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ON THE EXISTENCE OF TRANSIENT SOLUTIONS OF A TUNNEL
FIRE MODEL∗
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Abstract. In this paper we present a global existence and uniqueness result of solutions to a
system consisting of a coupled nonlinear PDE and a nonlinear ODE. This system is a one-dimensional
fluiddynamic model for tunnel fires and was presented in [6] and then anaylsed in [2]and [5] with
respect to the applications.
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1. Introduction
Due to some serious fire accidents in the near past tunnel fires have become an

interesting topic not only for CFD engineers. In the last decades various mathematical
models based on a gas-dynamic description of the air in the tunnel have been proposed.
A good overview on the modeling approaches is given in [4, 8]. A recent survey on
computer codes for tunnel fire simulations can be found in [7]. In this context the
internet platform [1] should be mentioned also.

On one hand complex CFD codes need detailed (often non-available) input data
and produce very detailed flow results for a single situation. Nevertheless, many
questions from the application cannot be answered. On the other hand such codes
are expensive and need a lot of know how to be used. These are some of the reasons
why there is a revival of simple one-dimensional fluid dynamic models which are fast
and in general not worse than CFD codes in answering certain questions from the
application.

One of these one-dimensional models was introduced in [6]. To our knowledge this
is one of the first models derived from underlying fluid dynamic equations. The single
dimension refers to the longitudinal spacial extension. This model is derived in such
a way that it allows us to combine both a good description in the low Mach number
regime and significant heat transport. The results obtained by now show that the
model seems to keep the main features of tunnel fires. A good (at least qualitative)
agreement with results from experiments has been obtained (see [6, 3]). Stationary
solutions of the model equation have been discussed in [2].

Let ρ, u, p, T be the (dimensionless) density, velocity, pressure and the temper-
ature of the flow in the tunnel, respectively. Then the leading order equations in a
small Mach number expansion are given by

ρt +uρx =−ρq, (1.1)

ut +uux +
1
ρ
px =−pdv

u|u|
2
−fd sinα (1.2)

ux = q (1.3)
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610 TUNNEL FIRE MODEL

with q = q(x,t) as time and space dependent (scaled) heat source. The equations have
to be supplemented by the equation of state for an ideal gas p=ρT . In the equation of
motion we have considered the pressure loss pdvu|u|/2 and the buoyancy force fd sinα
with a scaled pressure loss coefficient pdv and a (scaled) buoyancy parameter fd. For
more details on the derivation of the model and scaling see [6, 3].

As far as boundary data is concerned we prescribe Dirichlet data for the pressure
p at the entrance and the exit, homogenous Neumann conditions for the velocity u
(no fire at the entrance and exit) and standard inflow boundary conditions for the
density ρ (for t>0)

p(t,0)=pl(t),p(t,1)=pr(t), (1.4)
ux(t,0)=0,ux(t,1)=0, (1.5)

ρ(t,0)=ρr(t) if u(t,0)>0,ρ(t,1)=ρr(t) if u(t,1)<0. (1.6)

Initial data are prescribed for the density and the velocity

u(0,x)=u0(x), ρ(0,x)=ρ0(x), ∀x∈ [0,1]. (1.7)

Thus, our model consists of the equations (1.1)-(1.3), the boundary conditions (1.4)-
(1.6) and the initial conditions (1.7).

A first problem lies in the fact that we have two boundary conditions for the
pressure but only a first derivative of the pressure in the model. To get rid of this
problem we consider the following reformulation (restricted to one space dimension).
We eliminate the pressure by multiplying the equation (1.2) by ρ and integrating over
x∈ [0,1]. This gives

∫ 1

0

ρutdx+
∫ 1

0

ρuuxdx+pr−pl =−
∫ 1

0

pdvρ
u|u|
2

dx−
∫ 1

0

fd sinαρdx. (1.8)

Equation (1.2) gives

u(x,t)=v(t)+
∫ x

0

q(y,t)dy =v(t)+Q(x,t) (1.9)

where Q(x,t) is a known function. Then we obtain the system

ρt +(v+Q)ρx =−ρq, (1.10)

Rvt +Rqv+
∫ 1

0

pdvρ
(v+Q)|v+Q|

2
dx=−RQt+Qq+fd sinα−pr +pl (1.11)

for ρ and v where R, Rq, RQt+Qq+fd sinα denote functionals applied to ρ(x,t) defined in
(2.1)- (2.2). This system consists of an Ode for v and a Pde for the density ρ. The only
boundary conditions needed are the inflow conditions (1.6) for the continuity equation.
The conditions on the pressure appear as parameters in (1.11). The condition on
the velocity (1.5) is automatically fulfilled by (1.9). In this paper we use this last
formulation (1.10)-(1.11) for the analysis.

The paper is organized as follows. In section 2 we present the existence and
uniqueness result.

2. Global existence and uniqueness
In this section we focus on the global existence and uniqueness of solutions of the

equations (1.1)-(1.2) with boundary conditions (1.4)-(1.6) and initial conditions (1.7).
We formulate the following conditions:
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(A1) On the data in the equations:
(i) Let q = q(x,t)≥0 be a smooth function on [0,1]× [0,∞) with suppq(.,t)⊂

(0,1)∀t∈ [0,∞).
(ii) Let pdv =pdv(x) be a smooth function on [0,1] with pdv(x)>0 ∀x∈

[0,1].
(iii) Let α=α(x) be a smooth function on [0,1] with −π

2 <α(x)< π
2 ∀x∈

[0,1].
(A2) On the boundary data:

(i) Let ρl =ρl(t)>0 and ρr =ρr(t)>0 be in C1[0,T ] for all T >0.

(ii) Let pl =pl(t) and pr =pr(t) be smooth functions for t∈ [0,∞].

(A3) On the initial data:
(i) Let u0 =u0(x)=v0 +

∫ x

0
q(y,0)dy for some constant v0.

(ii) Let ρ0 =ρ0(x)>0 be a piecewise continuous differentiable function for
x∈ [0,1].

In the following we use the notation

R(t)=
∫ 1

0

ρ(x,t)dx (2.1)

Rf (t)=
∫ 1

0

ρ(x,t)f(x,t)dx. (2.2)

Before presenting the main existence result we state a result concerning lower and
upper bounds of the solutions of the continuity equation (1.10). In the following we
use the notation fmax(T )=max(x,t)∈[0,1]×[0,T ]f(x,t).

Lemma 2.1. Let (A1)(i) hold. Let T >0. Then for a given v∈C[0,T ] the conti-
nuity equation (1.10) with initial ρ0 and boundary data (1.6) has a unique piecewise
continuously differentiable solution ρ on (x,t)∈ [0,1]× [0,T ]. It satisfies

0<ρmin(T )≤ρ(x,t)≤ρmax(T ), ∀(x,t)∈ [0,1]× [0,T ], (2.3)

with

ρmin(T )= min
t∈[0,T ],x∈[0,1]

(ρl(t),ρr(t),ρ0(x))e−qmaxT , (2.4)

ρmax(T )= max
t∈[0,T ],x∈[0,1]

(ρl(t),ρr(t),ρ0(x)). (2.5)

We also bring the proof since it involves the characteristics where the main ideas
of the existence analysis are based on.

Proof. Consider a time interval [0,T ]. The characteristic curves η =η(t,x0,t0) are
defined by

dη(t,x0,t0)
dt

=u(η(t,x0,t0),t)=v(t)+Q(η(t,x0,t0),t),





η(0,x0,0) = x0,
η(t0,0,t0) = 0,
η(t0,1,t0) = 1.

(2.6)

Given a continuous v =v(t) the right hand side in (2.6) is continuous (in η and t) and
Lipschitz-continuous in η. The Lipschitz constant L satisfies L≤ qmax(T ). Therefore
the characteristic curves are uniquely defined at every point (x,t) and do not intersect.
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The continuity equation (1.10) reads along the characteristics

dρ(η(t,x0,t0),t)
dt

=−q(η(t,x0,t0),t)ρ(η(t,x0,t0),t), (2.7)

with

ρ(η(0,x0,0),0) =ρ0(x0) for 0<η(t,x0,t0)<1 ∀t∈ [0,T ]
ρ(0,t)=ρ(η(t,0,t),t)=ρl(t) for u(0,t)>0,

ρ(1,t)=ρ(η(t,1,t),t)=ρr(t) for u(1,t)<0.

The density does not increase along the characteristics, it decreases at most expo-
nentially in the region with non-vanishing heat-source q. This implies the estimates
(2.3), (2.4), (2.5).

Now we state the main global existence result.

Theorem 2.1. Let (A1)-(A3) hold. Then for all T >0 there exists a unique solution
(ρ,v) – ρ piecewise continuous differentiable in [0,1]× [0,T ] and v∈C1[0,T ] – to the
equations (1.10)-(1.11) with boundary conditions (1.6) and initial conditions (ρ0,v0).

The proof of this theorem will be presented at the end of this section. As a
preparation we present a lemma and the corresponding local in time existence result.
The following lemma is an immediate consequence of lemma 2.1. It is stated without
proof.

Lemma 2.2. Under the above assumptions we have

0<ρmin(T )≤ R(t) , (2.8)
Rq(t) ≤ρmax(T )qmax(T ), (2.9)
RQq(t)≤ρmax(T )q2

max(T ), (2.10)
RQt(t)≤ρmax(T )qmax(T )qt;max(T ) ∀t∈ [0,T ]. (2.11)

In the following we omit the argument T and fmax has to be understood as
fmax =fmax(T ).

We start the existence analysis with a local (in time) result.

Theorem 2.2. Let (A1)-(A3) hold. Then there exists a δ >0 such that there is
a unique solution (ρ,v) – ρ piecewise continuous differentiable in [0,1]× [0,δ] and
v∈C1[0,δ] – to the equations (1.10)-(1.11) with boundary conditions (1.6) and initial
conditions (ρ0,v0).

Proof. For the following analysis we consider the corresponding integrated equa-
tion (1.11)

v(t)=v0−
∫ t

0

1
R(s)

{Rq(s)v(s)

+
∫ 1

0

pdv(x)ρ(x,s)
(v(s)+Q(x,s))|v(s)+Q(x,s)|

2
dx

+RQt
(s)+RQq(s)+Rfd sinα(s)−pl(s)+pr(s)}ds. (2.12)
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We use a standard fixed point procedure to show local (in time) existence and
uniqueness of solutions of the equations (1.10)-(1.11). Let δ,σ >0 and we consider the
domain

D ={(v,t)|−δ≤ t≤ δ, v0−σ≤v≤v0 +σ} (2.13)

and v∈C(Iδ)=C[−δ,δ]. Then we choose a closed subset Y ⊂C(Iδ) with

Y ={v∈C(Iδ)|||v−v0||C(Iδ)≤σ}. (2.14)

We define the operator

S :Y →C(Iδ) (2.15)

with

(Sv)(t)=v0−
∫ t

0

1
R(s)

{Rq(s)v(s)

+
∫ 1

0

pdv(x)ρ(x,s)
(v(s)+Q(x,s))|v(s)+Q(x,s)|

2
dx

+RQt
(s)+RQq(s)+Rfd sinα(s)−pl(s)+pr(s)}ds

where ρ is given by the solution of the continuity equation (1.10) with boundary and
initial data satisfying (A2) and (A3).

The idea is to choose δ and σ in such a way, that the mapping S is a contraction.
We assume δ≤T . Using the definition of the operator S we estimate

|(Sv)(δ)−v0|≤ |
∫ δ

0

1
R(s)

{
Rq(s)v(s)+

∫ 1

0

pdv(x)ρ(x,s)
(v(s)+Q(x,s))|v(s)+Q(x,s)|

2
dx

+RQt(s)+RQq(s)+Rfd sinα(s)−pl(s)+pr(s)}ds|
≤ δ

ρmin
{ρmaxqmax[v0 +σ]+ρmaxpdv;max

[σ2 +2σ (v0 +Qmax)+(v0 +Qmax)2]
+ρmaxQt;max +ρmaxQmaxqmax +ρmaxfd−(pl−pr)max}. (2.16)

Given a σ it is easy to choose a δ such that ||Sv−v0||C(Iδ)≤σ. Thus S :Y →Y .
Next we show the contractivity of the mapping S. Clearly, the contractivity is

used in the iterative scheme

vi+1 =Svi, v0 =v0, i=0,1,2,..., (2.17)

i.e. first we solve

dηi(t,x0,t0)
dt

=vi(t)+Q(ηi(t,x0,t0),t),





ηi(0,x0,0) = x0

ηi(t0,0,t0) = 0
ηi(t0,1,t0) = 1

(2.18)

dρi(ηi(t,x0,t0),t)
dt

=−q(ηi(t,x0,t0),t)ρi(ηi(t,x0,t0),t), (2.19)

ρi(ηi(t0,x0,t0),t0)=





ρl(t0) for x0 =0
ρr(t0) for x0 =1
ρ0(x0) for t0 =0

(2.20)
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and then

vi+1(δ)=v0−
∫ δ

0

1
Ri(s)

{
Ri

q(s)v
i(s)

+
∫ 1

0

pdv(x)ρi(x,s)
(vi(s)+Q(x,s))|vi(s)+Q(x,s)|

2
dx

+Ri
Qt

(s)+Ri
Qq(s)+Ri

fd sinα(s)−pl(s)+pr(s)
}

ds (2.21)

where we denote by

Ri
f (δ)=

∫ 1

0

ρi(x,δ)f(x,δ)dx. (2.22)

From now on we have to prove basically two things:
1. First we estimate possible changes in the density – or in the integrated density

– due to the changes from iteration level i−1 to i such that
∫ 1

0

|ρi(x,t)−ρi−1(x,t)|dx≤ ct ||vi−vi−1||C(Iδ), ∀t∈ [0,δ] (2.23)

where c depends only on the data and

δ <
1

max(|v0 +σ|,|v0−σ|,qmax)
. (2.24)

2. Then all terms in the iteration-expression ||vi+1−vi||C(Iδ) will be reduced to
an estimate on the left hand side of (2.24).

We start with 1):
In a first step we assume that ρl and ρr are constant (in t). We choose a limit for the
length of the time interval (2.24) and consider the interval [0,1] at time t∈ [0,δ].

In order to estimate the quantity
∫ 1

0

|ρi(x,t)−ρi−1(x,t)|dx (2.25)

we split the the interval [0,1] (at time t) in different regions. Let for i=0,1,2,...

xi
l = inf

x0∈[0,1]
{ηi(t,x0,0)|0<ηi(s,x0,0)<1∀s∈ [0,t]} (2.26)

xi
r = sup

x0∈[0,1]

{ηi(t,x0,0)|0<ηi(s,x0,0)<1∀s∈ [0,t]}. (2.27)

We denote by xi
s =ηi

s(t,x0s,0),s=1,2,...,S the value at t of the characteristics which
satisfies xi

l≤ηi
s(t,x0s,0)≤xi

r, where x0s,s=1,2,..S are the discontinuities of the initial
density ρ0. We denote (see Figure 2.1)

Ωbl =(0,min(xi
l,x

i−1
l )) (2.28)

Ωbr =(max(xi
r,x

i−1
r ),1) (2.29)

Ωl =(min(xi
l,x

i−1
l ),max(xi

l,x
i−1
l )) (2.30)

Ωr =(min(xi
r,x

i−1
r ),max(xi

r,x
i−1
r )) (2.31)

Ωds =(min(xi
s,x

i−1
s ),max(xi

s,x
i−1
s )), s=1,2,...,S. (2.32)

Ωc =(0,1)−{Ωbl∪Ωbr∪Ωl∪Ωr

S⋃
s=1

Ωds}. (2.33)
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To simplify the notation of the characteristic curves in the following we omit the
arguments x0 and t0 and write simply ηi(s) instead of ηi(s,x0,t0) (x0 and t0 have to
understood from the context). We estimate (due to (2.18))

max
s∈[t0,t]

|ηi(s)−ηi−1(s)|≤ 1
1−qmax|t− t0|

{|t− t0|||vi−vi−1||C(Iδ) + |ηi(t0)−ηi−1(t0)|
}

(2.34)
where the second estimate is to be intended along the characteristic ηi or along the
characteristic ηi−1. Thus for ηi(t0)=ηi−1(t0) and under the condition (2.24)

max
s∈[0,t]

|ηi(s)−ηi−1(s)|≤ |t− t0|||vi−vi−1||C(Iδ) (2.35)

holds. It is easy to see that (constant boundary data for ρ)
∫

Ωbl

|ρi(x,t)−ρi−1(x,t)|dx=
∫

Ωbr

|ρi(x,t)−ρi−1(x,t)|dx=0. (2.36)

Applying (2.35) we obtain
∫

Ωds

|ρi(x,t)−ρi−1(x,t)|dx≤ρdiff ;max max
s∈[0,t]

|ηi
s(s)−ηi−1

s (s)|

≤ρdiff ;max t ||vi−vi−1||C(Iδ), s=1,2,...,S, (2.37)

where ρdiff ;max =ρmax−ρmin. Then we use

d

dt
(ρi(ηi(t),t)−ρi−1(ηi−1(t),t))=−q(ηi(t),t)ρi(ηi(t),t)+q(ηi−1(t),t)ρi−1(ηi−1(t),t)

=−q(ηi−1(t),t)[ρi(ηi(t),t)−ρi−1(ηi−1(t),t)]
−[q(ηi(t),t)−q(ηi−1(t),t)]ρi(ηi(t),t). (2.38)

Therefore (using q≥0)

|ρi(ηi(t),t)−ρi−1(ηi−1(t),t)|≤ |ρi(ηi(0),0)−ρi−1(ηi−1(0),0)|
+qx;maxρmax max

s∈[0,t]
|ηi(s)−ηi−1(s)|

≤ t ||vi−vi−1||C(Iδ)

(
max

x∈[0,1]
|(ρ0)x(x)|+(qx)maxρmax

)

(2.39)

and
∫

Ωc

|ρi(x,t)−ρi−1(x,t)|dx≤ t||vi−vi−1||C(Iδ)

(
max

x∈[0,1]
|(ρ0)x(x)|+(qx)maxρmax

)
.

(2.40)

It remains to estimate the differences on Ωl and Ωr. We consider now Ωl and assume
that xi

l <xi−1
l . Then we consider the two characteristics ηi

l1 and ηi
l2 (at iteration

level i) with ηi
l1(t)=xi

l and ηi
l2(t)=xi−1

l . Due to (2.24) these two characteristics
cannot reach the right boundary at x=1. There exists an s∈ [0,t] with ηi

l1(s)=0 and
|ηi

l2(s)|≤ |t|||vi−vi−1||C(Iδ) (same argument as in (2.35) for the characteristics ηi
l2 and
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-

6

x

t

x=0 x=1

xi
l xi−1

l xi
r xi−1

r

x0s

xi
s xi−1

s

Ωbl Ωl ΩbrΩrΩds

Fig. 2.1. Schematic view of the notations. The continuous and dashed lines correspond to the
iteration level i−1 and i, respectively.

ηi−1 with ηi−1(t)=xi−1
l ). Since ηi

l1 and ηi
l2 do not cross we have |ηi

l1(s)−ηi
l2(s)|≤

|t|||vi−vi−1||C(Iδ). Thus we conclude for the size of Ωl

|xi
l−xi−1

l |= |ηi
l1(t)−ηi

l2(t)|≤ |t|||vi−vi−1||C(Iδ)e
qmaxt (2.41)

and therefore
∫

Ωl

|ρi(x,t)−ρi−1(x,t)|dx≤ρdiff ;max |t|||vi−vi−1||C(Iδ)e
qmaxt. (2.42)

The same estimate holds for Ωr. This leads to an estimate of the type (t<δ)

∫ 1

0

|ρi(x,t)−ρi−1(x,t)|dx≤ ct ||vi−vi−1||C(Iδ), (2.43)

where c depends on T and on the data. Now we turn to the case of non-constant
boundary data. In this case we transform the problem by using

ρ(x,t)=ρ(x,t)− [(1−x)ρl(t)+xρr(t)] (2.44)

into

ρi
t +uiρi

x =−qρi−ui(ρr−ρl)− [(1−x)(ρl)t +x(ρr)t]−q[(1−x)ρl +xρr] (2.45)

with constant boundary data

ρ(0,t)=0, ρ(1,t)=0, ρ(x,0)=ρ0(x)− [(1−x)ρl(0)+xρr(0)]. (2.46)

Now we use the same estimation procedure as above in the case of constant boundary
data. The difference lies in the fact that the right hand side in the equation (2.45)
has changed. We see in (2.18) that the characteristic curves remain unchanged. The
only changes appear in (2.39)-(2.42) where the densities are involved. Equation (2.39)
remains unchanged due to

ρi(x,t)−ρi−1(x,t)=ρi(x,t)−ρi−1(x,t). (2.47)
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In (2.41) and (2.42) the quantity ρdiff ;max has to be revisited. Also ρmax in (2.41)
and (2.42) has to be replaced by the corresponding value of ρ. It is easy to see that

|ρi(x,t)|≤ρmax =ρ0;max + t[(ρl−ρr)max(|v0 +σ|+qmax)
+qmax(ρl;max +ρr;max +(ρlt;max +ρrt;max] (2.48)

and therefore ρdiffmax≤2ρmax. Along these lines we obtain instead of (2.39)

|ρi(ηi(t),t)−ρi−1(ηi−1(t),t)|≤ t ||vi−vi−1||C(Iδ) [ρ0x;max +qx;maxρmaxt

+(ρl−ρr)max(1+qmaxt+qmax(ρl;max +ρr;max

+(ρlt;max +ρrt;max]. (2.49)

Putting all the estimates together we finally obtain the desired result

∫ 1

0

|ρi(x,t)−ρi−1(x,t)|dx≤ ct ||vi−vi−1||C(Iδ), ∀t≤ δ (2.50)

where c depends only on the data.
Now we pass to 2):

In the following all terms to be estimated in the iteration-expression ||vi+1−vi||C(Iδ)

will be reduced to an estimate on the left hand side of (2.23). We start with

∫ δ

0

|Ri
f (s)−Ri−1

f (s)|ds≤ δfmax max
s∈[0,δ]

∫ 1

0

|ρi(x,s)−ρi−1(x,s)|dx (2.51)

and

∫ δ

0

|R
i
f (s)

Ri(s)
− Ri−1

f (s)
Ri−1(s)

|ds≤
∫ δ

0

|R
i
f (s)Ri−1(s)−Ri(s)Ri−1

f (s)
Ri(s)Ri−1(s)

|ds

≤ ρmax

ρ2
min

∫ δ

0

|Ri
f (s)−Ri−1

f (s)|ds

+
ρmaxfmax

ρ2
min

∫ δ

0

|Ri(s)−Ri−1(s)|ds (2.52)

and

|
∫ δ

0

(
Ri

q(s)
Ri(s)

vi(s)− Ri−1
q (s)

Ri−1(s)
vi−1(s))ds|≤

∫ δ

0

Ri
q(s)

Ri(s)
|vi(s)−vi−1(s)|ds

+
∫ δ

0

|vi−1(s)||R
i
q(s)

Ri(s)
− Ri−1

q (s)
Ri−1(s)

| ds

≤ δ
ρmaxqmax

ρmin
||vi−vi−1||C(Iδ)

+[v0 +σ]
∫ δ

0

|(Ri
q(s)

Ri(s)
− Ri−1

q (s)
Ri−1(s)

)|ds.

(2.53)
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Analogously

|
∫ δ ∫ 1

0

pdv(x)
(

ρi(x,s)
(vi(s)+Q(x,s))|vi(s)+Q(x,s))|

Ri(s)

− ρi−1(x,s)
(vi−1(s)+Q(x,s))|vi−1(s)+Q(x,s))|

Ri−1(s)

)
dxds|

≤
∫ δ

0

∫ 1

0

pdv(x)
1

Ri(s)
|ρi(x,s)−ρi−1(x,s)|(vi +Q(x,s))2dxds

+
∫ δ

0

∫ 1

0

pdv(x)
ρi−1(x,s)

Ri(s)
|vi(x,s)−vi−1(x,s)||vi +Q(x,s)|dxds

+
∫ δ

0

∫ 1

0

pdv(x)
ρi−1(x,s)

Ri(s)
|(vi +Q(x,s))(|vi(x,s)+Q(x,s)|−|vi−1(x,s)−Q(x,s)|)|dxds

+
∫ δ

0

∫ 1

0

pdv(x)| 1
Ri(s)

− 1
Ri−1(s)

|ρi−1(x,s)(vi(s)+Q(x,s))2dxds

≤pdv;max
1

ρmin
(v0 +σ+qmax)2

∫ δ

0

∫ 1

0

|ρi(x,s)−ρi−1(x,s)|dxds

+2pdv;max
ρmax

ρmin
(v0 +σ+qmax)δ ||vi−vi−1||C(Iδ)

+pdv;maxρmax(v0 +σ+qmax)2
∫ δ

0

∫ 1

0

| 1
Ri(s)

− 1
Ri−1(s)

|dxds. (2.54)

Summarizing the estimates (2.23)-(2.54) we obtain

||vi+1−vi||C(Iδ)≤ cδ ||vi−vi−1||C(Iδ), i=1,2,..., (2.55)

where the constant c depends only on the data, on δ and on T . Therefore, given a σ
choosing δ small enough the map S turns out to be a contraction.

The properties a) and b) allow us to conclude that there is a unique fixed point
of the map S in Y which represents the solution. This concludes the proof.

At the end we conclude with the proof of the main Theorem 2.1:

Proof. Here we have to show that the solution is extendible to the interval t∈ [0,T ].
We multiply (1.11) by v

|v| and obtain (for v 6=0)

|v|t + Rq

R
|v|=−

∫ 1

0

pdvρ
v

|v|
(v+Q)|v+Q|

2
dx− v

|v|
1
R
{RQt

+RQqRfd sinα−pl +pr}.
(2.56)

Obviously, the last term on the right hand side is bounded. The first term on the
right hand side can be estimated

−
∫ 1

0

pdvρ
v

|v|
(v+Q)|v+Q|

2
dx≤





0 for v≥0
pdv;maxρmaxq2

max for −qmax <v <0
0 for v≤−qmax.

(2.57)

Therefore, |v| grows at most exponentially and exists for every finite time interval.
Since also q≥0 holds, |v| remains bounded. This concludes the proof.
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3. Conclusions
We have shown a global existence and uniqueness result for solutions of model

equations for the description of tunnel fires. This result is a necessary basis for ongoing
studies on the model. A possible extension is to study tunnel-networks. In this case
we need a good knowledge of the model for the single “network-pieces”. Another
extension is to introduce control-mechanisms and to study the resulting dynamics.
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