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HYDRODYNAMIC LIMITS OF A VLASOV-FOKKER-PLANCK
EQUATION FOR GRANULAR MEDIA*
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PULVIRENTI 9

Abstract. This paper, which is a sequel to Benedetto-Caglioti-Golse-Pulvirenti [Comput. Math.
Appl. 38 (1999), 121-131], considers as a starting point a mean-field equation for the dynamics of
a gas of particles interacting via dissipative binary collisions. More precisely, we are concerned with
the case where these particles are immersed in a thermal bath modeled by a linear Fokker-Planck
operator. Two different scalings are considered for the resulting equation. One concerns the case of
a thermal bath at finite temperature and leads formally to a nonlinear diffusion equation. The other
concerns the case of a thermal bath at infinite temperature and leads formally to an isentropic Navier-
Stokes system. Both formal limits rest on the mathematical properties of the linearized mean-field
operator which are established rigorously, and on a Hilbert or Chapman-Enskog expansion.
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1. The Vlasov-Fokker-Planck Model

A simple 1D model for granular media was proposed in [13]. It consists of a gas
of N like particles restricted to move on an infinite line and subject to instantaneous
inelastic binary collisions. In the course of any collision, a fraction (denoted by € €
[0, 1]) of the relative velocity of the colliding pair of particles is dissipated. We refer for
instance to [9] for a general survey on kinetic and hydrodynamic models for granular
media.

A Vlasov type kinetic model was formally derived from this particle model in the
limit as N — 400, ¢ — 0 with Ne — X for some A > 0: see [13], [8], [3],[4]- This
model reads:

Ouf +v0, f + Aav(F(f)f) =0, (11)
with

F(f)EF(f)(t,x,’v):/Rlv'—vl(’v'—v)f(tvxvv')dv'v (1.2)

and where f = f(¢,x,v) denotes the density of particles which, at time ¢, are in
position x with velocity v. For further mathematical analysis see also [14] and [5], as
well as [11] and [6].

The present paper considers a 1D inelastic particle system as above, modeled as
n (1.1) but immersed in a thermal bath at a constant temperature. As in [1], [2]
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122 HYDRODYNAMIC LIMITS OF A VLASOV-FOKKER-PLANCK EQUATION

the effect of the thermal bath is modeled by adding to the Vlasov equation (1.1) a
Fokker-Planck term: instead of (1.1), the phase space density f must satisfy

Of +v0.f + AaU(F(f)f) = ﬁav(vf) + 00w f, (1.3)

where (3 is the friction coefficient and o/8 the temperature of the thermal bath.

In [2], a first hydrodynamic limit of the model (1.3) was formally established in
the case of a thermal bath at infinite temperature (equivalently, in the case where the
friction coefficient 8 = 0). In this limit, the macroscopic observables

1
p(t, ) (t,z,v)d u(t,z) = —— [ vf(t,z,v)dv 14
- [ 1 (tha) = = [ofttaod, (04
respectively the macroscopic density and bulk velocity, were shown formally to satisfy
the following system of conservation laws

Op + 0z (pu) =0,

Du(pu) + Bu(pu® + ko) = 0. (5
where k is a constant proportional to A=2/? (we take this opportunity to correct the
misprint in Eq. (2.13) of [2], where k was wrongly set proportional to A'/3).

The purpose of the present paper is twofold. First, we seek the Navier-Stokes
correction to Eqs. (1.5), which comes in the form of a viscous perturbation of the
momentum equation in (1.5). Then, in the case where the thermal bath has finite tem-
perature (or equivalently, in the case where 8 > 0), the granular gas looses momentum
due to friction, so that its bulk velocity u is 0 at leading order. In this situation, the
macroscopic density is governed by a nonlinear diffusion equation. Both derivations
are formal and based on the Hilbert or Chapman-Enskog expansions. The next sec-
tion contains a description of the scalings under which the limits mentioned above are
derived, while the Hilbert and Chapman-Enskog expansions are analyzed in section
4 and 5. The key argument in writing any of these expansions is that the linearized
mean-field operator satisfies the Fredholm alternative. Section 3 is devoted to the
mathematical analysis of this linearized mean-field operator.

2. Scalings and Hydrodynamic Limits

2.1. Hyperbolic vs. Parabolic Scalings. First we recall the dimensionless
form of the Vlasov-Fokker-Planck model as discussed in [2] but in a slightly different
form. The hydrodynamic limits considered here are infinite volume and long time
limits of Eq. (1.3).

More precisely, one defines a macroscopic length scale L and two a priori different
time scales T' < 7 such that L/T is the scale of the thermal speed of particles in the
granular gas while L/7 is the scale of the speed of macroscopic material motion in the
same granular gas. Consider then the dimensionless variables

-t T T

= — T=— vT=—. 2.1

=l 7=, w=" (21)
Defining

- L2

f(t7x7v) = 7f(lf,l‘,’l]) (22)

we arrive to the dimensionless form of Eq. (1.3)
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2
0c(FF) = 30c(vT) + Ty 0T (23)

with

F(HE77) = [ [ =70 577w (24)

The dimensionless form (2.3) of the Vlasov-Fokker-Planck equation involves three
additional time scales

Their physical meaning is as follows:
e Ty is the typical length of time during which a particle of the granular gas
looses half of its kinetic energy due to friction on the thermal bath;
e Tr is the typical length of time during which a particle of the granular gas
looses half of its kinetic energy due to inelastic collisions;
e Ty is the typical length of time during which a particle is accelerated by the
molecular agitation in the thermal bath so that its speed increases from 0 to
L/T.
The first situation studied here, which will be referred to as “the hyperbolic scal-
ing”, corresponds to

T=T, Tr<<T<<\/TrTy, Ty =ConstTr . (25)
A variant of (2.5) is the hyperbolic scaling with relaxation
T=T, Ty=ConstT, Tr<<T, Tqg=ConstTr. (2.6)

The second situation considered in this work is the so-called “parabolic scaling”

T T
r>>T, ?F: —, Tj=ConstTp, Ty=ConstTr. (2.7)
T
In the hyperbolic scaling (2.5), we set
Tp  _  Tp
E=—, T=—.
T’ T,
In the relaxation scaling (2.6), we set
Tr _ TF 3 T
E = — = — = — .
T T T, T

After dropping bars, the dimensionless Vlasov-Fokker-Planck model (2.3) becomes
1
Orfe +v0z fe + g&) [F(f)fe —00,fc] =0 (2.8)
in the hyperbolic scaling (2.5), and

Oufe +0uf. = B0u(012) + 0, [FUSL)f- = 00, = 0 (29

in the relaxation scaling (2.6).
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In the parabolic scaling (2.7), we set

Tr T Tk
€= —

T "o Pea

<

Again after dropping bars, the dimensionless Vlasov-Fokker-Planck model (2.3)
in the parabolic scaling becomes

O.f. + évc?xfg + E%av [F(f)fe — Bofe — 0, f2] = 0. (2.10)

2.2. The Free Energy and the Stationary States. In [1], it was recognized
that the space homogeneous dynamics of (1.3) can be written as follows:

—0y [F(f)f —puf — U8Uf] =0y (faanﬂ,a(f)) . (2.11)

Here, the free energy 73, is defined on the class of all measurable, a.e. nonnega-
tive functions of the variable v by the formula

g0 (f) = U/flnfd“+ %5/02fdv + %// v —V')P f(v) f(v')dvdv’ (2.12)
and
) 2
Dg.s = 55M8.0 = o1+ Inf) + 6% + %// o =o' P f(0")dv'.

In all the scalings discussed above, the limiting form of the Vlasov-Fokker-Planck
equation (2.8) to (2.10) is, according to (2.11) above,

Oy (fOuDnp o (f)) =0, (2.13)

with 8 = 0 in the case of the hyperbolic or relaxation scalings, while g > 0 in the
case of the parabolic scaling. Thus, a special role in all hydrodynamic limits of (1.3)
is played by stationary states, in other words critical points of 73, i.e. densities fo
such that

Dng.o(fo) =0, (2.14)

which are particular solutions of the limiting form (2.13) of the Vlasov-Fokker-Planck
equation. Notice that stationary states may depend on the variables ¢t and x which
are just parameters in (2.13); such stationary states are referred to as “local”, while
those which are constant in ¢ and = are referred to as “uniform” stationary states.

A natural question is that of the existence and uniqueness of stationary states
with respect to the free energy 73 , above; these states minimize the free energy under
the constraint of given total mass.

LEMMA 1. For all 8 > 0 and 0 > 0, ng,s is strictly convex with values in [0, +o0]
on the set of probability densities on R with finite second moment, and reaches its
minimum there at a single point denoted by Gg . This function Gg . is even and
belongs to C*°(R). Moreover, the local steady state with spatial density p is

fo(’l)) = pGﬂ/p,a/p(v)' (215)

This is precisely Theorem 2.1 of [1] in the case § > 0 — see also [12] for a more
general result. In the case § = 0, uniqueness is lost due to translation invariance (in v)
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of no,o. Uniqueness is recovered by also imposing the constraint of given momentum,
as follows. Define, for all p > 0 and u € R

Kpu=

{pe L'R, (1 +v¥)dv)|¢ >0 ae. , /(pdvzp, /v¢dv=pu}. (2.16)
R R

COROLLARY 1. Forallc >0 and all p > 0, u € R,

Ii{nf no,0 is attained by the unique function v — pGo 5 /,(v —u).
piu
Proof. Let ¢ € K, ,,; then ¢ : v — %¢(v+u) belongs to K o and a trivial change
of variables shows that

N0,0(#) = p°N0,0/,(¥) + aplogp. (2.17)

One then concludes by a direct application of Lemma 1. a

As explained in [1], 70+ is a Lyapunov function for the spatially homogeneous
version of (1.3) and the functions Gy, above are the spatially homogeneous steady
states for Eq. (1.3). They also satisfy the self consistent equation

e~ 35 | V' =v[*Go o (v))dv'

GOG’

N f@ii-[ "U'*’U|3G0,a(v/)d’v'dv ’ (218)

which is a consequence of the stationary condition
Op(Ff)—00ppf =0

for the homogeneous equation associated to (1.3). Also, it follows from Eq. (2.18)
that

Go.o(v) = O(e ") as Ju] — +o0. (2.19)

COROLLARY 2. For all 0 > 0 and all v € R,
Go.o(v) =0 V3G 1 (07 /30).

This is just another formulation of Lemma 3 in our previous work [2], and the
reason why the pressure law in Egs. (1.5) is of the form proposed in [2] and recalled
in the statement of (1.5), that is

P(p) = /vaGOJ/p(v)dv = kp'/? with k = ¢%/® /UQGO,I(’U)d’U. (2.20)

2.3. The Hydrodynamic Models. The first such hydrodynamic model is
the system (1.5) and corresponds to the zeroth-order (in €) approximation of the
Vlasov-Fokker-Planck equation (2.8) in the hyperbolic scaling. The same zeroth-order
approximation on the Vlasov-Fokker-Planck equation (2.9) in the relaxation scaling
leads to

Op + 0z (pu) =0,

[ 2.21
Oi(pu) + du(pu” + kp''*) = —Bpu.. 221

In both cases, one expects to reconstruct the leading order of the solutions of the
Vlasov-Fokker-Planck equation in either the hyperbolic (2.8) or the relaxation (2.9)
scaling in terms of solutions (p,u) of (1.5) or (2.21) respectively by the formula

fs(tv xz, v) = P(t, x)GO,a/p(t,x)(v - u(tv LE)) + 0(1) .
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Notice that

2)4/3 2)1/3
plt. )0 (0 = ut,0) = LoD (PP - uta))) (222

in view of Corollary 2.

The next model considered here is the first order (in &) approximation of the
Vlasov-Fokker-Planck in the relaxation scaling, a viscous correction Eqgs. (2.21) anal-
ogous to compressible Navier-Stokes models as described for example in [10]. It reads

Op + 0z(pu) =0,
(2.23)

=

, 3
Or(pu) + O (pu® + kp'/*) = —Bpu + 0 (up™ 3 O0) + SeBpdep™ |

where £ > 0 is a (positive) viscosity coeflicient which admits the following remarkable
expression

nw= —%85/1126:670(“)‘” ‘[3:0 . (224)

How to reconstruct the first order (in €) approximation of the microscopic density
relies on somewhat less explicit computations, by taking the Hilbert or the Chapman-
Enskog expansions analyzed in the next sections.

Consider finally the Vlasov-Fokker-Planck equation in the parabolic scaling, i.e.
Eq. (2.10); its 0-th order (in ¢) approximation is governed by the nonlinear diffusion
equation

Otp — 0z Do g(p) =0, (2.25)

where the nonlinear diffusion flux is given by the formula
p
D, s(p) = 3 /’Z)QGﬁ/ma/p(’l))d’l). (2.26)

The vague resemblance between formulas (2.24) for the kinematic viscosity and
(2.26) leading to a diffusion coefficient 9,D, g(p) might suggest that in some appro-
priate scaling limit, the diffusion equation (2.25) can be derived from the compressible
Navier-Stokes model (2.23). This seems however totally misleading. Rather, the non-
linear diffusion equation (2.25) can be loosely related to the large 8 limit of (2.21)
as follows. Following the general method outlined in [7] to obtain diffusion limits of
systems of conservation laws, we see that the large § limit of (2.21) is governed by
the nonlinear diffusion equation

Oup — 0, (%(%(kplm)) _0. (2.27)

Because of (2.20), one can recast the nonlinear diffusion flux in (2.27) as

5570(/)) = %/’UZGO’(,/;,(’U)d’U.

Thus

In other words, the nonlinear diffusion limit (2.25) involves the relaxation of the
speed of the granular gas due to collisions with the thermal bath, and not the viscosity
of the granular gas, solely due to the inelastic collision process in this gas, fed by the
Brownian kicks due to collisions with the thermal bath.
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3. The Linearized Mean-Field Operator

In this section we analyze the linearized mean-field operator. We prove that it
satisfies the Fredholm alternative. This allows us to perform, in the next sections, the
Hilbert and Chapman-Enskog expansions.

The mean-field operator is

—0[F(f)f = Bvf — 00uf] = 0u(fOu Do (f)),
and the local stationary state fo is given by Eq. (2.15), and satisfies
—=0u[F'(fo)fo = Bvfo — 00y fo] = 0. (3.1)
The linearized mean-field operator I is defined by
L(f) = 0,[Bvf + 00 f] + Q(f, fo),
where
Q(f.9) = —0u[F(f)g] — 0u[F(g)f]- (3.2)

We have to exploit the invertibility of L. Before doing this we observe that, as
follows from Eq. (3.1)

L(f) =0y (c(8u f — fO,10g(fo)) — F(f)fo) =
:av (fo &, (U% + % / |U _ EPf(@)dU)) . (33)

L can be also expressed in terms of the free energy functional for the linearized
case: let

1
95,0(f7 g) = _D277[37a

5 (f.9)=

fo (3.4)
%/%dv—i—%/|v—ﬁ|3f(v)g(ﬁ)dvdﬁ,

then

L(f) = av(foavDeﬁ,U(fa f)) (35)

LEMMA 2. For all f € C*(R) s.t. (14 v?)f(v) € L1(R)
) [ L)) dv=0.

i) [vL(f)(v)dv=—=3[vf(v)dv.

iti) If f is even (odd), L(f) is even (odd).

Proof. Statement i) is obvious; ii) follows by the identity

/[fF(g) +gF(f)]dv=0.

Finally, iii) follows from direct inspection. |
Inserting Eq. (2.15) for fo in Eq. (3.1) and deriving with respect to p we get

L(a) =0 (3.6)
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where
a=0fo=Gg/pa/p + P0Gs/p0/p- (3.7)
Differentiating with respect to v:
L(9yfo) = =80y fo. (3.8)

Obviously « is even and [ adv = 1, while 9, fo is odd and [ v, fo(v) dv = —p.
Now we can analyze the equation

L(f) =g, (3.9)
for g such that [ gdv = 0.
Setting
h(v) = /v g(w)dw , (3.10)
we have by Eq. (3.3)
o(0uf = fOslog fo) = foF'(f) + h, (3.11)
LA n
00y <f0> =F(f)+ 7o (3.12)
Toy=Los 2 [ 1 [" nw)
fo(v)— f0(0>+0/o F(f)dv+a/0 fo(w)dw' (3.13)
We claim that there exists a unique solution of Eq. (3.13) such that
f?(w) _
fo(w)dw < 400 and /fdva.

We first remark that

[ wrnw = ["dw @ wio- ulf @i -

v o — w|? 1 1 (3.14)
:_/0 dw@w/Tf(ﬁ)dﬁz—§/|ﬁ—v|3f(ﬁ)dﬁ+g/|U|3f(ﬁ)d6.
Thus Egs. (3.13)-(3.14) imply
1) = fow)L o)
. Jo . Y hw) (3.15)
— —folv 7—v)® = [B]*) f(@)dv + — fo(v v W.
3ol [0 =l =)@+ Zhoto) [ Fka

Integrating with respect to v, the condition [ fdv = 0 implies

f(0)
pfo(o)

-3 [ to=aP =) @n(dvdr+ [ fao) [ Fw)dudo =o. (.10

v
0 0
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Therefore we can recover f(0) as a functional of f:

10) == o)z [ o= 5@+ o) [ o =7 @) fofwdudo

(3.17)
+ B H)0) = = fo(w) [ folw) ) (w)dw
where
@0 = [ fwo= [ [ g (3.18)
Setting:

Fw) = F)f¢ (), (3.19)

(so that [ ffZdv = 0), the equation above becomes
fo) == 1 i, [ o= s @)@ .

e @)/dv lw — B £E (@) F () fo (w)dw + S(v),

where S(v) is known, and, as follows from the exp(—|v|?) decay of fy (see Eq. (2.19)),
it is in L2(R).
Eq. (3.20) is of the form

fF-Kf=6. (3.21)

We study this equation in the Hilbert space Vo ={f e L’R)|f L foé}. Note
that K is self-adjoint in Vg, and is the sum of a compact and a finite rank operator.
Moreover S € V. ~

By the Fredholm alternative Eq. (3.21) has solution if (I — K)f = 0 is equivalent
to f =0 (K is self-adjoint).

Indeed

/fI K)f /—+—/|v (T)dv dv +

* % (/f(“)d“> /|w — T £ (w) fo (0)dw dv,
and hence:

/f(I—K /—+—/f 7)o —7|? dvdv——Hga(f 1), (3.23)

(3.22)

where 03 , is the functional defined in (3.4). The term
/ F@)f@)|v —5>dv dv

is positive on the space of the functions f with

[ s = [ orwas =
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as can be seen by passing to Fourier transforms. Therefore 6, restricted to that
space is a scalar product. Moreover if 3 > 0, 03, is also a scalar product in the space
of the functions f with [ fdv =0.

Namely, indicating with ¢ = [ vf(v)dv, a direct computation leads to

a7.5) = 00 (= S0100. 1 = S0u0)) + 52 (324)
IEN-AVE) 8,0 vaa pvo 2/). .
The function f — £9, fo has zero mean and zero first momentum, then 0s.6(f, f)
is 0, on the zero-mean functions, only if f = 0.

The above analysis proves the main part of the following proposition.

PROPOSITION 1. Let V = {f| ffc—zdv < 4o}, Vo={feV| [f=0}, Voo={f €
Vol [ vf(v)dv =0}, endowed with the scalar product

(f,9) — / %dv-
If B > 0 the equation
L(f)=y (3.25)
is uniquely solvable in V, and
Ker(L) = {ca|c € R}, (3.26)
where « is as in Eq. (3.7) If 6 =0, Eq. (3.25) is uniquely solvable in Vo, and
Ker(L) = {cia + 20, fo| 1, c2 € R}. (3.27)

The assertion on the kernel of L follows from the fact that if 5 > 0, L maps a
dense subset of Vy in itself (see i) of Lemma 2) and that if 5 = 0, L maps a dense
subset of Vq in itself (see ii) of Lemma 2).

We conclude this section describing some other useful formal properties of the
functional L.

PROPOSITION 2. For >0
i) the free energy functional 03,(f,g) is a scalar product in Vo equivalent to

(f,9) — [ F2dv;
i) for all reqular functions f, g € Vo,

05.0(L(f),9) = 05.0(f, L(9)),

i.e. L is formally self-adjoint in the norm defined from 65 o ;
iti) for any g € Vo

/ vg(v)do = —%95,0(3vf0;9)§

i) for any g € V

/vL_l(g)(v)dv = —% vg(v)dv .

Proof. Statement i) is an easy consequence of the Cauchy-Schwartz inequality and
of Eq. (3.24). Points ii) and iii) follow by direct computation, using the expression
(3.3) and Eq. (2.13) respectively. Point iv) follows from iii), i) and from Eq. (3.8). O
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4. The Hilbert Expansion
4.1. Hydrodynamic scaling. The Hilbert expansion
ft,z,v) = fo(t,z,v) +efi(t,z,v) + % falt,z,v). .. (4.1)
for the kinetic Fokker-Plank equation under the hydrodynamic scaling (2.8), yields:
O™t folt,w,v) = p(t,2)3Goo(p(t, z) (v — u(t,2))), (4.2)
as follows from Corollary 2, where p and u are unknown, and
k
Do fr. + 00 fr. = L(frs1) + > QUfss1-ns fn), (4.3)
h=1

for k > 0. Integrating Eq. (4.3) in dv and v dv

9, / Fo(v)dv + 0, (u / Fo(v)dv + / (v —u) fk(v)dv> ~0, (4.4)

0, (u / Fo(v)do + / (v —u) fk(v)dv> 4

#0u (2 [ o+ fo - e + 0w ) <o. .

For k =0, Egs. (4.4), (4.5) are the closed hydrodynamic system described in [2],
see Eq. (1.5).

We will show that we can solve Eq. (4.3) and Eqgs. (4.4), (4.5), for each k. We
start with fi. From Eq. (4.3)

fi = L7 0 fo + vufo) + palt, v, v) + %@)fo, (4.6)

where p11 = p1(t, ) and v; = v (¢, z) are unknown coefficients of the two independent
elements of the kernel of L (see Eq. (3.27)). Taking into account that

/ a(v)dv = 1 % / D fo(v)dv = 0
/(v —u)a(v)dv =0 1/(v — )0y fo(v)dv = —1 (4.7)

p
2

/(v —u)’a(v)dv = —1kp~3 %/(v —u)20, fo(v)dv = 0,

(as follows from Eqs. (4.2) and from the definition of a = 0, fy), we obtain, from Eqs.
(4.4)-(4.5), for k = 1, the following linear hyperbolic system for p; and v;:

Orpn + Oz (upy — 1) =0
t 1 (4.8)
O (ups — v1) + Ox(u(upn — 21) + kp® pa) = s1,

where s; is known:

$1 = —0y /(v - u)2L71(8tf0 + 00y fo)dv . (4.9)
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We can iterate this procedure, to find fi. First, from Eq. (4.3), we find the
component with zero mean and zero momentum of fj, and then, from Eqs. (4.4) and
(4.5) we recover the zero mean and the zero momentum components. We obtain the
following linear hyperbolic non-homogeneous systems:

Otk + Oz (uptyy — v) =0
K (4.10)
Or(up — vi) + Oz (u(upy, — 2v) + kp3 pg) = sk,

where
k—1
S = _ax /(U — u)2L71 <atfk1 + ’Uaxfkfl - Z Q(fkfhv fh)) d’U,
h=1

is a known source term.
When 3 > 0 (see Eq. (2.9)) the analysis can be carried out along the same lines.

4.2. Diffusive scaling. The Hilbert expansion
ft,z,v) = fo(t,z,v) +efi(t,z,v) + > falt,z,0) ... (4.11)
for the model in the diffusive scaling (2.10), yields:
O=™2): folt,,v) = p(t,2)Gp/p(t,2),0/p(t,2) (V) (4.12)

where p is unknown;

0(871) : Uasz(tvxvv) :L(fl)(t,x,’u); (413)

k1
OE"): Oufi+v0ufisr = L{frra) + Y Qfkra—n, fn), (4.14)

h=1

for k > 0.
Integrating Eq. (4.14) with respect to dv and v dv

Oy / frdv + 8I/vfk+1dv =0, (4.15)
Oy /vfkdv + 8I/v2fk+1dv = —6/vfk+2dv. (4.16)

Integrating with respect to vdv Eq. (4.13)

8x/v2fodv = —ﬁ/vfldv. (4.17)

Egs. (4.15) for k = 0, (4.17) and (4.12) give the closed non-linear diffusion
equation described in (2.25):

1 1
Diplt. ) = 502, [ htt. v = oL@t (@18)
where ®(p) = [v?>Gg/p0/p(v)dv. Since Eq. (4.18) has a unique smooth solution, we
next determine each term of the Hilbert expansion. The method consists in solving
repeatedly (4.14) for fj in terms of fo, ... fr—1.
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If there exists a solution f; to Eq. (4.13), then [vd, fodv = 0. Pick fy to be even in
v. Then the above condition holds and

f1 =L (v, fo) + ma, (4.19)

where g is unknown. For k£ > 1, if the necessary condition of zero mean expressed in
Eq. (4.15) is satisfied

fr =L () + e, (4.20)

where
k—1
e =0 fi-2+ 00 fi1 = Y Qfe—n, fn), (4.21)
h=1

and pp = p(t, z) is unknown.
Using Eq. (4.15) and Eq. (4.16) for £ — 1, and Eq. (4.17) we have

O /fl(t,:c,v)dv = %8§x/v2f1(t,x,v)dv, (4.22)
for k =1, and
8t/fk(t,x,v)dv = %8§x/v2fk(t,x,v)dv + %5}21 /vfkfl(t,x,v)dv, (4.23)
for k > 1.
Inserting (4.19) in (4.22) we obtain the equation for j:
1
O (t, ) = Baﬁx(‘l’(f’(t,x))m(t,x)), (4.24)
where
U(p) = 2(p) + pd,2(p), (4.25)

is a function depending only on p(¢, z).
Inserting (4.20) in (4.23), we obtain:

where
1 2 2r—-1 1 2 —1
=508 [RL )@ + 502 [l e, (42)

At this point we have only to prove that the zero mean condition (4.15) (which
is not in principle equivalent to Eq. (4.26)) is satisfied. This fact is consequence of
the point iv) of Proposition 3:

8;5/'Ufk+1dv = 8x/vL_1(rk+1)dv = —%(%/W;H_ldv =
(
= —%%/v(@tfk,l +v81fk)dv = —%8ﬁx/v2fkdv — %8152;8/1)]{}6,1(11).

Then Eqs. (4.15) and Eqgs. (4.26) are equivalent.

4.28)
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5. The Chapman-Enskog expansion

In this section we calculate the first order correction to the hydrodynamic system
(2.21) (or, in the same way to the system (1.5)). According to the procedure for the
Chapman-Enskog expansion, we set

fo=pGoo(p* (v —u)), (5.1)

where p = p(t,z) = [ f(t,z,v)dv, p(t,z)u(t,z) = [vf(t,z,v)dv, and f solves (2.9).
Expanding as above f = fo + ef1 + €2fo..., at the first order in &, the relaxed
hydrodynamic system is

Orp + 0x(pu) =0

O (pu) 4 0y (pu® + kp%) + €0, /(v —u)? frdv = —Bpu. (5:2)
The equation for f; is
L(fl) = 8tf0 + 'UaxfO - ﬁav(vfo)- (53)

All the functions f; have vanishing mean and momentum, thus we can find f; as

L= fo + 0y fo — B0y (vfo)), because from Eq. (5.2) the r.h.s. of Eq. (5.3) also has

zero mean and momentum at order &Y.

We rewrite the r.h.s. of Eq. (5.3) in terms of the hydrodynamic variables

Ot fo + 00 fo — BOL (v fo) =
= 0p fo (0 + v0z)p + 0u fo(0r + v0z)u — B(fo + v0y fo) =

= 3y fo (v —u)dup — p]fjxu) + (5.4)
+ dufo <(v —u)Opu — ;%p% - ﬂU) +
— B(fo +v0y fo) + O(e)

(we have used the system (5.2)). In order to compute [(v—u)?fidv, we are interested
only in contributions to fi that are even in the variable v — u. The even part in the
previous formula is

Ozu(=pBpfo + (v —u)dufo)) — B(fo + (v = u)dy fo)- (5.5)

It is useful to rewrite all the relevant quantities in terms of Gy , and of the variable

€= pi(v—u).
L (4 1,
0 1o6) = 0 (G0al6) + 3660 (©)).

Dufo(v) = —p3 G, (€), (5.6)
By fo(v) = —0ufo(v) = p8 Gl ,(£),
L(f)(w) = p3L(F)(€),

where f(v) = f(£) and
I = 0 (Got (o5 + 3 [le-erTiere')). .7



D. BENEDETTO, E. CAGLIOTI, F. GOLSE, AND M. PULVIRENTI 135

The terms in Eq. (5.5) become

Oz (_pg (%Go,a + %éGb,a) +piE (—p% 6,0)) +

-p (péGo,a +pAE (pg 6,0)) = (5.8)
_ 4
3

4 4 4 4
0uupH (€6 = A (€Ga ) = = (304 5) €,
Finally, we can compute the order €° part of [(v —u)?fidv:

/(” —u)? L™ (8pu(—pd, fo + (v — u)dufo) — B(fo + (v — u)dy fo))dv =

_ (gaﬂﬁ ﬁ) p bt [ €T (€G0a)) O = (5.9)

Wl

Y

3
=—H (%u + ZB> P

where p = %f{zj& (€Go.p) (£)d¢ is a scalar.
Inserting (5.9) in Eq. (5.2), we obtain

(5.10)

1
3 .

Op + 0x(pu) =0
1 3
Du(pu) + 0z (pu? + kp?) = —Bpu + €0y (up ™3 Dpu) + 15P10ap
In order to obtain the expression (2.24) for the viscosity coefficient u, we rewrite

the equilibrium equation (3.1) solved by Gg,s, in the
variable &:

3 (Gma(&) / |€" = &€ = €)Gp.0 — BEGH0(E) — aagag,g) d¢' =0.  (5.11)

By deriving the above identity with respect to 3, we get, for g = 0:

f(aﬁGO,a) + (gGO,U),(f) =0, (512)
then
4 2
p=-30 §°Gp0(8)dS . (5.13)
B=0
We conclude by showing that p is positive. Let v € Vo be such that
() = (¢G). (5.14)
Using the expression of L in (5.7), integrating in &, we obtain
1
Gone (g + 5 [ 6= €PN ) = €6 (5.15)

(the constant of integration is 0 since +y is even). Dividing by Go, and integrating
again, we find that ~ satisfies

o+ 3 [l6-E@E -

at3 +c, (5.16)
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for some constant c. Multiplying for v and integrating in £, and using the definition
(3.4) of the scalar product 6y, we have

1
3 [ €10 = 200,0.7) (517)
Then
4 — 4 16
p=3 [ €T Gyt = 5 [ E1(0de = Fonalnm >0, (519)
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