣≤C
{

min
[a,b]

t |ξ|−3/2

}−1/2

≤C(b)t−1/2.
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Thus we expect that in the absence of surface tension, the amplitude of the solution
should decay like t−1/2. Note that C(b) =O(b−3/4) and thus the size of the constant
is large for high wave numbers—this can be handled via the truncation methods
discussed earlier.

3.2. Purely capillary waves: g= 0, 1/W = 1, γ̄= 0, A= 1. Similarly, if we
consider waves in which only surface tension acts, we must estimate∫ b

a

eit(κξ+|ξ|
3/2)dξ

We have

∂2

∂ξ2

(
κξ+ |ξ|3/2

)
=

3
4
|ξ|−1/2

and it is independent of κ. As before, this function is bounded away from zero on any
bounded interval [a,b] with a>0. Thus we have by the same reasoning∣∣∣∣∣

∫ b

a

ei(αξ+|ξ|
1/2t)dξ

∣∣∣∣∣≤C(b)t−1/2.

(The constant C(b) diverges as b→∞, but once again this is a complication that can
be handled by truncation.)

3.3. General case: g>0, 1/W >0, γ̄≥0, and with (1.4) met. In this
situation, the function λ(ξ) is more complicated than in the previous two situations.
In particular, notice that when ξ is close to 0 that

λ′(ξ)∼ c1 |ξ|−1/2

and that as |ξ|→∞

λ′(ξ)∼ c2 |ξ|1/2

where both constants c1 and c2 are positive. Since λ′(ξ) blows up as ξ→0 and as
ξ→∞, there is clearly a point 0<ξslow<∞ at which λ′(ξ) achieves a minimum value
and at which λ′′(ξslow) = 0. Thus it is impossible to apply Lemma 2.1 with k= 2. It
also happens that λ′′′(ξslow) 6= 0 (at least for γ̄∼0) and so Lemma 2.1 can used with
k= 3 to achieve an overall time decay of t−1/3. This is a surprising result: competition
between surface tension and gravitation results in dispersive decay which is slower than
in the cases in which solely one of these forces is present. This is related to the fact
that in experimental studies of small amplitude water waves, the presence of surface
tension causes there to be a non-zero lower bound on wave speed—this “slowest speed”
is precisely λ′(ξslow). The remainder of this paper is dedicated to rigorously justifying
the dispersive decay in the situation with γ̄= 0.

4. Estimates for S1(t)
In this section we will control the operator S1. We have

S1(t)f(α) =
1√
2π

∫
R

eiαξeiλ(ξ)tf̂(ξ)dξ

=
1√
2π

∫
R

eitΨ(ξ,κ)f̂(ξ)dξ,
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where Ψ(ξ,κ) :=κξ+λ(ξ) and κ=α/t. At times we will suppress the dependence of
Ψ on κ and simply write Ψ(ξ). Similarly, Ψ(k) means ∂kξΨ. Our goal is to estimate
S1f independently of κ.

We break the integral into a low frequency and a high frequency piece:

|S1(t)f(α)|= 1√
2π

∣∣∣∣∣
∫ t2/3

−t2/3
+
∫
|ξ|≥t2/3

eitΨ(ξ,κ)f̂(ξ)dξ

∣∣∣∣∣
≤C

∥∥∥∥∥
∫ t2/3

−t2/3
eitΨ(ξ,·)dξ

∥∥∥∥∥
L∞κ

‖f‖L1 +C

∫
|ξ|≥t2/3

∣∣∣f̂(ξ)
∣∣∣dξ.

We apply Lemma 2.3 with s= 1/2, s′= 0 and β= 2/3 to control the high frequency
piece: ∫

|ξ|≥t2/3

∣∣∣f̂(ξ)
∣∣∣dξ≤Ct−1/3‖f‖

Ḃ
1
2 + 1

p
p,1

.

This estimate along with the following proposition prove the first estimate in Theorem
1.2.

Proposition 4.1. Let Ψ(ξ,κ) =κξ+λ(ξ) with λ(ξ) as above. Then∣∣∣∣∣
∫ t2/3

−t2/3
eitΨ(ξ,κ)dξ

∣∣∣∣∣≤ C

t1/3
(4.1)

where C is independent of κ.

Proof. Notice that Ψ(k) is independent of κ if k≥2. We compute

Ψ′′(ξ) =λ′′(ξ) =
3ξ4 +6ξ2−1

4λ3(ξ)

and

Ψ′′′(ξ) =λ′′′(ξ) = sgn(ξ)
−3ξ6−15ξ4 +15ξ2 +3

8λ5(ξ)
.

Notice that Ψ′′(ξ) = 0 at

±ξ0 :=±

√√
4
3
−1

and that Ψ′′′(ξ) = 0 only at ξ=±1. Let us divide the interval over which the integral
in (4.1) is evaluated into the union of the following sets:

I0 := [−δ,δ]

I1 := [−ξ0−ε,−ξ0 +ε]∪ [ξ0−ε,ξ0 +ε] and

I2 := [−t2/3,−ξ0−ε]∪ [−ξ0 +ε,−δ]∪ [δ,ξ0−ε]∪ [ξ0 +ε,t2/3].

Here ε and δ are small, positive constants, as yet undetermined.
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We will control
∫
Ij
eitΨ(ξ)dξ for each j= 0, 1, 2. Trivially we have∣∣∣∣∫

I0

eitΨ(ξ)dξ

∣∣∣∣≤2δ.

The zeros of Ψ′′ lie in I1 and by chosing ε sufficiently small we can guarantee that
Ψ′′′ 6= 0 within this set. Therefore there is a constant Cε>0 (which depends only on
ε) such that

min
I1
|Ψ′′′(ξ)|≥Cε.

Thus Lemma 2.2 implies ∣∣∣∣∫
I1

eitΨ(ξ)dξ

∣∣∣∣≤C3C
−1/3
ε t−1/3.

In I2 the second derivative of Ψ is nonzero. So, by Lemma 2.2 we have∣∣∣∣∫
I2

eitΨ(ξ)dξ

∣∣∣∣≤C2t
−1/2

{
min
I2
|Ψ′′|

}−1/2

.

The minimum of |Ψ′′| in I2 occurs at an endpoint of one of the intervals in I2 or at
±1, the zeros of Ψ′′′. Let

m1 := min{|Ψ′′(±1)|, |Ψ′′(ξ0±ε)|, |Ψ′′(−ξ0±ε)|}.

Note that m1>0 and depends only on ε.
From the expression for Ψ′′, we see that there are positive constants c1 and c0

so that |Ψ′′(±δ)|≥ c1δ−3/2 and |Ψ′′(±t2/3)|≥ c0(t2/3)−1/2 = c0t
−1/3. For δ sufficiently

small and t sufficiently large we can conclude that c1δ−3/2≥m1≥ c0t−1/3 and so

min
I2
|Ψ′′|≥ c0t−1/3.

Therefore ∣∣∣∣∫
I2

eitΨ(ξ)dξ

∣∣∣∣≤C2t
−1/2

{
c0t
−1/3

}−1/2

=C2c
−1/2
0 t−1/3.

All together, we have ∣∣∣∣∣
∫ t2/3

−t2/3
eitΨ(ξ)dξ

∣∣∣∣∣≤2δ+Cdt
−1/3

where Cd := max
{
C2c

−1/2
0 , C3C

−1/3
ε

}
and δ is an arbitrary positive number. This

immediately implies (6.1) and we are done.

5. Estimates for S2(t)
We have

S2(t)f(α) =
1√
2π

∫
R

eitΨ(ξ,κ) |ξ|
λ(ξ)

f̂(ξ)dξ
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with Ψ(ξ,κ) as in the previous section. The convolution estimate shows that

|S2(t)f(α)|≤C
∥∥∥∥∫

R

eitΨ(ξ,·) |ξ|
λ(ξ)

dξ

∥∥∥∥
L∞κ

‖f‖L1 .

The primary result of this section (which implies the second estimate in Theorem 1.2)
is

Proposition 5.1. We have ∣∣∣∣∫
R

eitΨ(ξ,κ) |ξ|
λ(ξ)

dξ

∣∣∣∣≤ C

t1/3

for all κ∈R and t≥ t0.

Proof. Notice that Ψ(ξ,κ) = Ψ(−ξ,−κ) and so∣∣∣∣∫
R

eitΨ(ξ,κ) |ξ|
λ(ξ)

dξ

∣∣∣∣= ∣∣∣∣∫
R

eitΨ(ξ,−κ) |ξ|
λ(ξ)

dξ

∣∣∣∣ .
Thus we need only concern ourselves with κ≥0.

In order to establish Proposition 5.1, we need to control the integral over R by
means of Lemma 2.2. To do so we need estimates on the modified phase function

ν(ξ,κ) :=
λ(ξ)
|ξ|

(κ+λ′(ξ))

and its derivatives with respect ξ. These are

ν=
(
λ

|ξ|
Ψ′
)

=
λ

|ξ|
κ+

λλ′

|ξ|

ν′=
(
λ

|ξ|
Ψ′
)′

=
(
λ

|ξ|

)′
κ+
(
λλ′

|ξ|

)′
ν′′=

(
λ

|ξ|
Ψ′
)′′

=
(
λ

|ξ|

)′′
κ+
(
λλ′

|ξ|

)′′
.

Rewriting the modified phase function from above, we can say that

ν′(ξ) =
(
λ(ξ)
|ξ|

)
(κ+λ′(ξ))

ν′(ξ) =
(
λ

|ξ|

)′(
κ+

λ(3ξ2−1)
ξ(ξ2−1)

)
ν′′(ξ) =

(
λ

|ξ|

)′′(
κ+

4λ(1+ξ2)
ξ (3+6ξ2−ξ4)

)
. (5.1)

These imply
• If

κ≥K+(ξ) :=−λ′(ξ)+
|ξ|
2λ
,

then ν(ξ)≥1/2.
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Fig. 5.1. The regions Σj for S2.

• If

κ≤K−(ξ) :=−λ′(ξ)− |ξ|
2λ
,

then ν(ξ)≤−1/2.
• If

κ=K0(ξ) :=−λ′(ξ),

then ν(ξ) = 0.
Likewise, νξ(ξ,κ) = 0 if and only if

κ=L(ξ) :=
−λ(ξ)

(
3ξ2−1

)
ξ (ξ2−1)

and νξξ(ξ,κ) = 0 if and only if

κ=M(ξ) :=
−4λ(ξ)

(
ξ2 +1

)
ξ (3+6ξ2−ξ4)

.

In figure 5.1 we plot the functions K+, K−, K0, L, and M when ξ≤0 and κ≥0.
Observe that ν and νξ are zero simultaneously at one (and only one) point which we
denote (ξ?,κ?). Note that −1/2≤ ξ?≤−1/5.

Now we define the following sets which cover the upper half of the ξκ plane:

Σ0 : ={(ξ,κ)|ξ≥0 and κ≥0}
Σ1 : ={(ξ,κ)|ξ≤0 and κ≥0 and κ /∈ (K−(ξ),K+(ξ))}
Σ2 : ={(ξ,κ)|ξ≤−1 and κ∈ [K−(ξ),K+(ξ)]}
Σ3 : ={(ξ,κ)|−1≤ ξ≤−1/2 and κ∈ [K−(ξ),K+(ξ)]}
Σ4 : ={(ξ,κ)|−1/2≤ ξ≤−1/5 and κ∈ [K−(ξ),K+(ξ)]}
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and

Σ5 :={(ξ,κ)|−1/5≤ ξ≤0 and κ∈ [K−(ξ),K+(ξ)]}.

We now show that in each of these sets, at least one of |ν|, |νξ|, or |νξξ| is bounded
away from zero.

In Σ0,

ν(ξ,κ)≥ λ(ξ)λ′(ξ)
ξ

≥ 1
2ξ

+
3ξ
2
≥
√

3. (5.2)

By the definition of K±(ξ) we have

|ν(ξ,κ)|≥1/2 if (ξ,κ)∈Σ1. (5.3)

There are no zeros of νξ in the set Σ3 (since the graph of L does not pass through
this set). This set is compact and νξ is continuous for all ξ 6= 0. Thus we can conclude
that there is a constant c3>0 such that

|νξ(ξ,κ)|≥ c3 if (ξ,κ)∈Σ3. (5.4)

In exactly the same fashion, we see that there are no zeros of νξξ in Σ4 and thus there
is a constant c4>0 such that

|νξξ(ξ,κ)|≥ c4 if (ξ,κ)∈Σ4. (5.5)

First we note that in the set Σ2 and Σ5, νξ 6= 0. However, these sets are not
compact and thus we cannot immediately conclude that |νξ| is bounded away from
zero in these sets. Nevertheless we claim that

|νξ(ξ,κ)|≥1/8 if (ξ,κ)∈Σ2 (5.6)

and

|νξ(ξ,κ)|≥1/16 if (ξ,κ)∈Σ5. (5.7)

First we cover the case in Σ2. In this situation, notice that

νξκ=
(
λ(ξ)
|ξ|

)′
=
ξ2−1
2ξλ

≤0

for all (ξ,κ)∈Σ2. Thus νξ, for fixed a ξ, decreases with κ. This in turn implies
that the minimum of νξ must occur on the top boundary of Σ2—that is to say, on
ξ=K+(ξ). A direct calculation shows

νξ(ξ,K+(ξ)) =
(
λ(ξ)
|ξ|

)′
ξ

2λ(ξ)
+
λ(ξ)λ′′(ξ)
|ξ|

=
(3ξ+1)

(
−1+2ξ+ξ3

)
4ξ2 (1+ξ2)

. (5.8)

If ξ≤−1, then 3ξ+1<ξ<0, −1+2ξ+ξ3<ξ3<0, and ξ2(1+ξ2)≤2ξ4 so

(3ξ+1)
(
−1+2ξ+ξ3

)
4ξ2 (1+ξ2)

≥
(ξ)
(
ξ3
)

8ξ4
≥ 1

8
, (5.9)
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which concludes the validation of (5.6).
In the set Σ5, we proceed in a similar fashion. In this case, we can conclude that

the minimum of νξ must occur on the graph of K−(ξ) since here νξκ= (λ/|ξ|)′≥0.
Then

νξ(ξ,K−(ξ)) =−
(
λ(ξ)
|ξ|

)′
ξ

2λ(ξ)
+
λ(ξ)λ′′(ξ)
|ξ|

=
(3ξ−1)

(
1+2ξ+ξ3

)
4ξ2 (1+ξ2)

. (5.10)

For −1/5≤ ξ≤0, we see 1+2ξ+ξ3≥1−2/15−1/125≥1/2 and 3ξ−1≤−1. Thus

(3ξ−1)
(
1+2ξ+ξ3

)
4ξ2 (1+ξ2)

≤ −1
8ξ2 (1+ξ2)

≤− 1
16
. (5.11)

This concludes the validation of (5.7).
Now we can prove Prop. 5.1. Notice that on all of R λ(ξ)/|ξ| is bounded away

from zero. Fix κ≥0. If we let

Ij(κ) :={ξ|(ξ,κ)∈Σj}

for j= 0,...,5, then∣∣∣∣∫
R

eit(κξ+λ(ξ)) |ξ|
λ(ξ)

dξ

∣∣∣∣≤ 5∑
j=0

∣∣∣∣∣
∫
Ij(κ)

eit(κξ+λ(ξ)) |ξ|
λ(ξ)

dξ

∣∣∣∣∣ .
Since Ij(κ)∈Σj , we can use the lower bounds in (5.2) to (5.7) and Lem. 2.2 to
conclude that

5∑
j=0

∣∣∣∣∣
∫
Ij(κ)

eit(κξ+λ(ξ)) |ξ|
λ(ξ)

dξ

∣∣∣∣∣≤C(t−1 + t−1/2 + t−1/3
)
≤Ct−1/3

if t is sufficiently large.

6. Estimates for S3(t)
In this section we will control the operator S3. We have

S3(t)f(α) =
1√
2π

∫
R

eitΨ(ξ,κ)λ(ξ)
|ξ|

f̂(ξ)dξ,

where Ψ(ξ,κ) is as in the previous sections.
We divide the integral into two pieces as was done for S1(t):

|S3(t)f(α)|= 1√
2π

∣∣∣∣∣
∫ t2/9

−t2/9
+
∫
|ξ|≥t2/9

eitΨ(ξ,κ)λ(ξ)
|ξ|

f̂(ξ)dξ

∣∣∣∣∣
≤C

∥∥∥∥∥
∫ t2/9

−t2/9
eitΨ(ξ,·)λ(ξ)

|ξ|
dξ

∥∥∥∥∥
L∞κ

‖f‖L1 +C

∫
|ξ|≥t2/9

∣∣∣∣λ(ξ)
|ξ|

f̂(ξ)
∣∣∣∣dξ.

For |ξ|≥1, λ(ξ)/|ξ|≤C|ξ|1/2, so we apply Lem. 2.3 with s= 3/2, s′= 1/2, and β= 2/9
to control the high frequency piece:∫

|ξ|≥t2/9

∣∣∣∣λ(ξ)
|ξ|

f̂(ξ)
∣∣∣∣dξ≤Ct−1/3‖f‖

Ḃ
2+ 1

p
p,1

.
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This estimate along with the following proposition proves the final estimate in Theo-
rem 1.2.

Proposition 6.1. Let Ψ(ξ,κ) =κξ+λ(ξ) with λ(ξ) as above. Then∣∣∣∣∣
∫ t2/9

−t2/9
eitΨ(ξ,κ)λ(ξ)

|ξ|
dξ

∣∣∣∣∣≤ C

t1/3
(6.1)

where C is independent of κ.

Proof.
We need only concern ourselves with κ≥0 for the same reasons as in the previous

section. We need to control the integral over [−t2/9,t2/9] by means of Lem. 2.2 and
thus we need estimates on the modified phase function

ν(ξ,κ) :=
|ξ|
λ(ξ)

(κ+λ′(ξ))

and its derivatives with respect to ξ. Explicitly, ν and its first two derivatives are

ν=
(
|ξ|
λ

Ψ′
)

=
|ξ|
λ
κ+
|ξ|λ′

λ

ν′=
(
|ξ|
λ

Ψ′
)′

=
(
|ξ|
λ

)′
κ+
(
|ξ|λ′

λ

)′
ν′′=

(
|ξ|
λ

Ψ′
)′′

=
(
|ξ|
λ

)′′
κ+
(
|ξ|λ′

λ

)′′
.

We can rewrite these as

ν(ξ) =
(
ξ

λ

)
(κ+λ′)

ν′(ξ) =
(
|ξ|
λ

)′(
κ+

4ξλ
1−ξ4

)
ν′′(ξ) =

(
|ξ|
λ

)′′(
κ+

8sgn(ξ)ξ2(3ξ2−1)
λ(1+10ξ2−3ξ4)

)
.

(6.2)

This allows us the make the following observations about ν(ξ,κ).
• If

κ≥K+(ξ) :=−λ′(ξ)+
λ(ξ)
4|ξ|

,

then ν(ξ)≥1/4.
• If

κ≤K−(ξ) :=−λ′(ξ)− λ(ξ)
4|ξ|

,

then ν(ξ)≤−1/4.
• If

κ=K0(ξ) :=−λ′(ξ),

then ν(ξ) = 0.
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Fig. 6.1. The regions Σj for S3.

Similarly νξ(ξ,κ) = 0 if and only if

κ=L(ξ) :=−4ξλ(ξ)
1−ξ4

and νξξ(ξ,κ) = 0 if and only if

κ=M(ξ) :=−
8sgn(ξ)ξ2

(
3ξ2−1

)
λ(ξ)(1+10ξ2−3ξ4)

.

In figure 6.1 we plot the functions K+, K−, K0, L, and M when ξ≤0 and κ≥0.
Observe that ν and νξ are zero simultaneously at one (and only one) point which we
denote (ξ?,κ?). Note that −1/2≤ ξ?≤−1/5.

Now we define the following sets which cover the region of the ξκ plane where
κ≥0 and |ξ|≤ t2/9:

Σ0 : =
{

(ξ,κ)|0≤ ξ≤ t2/9 and κ≥0
}

Σ1 : =
{

(ξ,κ)|− t2/9≤ ξ≤0 and κ≥0 and κ /∈ (K−(ξ),K+(ξ))
}

Σ2 : =
{

(ξ,κ)|− t2/9≤ ξ≤−1 and κ∈ [K−(ξ),K+(ξ)]
}

Σ3 : ={(ξ,κ)|−1≤ ξ≤−1/2 and κ∈ [K−(ξ),K+(ξ)]}
Σ4 : ={(ξ,κ)|−1/2≤ ξ≤−1/5 and κ∈ [K−(ξ),K+(ξ)]}

and

Σ5 :={(ξ,κ)|−1/5≤ ξ≤0 and κ∈ [K−(ξ),K+(ξ)]}.
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In the sets Σ0, Σ1, Σ2, Σ3, Σ4, at least one of |ν|, |νξ| or |νξξ| is bounded away from
zero. In the set Σ5, it is true that |νξ| is bounded away from zero. Unfortunately, for
large values of κ this set becomes very close to the ξ= 0 axis, where |ξ|/λ(ξ) is very
small. This is problematic when applying Lem. 2.2. We discuss how to deal with Σ5

in a moment. First we prove lower bounds in the other sets.
In Σ0,

ν(ξ,κ)≥ ξλ
′(ξ)

λ(ξ)
=

3ξ2 +1
2(ξ2 +1)

≥1/2. (6.3)

By the definition of K±(ξ) we have

|ν(ξ,κ)|≥1/4 if (ξ,κ)∈Σ1. (6.4)

There are no zeros of νξ in the set Σ3 (since the graph of L does not pass through
this set). This set is compact and νξ is continuous for all ξ 6= 0. Thus we can conclude
that there is a constant c3>0 such that

|νξ(ξ,κ)|≥ c3 if (ξ,κ)∈Σ3. (6.5)

In exactly the same fashion, we see that there are no zeros of νξξ in Σ4 and thus there
is a constant c4>0 such that

|νξξ(ξ,κ)|≥ c4 if (ξ,κ)∈Σ4. (6.6)

Note that in the set Σ2, νξ 6= 0. This set has a boundary which depends on t, thus
we cannot conclude that |νξ| is bounded away from zero in a way which is independent
of t. Still, we claim that

|νξ(ξ,κ)|≥Ct−2/9 if (ξ,κ)∈Σ2. (6.7)

First we study the interior of Σ2, and in this case

νξκ=
(
|ξ|
λ(ξ)

)′
=
ξ(1−ξ2)
2λ3(ξ)

≥0

for all (ξ,κ)∈Σ2. Thus νξ, for fixed a ξ, decreases with κ. This in turn implies that
the minimum of νξ must occur on the bottom boundary of Σ2—that is to say, on
ξ=K−(ξ). A direct calculation shows

νξ(ξ,K−(ξ)) =−5ξ4 +12ξ2−1
8ξ(1+ξ2)2

. (6.8)

The minimum value of this function occurs at the endpoint ξ=−t2/9, and thus there
exists a constant C such that

νξ(ξ,K−(ξ))≥Ct−2/9 (6.9)

which concludes the validation of (6.7).
Now we start estimating the oscillatory integral in Prop. 6.1. Fix κ≥0. If we let

Ij(κ) :={ξ|(ξ,κ)∈Σj}
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for j= 0,...,5, then∣∣∣∣∫
R

eit(κξ+λ(ξ)) |ξ|
λ(ξ)

dξ

∣∣∣∣≤ 5∑
j=0

∣∣∣∣∣
∫
Ij(κ)

eit(κξ+λ(ξ)) |ξ|
λ(ξ)

dξ

∣∣∣∣∣ .
Noting that |ξ|/λ(ξ) is bounded away from zero in the sets Σ3 and Σ4, we apply Lem.
2.2 and conclude using the bounds (6.3), (6.4), (6.5), and (6.6) above that∣∣∣∣∣

∫
I0(κ)∪I1(κ)∪I3(κ)∪I4(κ)

eit(κξ+λ(ξ)) |ξ|
λ(ξ)

dξ

∣∣∣∣∣≤C(t−1 + t−1/2 + t−1/3
)
≤Ct−1/3.

In the set Σ2, the minimum of |ξ|/λ(ξ) occurs at when ξ=−t2/9. Specifically, we
have

|ξ|
λ(ξ)

≥Ct−1/9.

Therefore Lem. 2.2 implies that∣∣∣∣∣
∫
I2(κ)

eit(κξ+λ(ξ)) |ξ|
λ(ξ)

dξ

∣∣∣∣∣≤Ct−1/2t1/9t1/18 =Ct−1/3.

Finally we estimate the integral in I5(κ). First of all, there exists κ1 such that if
κ<κ1 then I5(κ) is empty, and there is nothing to estimate. Second of all, we claim
that if κ≥κ1 then

min
I5(κ)

|ξ|
λ(ξ)

≥ C
κ

(6.10)

and

min
I5(κ)
|νξ(ξ,κ)|≥ C

κ2
. (6.11)

If so, then Lem. 2.2 implies that∣∣∣∣∣
∫
I5(κ)

eit(κξ+λ(ξ)) |ξ|
λ(ξ)

dξ

∣∣∣∣∣≤Ct−1/2κ−1/2≤Ct−1/2

and we would be finished with Prop. 6.1. We now check this claim.
Denote the left and right hand endpoints of I5(κ) by ξ1(κ) and ξ2(κ), respectively.

An examination of the functional forms of K±(ξ) shows that there exists C>1 such
that

1
Cκ2

≤|ξj(κ)|≤ C

κ2

for j= 1,2. It is clear that the minimum value of |ξ|/λ(ξ) will occur on the right hand
endpoint ξ2(κ), and this together with the estimates on ξ2(κ) confirm (6.10). On
the other hand, an examination of the νξ shows that for 0≥ ξ≥−1/5 this function is
negative and decreasing for any κ. Thus the minimum of |νξ| in I5(κ) will occur at
ξ1(κ). The explicit formula for νξ implies (6.11).
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7. Strichartz estimates
Given the decay estimates and some natural L2 bounds, we can obtain the fol-

lowing class of Strichartz estimates,

Theorem 7.1. For any µ∈R we have

‖Sjg‖L8
t(Bµ8,2)≤C ‖g‖Hµ+γj ,

where γj ={ 9
16 ,−

9
16 ,

27
16}, respectively.

We sketch the proof of this result.

Proof. Let {φ̂n} be a partition of unity subordinate to the regions

U0 ={|ξ|∈ [0,1/2]} Un={|ξ|∈ [2n−2,2n−1]}

for n≥1. Therefore, the support of φ̂n is in Un−1∪Un∪Un+1 if n≥1 and in U0∪U1

if n= 0. Let χn(ξ) be the characteristic function of Un−1∪Un∪Un+1 if n≥1 and
the characteristic function of U0∪U1 otherwise. Let I0 := [0,1/2] and In= [2n−2,2n]
if n≥1.

In order to prove the Strichartz estimates for the three operators simultane-
ously, let σj(s) ={1,

√
s3+s
s , s√

s3+s
} and the solution operators are defined as Sjf =

F−1
(
eiλ(|ξ|)t 1

σj(|ξ|) f̂
)

. Let fn=F−1 [χnφnf ], then by a Paley-Littlewood decomposi-
tion

‖Sj(t)fn‖L2 ≤
∥∥∥∥χnσj φ̂nf̂

∥∥∥∥
L2

≤ C

σj(2n)
‖fn‖L2

and likewise from Theorem 2 (choosing p= 1)

‖Sj(t)fn‖L1 ≤Ct−1/32sjn‖fn‖L1 ,

where sj ={ 3
2 ,0,3}. From Riesz-Thorin Interpolation Theorem we find that for 1≤

r≤2 and 1
r + 1

q = 1 then

‖Sjfn‖Lq ≤Ct
− 1

3 ( 2
r−1)2αjn‖fn‖Lr , (7.1)

where αj ={ 3
r −

3
2 ,

1
r −1, 5

r −2}.
We use duality to complete the Strichartz estimates. In particular for a test

function η ∣∣∣〈Sj(t)g,η〉L2(R2+1)

∣∣∣≤∥∥∥σ−1/2
j ĝ

∥∥∥
L2
ξ

∥∥∥∥∫
t

eitλσ
−1/2
j η̂dt

∥∥∥∥
L2

.

We estimate the second term on the right hand side. In particular∥∥∥∥∫
t

eitλσ
−1/2
j η̂dt

∥∥∥∥
L2

≤C
∞∑
n=0

∥∥∥∥∫
t

eitλσ
−1/2
j η̂φ̂nχndt

∥∥∥∥2

L2

and each wavelet is bounded via our dispersive estimate (7.1).∥∥∥∥∫
t

eitλσ
−1/2
j η̂φ̂nχndt

∥∥∥∥2

L2

=
∫
t

∫
s

(
φn ?η(t),F−1

[
ei(s−t)λσ−1

j χnφ̂nη̂(s)
])

L2
dsdt

≤
∫
t

∫
s

2αjn

|t−s| 13 ( 2
r−1)

‖φn ?η(t)‖Lr ‖φn ?η(s)‖Lr dsdt.
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Therefore, ∥∥∥∥∫
t

eitλσ
−1/2
j η̂dt

∥∥∥∥2

L2
ξ

≤C
∫
t

∫
s

|t−s|−
1
3 ( 2

r−1)
∞∑
n=0

2
αjn

2 ‖φn ?η(t)‖2
αjn

2 ‖φn ?η(s)‖dsdt

≤C
∫
t

∫
s

|t−s|−
1
3 ( 2
r−1)‖η(t)‖

B
αj/2
r,2
‖η(s)‖

B
αj/2
r,2

≤C ‖η‖2
Lp(B

αj/2
r,2 )

for p= 2
2− 1

3 ( 2
r−1)

= 6r
7r−2 by the classical Hardy-Sobolev-Littlewood inequality. Choos-

ing p−r, then r= 8
7 and∥∥∥∥∫

t

eitλσ
−1/2
j η̂dt

∥∥∥∥
L2
ξ

≤C ‖η‖
L8/7(B

µj
8/7,2)

where µj ={ 9
16 ,−

1
16 ,

19
16}, respectively. In particular∣∣∣〈Sj(t)g,η〉L2(R2+1)

∣∣∣≤C ‖g‖Ḣβj ‖η‖L8/7(B
µj
8/7,2)

with βj ={0,− 1
2 ,

1
2}, so by duality

‖Sjg‖L8(B
−µj
8,2 )
≤C ‖g‖Hβj .

If we convolve our initial data g with (1−∆)ν/2 for some real number ν=µj+µ then

‖Sjg‖L8(Bµ8,2)≤C ‖g‖Hµ+γj ,

where γj ={ 9
16 ,−

9
16 ,

27
16}.

Appendix A. Derivation & linearization of equations. We start with a two-
layer, inviscid, incompressible, irrotational fluid in Ω± with Ω+∪Ω−=R2, Ω∩Ω−=∅
and R2\Ω+∪Ω−= Γ, where Γ is a smooth, open curve parametrized by z(α,t). Inside
each domain we have

∂tu+(u ·∇)u=− 1
ρ±
∇p−gey

divu= 0, (A.1)

where g is the gravitational constant. Since the fluids are irrotational, we find potential
functions φ and the Bernoulli equations

∂tφ+
1
2
|∇φ|2 +

p

ρ±
+gy= 0 (A.2)

inside Ω±. Since ∆φ= 0 in Ω± then there is a double-layer potential and the Plemej
Formulae for the velocity of the fluid on either side of the interface

u±[z(α)] =PV

∫
K2[z(α)−z(α′)]|zα|γ[z(α′)]dα′± 1

2
γ[z(α)]t[z(α)], (A.3)
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where K2[x] = x⊥

|x|2 , see for example [20]. Here z(α) parametrizes ∂Ω±. Set V =
1
2 (u+ +u−) to be the averaged velocity; hence 1

2∇(φ+ +φ−) =V.
We now have two equations

∇φ+ +∇φ−= 2V and ∇φ+−∇φ−=γt,

hence

∇φ+ =V+
1
2
γt and ∇φ−=V− 1

2
γt.

This implies

1
2

[
|∇φ+|2 + |∇φ−|2

]
= |V|2 +

1
4
γ2. (A.4)

We now consider the equation of motion for both φ+ +φ− and φ+−φ−. We have
by the Bernoulli equations:

∂t (φ+ +φ−)+
1
2

[
|∇φ+|+ |∇φ−|2

]
+2gy=G=−p+

ρ+
− p−
ρ−

∂t (φ+−φ−)+
1
2

[
|∇φ+|−|∇φ−|2

]
=H=−p+

ρ+
+
p−
ρ−

.

We solve for p+ and p− and obtain

p+ =−ρ+

2
(H+G) and p−=

ρ−
2

(H−G) .

Finally, the Laplace-Young condition implies p−−p+ =Sκ, where κ is the curvature
of the intervace at z(α). Therefore, we obtain

Sκ=
ρ−
2

(H−G)+
ρ+

2
(H+G)

=
ρ+−ρ−

2
G+

ρ+ +ρ−
2

H.

Finally, we have

H+AG=
1
W
κ, (A.5)

where A= ρ+−ρ−
ρ++ρ−

is the Atwood number and W = ρ++ρ−
2S is the Weber number.

In order to get the equation of motion for γ, we differentiate (A.5). Set zα=
t|zα|=sαt where zα= (xα,yα), then t ·∇=s−1

α (xα∂x+yα∂y) =s−1
α ∂α. Hence,

∂α=sαt ·∇.

We now differentiate G and H in order to complete the calculation. First

∂αG=∂t∂α (φ+ +φ−)+∂α

(
|V|2 +

γ2

4

)
+2g∂αy

=∂t [sαt ·∇(φ+ +φ−)]+2V ·Vα+
γγα

2
+2gyα

= 2∂t [sαt ·V]+2V ·Vα+
γγα

2
+2gyα
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and next

∂αH=∂t∂α (φ+−φ−)+∂α

[
1
2
∇(φ+ +φ−) ·∇(φ+−φ−)

]
=∂t [sαt ·∇(φ+−φ−)]+∂α [γV ·t]
=∂t [sαγ]+∂α [γV ·t] .

Combining these estimates together yields

∂t [sαγ]+∂α [γV ·t]+A
[
2∂t [sαt ·V]+2V ·Vα+

γγα
2

+2gyα
]

=
1
W
κα. (A.6)

We complete by including the equation for the motion of the interface. In particular

∂tz=V+Rt, (A.7)

where R is an arbitrary tangential velocity.

The small scale decomposition (SSD), introduced in [15] allows us to write the
curvature term easily. In particular if θ= arctan(yα/xα) then in complex notation zα=
sαe

iθ. In complex notation t=eiθ and n= ieiθ. Furthermore, ∂tzα=Vα+Rαt+Rtα.
But since ∂tzα= (∂tsα)eiθ+ iθtsαe

iθ = (∂tsα)t+(∂tθ)sαn, then tα ·t= 0 and tα ·n=
θα imply that

sα∂tθ=n ·∂tzα=n ·Vα+Rθα

∂tsα= t ·∂tzα= t ·Vα+Rα.

Finally, we note that curvature is simple in the SSD coordinate system: κn=∂αt=
iθαe

iθ =θαn, and so κ=θα. We get our system

sα∂tθ=n ·Vα+Rθα

sα∂tγ=
1
W
θαα−γn ·Vα−Rγθα−∂α [γV ·t]

−A
[
2∂t [sαt ·V]+2V ·Vα+

γγα
2

+2g sin(θ)
]

∂tsα= t ·Vα+Rα.

(A.8)

There are steady states when θ= 0, γ=γ, R=R. Choosing a special R such that
Rα=−t ·Vα, then ∂tsα= 0, which simplifies the calculations. In particular we set
R(α) =−(t ·V)(α)+

∫ α
−∞θαn ·Vdα′. In [15, 2], R is chosen so that the arclength

remains constant in time, i.e., R=T −(V ·t)t with T a prescribed function; see for
example [2]. Note there is no gravity in the equations of motion considered in [2, 3].
It is straightforward to linearize (A.8) about the steady solution.

We note that the equations of motion for irrotational vortex sheets with no surface
tension was written down by Baker-Meiron-Orszag [4].
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Appendix B. Assorted proofs.
Proof. (Lem. 2.2) First we prove b. We have

∣∣∣∣∣
∫ b

a

eih(ξ)

g(ξ)
dξ

∣∣∣∣∣=
∣∣∣∣∣
∫ b

a

1
igh′(ξ)

(
eih(ξ)

)′
dξ

∣∣∣∣∣
≤
∣∣∣∣ 1
igh′(ξ)

eih(ξ)|ba
∣∣∣∣+
∣∣∣∣∣
∫ b

a

(
1

igh′(ξ)

)′
eih(ξ)dξ

∣∣∣∣∣
≤2
{

min
[a,b]
|gh′|

}−1

+
∫ b

a

∣∣∣∣∣
(

1
gh′(ξ)

)′∣∣∣∣∣dξ. (B.1)

By assumption, (gh′)′ is zero at a finite number of points in (a,b). Denote these points
by ξ1<ξ2<...<ξn. Also let ξ0 =:a and ξn+1 = b. In any interval (ξj ,ξj+1) notice that
gh′ is monotonic. Then∫ b

a

∣∣∣∣∣
(

1
gh′(ξ)

)′∣∣∣∣∣dξ=
n∑
j=0

∫ ξj+1

ξj

∣∣∣∣∣
(

1
gh′(ξ)

)′∣∣∣∣∣dξ
=

n∑
j=0

∣∣∣∣∣
∫ ξj+1

ξj

(
1

gh′(ξ)

)′
dξ

∣∣∣∣∣
≤Cn

{
min
[a,b]
|gh′|

}−1

.

Now we prove a.
Special Case: min

[a,b]
|g|≥1. The proof is by induction on k. Let k= 2. The

assumptions tell us that gh′ is monotonic. We assume without loss of generality that
(gh′)′ is positive. Since gh′ is increasing, it crosses the ξ-axis either one time or not
at all. We assume that it crosses at the point c∈ (a,b). (If the crossing occurs at any
endpoint or not at all then things proceed in much the same fashion.) Let 0<δ<<1
and note that ∫ b

a

eih(ξ)

g(ξ)
dξ=

(∫ b

a

+
∫ c+δ

c−δ
+
∫ b

c+δ

)
eih(ξ)

g(ξ)
dξ.

The integral over the middle interval is bounded by 2δ as a consequence of our special
case assumption. Now let us consider the integral over the right hand interval R :=
(c+δ,b). We have∫

R

eih(ξ)

g(ξ)
dξ=

∫
R

1
igh′(ξ)

(
eih(ξ)

)′
dξ

=
1

igh′(ξ)
eih(ξ)|bc+δ−

∫
R

(
1

igh′(ξ)

)′
eih(ξ)dξ. (B.2)

Since gh′ is monotonic, we have the estimate

min
R
|gh′|≥ δmin

[a,b]
|(gh′)′|.
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Thus we can majorize the boundary terms in the above integral by

2
δmin[a,b] |(gh′)′|

.

We now must control the integral in (B.2). In what follows, we make use of the
fact that (gh′)′ has a definite sign on [a,b]. To wit∣∣∣∣∣

∫
R

(
1

igh′(ξ)

)′
eih(ξ)dξ

∣∣∣∣∣≤
∫
R

∣∣∣∣∣
(

1
gh′(ξ)

)′∣∣∣∣∣dξ
≤

∣∣∣∣∣
∫
R

(
1

gh′(ξ)

)′
dξ

∣∣∣∣∣
≤
∣∣∣∣ 1
gh′(ξ)

|bc+δ
∣∣∣∣

≤ 2
δmin[a,b] |(gh′)′|

.

To control the integral from (a,c−δ) follows exactly the same pattern. All told,
we have ∣∣∣∣∣

∫ b

a

eih(ξ)

g(ξ)
dξ

∣∣∣∣∣≤2δ+
8

δmin[a,b] |(gh′)′|
.

Choosing δ=
2√

min[a,b] |(gh′)′|
yields

∣∣∣∣∣
∫ b

a

eih(ξ)dξ

∣∣∣∣∣≤ 8√
min[a,b] |(gh′)′|

.

This conclude the base case k= 2.
Now assume the result for all 2≤n<k. Without loss of generality, assume that

(gh′)(k−1)(ξ) is positive on [a,b]. This implies that (gh′)(k−2)(ξ) crosses the ξ-axis in
at most one point. We assume that this happens at c∈ (a,b). (If the crossing occurs
at and endpoint or not at all then things proceed in much the same fashion.) Let
0<δ<<1 and note that∫ b

a

eih(ξ)

g(ξ)
dξ=

(∫ b

a

+
∫ c+δ

c−δ
+
∫ b

c+δ

)
eih(ξ)

g(ξ)
dξ.

The integral over the middle interval is majorized by 2δ as a consequence of our special
case assumption.

Now let us consider the integral over the right hand interval R := (c+δ,b). On
R, we know that (gh′)(k−2) is positive. By the inductive hypothesis, we can conclude
that ∣∣∣∣∫

R

eih(ξ)

g(ξ)
dξ

∣∣∣∣≤Ck−1

{
min
R

∣∣∣(gh′)(k−2)
∣∣∣}−1/(k−1)

.

Since (gh′)(k−1) is positive, we have the estimate

min
R

∣∣∣(gh′)(k−2)
∣∣∣≥ δmin

[a,b]

∣∣∣(gh′)(k−1)
∣∣∣ .
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Thus we have ∣∣∣∣∫
R

eih(ξ)

g(ξ)
dξ

∣∣∣∣≤Ck−1

{
δmin

[a,b]

∣∣∣(gh′)(k−1)
∣∣∣}−1/(k−1)

.

Controlling the integral from (a,c−δ) follows exactly the same pattern. All told,
we have ∣∣∣∣∣

∫ b

a

eih(ξ)

g(ξ)
dξ

∣∣∣∣∣≤2δ+2Ck−1

{
δmin

[a,b]

∣∣∣(gh′)(k−1)
∣∣∣}−1/(k−1)

.

Choosing δ=
{

min
[a,b]

∣∣∣(gh′)(k−1)
∣∣∣}−1/k

yields

∣∣∣∣∣
∫ b

a

eih(ξ)

g(ξ)
dξ

∣∣∣∣∣≤ (2+2Ck−1)
{

min
[a,b]

∣∣∣(gh′)(k−1)
∣∣∣}−1/k

and this completes the proof of Lem. 2.2 under the special case assumption.

General Case: min
[a,b]
|g|>0. Let g̃ :=

g

min[a,b] |g|
. Then min[a,b] |g̃|= 1 and we can

use the result from the special case to conclude∣∣∣∣∣
∫ b

a

eih(ξ)

g̃(ξ)
dξ

∣∣∣∣∣≤Ck
{

min
[a,b]

∣∣∣(g̃h′)(k−1)
∣∣∣}−1/k

.

Rewriting the above in terms of g instead of g̃ results in estimate (2.2) and this lemma
is proven.

Proof. (Lem. 2.3) Fix p and let q be its Hölder dual. First we compute

∫ 2j+1

|ξ|=2j

∣∣∣σ(ξ)f̂(ξ)
∣∣∣≤C∫ 2j+1

|ξ|=2j
|ξ|s

′
∣∣∣f̂(ξ)

∣∣∣ϕj(ξ)dξ
=C2js

′
∫ 2j+1

|ξ|=2j

∣∣∣f̂j(ξ)∣∣∣dξ
≤C2js

′
‖f̂j‖Lq

(
2j+1−2j

) 1
p

≤C2j(
1
p+s′)‖f̂j‖Lq .

(Here fj := ϕ̌j ?f .) The Hausdorff-Young inequality states ‖f̂‖Lq ≤‖f‖Lp for dual
exponents p,q. Thus

∫ 2j+1

|ξ|=2j

∣∣∣σ(ξ)f̂(ξ)
∣∣∣≤C2j(

1
p+s′)‖fj‖Lp .

Now let N(t) := blog2(tβ)c—the smallest integer less than or equal to log2(tβ).
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Then we have ∫
|ξ|≥tβ

∣∣∣σ(ξ)f̂(ξ)
∣∣∣dξ≤ ∞∑

j=N(t)

∫ 2j+1

|ξ|=2j

∣∣∣σ(ξ)f̂(ξ)
∣∣∣dξ

≤C
∞∑

j=N(t)

2j(
1
p+s′)‖fj‖Lp

≤C
∞∑

j=N(t)

2−sj2j(
1
p+s+s′)‖fj‖Lp

≤C2−sN(t)
∞∑

j=N(t)

2j(
1
p+s+s′)‖fj‖Lp

≤Ct−sβ ‖f‖
Ḃ
s+s′+ 1

p
p,1

.
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