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ORBITAL STABILITY OF NUMERICAL PERIODIC NONLINEAR

SCHRÖDINGER EQUATION∗

JUAN P. BORGNA† AND DIEGO F. RIAL‡

Abstract. This work is devoted to the study of the system that arises by discretization of the
periodic nonlinear Schrödinger equation in dimension one. We study the existence of the discrete
ground states for this system and their stability property when the potential parameter σ is small
enough: i.e., if the initial data are close to the ground state, the solution of the system will remain
near to the orbit of the discrete ground state forever. This stability property is an appropriate tool
for proving the convergence of the numerical method.
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1. Introduction

We consider the discrete system associated to the periodic nonlinear Schrödinger
equation (PNLS)





∂tφ= i∂2
xφ+ i|φ|2σ

φ (x,t)∈ (0,1)×R>0

φ(0,t)=φ(1,t)=0 t>0
∂xφ(0,t)=∂xφ(1,t) t>0
φ(x,0)=φ0(x) 0≤x≤1

(PNLS)

with σ >0 and φ a function in a suitable Sobolev space.
Problem (PNLS) arises in the propagation of electromagnetic waves in a nonlinear

medium, such as a laser beam in an optical fiber. The existence of solutions was
studied by Bourgain [2] and Kavian [6] who proved the well-posedness, local and
global existence in time variable and, for σ≥2, the existence of blowing-up solutions.

The existence of ground states for this problem in R
n was studied by W.A. Strauss

in [8] and M. Weinstein in [11], who characterized the ground state solution of this
equation with a potential nonlinearity, as a minimum of the Gagliardo-Nirenberg
functional. Orbital stability of the ground state solution in this case was analyzed by
M. Weinstein in [12]. The author uses a variational formulation and that this equation
has phase and translation symmetries, in order to construct a Lyapunov function. In
this way, he obtain an orbital stability result.

Ground states, existence for the periodic problem (PNLS), and their orbital sta-
bility were proved in [1] through perturbation theory, because in the periodic problem
it is not possible to apply a rescaling argument as was used in the previous works
cited above. From [1] we know that (PNLS) only has phase symmetry; then Kato’s
perturbation theory ([5]) was used in order to obtain a lower bound for the difference
between the value of the Lyapunov function on the ground state profile and at another
point of the flux, close to the ground state solution. Thus, in the present article we
prove the orbital stability for parameter σ small enough.

In order to give a numerical method for the calculus of the solution of (PNLS)
we introduce a discretization in the spatial variable x. For n∈N let us consider the
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uniform partition of [0,1] in 4n subintervals of length h= 1
4n ,

xj = jh, where 0≤ j≤4n. (1.1)

If φj =φ(xj) and applying a finite difference scheme in Equation (PNLS), we have
the following semidiscrete system:

φ′
j =

i

h2
(φj+1−2φj +φj−1)+ i|φj |2σ

φj with 0≤ j≤4n.

Due to the Diritchlet condition for (PNLS), we know that φ0 =φ4n =0, so we have
for each n∈N the system

φ′
h =−iAhφh + iD(φh)φh, (SDPNLS)

where φh =(φ1,φ1,... ,φ4n−1)∈C
4n−1, and the matrices Ah and D(φh) are given by

(Ah)ij =





2/h2 if i= j
−1/h2 if |i−j|=1
0 in another case

and (D(φh))ij =

{
|φi|2σ

if i= j
0 if i 6= j

.

In this work we obtain for the system (SDPNLS) analogous results to those already
known for the continuous case (PNLS), i.e. for each n∈N we prove the existence
of a ground state solution Rh and its orbital stability, and in a second step, we use
this result in order to prove the convergence of the method when n tends to infinity.
In this sense, the main point is to prove the convergence of Rh to the ground state
solution R(x) of (PNLS) when h→0.

We know (see [1] and [11]) that a ground state solution profile is a real function.
Since the stationary equation is a nonlinear equation, we use shooting methods in
order to obtain a ground state profile. An existence result, an algorithmic method of
calculus and an estimate of its error are obtained. Furthermore, by an estimate of the
difference between Rh and the evaluation of the stationary solution R(x) at the nodes
xi, we prove the orbital stability for solutions of (SDPNLS) and the convergence of
the method.

The paper is organized as follows. In Section 2 we define the inner product,
the norm and the space in which we work. Section 3 provides a detailed exposition
of the existence of the ground state solutions and the convergence of these discrete
ground states to the continuous ground state. Section 4 presents the concepts of
orbit, distance and Lyapunov function, and we show that stability relies on a suitable
lower bound on the second variation of the Lyapunov function. Section 5 presents the
analysis of a constrained variational problem in order to find this suitable bound, as
it was carried out in [12] for the general case or in [1] for our problem, but adapted
to the discrete problem. Section 6 presents the main results of this work: a stability
theorem and a convergence theorem.

2. Some definitions and notations

We will denote by Eh(f) the evaluation of the function f(x) at nodes
x0,x1,... ,x4n−1.

Let W denote the space of functions φ(x)∈H1
0 [0,1] which are odd with respect

to the midpoint x=1/2. From [1] we know that W is invariant under the flux of
Equation (PNLS). Let V denote the subset of W of polygonal function with domain
in [0,1], and let Vh ⊂V denote the polygonal functions whose vertices are at nodes
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(1.1). If uh =(u1,u2,... ,u4n−1)∈C
4n−1 we can associate with it a polygonal function

whose value at x=0 and x=1 is zero and whose value at node xj is uj . Moreover, we
define the sets Sh ⊂C

4n−1 using the property of skew symmetry:

Sh =
{
u∈C

4n−1 :u2n+j =−u2n−j for 0≤ j≤2n−1
}

,

notice that this definition implies that u2n =0. This space is invariant under the flux
of the discrete equation (SDPNLS), and our discrete ground state Rh ∈Sh∩R

4n−1.
We define functions Gh :Sh →Vh and Eh : Vh →Sh, we call them the polygonal

and the evaluation function, and they give a continuous polygonal respectively, and
a vector, respectively.

We will consider the following inner product and norms in Sh. If uh and vh ∈Sh,
then

〈uh,vh〉h =

4n−1∑

j=1

hujv
∗
j ,

|uh|22,h =

4n−1∑

j=1

h |uj |2 ,

‖uh‖2
1,h = 〈(I +Ah)uh,uh〉h .

3. Ground states

3.1. Existence of the numerical ground states. A ground state solution
of Equation (PNLS) is a solution in the form

φ(x,t)=R(x)eiEt,

where profile R(x) is a solution of the stationary problem




R′′−ER+R2σ+1 =0 if x∈ (0,1)
R(0)=R(1)=0
R′(0)=R′(1),

. (3.1)

We consider a finite difference scheme for this equation, associated with a regular
partition on the interval [0,1],, then we have the system

rj−1−2rj +rj+1

h2
−Erj +r2σ+1

j =0, where 1≤ j≤4n−1.

This system can be written as a recursive sequence

rj+1 =2rj −rj−1 +h2rj

(
E−r2σ

j

)
(3.2)

or as a slope recursive sequence

rj+1−rj

h
=hrj

(
E−r2σ

j

)
+

rj −rj−1

h
. (3.3)

We use Equation (3.2) in order to prove the existence and the symmetry properties
of the numerical ground state. We propose a shooting method which starts at zero
without restriction on the right side. But, in order to obtain the existence of ground
states with their expected properties, we need to prove some technical results.
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3.1.1. Maximum of the ground states profiles. Our goal in this section is
to prove that a sequence like (3.2) that starts with values r0 =0 and r1 >0, increases
from zero until it reaches a first maximum value.

Lemma 3.1. For each E,h and σ >0, if (rj)j≥0 satisfies Equation (3.2), then the

slope sequence
(

rj+1−rj

h

)

j≥0
cannot be an increasing sequence for all j.

Proof. We take r1

h >0. Let us suppose that
(

rj+1−rj

h

)

j≥1
is an increasing sequence;

following Equation (3.3), the sequence rj has a superlinear behavior, so rj →
n→+∞

+∞.

Therefore there exists an index value j0 such that r2σ
j0

>E, so
rj0+1−rj0

h <
rj0

−rj0−1

h ,
but this is a contradiction.

We need to know if this slope sequence becomes negative after a suitable number
of steps. As a first result, we prove a necessary condition for the slope sequence to
remain positive.

Lemma 3.2. If for all j we have that
rj+1−rj

h >0, and there exists j0 such that
rj0+1−rj0

h <
rj0

−rj0−1

h , then the slope sequence remains decreasing for j >j0.

Proof. By hypothesis we have that 0<
rj0+1−rj0

h <
rj0

−rj0−1

h . We only need to

prove that
rj0+2−rj0+1

h <
rj0+1−rj0

h , then we can proceed by induction.

It is easy to check that E−r2σ
j0

<0, and by hypothesis
rj0+1−rj0

h >0, so E−r2σ
j0+1 <

E−r2σ
j0

<0 and

rj0+2−rj0+1

h
=hrj0+1

(
E−r2σ

j0+1

)
+

rj0+1−rj0

h
<

rj0+1−rj0

h

and the lemma follows.

In in the following lemma we now prove that is impossible that the slope sequence
remains positive forever.

Lemma 3.3. There exists an index j0 such that the slope sequence
(

rj+1−rj

h

)

j≥0

becomes non-positive for j >j0.

Proof. Let us suppose that the hypotheses of Lemma 3.2 are true. Actually,
the second one is true by Lemma 3.1, so we only assume that

rj+1−rj

h >0 for all j.

Thus, from this assumption and Lemma 3.2 we know that
(

rj+1−rj

h

)

j≥0
is a positive

decreasing sequence, so it has a limit C ≥0.
If C >0, then the sequence rj is superlinear, so rj →+∞; therefore, taking the

limit in (3.3), then we have a contradiction.
If C =0, then we again have two possibilities. If rj →+∞, we can conclude in

the same way as before. Else, rj →K >0, taking the limit in (3.3), we obtain that
E =K2σ, but due to the fact that E−r2σ

j0
<0, we conclude that rj0 >E1/2σ =K, a

contradiction.

3.1.2. Monotonicity at each node. As a first step in the proof of the
existence of the ground states we need to prove that the first values of the recurrence
(3.2) are increasing functions with respect to r1.

Fix E, σ, h= 1
4N . By Equation (3.2) we can say that r2,r3,... ,rN ,... depend

on r1. In this section we give necessary conditions that the differentiable functions
r2 (r1)...rN (r1) are monotonically increasing for r1 in some interval I =(0,a) .
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As a first step we prove that each function rj (r1) reaches its first maximum at

a value r∗j−1
1 >0 with the property that these points are ordered in a decreasing

sequence.

Lemma 3.4. Function rj (r1) has a first positive maximum called r∗j−1
1 , and if we

consider these points all together for j≥1, they satisfy r∗11 >r∗21 >...>r∗j
1 >...>0.

Moreover, r1,r2,... ,rj are increasing functions for r1∈ Ij =
(
0,r∗j

1

)
.

Proof. The proof is by induction on n. For n=2, from (3.2) we have that

r2 =h2r1

(
E−r2σ

1

)
+2r1,

differentiating this expression with respect to r1, we obtain

r′2 =
(
h2E +2

)
−(2σ+1)h2r2σ

1 .

The equation r′2 (r1)=0 has a solution r∗11 =
(

2+Eh2

h2(2σ+1)

)1/2σ

such that r′2 (r1)>0 for

r1∈ I1 =
(
0,r∗11

)
. Notice that r2 (r1)>r1 for r1∈ I1.

Nevertheless, we need to study the case n=3 before proving the inductive step,
because for n=2 we did not use a general argument.

For n=3 we have that

r3 =h2r2

(
E−r2σ

2

)
+2r2−r1,

and differentiating with respect to r1,

r′3 =
[
h2E +2−(2σ+1)h2r2σ

2

]
r′2−1.

In order to prove existence of r∗21 ∈
(
0,r∗11

)
such that r′3

(
r∗21

)
=0 and r′3 (r1)>0 for

r1∈ I2 =
(
0,r∗21

)
, we claim that r′3 changes sign in I1; indeed, using that r′2

(
r∗11

)
=0,

it follows that r′3
(
r∗11

)
=−1, and since r2 (0)=0 and r′2 (0)=Eh2 +2, we have that

r′3 (0)=
(
h2E +2

)2−1>0,

therefore, the conclusion for n=3 follows.
We now we assume that this assertion is true for j and seek to prove it for j +1.

Thus, we want to prove that there exists r∗j
1 ∈

(
0,r∗j−1

1

)
such that r′j+1

(
r∗j
1

)
=0 and

r′j+1 (r1)>0 for r1∈ Ij =
(
0,r∗j

1

)
. We have that

rj+1 =h2rj

(
E−r2σ

j

)
+2rj −rj−1 (3.4)

and

r′j+1 =
[
h2E +2−(2σ+1)h2r2σ

j

]
r′j −r′j−1. (3.5)

The fact that r′j+1

(
r∗j−1
1

)
<0 follows from the facts that from r′j

(
r∗j−1
1

)
=0 and

r′j−1

(
r∗j−1
1

)
>0. In order to prove that r′j+1 (0)>0, we can observe that evaluation

of (3.3) at x=0 gives the following linear recurrence:

r′j+1 (0)−r′j (0)=h2Er′j (0)+
(
r′j (0)−r′j−1 (0)

)
, (3.6)
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with initial data r′1 (0)=1 and r′2 (0)=h2E +2. By the inductive hypothesis we know
that r′j (0)>0, and repeated application of (3.6) enables us to assert that r′j+1 (0)−
r′j (0)>0, so r′j+1 (0)>0. Thus, the proof follows.

Our goal is to see that if h is small enough, xj is far enough to the right side of

zero, and if two polygonal functions, corresponding with two values r1 close to r∗j
1 ,

pass each other in the interval [xj ,xj+1] then they are descending in this interval.

This is equivalent to prove that under these conditions (rj+1−rj)
(
r∗j
1

)
<0.

Lemma 3.5. If h is small enough and xj is far enough to the right side of zero, then

(rj+1−rj)
(
r∗j
1

)
<0.

Proof. By definition r′j+1

(
r∗j
1

)
=0, so evaluating in (3.5) we have

0=
[
h2E +2−(2σ+1)h2r2σ

j

(
r∗j
1

)]
r′j

(
r∗j
1

)
−r′j−1

(
r∗j
1

)
,

therefore

r2σ
j

(
r∗j
1

)
=

(
h2E +2

)
r′j

(
r∗j
1

)
−r′j−1

(
r∗j
1

)

(2σ+1)h2r′j

(
r∗j
1

) .

Plugging this expression into (3.4), we obtain

[rj+1−rj ]
(
r∗j
1

)
=

[
h2rj

(
E−r2σ

j

)
+(rj −rj−1)

](
r∗j
1

)

=

[
rj

2σ+1

(
2σh2E−2+

r′j−1

r′j

)
+(rj −rj−1)

](
r∗j
1

)
.

If h is small and xj is far enough to the right side of zero, we have that 0<

(rj −rj−1)
(
r∗j
1

)
≪1 and 0<

∣∣r′j −r′j−1

∣∣
(
r∗j
1

)
≪1. Therefore, [rj+1−rj ]

(
r∗j
1

)
<0.

3.1.3. Existence and uniqueness of the ground state. We can now
formulate our main results of this section: the existence of the numerical ground
states with their symmetry properties and their uniqueness, for each E >0,σ >0 and
h= 1

4n , in the sense that they have the lowest frequency.

Proposition 3.6. Suppose n≥2; then there exists a unique solution Rh =
(
rh
j

)4n−1

j=1

of the system (3.2) such that:

1. rh
j >0 for 1≤ j≤2n−1.

2. rh
n−j = rn+j for 0≤ j≤n.

3. rh
2n+j =−rh

2n−j for 0≤ j≤2n.

Proof. Let n∈N and h= 1
4n , so xn =1/4. From Lem. 3.4 we know that if

r1∈ I(h)=
[
r∗n
1 ,r∗n−1

1

]
the corresponding sequence increases until node xn and then

starts to descend, i.e., the polygonal function has its first maximum at xn =1/4.
Notice that, if r1 <r∗n

1 then rn+1 >rn. Analogously if r1 >r∗n−1
1 then rn−1 >rn.

We want to prove that there exists rh
1 ∈ I(h) such that the recursion solution has

the expected symmetries properties, i.e., it reaches its maximum value rh
n at xn = 1

4
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and rh
n−1 = rh

n+1. As a consequence, rh
2n =0, and we also have odd symmetry for

rh
2n+1,... ,r

h
4n. This solution is called the numerical soliton Rh.

Throughout the proof rmin and rmax denote the vector solutions corresponding
to initial values rmin

1 = r∗n
1 and rmax

1 = r∗n−1
1 , respectively. By definition we know that

rmin
n−1 <rmin

n = rmin
n+1 and rmax

n−1 = rmax
n >rmax

n+1. Moreover, due to the fact that rn(r1) is
an increasing function in I(h), we have that

rmin
n−1 <rmin

n <rmax
n−1. (3.7)

Therefore, following (3.7) we have

rmin
n−1 <rmin

n+1 = rmin
n <rmax

n−1.

Also, from the definition of rmax
1 , it follows that

rmax
n+1 <rmax

n = rmax
n−1,

so the continuous functions rn+1(r1) and rn−1(r1) must intersect each other, at least
once, in rh

1 ∈ I.
Let us denote by Rh the vector solution of the recursion corresponding to this

value rh
1 . We call it the vector soliton or the discrete numerical soliton. By construc-

tion Rh has the symmetry properties required.
For the proof of the uniqueness of Rh, we use its symmetry as follows. Since

the function r2n(r1) is decreasing, if we had two different values of r1∈ I such that
their corresponding sequences satisfied rn−1 = rn+1, then both sequences would have
r2n =0, a contradiction.

3.2. Convergence of the numerical solitons. In the previous section we
proved the existence of rh

1 ∈ I(h) corresponding to the initial value of the recursion
such that the sequence solution is Rh, but we have not given an estimate for it yet.

In this section, we estimate this value rh
1 with an error with quadratic order in h.

In a second step we will use this estimate to obtain an order of approximation between
the evaluation of the ground state profile Eh(R(x)) and the discrete numerical soliton
Rh.

3.2.1. First approximation step. We know (see [1]) that the ground state
profile R(x) reaches its maximum value at x=1/4. We denote by A=R(1/4) this
maximum value.

Lemma 3.7. Let 0<h<1/4,; then

R(h)=hA

√
A2σ

σ+1
−E +O

(
h3

)
. (3.8)

Proof. From the soliton Equation (3.1)

R′′ =ER−R2σ+1;

multiplying each member by R′ and integrating, we have that

R′2 =C +ER2− 1

σ+1
R2σ+2.
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We know that R′(1/4)=0,; then, using that R(0)=0, we obtain that

R′(0)=
√

C =A

√
A2σ

σ+1
−E,

where we have taken the positive branch of the square root because we want R(x) to
be increasing in (0,1/4) . From the same equation we have that R′′(0)=0 and R′′′(0)=

ER′(0)=EA
√

A2σ

σ+1 −E. Thus, by Taylor’s expansion of R(x) at x=h, equality (3.8)

follows.

Equality (3.8) suggests that we start the recursion process (3.2) with the value
u1 defined by the first term of this expansion.

On the other hand, we may consider the following family of initial value problems:





−U ′′+
(
E−U2σ

)
U =0

U (0)=0
U ′ (0)=β.

(3.9)

For each β >0 there exists only one solution Uβ (x). From Equation (3.9) we have
that

Uβ (h)=βh+O
(
h3

)
,

so

Uβ (h)

h
=β+

(
h2

)
.

We will denote by uβ the output sequence (3.2) that starts with the value u1 =hβ.
In the following proposition we prove that, for all β, the evaluation Eh (Uβ(x)) and
the vector uβ differ by a quadratic order in h.

Proposition 3.8. Let β >0 be fixed; then Uβ(x) and uβ satisfy, for 1≤ j≤4n−1,

∣∣∣eβ
j

∣∣∣=
∣∣∣Uβ (jh)−uβ

j

∣∣∣=O
(
h2

)
. (3.10)

Proof. For simplicity of notation, in Equation (3.10) we write ej instead of eβ
j . The

order of accuracy of the scheme at each node xj is Tj =O
(
h2

)
, and, due to the fact

that uβ satisfies the recurrence equation (3.2), we have that the local errors satisfy
the following new recurrence equation,

ej+1 =−ej−1 +2ej +h2 [E−C]ej +h2Tj , (3.11)

where C is a constant. Actually, C depends on β and h because it is an upper bound

of U2σ
β (x) and of

(
uβ

j

)2σ

, but any change in h has a corresponding change in β such

that uβ
1 =hβ.

The linear part of the recurrence equation

ej+1 =−ej−1 +2ej (3.12)
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has only one (double) eigenvalue λ=1. Thus, a basis for the vector space of solution
sequences of (3.12) is given by (1,1,1,...) and (1,2,3,...); therefore any solution {ej}
increases linearly in j. This is enough for our purposes, because, if we call

qj =h2 [E−(2σ+1)C]ej +h2Tj ,

and since Tj =O
(
h2

)
, we have that

|qj |=O
(
h4

)
+O

(
h2

)
|ej | (3.13)

and, if let B =

(
0 1
−1 2

)
, Ej =

(
ej

ej+1

)
and Qj =

(
0
qj

)
, the recurrence equation (3.11)

becomes

Ej =BEj−1 +Qj . (3.14)

Iterating (3.14), we have

Ej =BjE0 +

j−1∑

k=0

BkQj−k. (3.15)

The linear increase rate of (3.12) implies that
∥∥Bk

∥∥≤Ck. (3.16)

In order to estimate ‖Ej‖ we use an inductive argument. Using the definition of uβ
1 ,

we have that the error at the first node x1 satisfies

|e1|=
∣∣∣Uβ(h)−uβ

1

∣∣∣= |Uβ(h)−hβ|=O
(
h3

)
. (3.17)

Thus, since e0 =0, we have that

‖E0‖=O
(
h3

)
.

For estimating ‖E1‖ we need to estimate |e2|. Using (3.13), (3.16) and (3.17), for j =1
we have that

|e2|≤‖E1‖=‖BE0 +Q1‖≤‖BE0‖+ |q1|=O
(
h3

)
+O

(
h2

)
|e1|=O

(
h3

)
.

By the inductive hypothesis we can assume that |ek|=O
(
h2

)
, for all 0≤k≤ j,. Then

by (3.15) we have that

|ej+1|≤‖Ej‖≤
∥∥BjE0

∥∥+

j−1∑

k=0

∥∥Bk
∥∥‖Qj−k‖ .

For the first term, we have the following estimate:
∥∥BjE0

∥∥≤
∥∥Bj

∥∥‖E0‖≤Cj‖E0‖=CjO
(
h3

)
=O

(
h2

)
,

and for the second term, by (3.13) and (3.16) we have that

j−1∑

k=0

∥∥Bk
∥∥‖Qj−k‖≤

j−1∑

k=0

Ck
(
O

(
h4

)
+O

(
h2

)
|ej−k|

)

by inductive hypothesis |ek|=O
(
h2

)
; thus for all 0≤k≤ j, we have that

j−1∑

k=0

∥∥Bk
∥∥‖Qj−k‖≤O

(
h4

) j−1∑

k=0

k =O
(
h2

)
.

Therefore we conclude that, for all j, (3.10) is satisfied.
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3.2.2. Second approximation step. By Proposition 3.6 we know that, for
each h>0, there exists a unique rh

1 ∈ I(h) that gives the discrete soliton Rh. Let β∗
h >0

be given by rh
1 =hβ∗

h,; then sequence uβ∗

h is the numerical soliton Rh.
Let Uβ∗

h
(x) the solution of (3.9) with initial data U ′

β∗

h
(0)=β∗

h.

We denote by β0 =R′ (0)=A
√

A2σ

σ+1 −E the exact slope of the continuous soliton

at x=0,; then we have that Uβ0
(x)=R(x). Fixing h>0 we have associated to β0 the

recurrence solution uβ0 .

Remark 3.1. By definition of β∗
h,uβ∗

h and β0, using the estimate (3.10), we have that

∣∣Uβ∗

h
(1/2)

∣∣=
∣∣∣Uβ∗

h
(1/2)−u

β∗

h

2n

∣∣∣=O
(
h2

)
, (3.18)

∣∣∣uβ0

2n

∣∣∣=
∣∣∣uβ0

2n−R(1/2)
∣∣∣=O

(
h2

)
. (3.19)

Our goal is to prove the convergence of the numerical soliton Rh to the continuous
soliton R(x). A first step is to prove the convergence of β∗

h to β0. A second step will
be to calculate the order of this convergence.

Lemma 3.9. Let β∗
h and β0 defined as above, then

β∗
h →

h→0+
β0. (3.20)

Proof. We know that (see equality (3.18)) for h>0,

∣∣Uβ∗

h
(1/2)

∣∣=O
(
h2

)
,

so Uβ∗

h
(1/2) →

h→0
0. If β∗

h 9β0, we would have two different positive solutions of (PNLS)

such that either are valued zero at boundaries x=0 and x= 1
2 , but this is impossible

(see [1]).

Order of convergence

We now want to calculate the order of the convergence that was given in (3.20).
For that, we will need some preliminary results.

We can rewrite the second order equation (3.9) as a first order system by intro-
ducing the variable V =U ′:

{
U ′ = V
V ′ =

(
E−U2σ

)
U,

with initial data (U (0),V (0))=(0,β) , (3.21)

and we write (Uβ ,Vβ) for the unique solution of this system, for each β. System (3.21)
has properties of continuity and differentiability with respect to the initial parameters,
for example, with respect to β (see [4] or [9]).

Lemma 3.10. The solution (Uβ ,Vβ)(x) of the system (3.21) is continuous with respect
to β. If K is a Lipschitz constant for this operator in [0,1], then

‖(Uβ2
(x),Vβ2

(x))−(Uβ1
(x),Vβ1

(x))‖≤e
K
2 |β2−β1|.

Proof. See [9] chapter II.
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In our case we have that

O
(
h2

)
=

∣∣Uβ∗

h
(1/2)−Uβ0

(1/2)
∣∣≤e

K
2 |β∗

h−β0|; (3.22)

thus, two is the best possible order of convergence in (3.20). In the rest of this section
we will prove that the order of convergence is a number greater than one. In fact, we
will prove that there exists 1≤γ <2 such that |β∗

h−β0|=o(hγ) .

Lemma 3.11. The solution (Uβ ,Vβ)(x) of Equation (3.21) is differentiable with re-
spect to β, and if β0 is as above, then

∂βVβ0
(1/2)=−1. (3.23)

Proof. For the first assertion, see [9] chapter II. For the second assertion,
we know that the solution of the problem (3.21) with initial data (0,β0) satisfies
(Uβ0

(0),Vβ0
(0))=(0,β0) and (Uβ0

(1/2),Vβ0
(1/2))=(0,−β0) . Now, multiplying the

second equation of the system (3.21) by Vβ(x) and integrating in x, we have that

V 2
β (x)−EU2

β(x)+
1

σ+1
U2σ+2

β (x)=β2;

differentiating this equation with respect to β, evaluating at x= 1
2 , and taking the

limit when β→β0, we obtain that

−β0 (∂βVβ0
)(1/2)=β0

.Since β0 6=0, equality (3.23) follows.

We consider the tangent straight line of the function Uβ∗

h
(x) at x= 1

2 and let xh
1

be the value of the intersection between this straight line and the x-axis. Also, we
denote by xh

0 the first positive root of Uβ∗

h
(x) . Notice that, in general, xh

0 6=xh
1 but we

can assert that both are on the same side of x= 1
2 .

Lemma 3.12. Let xh
0 and xh

1 be as above; then

xh
0 −

1

2
=O

(
h2

)
and xh

1 −
1

2
=O

(
h2

)
. (3.24)

Proof. We know (see [1]) that Uβ∗

h
(x) has only one inflection point in its increasing

part (between 0 and its symmetrical axis), therefore there is only one inflection point
in the decreasing part (between its symmetrical axis and xh

0 ). Uβ∗

h
(x) is convex in a

neighborhood on the left side of xh
0 , but we do not know the exact position of the

inflection point, because it depends on σ and E.
We will only consider the cases xh

0 and xh
1 greater than 1

2 .

1. If Uβ∗

h
(x) is convex at x= 1

2 , then the inflection point is on the left side of

x= 1
2 , thus it is convex in the interval

(
1
2 ,xh

0

)
(see Figure 3.1). Therefore

1
2 <xh

1 <xh
0 and

U ′
β∗

h
(1/2)<U ′

β∗

h

(
xh

0

)
=−β∗

h <0.

The value at x= 1
2 of the tangent straight line of Uβ∗

h
(x) at xh

0 is yh <

Uβ∗

h
(1/2) ,; therefore yh =O

(
h2

)
. Also U ′

β∗

h

(
xh

0

)
= yh

xh
0−

1
2

=−β∗
h, and, since

β∗
h →β0 6=0, we have that xh

0 − 1
2 =O

(
h2

)
, so xh

1 − 1
2 =O

(
h2

)
.
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x0
hx1

h

yh

UΒ*hH1�2L

UΒ*hHxL

1�2

Figure 3.1.

2. If Uβ∗

h
(x) is concave at x= 1

2 we have two possibilities:

If 1
2 <xh

1 <xh
0 , then the inflection point is in the interval

(
1
2 ,xh

1

)
(see Figure

3.2) and

U ′
β∗

h
(1/2)<U ′

β∗

h

(
xh

0

)
<0

then we can now proceed analogously to the previous case.

x0
h

x1
h

yh

UΒ*hHxL

UΒ*hH1�2L

1�2

Figure 3.2.

If 1
2 <xh

0 <xh
1 the inflection point of Uβ∗

h
(x) is in

(
1
2 ,xh

0

)
and we have two

new possibilities. The first one is (see Figure 3.3)

U ′
β∗

h
(1/2)≤U ′

β∗

h

(
xh

0

)
<0;

therefore we can apply a similar argument as in the above cases.

The second one is (see Figure 3.4)

U ′
β∗

h

(
xh

0

)
<U ′

β∗

h
(1/2)<0

moreover since by definition we have that

U ′
β∗

h
(1/2)=

Uβ∗

h
(1/2)

1
2 −xh

1

<0.

But we know that Uβ0
(1/2)=0 and U ′

β0
(1/2)=−β0. By (3.23) we obtain

−1+O(β∗
h−β0)=

U ′
β∗

h
(1/2)−U ′

β0
(1/2)

β∗
h−β0

=

Uβ∗

h
(1/2)

1
2
−xh

1

+β0

β∗
h−β0

. (3.25)
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x1
h

x0
h

yh

UΒ*hHxL

1�2

Figure 3.3.

x0
h

yh

UΒ*hH1�2L

UΒ*hHxL

1�2

Figure 3.4.

Therefore

Uβ∗

h
(1/2)

1
2 −xh

1

=−β∗
h +O(β∗

h−β0)
2
,

so xh
1 − 1

2 =O
(
h2

)
.

Hence, this lemma follows.

Proposition 3.13. There exists 1≤γ <2 such that

|β∗
h−β0|=o(hγ) . (3.26)

Proof. If there exists γ as in (3.26), by (3.22) it will be less than two. For the
proof that γ≥1, it suffices to prove that β∗

h−β0 =o(h).

It is immediate that U ′
β∗

h
(1/2)→−β0 and U ′

β∗

h

(
xh

0

)
= −β∗

h. We define

g (h)=U ′
β∗

h

(
xh

0

)
−U ′

β∗

h
(1/2)=−β∗

h−U ′
β∗

h
(1/2) .

Since U ′′
β∗

h
(0)=0 and by (3.24) we have that

0=U ′′
β∗

h

(
xh

0

)
≃

U ′
β∗

h
(1/2)−U ′

β∗

h

(
xh

0

)

O(h2)
=

−g (h)

O(h2)
;
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thus g (h)=o
(
h2

)
. Using the definition of g(h) and (3.25) we calculate the order of

β∗
h−β0 :

β0−β∗
h =β0 +U ′

β∗

h
(1/2)+g (h)

=
(
U ′

β∗

h
(1/2)−U ′

β0
(1/2)

)
+g (h)

=−(β∗
h−β0)+O(β∗

h−β0)
2
+g (h) ,

so

g (h)=O(β∗
h−β0)

2
.

Therefore β∗
h−β0 =o(h). Thus, the proposition follows.

Approximation from the discrete ground states to the continuous one

We are now, are in a position to show the main result for this section.

Proposition 3.14. In the above conditions we have that the difference between the
evaluation of the continuous soliton EhR and the discrete soliton Rh has a first order
of approximation.

|Rh−EhR|2,h =O(h) →
h→0

0. (3.27)

Proof. By definition

|Rh−EhR|22,h =

2N−1∑

j=1

h
∣∣∣uβ∗

h

j −R(jh)
∣∣∣
2

.

As in the proof of Proposition (3.8), if

∣∣eh
1

∣∣=
∣∣∣uβ∗

h

1 −R(h)
∣∣∣=O

(
h2

)
, (3.28)

then we have for each 1<j≤2n−1 that

∣∣eh
j

∣∣=
∣∣∣uβ∗

h

j −R(jh)
∣∣∣=O(h);

hence (3.27) follows. Therefore, we only need to show equality (3.28).

∣∣∣uβ∗

h

1 −R(h)
∣∣∣≤

∣∣∣uβ∗

h

1 −Uβ∗

h
(h)

∣∣∣+
∣∣Uβ∗

h
(h)−R(h)

∣∣ .

The first term satisfies
∣∣∣uβ∗

h

1 −Uβ∗

h
(h)

∣∣∣=O
(
h2

)
by (3.10), and the second one also

satisfies
∣∣Uβ∗

h
(h)−R(h)

∣∣=O
(
h2

)
, because

∣∣Uβ∗

h
(h)−R(h)

∣∣=
∣∣β∗

hh+O
(
h3

)
−β0h−O

(
h3

)∣∣

=h |β∗
h−β0|+O

(
h3

)
.

Using (3.26), limit (3.27) follows.
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4. Orbit, distance and Lyapunov function

We give the concepts of orbit and of distance from a point to the orbit of another
point for the discrete case, in the same way as was given in [1] and [12]. The system
(SDPNLS) has phase symmetry; thus by orbital stability we mean stability modulo
this symmetry.

Definition 4.1. Suppose vh ∈Sh. We define its orbit as the following set:

Gvh
=

{
vheiγ/γ∈ (0,2π]

}
. (4.1)

Definition 4.2. Let wh,vh ∈Sh. The distance from wh to the orbit Gvh
is defined by

ρ2
E (wh,Gvh

)= inf
γ∈(0,2π]

{〈
Ah

(
vheiγ −wh

)
,vheiγ −wh

〉
h
+E

〈
vheiγ −wh,vheiγ −wh

〉
h

}
.

(4.2)

Hamiltonian and norm two are two quantities that play a central role in the
analysis on the continuous case (see [1] and [12]); thus we can consider for the system
(SDPNLS) two similar concepts given by translating them from the continuous case.
These quantities are conserved by (SDPNLS), as we expected, and they are given by

Hh[φh]=

〈(
Ah−

1

σ+1
D(Rh)

)
φh,φh

〉

h

,

Nh[φh]= |φh|22,h .

In the same way as [1] and [12], we define a Lyapunov functional with these
quantities:

Eh[φh]=Hh[φh]+ENh [φh]. (4.3)

We will estimate Eh in terms of ρE . We can assume that a solution of (SDPNLS) is a
perturbation of the ground state Rh:

φh (t)eiγ =Rh +wh(t), where wh(t)=uh(t)+ ivh(t). (4.4)

Using the conservation of Eh, we can write the difference ∆Eh in the following form:

∆Eh = Eh [φ0]−Eh [Rh]
= Eh

[
φh(t)eiγ

]
−Eh [Rh]

= Eh [Rh +wh(t)]−Eh [Rh].

We obtain a lower bound for ∆Eh through a Taylor expansion in Rh:

∆Eh ≥
〈
Lh

+uh,uh

〉
+

〈
Lh
−vh,vh

〉
−C1‖wh‖3

1,h−C2‖wh‖6
1,h , (4.5)

where

Lh
− =Ah +EIh−D(Rh),

Lh
+ =Ah +EIh−(2σ+1)D(Rh).

Notice that functions Lh
− and Lh

+ :Sh →Sh are the real and imaginary parts of the
linearized (SDPNLS) operator near the ground state Rh.
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If we write the solution in the form (4.4) there exists γh ∈ (0,2π] that achieves the
distance (4.2) for Rh:

ρ2
E (Rh,Gvh

)= inf
{〈

Ah

(
vh eiγ −Rh

)
,vh eiγ −Rh

〉
h
+E

〈
vh eiγ −Rh,v eiγ −Rh

〉
h

}
.

(4.6)
the minimum is taken over all phases γ∈ [0,2π) and it provides an orthogonal condition

〈D(Rh)Rh,vh〉h =0, (4.7)

where vh is the imaginary part of the perturbation of the solution in (4.4).
We want to obtain lower bounds for the quadratic forms

〈
Lh
−uh,uh

〉
h

and〈
Lh

+vh,vh

〉
h

as follows:

〈
Lh

+uh,uh

〉
h
+

〈
Lh
−vh,vh

〉
h
≥C3‖wh‖2

1,h−C4‖wh‖3
1,h−C4‖wh‖4

1,h , (4.8)

because plugging (4.8) into (4.5) we get a suitable lower bound of ∆E and then,
applying the techniques introduced in [12], we can obtain an orbital stability result.
Thus, it is sufficient to calculate a bound like (4.8).

5. Constrained variational problem for the quadratic forms

In order to obtain a bound like (4.8) we need to analyze the spectrum of Lh
−

and Lh
+. The technique that we use is adapted to the discrete problem and differs

considerably from the technique used in [1] for the continuous periodic case.
In the remainder of this work we assume, without loss of generality by the property

of symmetry, that Sh ⊆C
2n−1 and that we can take the corresponding inner product

and norm in the interval [0,1/2] .

5.1. Lower bound for Lh
−. Using the tridiagonal form of the matrix Lh

−(uh),
we prove that its eigenvalues are singles.

Lemma 5.1. Eigenvalues of the matrix Lh
−(uh) are singles, and eigenvectors of two

different eigenvalues are orthogonal.

Proof. Suppose that uh and vh ∈Sh are nonzero eigenvectors of eigenvalue λ. If
u2n−1 6=0 and v2n−1 6=0 then there exist α 6=0and β 6=0 such that

αu2n−1 +βv2n−1 =0.

Since

(Ah +EIh−D(Rh)−λI)(αuh +βvh)=0,

using the tridiagonal form of this matrix we have that

αuh +βvh =0.

Thus uh and vh are linearly dependent, so the eigenvalues are single. If u2n−1 =0
or v2n−1 =0 we have two possibilities. If u2n−2 6=0 and v2n−2 6=0, we can proceed
analogously to the above case with a similar argument. If u2n−1 6=0 and v2n−1 =0,
we define ṽh =uh +vh; this is an eigenvector of the same eigenvalue λ and ṽ2n−1 6=0;
thus it is covered in a previous case.

For the orthogonality we can use a standard argument (see for instance [10]).
Since Lh

−Rh =0, we have that Rh is an eigenvector of eigenvalue λ=0. Actually,
we will prove that this is the first eigenvalue of Lh

−.
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Lemma 5.2. The first eigenvalue of Lh
− in Sh is λ=0 with eigenvector Rh. Moreover,

an eigenvector of the first eigenvalue has all its coefficients with the same sign, and
they never vanish at the inner nodes.

Proof. By definition Rh is an eigenvector of the eigenvalue zero of the operator
Lh
−. Our goal in this lemma is to prove that zero is the first eigenvalue of this operator.

For this, we can consider the Rayleigh quotient for Lh
−:

Ra(vh,h)=
〈Ahvh +Evh−D(Rh)vh,vh〉h

|vh|22,h

. (5.1)

If λ is the first eigenvalue for Lh
− in Sh, we know that

λ= min
vh∈Sh

Ra(vh,h), (5.2)

and this minimum is achieved in an eigenvector ṽh. But it is easy to check that the
vector |ṽh| is a minimum of (5.2); thus |ṽh| is also an eigenvector of the eigenvalue
λ. Therefore, by Lemma 5.1, we can conclude that ṽh = |ṽh| or ṽh =−|ṽh|, so ṽh

does not change the sign in Sh. Moreover, due to the tridiagonal form of the matrix
Ah +EIh−D(Rh), all the coefficients of ṽh are nonzero

We shall have established this lemma if we show that λ=0. We suppose that
λ 6=0; then by Lemma 5.1, and since ṽh and Rh are orthogonal, but both do not
change sign, so we have a contradiction. Hence, zero is the first eigenvalue of Lh

− in
Sh with eigenvector Rh. Therefore, Lh

− is a non negative operator in Sh.

Let Lh denote the subspace of Sh that satisfies condition (4.7):

Lh ={v∈Sh/〈D(Rh)Rh,v〉h =0}=(D(Rh)Rh)
⊥∩Sh.

The first eigenvalue λh
1 of Lh

− in the subspace Lh is given by the minimum of the
Rayleigh quotient

λh
1 = inf

vh∈Lh

〈
Lh
−vh,vh

〉
h

|vh|22,h

.

Since Rh /∈Lh we have that λh
1 >0. We will prove that there exists a constant C >0

such that λh
1 ≥C.

Proposition 5.3. If λh
1 is the first eigenvalue of Lh

− in Lh, there exists a constant
C >0 such that λh

1 ≥C, for h>0 small enough.

Proof. We consider the usual basis of finite element functions {ϕi}1≤i≤k−1 in

Vh ⊂H1
0 [0,1/2]. If w∈Vh we have that w(x)=

∑k−1
i=1 w(xi)ϕi(x) (see [3]). By the

Rayleigh-Ritz principle (see [7]), the first eigenvalue of Lh
− in the finite element space

is

λh
e1 =min

〈w〉
max
α∈R

R(αw)= min
w∈Vh

‖w‖
2
=1

R(w),

where R is the Rayleigh quotient for the continuous operator L− (see [1]) evaluated
at the finite elements, i.e., if w=

∑
qiϕi,

R(w)=

∑
i

∑
j

qiqj

∫ (
ϕ′

iϕ
′
j +Eϕiϕj −R2σϕiϕj

)
dx

∑
i

∑
j

qiqj

∫
ϕiϕjdx

. (5.3)
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Let λ1 denote the first eigenvalue of the continuous operator in the subspace
(
R2σ+1

)⊥
(see [1]). We know that (see [7])

λh
e1≥λ1 >0.

Our goal is to prove that there exists a constant C >0 such that λh
1 ≥C for h small

enough. Thus, it is sufficient to show that λh
e1 and λh

1 are close if h is small. In this
case we can take, for instance, C = λ1

2 .
Let uh ∈Sh, thus (see Section 2) we have Gh(uh)∈Vh such that Gh(uh)(xi)=ui,

so Gh(uh)(x)=
∑n−1

i=1 uiϕi(x). Evaluating (5.3) at Gh(uh) we have that

R(Gh(uh))=
〈Ahuh +Euh−D(EhR)uh,uh〉h +O(h)

|uh|2h− h2

6 |u′
h|

2
h

.

Since (3.27) and (5.1), we obtain

Ra(uh,h)−R(Gh(uh)) →
h→0+

0.

Therefore we conclude that
∣∣λh

1 −λh
e1

∣∣ is small for h small enough. Hence, the propo-
sition follows.

Remark 5.1. By Proposition (5.3) we have that

〈
Lh
−vh,vh

〉
h
≥C |vh|22,h ∀vh ∈Lh,

and from this bound we conclude,

〈
Lh
−vh,vh

〉
h
≥C ‖vh‖2

1,h ∀vh ∈L. (5.4)

5.2. Lower bound for Lh
+. From a simple computation we can see that〈

Lh
+Rh ,Rh

〉
h
<0. In this section we will prove that Lh

+ defines a positive quadratic

form in R⊥
h , the subspace of Sh orthogonal to Rh.

With the notation of Proposition (5.3), we know that (see [7])

λ1≤λh
e1≤λ1 +2δh2λ2

1. (5.5)

Now we can proceed analogously to the previous section. Using inequality (5.5) we
obtain a lower positive bound for

〈
Lh

+v,v
〉

h
at R⊥

h ,

〈
Lh

+uh,uh

〉
h
>C |uh|22,h , uh ∈R⊥

h .

We require of an additional condition for the solution φh(x,t),

〈φh(t),φh(t)〉h = 〈Rh,Rh〉h t∈R. (5.6)

By (4.4) and (5.6) we have that

〈uh,Rh〉h =−1

2
[〈uh,uh〉h +〈vh,vh〉h]. (5.7)

Now, in the same way as [12], we can prove the following results.
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Proposition 5.4. Let σ <2. If φh(t) satisfies (4.4) and (5.6) with uh ∈Sh, then there
are constants D,D1 and D2 >0, such that

〈
Lh

+uh,uh

〉
h
≥D‖uh‖2

1,h−D1 〈Ahwh,wh〉h |w|22,h−D2 |w|42,h . (5.8)

Proof. Without loss of generality we can assume that 〈Rh,Rh〉h =1. We write

uh =(uh)‖+(uh)⊥

with

(uh)‖ = 〈uh,Rh〉hRh (5.9)

=−1

2
[〈uh,uh〉h +〈vh,vh〉h]Rh

and

(uh)⊥ =uh−(uh)‖

=uh−
1

2
[〈uh,uh〉h +〈vh,vh〉h]Rh.

We have that

〈
Lh

+uh,uh

〉
h
=

〈
Lh

+ (uh)‖ ,(uh)‖

〉

h

+2
〈
Lh

+ (uh)‖ ,(uh)⊥

〉

h
+

〈
Lh

+ (uh)⊥ ,(uh)⊥
〉

h
,

and there exists d>0 verifying

〈
Lh

+ (uh)⊥ ,(uh)⊥
〉

h
≥d〈(uh)⊥ ,(uh)⊥〉h (5.10)

=d

[
〈uh,uh〉h +

1

4
[〈uh,uh〉h +〈vh,vh〉h]

2

]
.

By (5.7), (5.9) we have that

〈
Lh

+ (uh)‖ ,(uh)‖

〉

h
=

1

4

〈
Lh

+Rh,Rh

〉
h
[〈uh,uh〉h +〈vh,vh〉h]

2
. (5.11)

Finally, from (5.7) we conclude that

〈
Lh

+ (uh)⊥ ,(uh)‖

〉

h
= 〈uh,Rh〉h

〈
Lh

+ (uh)⊥ ,Rh

〉
h

(5.12)

≥−d′ 〈Ahwh,wh〉h |w|22,h−d′′ |w|42,h .

Now, the lower bound (5.8) follows from (5.10), (5.11) and (5.12).

6. Main results

We are now in position to prove a stability theorem by the discrete operator.
Once this stability result is proved, we will show the convergence of the numerical
solutions to the solution of the continuous problem (PNLS). In order to prove the
stability theorem we will proceed analogously to [12].
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Theorem 6.1. Let σ be small enough and let φh(t) be the solution of (SDPNLS) with
initial data φ0∈Sh. Then there exists a ground state Rh that is orbital stable, i.e., for
any ε>0 there is a δ(ε)>0, such that if |φ0|22,h = |Rh|22,h and ρE (φ0,GRh

)<δ(ε) then

ρE (φh(t),GRh
)<ε for all t>0.

We will say that the soliton orbit is stable.

Proof. Suppose that the minimum of (4.6) is achieved in γh. From (5.4) and (5.8),
substituting in (4.5), we have

∆Eh ≥
〈
Lh

+uh,uh

〉
+

〈
Lh
−vh,vh

〉
−C1‖wh‖2

1,h−C2‖wh‖6
1,h

≥C3‖wh‖2
1,h−C4‖wh‖2

1,h−C5‖wh‖6
1,h .

Hence

∆Eh ≥g (ρ(φh(t),GRh
)), (6.1)

where

g(t)= ct2
(
1−at2−bt4

)
with a,b,c>0.

Notice that g(0)=0, and g(t)>0 for 0<t≪1. We can obtain the stability from (6.1):
let ε>0 be small enough; then the continuity of Eh in Sh implies that there exists
δ(ε)>0 such that ∆Eh <g(ε) for ρE(φ0,GRh

)<δ(ε). Since ∆Eh does not depend on t,
from (6.1) we conclude that g (ρE(φh(t),GRh

))< g(ε) for t>0.

Hence, since ρE(φh(t),GRh
) is a continuous function of t,

ρE(φh(t),GRh
)<ε for t>0, (6.2)

and the soliton Rh is orbital stable.

Theorem 6.2. Let Eh :H1
0 [0,1/2]→Sh be the evaluation operator at nodes {xj = jh}j

and φ(x,t), be the solution of (PNLS) with initial data φ0 (x); then for all t>0

∣∣eiγhφh (t)−eiγEh (φ(x,t))
∣∣
2,h

→
h→0

0

where γh and γ are the values of the phases where the distance is achieved in the
discrete and continuous cases respectively.

Proof. From (3.27) and (6.2), and by the continuity of the evaluation operator
Eh and the orbital stability in the continuous case (see [1]), we have the following
inequalities,

∣∣eiγhφh(t)−eiγEh(φ(t))
∣∣
h
≤

∣∣eiγhφh(t)−Rh

∣∣
2,h

+ |Eh(R)−Rh|2,h+

+
∣∣Eh(R)−eiγEh(φ(t))

∣∣
2,h

≤ρE (φh(t),GRh
)+ |Eh(R)−Rh|2,h +CρE (φ(t),GR) →

h→0
0,

and the proof is complete.
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