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NUMERICAL ANALYSIS OF THE AB INITIO COMPUTATION OF
THE EFFECTS OF IONIZATION ON THE NONLINEAR

SUSCEPTIBILITY COEFFICIENTS OF THE HYDROGEN ATOM∗

PATRICK O. KANO† , MOYSEY BRIO‡ , AND JEROME V. MOLONEY§

Abstract. This paper provides a numerical analysis of a procedure for determining the effects
of ionization on the nonlinear susceptibility coefficients of the hydrogen atom. To solve the relevant
system of Schrödinger-type equations, we have developed a multidomain pseudospectral code with
high accuracy symmetric finite differences to update cell boundary points. Using a conservative time
stepping, one is then able to resolve the oscillatory solutions to the underlying equations, compute the
ionization probability, and accurately determine the polarization. To gain insight into the physical
mechanisms involved, we have calculated the full susceptibility and one which depends solely on the
electronic bound-bound transitions. Our analysis reveals that saturation of the susceptibility occurs
without including bound-continuum transitions. We have also found that a linear extrapolation of
the total susceptibility versus the ionization probability to obtain the instantaneous susceptibility is
quantitatively unreliable.
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1. Introduction
While the numerical simulation of the Schrödinger equation for the hydrogen

atom is a well-established field [2, 15, 24, 32], application to the computation of
nonlinear susceptibility coefficients is a new development. In recent papers, Nurhuda,
et. al. [30, 31] have proposed an algorithm for these coefficients based on an ab
initio determination of the atom’s response to an incident electric field. This has
required the solution of an auxiliary set of differential equations to the Schrödinger
equation and a linear extrapolation of the susceptibility to the limit of zero ionization
probability. Furthermore, they demonstrate that both the total and instantaneous
part of the susceptibility saturate at high intensities. In this paper, we investigate
the robustness of this novel procedure and show that to gain quantitatively accurate
values requires special consideration.

Our analysis has required the resolution of three main issues. First, due to the
sensitivity of the procedure and the demands on computing resources for a full simula-
tion of the Schrödinger equation, we have developed an accurate pseudospectral code.
Our approach utilizes a multidomain Legendre basis in space, Strang splitting in time,
and Gaussian quadrature to accurately determine spatial integrals [4, 5, 21, 40]. The
second problem is to separate the effects of ionization on the nonlinear susceptibility
from those due to high order terms in an expansion of the susceptibility with respect
to the intensity. This has involved the numerical evaluation of the procedure for the
instantaneous susceptibility and the introduction of a second polarization due solely to
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the bound-bound transitions of the electron. The last topic is an interpretation of the
results of our simulations and, when possible, a comparison with analytic predictions.

The structure of the paper is thus organized as follows. Section two reviews the
underlying physical description of nonlinear susceptibility and reiterates the procedure
introduced by Nurhuda, et. al. [30]. In section three, we describe the numerical
approach we have adopted to solve the Schrödinger equation. The fourth section
contains the majority of our sensitivity analysis and results. Finally, in the last
portion, we review our findings and draw conclusions.

2. Theory
In this section, we provide the theoretical framework for our analysis. First, we

review the linear phenomenological relationship which exists for low intensity light
between the susceptibility χ(ω), the electric field E(t), and the atomic dipole polar-
ization P (t). Second, we reiterate the approach by Nurhuda [31] to determine the
nonlinear susceptibility coefficients which become important at high intensities.

2.1. Low intensity phenomenological description. In this paper, we uti-
lize a semi-classical approach to the atom-light interaction. Throughout, the relevant
quantities are expressed in terms of atomic units (~= c=e=1) [28]. In particular, we
assume a classical electric field E(t) but make use of quantum states within the atom.

At low light intensities (I <<5 ·1013W/cm2), the description of the interaction of
light with the hydrogen atom is well characterized as linear and shift-invariant. The
response of the atom, its polarization ~P (t), to a weak external electric field is thus
described by a temporal convolution [26, 27]

~P (t)=
∫ t

0

χ̄(t−τ) ~E(τ)dτ. (2.1)

The three dimensional vectors ~P and ~E necessitate that the time-dependent Green’s
function χ̄(t) is a 4th rank tensor. For cases with spherical symmetry, such as the
hydrogen atom, one may replace the tensor by a scalar quantity χ(t). Furthermore, if
~E is linearly polarized so that ~E(t)=E(t)ẑ, then the vector equation can be replaced
with a scalar variant

P (t)=
∫ t

0

χ(t−τ)E(τ)dτ. (2.2)

The scalar temporal convolution can be transformed into a product by means of a
Laplace transform

P̂ (s)=χ(s)Ê(s) (2.3)

or more commonly for ω∈R

χ(ω)= lim
ε→0

P̂ (ε− iω)
Ê(ε− iω)

. (2.4)

The previous formalism is strictly correct only for a linear and shift invariant
system. Often however we wish to extend it to problems where the response to a
polarized electric field is nonlinear
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P (t)=
∫ t

0

χ(1)(τ)E(t−τ)dτ

+
∫ t

0

∫ t

0

∫ t

0

χ(3)(t,τ1,τ2,τ3)E(τ1)E(τ2)E(τ3)dτ1dτ2dτ3 + ··· . (2.5)

For systems with inversion symmetry, such as the hydrogen atom, the even indexed
susceptibility coefficients are zero.

The multiple integrals can be reduced to a single integration over time by assuming
that the nonlinear susceptibility consists of a convolution term of the form [35]

χ(3)(t,τ1,τ2,τ3)⇒χ(3)(τ2−τ3)δ(τ1−τ3)δ(t−τ2). (2.6)

Substituting this form for the nonlinear susceptibility into the definition of the polar-
ization yields

P (t)=
∫ t

0

χ(1)(t−τ)E(τ)dτ +
∫ t

0

χ(3)(t−τ)E2(τ)dτ ·E(t)+ ··· (2.7)

At this point, in order to gain a phenomenological relationship between P̂ (ω)
and Ê(ω), one makes use of the fact that the intensity of an electric field I(ω) is
proportional to the maximum of the square of the field

P (t)∝
∫ t

0

χ(1)(t−τ)E(τ)dτ +
∫ t

0

χ(3)(t−τ)δ(τ)dτ ·I(ω)E(t)+ ··· . (2.8)

Laplace transforming this last expression and assuming s=−iω yields

P̂ (ω)∝
[
χ(1)(ω)+χ(3)(ω)I(ω)+ ···

]
Ê(ω). (2.9)

Effectively, χ(ω) has been expanded into a Taylor series around the intensity I for a
fixed frequency ω

χ(ω)=χ(1)(ω)+χ(3)(ω)I(ω)+O(I3). (2.10)

2.2. High intensity phenomenological description. Up to this point, we
have not considered the possible effects that ionization may have on the polarization
or susceptibility. For low intensity light, little ionization occurs and the observed
nonlinear phenomena arise from the bound electrons in the atom. As the intensity
increases however ionization of the atom can be appreciable. To navigate the com-
putation of the susceptibility coefficients for the high intensity case, Nurhuda and
coworkers introduced the following approach.

In the case that the electron has been liberated, the system is no longer linear in
time and the convolution relationship between P (t) and E(t) is invalid. Instead one
would expect a complicated time dependence

P (t)=
∫ ∞

0

G(t,τ)E(τ)dτ. (2.11)

In the low intensity limit, the more general Green’s function G(t,τ) must be the
convolution relation in equation (2.5). This fact suggests that the relationship between
P̂ (ω) and Ê(ω) be replaced by

χ(ω,t)≡ P̂ (ω,t)
Ê(ω,t)

(2.12)
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where

P̂ (ω,t)=
∫ t

0

P (τ)e−iωτdτ (2.13)

Ê(ω,t)=
∫ t

0

E(τ)e−iωτdτ. (2.14)

A revealing form for this total susceptibility χ(ω,t) can be gained by expanding
the nonlinear terms of the Taylor series in equation (2.10) in terms of the ionization
probability Q(t).

χ(ω)=χ(1)(ω)+χ(3)(Q,ω) ·I(ω)+χ(5)(Q,ω) ·I3(ω)+O(I5) (2.15)

χ(ω)=χ(1) +
(

χ
(3)
0 +

dχ(3)

dQ
Q

)
I +

(
χ

(5)
0 +

dχ(5)

dQ
Q

)
I3 +O(I5)+O(Q2I) (2.16)

χ(ω)=
(
χ(1) +χ

(3)
0 I +χ

(5)
0 I3

)
+

(
dχ(3)

dQ
I +

dχ(5)

dQ
I3

)
Q+O(I5)+O(Q2I) (2.17)

This last equation can be recast into a definition which mirrors the one for the low
intensity case

χ(ω,t)=χ(1)(ω)+∆α(I,ω)+∆χ(Q(t),I) (2.18)

where

∆α(I,ω)=χ
(3)
0 (ω)I +χ

(5)
0 (ω)I3 +O(I5) (2.19)

∆χ(Q,I)=
(

dχ(3)

dQ
I +

dχ(5)

dQ
I3

)
Q+O(Q2I). (2.20)

An important test of the previous assumptions for the form of the susceptibility
is that χ(1)(ω) should be constant for any excitation with that carrier frequency.
Furthermore, the instantaneous nonlinear susceptibility ∆α(I) should be obtainable
from the limit of zero ionization probability

∆α(I;ω)= lim
Q(t)→0

(
χ(ω,t)−χ(1)(ω)

)
. (2.21)

This definition for χ(ω,t) is not unique nor necessarily the most informative.
Thus, we also introduce here a bound susceptibility due only to the polarization
computed from the electronic states bound to the atom

χb(ω,t)≡ P̂bound(ω,t)
Ê(ω,t)

. (2.22)

Since it does not depend on the continuum states, a comparison between this quantity
and the total susceptibility can reveal information about ionization induced effects.
Furthermore, this quantity has the advantage that the linear susceptibility χ

(1)
b (ω)
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can be computed exactly [7, 26]

χ
(1)
b (ω)=

∞∑
n=2

fn

ω2
n−ω2

(2.23)

ωn =
1
2

(
1− 1

n2

)
(2.24)

fn =
2ωn

3
|
∫ ∞

0

S10rSn1dr|2 (2.25)

where the function Sn,l is the usual shell amplitude of the hydrogen bound state φn,l,m

φn,l,m(~r)=
Sn,lYl,m

r
(2.26)

Sn,l = rl+1e−r/n

(
2
n

)l 2
n2

√
(n− l−1)!

(n+ l)!
L2l+1

n−l−1(2r/n) (2.27)

n,l,m are the usual quantum numbers and La
n(x) are the generalized Laguerre polyno-

mials [9]. Using Mathematica [41], the sum can be easily computed to high precision.

2.3. Quantum mechanics model. The previous phenomenological discus-
sion of χ(ω) has presupposed that the polarization P (t) is a known quantity. This
can be measured in an experimental situation or, if the system is properly modeled,
computed numerically. In this paper, we follow works [14, 15, 24] and solve the
Schrödinger equation to compute Pbound(t) and P (t).

In the quantum mechanical description, the dipole polarization P (t) for a single
hydrogen atom under the influence of a linearly polarized electric field is

P (t)= 〈Ψ|~r · ẑ|Ψ〉 (2.28)

where Ψ is the solution to the time-dependent Schrödinger equation

i
∂Ψ
∂t

=HΨ (2.29)

The inner product in spherical coordinates is defined as

〈ψa|ψb〉=
∫ 2π

0

∫ π

0

∫ ∞

0

ψa(~r)∗ψb(~r)r2 sin(θ)drdθdφ. (2.30)

For the hydrogen atom interacting with light, the Hamiltonian operator H consists of
two components Hatom and Hinteraction. The atomic Hamiltonian describes the atom
in the absence of the external field while the interaction Hamiltonian incorporates the
coupling of the field to the atom. Assuming the atom to be spherically symmetric,
the atomic Hamiltonian can be written

Hatom =Hr +
l(l+1)

2r2
+V (r) (2.31)

Hr =− 1
2r2

d

dr
(r2 d

dr
) (2.32)

where V (r) is a radially dependent atomic potential. Including only the Coulomb
interaction of the proton and electron, V (r)=− 1

r . For the interaction Hamiltonian,
we assume that it is described by the time-dependent potential

Hi =−~r · ~E(t). (2.33)
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If the electric field is polarized ~E(t)=E(t)ẑ, then Hi =−rcos(θ)E(t).
The full three-dimensional simulation of the Schrödinger equation is computa-

tionally demanding and not necessary for the hydrogen atom. Due to its spherical
symmetry, an effective one-dimensional simulation of the radial dynamics is sufficient.
Following de Vries [14], we assume that Ψ can be written as a product of a radial
function Rl.m

r (r,t) and the spherical harmonics Yl,m(θ,φ).

Ψ=
∞∑

l=0

l∑

m=−l

Rl,m

r
Yl,m (2.34)

The function Rl,m

r is the projection of the total wave function onto the Yl,m angular
momentum basis state. Furthermore, in the absence of an external excitation, Rl,m

is the usual shell amplitude familiar from the analytic solution of the unperturbed
hydrogen atom [9]. Assuming that the incoming light is linearly polarized, m=0 is
the only relevant m index and Rl,m is fully characterized by a single variable Rl.

To determine an equation for Rl, one substitutes assumption (2.34) into the
Schrödinger equation

HΨ=
∑

l

(Hr +
l(l+1)

2r2
+V (r))

Rl

r
Yl,0 +Hi

∑

l

Rl

r
Yl,0 (2.35)

HΨ=
∑

l

(Hr +
l(l+1)

2r2
+V (r))

Rl

r
Yl,0−rE(t)cos(θ)

∑

l

Rl

r
Yl,0 (2.36)

and taking the inner product of the resulting equation with Yĺ,0 over the angular
coordinates

〈
∑

l

i
∂

∂t

Rl

r
Yl,0,Yĺ,0〉θ,φ

=
∑

l

Hr
Rl

r
〈Yl,0,Yĺ,0〉θ,φ +

∑

l

〈 l(l+1)
2r2

Rl

r
Yl,0,Yĺ,0〉θ,φ

+
∑

l

〈V (r)
Rl

r
Yl,0,Yĺ,0〉θ,φ−rE(t)

∑

l

Rl

r
〈Yl,0|cos(θ)|Yĺ,0〉θ,φ. (2.37)

The dipole approximation has been used to bring the electric field E(t) outside the
spatial integral. To evaluate further, one can make use of the analytic expression for
the angular momentum coupling coefficients with m=0

Cl,ĺ = 〈Yl|cos(θ)|Yĺ〉=





l+1√
(2l+3)(2l+1)

, ĺ= l+1
l√

(2l+1)(2l−1)
, ĺ= l−1

0, else

(2.38)

To avoid coupling to states which are not computed C0,−1 =CNl,Nl+1 =0.
Finally, using the orthogonality of the spherical harmonics yields the desired radial

equation

i
∂Rl

∂t
=−rE(t)(Cl+1Rl+1 +Cl−1Rl−1)− 1

2
∂2Rl

∂r2
+

(
l(l+1)

2r2
+V (r)

)
Rl. (2.39)
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The resulting numerical problem to solve is a system of equations parameterized by l

∂Rl

∂t
=

i

2
∂2Rl

∂r2
− iṼl(r)Rl + irE(t)(Cl+1Rl+1 +Cl−1Rl−1) (2.40)

with an effective potential Ṽl(r)= l(l+1)
2r2 +V (r). The actual details of the numerical

solution are discussed in section (3). However, assuming that Ψ is known, one can
determine the ionization probability Q(t), polarization P (t), and susceptibility χ(ω),
as follows.

The wave function Ψ lives in the complete Hilbert space with orthogonal bases
consisting of discrete and continuous states. For hydrogen, the bound states are
known analytically and thus one can, in principle, explicitly compute the ionization
probability Q(t) by the equation[19]

Q(t)=1−
∞∑

n=1

n−1∑

l=0

|〈φn,l(~r)|Ψ(r,t)〉|2 (2.41)

Q(t)=1−
∞∑

n=1

n−1∑

l=0

|anl|2. (2.42)

However, utilizing the ansatz for Ψ (2.34), a computationally more efficient expression
is derivable.

Ψ=Ψb +Ψi =
∞∑

l=0

Rl

r
Yl,0 (2.43)

Ψb =
∞∑

n=1

k<n∑

k=0

an,kφn,k =
∞∑

n=1

k<n∑

k=0

an,k
Sn,k

r
Yk,0 (2.44)

Ψi =
∞∑

l=0

Rl

r
Yl,0−

∞∑
n=1

k<n∑

k=0

an,k
Sn,k

r
Yk,0 (2.45)

Taking the inner product over the angular coordinates of this last equation with Yq,0

∮
Yq,0ΨidΩ=

∞∑

l=0

Rl

r

∮
Yq,0Yl,0dΩ−

∞∑
n=1

k<n∑

k=0

an,k
Sn,k

r

∮
Yq,0Yk,0dΩ (2.46)

and using the orthonormality of the spherical harmonics reveals that the radial func-
tions Rl(r) can be expressed as a sum of two simple terms

Rq(r)=
∞∑

n=q+1

an,q(t)Sn,q(r)+r

∮
Yq,0Ψi(~r)dΩ. (2.47)

The expression for an,q can be obtained by applying the spatial part of the inner
product

an,q =
∫ ∞

0

Sn,qRqdr−
∫ ∞

0

∮
Yq,0 ·Sn,q

r
Ψi(~r)r2drdΩ (2.48)

an,q =
∫ ∞

0

Sn,qRqdr−
∫ ∞

0

∮
φn,qΨi(~r)r2drdΩ (2.49)

an,q =
∫ ∞

0

Sn,qRqdr. (2.50)
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The last step is justified by the orthogonality of the ionized and bound parts of Ψ. To
compute the ionization probability therefore requires an integration in one variable
for each coefficient.

An expression for the polarization P (t) can be derived by substituting the expan-
sion for Ψ into the definition P (t)= 〈Ψ|rcos(θ)|Ψ〉.

P (t)= 〈
∑

l

RlYl,0

r
|rcos(θ)|

∑

ĺ

RĺY ´l,0

r
〉 (2.51)

P (t)=
∑

l,ĺ

〈Rl

r
|r|Rĺ

r
〉〈Yl,0|cos(θ)|Yĺ,0〉 (2.52)

P (t)=
∑

l

(
Cl,l+1〈Rl

r
|r|Rl+1

r
〉+Cl,l−1〈Rl

r
|r|Rl−1

r
〉
)

(2.53)

P (t)=
L∑

l=0

∫ ∞

0

R∗l (Cl,l+1Rl+1 +Cl,l−1Rl−1)rdr (2.54)

P (t)=2
L−1∑

l=0

∫ ∞

0

Cl,l+1<(R∗l Rl+1)rdr (2.55)

It is important to note that this total polarization P (t) includes contributions from
the bound-to-bound and the bound-to-continuum transitions.

However, if one considers equation (2.47) for Rl(r), it is clear that a new radial
function which depends solely on the bound states can also be defined

ρl(r)=
∞∑

n=l+1

an,lSn,l. (2.56)

The bound polarization Pbound(t) in the calculation of χb(ω) from section (2.2) is then
given by

Pbound(t)=2
L−1∑

l=0

∫ ∞

0

Cl,l+1<(ρ∗l ρl+1)rdr. (2.57)

2.4. Practical sensitivity issues. While the approach of the previous sec-
tions is correct from an analytic perspective, it may be numerically unrealizable.

First to consider is the error to the polarization P (t) from a small radially depen-
dent perturbation ε(r) : [0,∞)→C to each Rl solution

R̃l =Rl +εl(r). (2.58)

This type of additive noise can be easily generated by an explicit time stepping method
with inherent damping. It can also be generated by finite domain effects such as
unphysical reflections and truncated infinite integrals. The computed polarization is
then

P̃ =2
∞∑

l=0

Cl+1

∫ ∞

0

<(R̃∗l R̃l+1)rdr (2.59)

P̃ =2
∞∑

l=0

Cl+1

∫ ∞

0

<(R∗l Rl+1 +ε∗l Rl+1 +εl+1R
∗
l +ε∗l εl+1)rdr (2.60)
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and the absolute error is approximately

2
∞∑

l=0

Cl+1

∫ ∞

0

(ε∗l Rl+1 +R∗l εl+1)rdr. (2.61)

An interesting observation is that the algorithm for the bound polarization will
not treat an identical perturbation in the same manner. The difference arises from
the fact that the errors are distributed to all projection coefficients with the same l
values as the Rl state

R̃l =Rl +εl (2.62)

ãn,l =an,l +
∫ ∞

0

Sn,lεldr. (2.63)

The reconstructed bound part of the solution ρl(r) therefore includes the compounded
error

ρl =
∞∑

n=0

ãn,lSn,l (2.64)

ρl(r)=
∞∑

n=0

an,lSn,l(r)+
∞∑

n=0

(∫ ∞

0

Sn,lεldr

)
Sn,l(r). (2.65)

Defining a new coefficient

αl(r)≡
∞∑

n=0

(∫ ∞

0

εlSn,ldr

)
Sn,l(r). (2.66)

then

P̃b =2
∞∑

l=0

Cl+1

∫ ∞

0

<(ρ̃∗l+1ρ̃l)rdr (2.67)

P̃b =Pb +
∞∑

l=0

Cl+1

∫ ∞

0

(α∗l ρl+1 +ρ∗l αl+1)rdr+O(α2). (2.68)

The final result of this analysis is that, while the form for the errors of P (t) and
Pb(t) are the same, the coefficients are different: εl(r) versus

αl(r)=
∞∑

n=0

(∫ ∞

0

Sn,lεldr

)
Sn,l(r).

The change in the value for the polarization due to this difference in the coefficients
is seen in the results from section (4.1).

In contrast, an implicit method will alter the phase of the computed solution but
not the amplitude

Rl→Rle
iη. (2.69)

Performing an identical analysis for a constant phase shift reveals that the errors to
P (t) and Pb(t) are less dramatic and thus presumably also for a radially dependent
phase shift.
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Considering the instantaneous susceptibility, ∆α(I), it is determined from a linear
extrapolation

lim
Q→0

χ=χ(1) +∆α(I). (2.70)

Extrapolation is a notoriously sensitive numerical procedure [33] and thus one should
also provide the relevant statistical measures of the accuracy of the value obtained.
Therefore, we calculate the correlation coefficient

c=
σxy

σxxσyy
(2.71)

and the standard error of the extrapolated y-intercept (b)

SE =

√
σyy−bσxy

σxx(N−2)
. (2.72)

In these equations x̄ and ȳ are the mean values of the N data points and

σxy =
∑

n

(xn− x̄)(yn− ȳ). (2.73)

An absolute value of the correlation coefficient close to unity indicates a strong linear
relationship between y and x. To perform the extrapolation, we use the regression
function from XMGRACE [42].

3. Numerical implementation
The accurate numerical solution of the equation

∂Rl

∂t
=

i

2
∂2Rl

∂r2
− iṼl(r)Rl + irE(t)(Cl+1Rl+1 +Cl−1Rl−1) (3.1)

from our previous analysis requires careful consideration. First, the equation is de-
fined on the semi-infinite domain [0,∞) with the boundary condition Rl(0)=0 for
all l states. A numerical algorithm must enforce this boundary and be reasonably
accurate in space in order to allow for an as large as possible computational domain
[0,L]. Second, the solution to the Schrödinger equation is conservative and amplitude
errors can have a large effect on the computation of the polarization. The numerical
propagator should thus also conserve the norm of the uncoupled Rl states. Third, al-
though the initial condition for all simulations is the atom in its ground state φn=1,l=0,
the coupling coefficients will excite states of arbitrarily high l number. No numerical
scheme can in practice be fully consistent with this requirement but must allow for
convergence of the results as the number of Rl states increases.

Considering these requirements, we have chosen a Strang-split second-order time
stepping with multidomain pseudospectral derivatives. In the interests of clarity and
reproducibility, we provide the following details.

3.1. Time stepping. Equation (3.1) involves a coupling in space through
the second derivative and a coupling across momentum states. It is numerically
advantageous to Strang split these two actions from each other.

Step 1 (δT/2) ∂Rl

∂t = irE(t)(Cl+1Rl+1 +Cl−1Rl−1)
Step 2 (δT ) ∂Rl

∂t = i
2

∂2Rl

∂r2 − iṼl(r)Rl
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Step 3 (δT/2) ∂Rl

∂t = irE(t)(Cl+1Rl+1 +Cl−1Rl−1)

Numerically solving the full system of equations without this splitting is computa-
tionally demanding as the matrix involved would require continual updates in time.
Obviously each step of the Strang splitting must be performed for each l state before
proceeding to the next.

There are two principle advantages to this splitting. First is that it is conservative.
Secondly, the coupling of the momentum states can be performed very efficiently.
Consider the corresponding matrix equation for a fixed r

∂ ~R

∂t
= iErC̄ ~R. (3.2)

The coupling matrix C̄ is a Hermitian matrix and thus has a Schur factorization
C̄ = Q̄D̄Q̄H which need only be computed once. More importantly, the matrix D̄
is a diagonal matrix of eigenvalues. The solution to the matrix equation with the
factorization is then

~R(t+δt)=QeirD̄
R t+δt

t
E(τ)dτQ∗ ~R(t). (3.3)

The pulse shape E(t) is known and thus the integral in the propagator could be
computed analytically. However, since Strang splitting will add a second order error
term, we opt for an approximation of the integral using Simpson’s rule

∫ t+δt/2

t

E(τ)dτ ≈ δt

2

(
E(t)

6
+

2E(t+δt/4)
3

+
E(t+δt/2)

6

)
. (3.4)

The more problematic term for a time-stepping algorithm is the effective potential
which becomes large as r→0. The result is an imaginary eigenvalue which grows as
the spacial grid is refined and which, for an explicit method, must be scaled by the
time step δt to bring the product into the domain of stability. An implicit solver which
does not suffer from the severe stability requirement imposed by the potential near
the origin is the implicit Crank-Nicolson method. Although it requires the inversion
of a matrix, it has been found to be more efficient and accurate than other explicit
solvers.

Finally, to improve the speed of the simulations we do not update the solution
using the middle step of the time splitting at spatial points where it falls below a
given tolerance, typically the machine precision (≈10−16) [31]. For positions where
the solution falls below this value the derivative is assumed to be zero. This is justified
by the fact that the solution decays dramatically as r→∞. The savings in simulation
time of using this approximation is substantial.

3.2. Spatial derivatives. The Rl(r) radial solutions contain contributions
from both the bound atomic states and the high energy ionized free electron states.
Due to this wide variation in energy, the Rl states are potentially highly oscillatory. A
numerical method for the spatial derivatives of these functions must therefore be ca-
pable of resolving these oscillations. Since the computational domains are potentially
large, the numerical algorithm should also be accurate and require as little memory
as possible. For the smooth solutions to the Schrödinger equation, a pseudospectral
method has these qualities [18, 37, 40].

In our particular case, we have opted for a multidomain Legendre polynomial
approach [11, 22, 38]. The computational grid consists of joined cells of length two.
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The non-uniformly distributed points within each cell are the nodes of the Legendre
polynomial basis. The pseudospectral differentiation matrix is applied to the interior
points and a high-order finite difference stencil updates the boundaries. To define the
second derivative matrix, we take the product of two first derivative matrices. We
have found that this approach provides more than sufficient accuracy.

There are three principle advantages to using a Legendre polynomial basis. The
first advantage is that they are naturally defined on a finite interval [0,2]. They
therefore can be easily spliced together to cover the entire semi-infinite interval. In
contrast, the more common Fourier-Sine, Laguerre, or rational Chebyshev methods
involve an arbitrary scaling of the domain. Furthermore, these methods are sensitive
to the scaling parameter and thus require a complicated analysis to determine a
near-optimal value [3, 5, 25, 39]. Also, although no simple formula for the Legendre
polynomials weights and nodes exist, they can be easily determined numerically [11].

A second motivation for choosing the Legendre polynomials as a basis is their
relationship to Gaussian quadrature [36]. To compute the spatial integral over the
entire computational domain, we use Gauss-Legendre-Lobatto quadrature on each
closed element and sum the results. The Gauss-type quadrature rule

∫ b

a
w(x)f(x)dx≈∑

k Wkf(xk) with this basis has weight w(x)=1 and the coefficients Wk are known
to high precision [13]. The integral of the continuous Rl(r) functions can thus be
computed in a straightforward manner.

The third advantage of the multidomain Legendre basis approach is the banded-
ness of the resulting differentiation matrix for the entire domain. Although the pseu-
dospectral differentiation matrix for each cell is dense, by applying a multidomain
approach, one can obtain a block-diagonal matrix for the entire domain. This is
particularly important for an efficient implementation of the Crank-Nicolson solver
which involves an inversion of this matrix. The block-diagonal differentiation matrix
is easily inverted using a standard complex valued banded matrix solver such as the
LAPACK function zgbsv [1]. The actual structure of the full matrix will of course
depend however on the choice of algorithm for the boundary points. We therefore
now turn to this issue.

To update the boundary point shared by two neighboring cells, we utilize a 9-point
finite difference stencil. Since the grid is not uniform, the coefficients of the stencil
are nontrivial but can be easily derived [17]. As for the choice of a Legendre basis for
the interior points, there are three motivations for this approach to the boundaries.

First and foremost is consistency. Although one could in principle solve the equa-
tions on the interior and then enforce continuity of the solution and its derivatives
to a finite order, it has been found that this leads to artificial cusps and inconsis-
tencies near the boundary points [21]. The finite-difference stencil naturally allows
information to pass across the boundary between cells.

Secondly, the symmetric stencil maintains the conservative nature of the differen-
tiation matrix. The common approach from fluid dynamics of applying a penalty at
the boundaries leads to artificial damping. Furthermore, we have found that these ad
hoc boundary schemes do not preserve the smoothness of the solution over long time
simulations.

Thirdly, since the distance between the boundary point and its nearest neighbor
goes as 1/N2 where N is the degree of the polynomial basis, the approximate derivative
obtained from the stencil is quite good. Using 16 points per cell, a test of the 9-point
stencil reveals that the errors are of the same magnitude as those incurred by our
second derivative pseudospectral matrix.
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Finally, since the computational domain is finite, the solution must be damped
at the end in order to avoid unphysical reflections from the Rl(rmax)=0 boundary
condition. We have chosen a filter of the form

α(r)=

{
1 r≤ (rmax−4)
1−e(r−(rmax−4))−4

else
(3.5)

This is different from the one utilized in [31] but performs well. The boundary con-
dition Rl(r =0)=0 is explicitly enforced.

4. Results
For all simulations in this section, unless otherwise stated, we utilize the parame-

ters in Table 4.1. The angular frequency ω and period τ in atomic units corresponding

Table 4.1. Simulation Parameters

Wavelength (nm) 800
Time steps per cycle 1024
Domain length (au) 3200

Rl states 35
Nodes per cell 8

Interface stencil width (points) 9
Bound states (φn,l) nmax 39

to this wavelength are approximately 0.0569538 and 110.321, respectively.
To excite the atom, we have considered two profiles for the electric field. The first

is the sine-square ramped electric field profile utilized by Nurhuda [31], shown in Fig.
4.1. The equation for this profile is

E(t)=sin(2πt/τ)

{
Emax ·sin2

(
πt

2·Tr

)
t≤Tr

Emax else
(4.1)

where the ramp time Tr is set to 3τ . The other pulse we have studied is Gaussian
and shown in Fig. 4.2. This excitation is given by the equation

E(t)=Emax sin(2πt/τ)exp

[
−0.5 ·

(
(t−0.5 ·(Tr +Tp)−0.25 ·τ)

σ ·Tp

)2
]
,

Tr =2τ,

Tp =4τ,

σ =1/5.

In order to accurately determine the temporal Fourier transform of the polariza-
tion and electric field, we wait a time of 5τ in addition to the 6τ from the Gaussian
pulse. The full time history of both pulses is thus 11τ .

For previous studies of high-harmonic generation by multiphoton ionization
[19, 24], the sine-square pulse has had the advantage of creating a large amount
of ionization. However, for the purposes of computing the transform of the polariza-
tion and electric fields, the Gaussian pulse has the distinct advantage of possessing
a unique and well-defined Fourier transform. For these reasons, the transforms com-
puted for the sine-square pulse do not include the initial ramp while those for the
Gaussian include the full time history.
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Fig. 4.1. Sine-Square Pulse Profile, I =8 ·106(w/cm2)
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Fig. 4.2. Gaussian Pulse Profile, I =8 ·106(w/cm2)

4.1. Numerical sensitivity analysis. A revealing test of our approach is
a comparison between the numerically determined values for the linear susceptibility
χ

(1)
b (ω) and those obtained from the analytic expression (2.23) in section (2.2). Table

4.2 compares the values for different ω computed with the two pulses and a Math-
ematica script. As expected, the values for χ

(1)
b (ω) are independent of the shape of

the pulse. Fitting the values of χ
(1)
b (ω) by a quintic polynomial and extrapolating to

ω =0 yields a value of 3.6701 for the sine-square pulse and 3.6703 for the Gaussian.
This is close to the exact value 3.6629 obtained from equation (2.23).

A similar analysis can be made for the total linear susceptibility χ(1)(ω). However,
the analytic expression is more difficult to compute as it involves an integration over
all continuum states. Thus, we have determined χ(1)(ω =0) from fitting the data in
Table 4.3 and again extrapolating with a quintic polynomial to ω =0. This yields
an estimate for the static polarizability from the sine-square pulse of 4.5084 and the
Gaussian pulse 4.5054, in close agreement with the exact value 4.5.
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Table 4.2. <
“
χ

(1)
b (ω,Tfinal)

”
I =1 ·104(w/cm2)

λ(nm) ω(a.u.) Exact Sine-Square Gaussian Pulse
200 0.227816 5.6258 5.6293063 5.6085268
400 0.113908 4.0103 4.0085727 4.0085195
600 0.075938 3.8096 3.8080204 3.8080155
800 0.056953 3.7441 3.7427883 3.7427877
1000 0.045563 3.7145 3.7135762 3.7135761
1200 0.037969 3.6987 3.6981273 3.6981273

Table 4.3. <`χ(1)(ω,Tfinal)
´
I =1 ·104(w/cm2)

λ(nm) ω(a.u.) Sine-Square Gaussian Pulse
200 0.227816 6.6031465 6.5827767
400 0.113908 4.8769182 4.8768649
600 0.075938 4.6596395 4.6595346
800 0.056953 4.5885195 4.5885189
1000 0.045563 4.5565801 4.5565800
1200 0.037969 4.5395751 4.5395751

To test convergence, we have increased the number of steps per oscillation and
studied the effect on χb with the full time history for the Gaussian pulse. The results
are given in Table 4.1. There are a couple of conclusions which can be drawn from
this data.

Table 4.4. χb and Relative Error vs Time Steps per Cycle, I =8 ·106(w/cm2), Gaussian
Pulse, Exact 3.7441, Analytic for 39 bound states 3.7421.

N χb Exact R.E. (%) χ
(1)
b (39) R.E. (%)

128 3.7837+2.8867 ·10−6i 1.0578 1.1118
256 3.7525+2.7126 ·10−6i 0.2249 0.2785
512 3.7447−9.9198 ·10−7i 0.01693 0.0704
1024 3.7428−1.9667 ·10−6i 0.03505 0.01838
2048 3.7423−2.1590 ·10−6i 0.04804 0.005380

First, that the susceptibility converges to an incorrect value reveals the inconsis-
tency of computing this quantity from only a fraction of the bound states. The value
is however the one obtained from the analytic formula for a finite number of bound
states. Increasing the number of bound states to improve the computed susceptibility
is possible but requires a dramatically larger domain as the radial position of the
maximum of the shell amplitude Sn,l is proportional to n2.

Second, the fact that the relative error of the real part of the computed suscepti-
bility decreases by almost exactly a factor of 4 as the number of time steps is doubled,
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suggests that the majority of the simulation error is due to the second order (δt)2 time
stepping.

Third, for low intensities, where little ionization occurs, the imaginary part of
the computed susceptibility should be close to zero. This is observed. However, the
very small size of the imaginary part brings it close to the limit of the accuracy of
the simulations. Any conclusions based on this value therefore should be made with
caution.

Table 4.5. Additive Noise: Projection Coefficient Magnitudes

n l noise=0 noise=10−8 noise=10−4

1 0 0.990000000763 0.990000008747 0.990079850612
2 0 6.6674 ·10−11 2.1306 ·10−8 2.1344 ·10−4

2 1 0.01 0.01000001795 0.01018
3 0 2.4918 ·10−11 2.7322 ·10−8 2.7305 ·10−4

3 1 2.2422 ·10−15 2.4180 ·10−8 2.4180 ·10−4

3 2 0 0 0
4 0 1.3961 ·10−11 2.8309 ·10−8 2.8318 ·10−4

4 1 1.1837 ·10−15 2.9732 ·10−8 2.9732 ·10−4

4 2 0 0 0
4 3 0 0 0

Table 4.6. Additive Noise: Polarization Sensitivity (n=2, l=1)

Noise Level 0 10−6 10−5 10−4 10−3

Full 0.0147497236748 0.014755259 0.01506729 0.044146 2.9308
Bound 0.0147497236826 0.014754703 0.01503925 0.041618 2.6808

Table 4.7. Additive Noise: Polarization Sensitivity (n=15, l=1)

Noise Level 0 10−6 10−5 10−4

Full 0.000429580641121 0.0004147664 0.00054365 0.027791
Bound 0.000429580640952 0.0004142325 0.00051583 0.025265

Finally, considering the analysis of the sensitivity of the polarization to noise in
section (2.4), we have chosen to investigate this numerically. In particular, we have
computed the polarization corresponding to a coupling between the ground state
R0 =0.99 ·S1,0 and an excited state Rl =0.01 ·Sn,l. We have then perturbed these
states with a uniformly distributed random variable η with fixed maximum amplitude.

Rl(r)→Rl(r)+η(r) (4.2)

The effect of these perturbations on the projection coefficients is shown in Table 4.5.
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The errors in the projection coefficients for the case without noise is due primarily
to the Gaussian quadrature. Table 4.6 and 4.7 reveal that the effect is more significant
for larger principle quantum numbers.

As expected from our previous analysis, the two algorithms for the total and
bound polarization respond differently to the additive noise. Furthermore, repeating
the same experiment with a random noise to the phase of the shell amplitudes reveals
that the computations are far less sensitive, see Table 4.8 and 4.9.

Table 4.8. Multiplicative Noise: Polarization Sensitivity (n=2, l=1)

Noise Level 0 10−3 10−2

Full 0.0147497236748 0.014749722797 0.01474963588
Bound 0.0147497236826 0.014749723008 0.01474965626

Table 4.9. Multiplicative Noise: Polarization Sensitivity (n=15, l=1)

Noise Level 0 10−3 10−2

Full 0.000429580641121 0.0004295806185 0.00042957838
Bound 0.000429580640952 0.0004295807258 0.00042958913

These results confirm our choice of the conservative Crank-Nicolson solver and
highlight the necessity of highly accurate spatial integration and derivatives.

2e+13 4e+13 6e+13 8e+13 1e+14

1

2

3

4

Full 
Bound

0 5e+13 1e+14 1.5e+14 2e+14 2.5e+14 3e+14

Intensity (w/cm
2
)

-150

-100

-50

0

χ

Full 
Bound

Fig. 4.3. Sine-Square Pulse: Instantaneous χ versus I(w/cm2)

4.2. Sine-square pulse results. With the theory established and the con-
vergence of the code confirmed, it is now possible to report our numerical findings. In
Fig. 4.3 is the instantaneous portion of the susceptibility from the sine-square pulse.
To be specific about the plotted values and thus make the results easier to reproduce,
we include them in Table 4.10 and 4.11.
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Table 4.10. Sine-Square Pulse: Instantaneous χ versus I(w/cm2), 3 Cycles Deleted

I(w/cm2) χ(Tfinal) χ Instant Correlation Standard Error
1 ·102 4.5885 4.4454 -0.2978 0.1873
1 ·104 4.5885 4.4584 -0.2516 0.2043
1 ·106 4.5885 4.4546 -0.2623 0.2011
1 ·108 4.5885 4.5054 -0.2771 0.1177
1 ·1010 4.5886 10.3971 -0.2879 7.8867
1 ·1012 4.5940 -57.2130 0.1704 145.8835
1 ·1013 4.6451 -5.2503 0.6192 5.1215

1.5 ·1013 4.6752 2.4380 0.6479 1.0721
2 ·1013 4.7033 4.5502 0.4348 0.1268

2.5 ·1013 4.7329 4.5866 0.5007 0.1000
3 ·1013 4.7538 4.6407 0.4596 0.08744

3.5 ·1013 4.7352 4.7305 0.1456 0.06410
4 ·1013 4.6490 4.7800 -0.3601 0.06095

4.5 ·1013 4.6664 4.7298 -0.06633 0.07449
5 ·1013 4.4106 4.7538 -0.6778 0.07729

5.5 ·1013 4.0019 4.7313 -0.8564 0.09376
6 ·1013 3.9452 4.6034 -0.7218 0.1331

6.5 ·1013 3.5685 4.4587 -0.7238 0.1741
7 ·1013 1.9543 4.3839 -0.9356 0.2029

7.5 ·1013 0.9708 4.1443 -0.9443 0.2499
8 ·1013 1.2228 3.7560 -0.8635 0.3293

8.5 ·1013 -0.3011 3.4648 -0.8926 0.4196
9 ·1013 -3.3581 3.2339 -0.9384 0.5627

9.5 ·1013 -5.4926 2.5820 -0.9440 0.6428
1 ·1014 -6.2603 1.8236 -0.9233 0.7730

1.5 ·1014 -48.8051 -9.0673 -0.9438 3.4011
2 ·1014 -117.5356 -28.9546 -0.9250 9.2575

2.5 ·1014 -158.5233 -60.7687 -0.8273 17.8161
3 ·1014 -178.8479 -116.4518 -0.4841 29.1142

The instantaneous values are obtained by taking the limit of the susceptibility
averaged over a carrier cycle with respect to the averaged ionization probability.

χ(1) +∆α(I)= lim
Q̄c→0

χ̄c (4.3)

Q̄c =
1
N

N−1∑
n=0

Q(c ·τ +nδt) (4.4)

χ̄c =
1
N

N−1∑
n=0

χ(c ·τ +nδt) (4.5)
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Table 4.11. Sine-Square Pulse: Instantaneous χb versus I(w/cm2), 3 Cycles Deleted

I(w/cm2) χb(Tfinal) χb Instant Correlation Standard Error
1 ·102 3.7427 3.5916 -0.2981 0.1975
1 ·104 3.7427 3.6053 -0.2520 0.2155
1 ·106 3.7427 3.6013 -0.2627 0.2121
1 ·108 3.7427 3.6550 -0.2775 0.1241
1 ·1010 3.7428 9.8933 -0.2883 8.3393
1 ·1012 3.7487 -63.7857 0.1705 159.3329
1 ·1013 3.8038 -6.8518 0.6217 5.4795

1.5 ·1013 3.8363 1.4999 0.6531 1.1043
2 ·1013 3.8698 3.6903 0.4941 0.1253

2.5 ·1013 3.9072 3.7318 0.5799 0.09631
3 ·1013 3.9428 3.7949 0.5823 0.07929

3.5 ·1013 3.9691 3.8850 0.5200 0.05240
4 ·1013 3.9752 3.9457 0.3320 0.04636

4.5 ·1013 4.0377 3.9386 0.5526 0.05733
5 ·1013 4.0602 3.9863 0.5166 0.05347

5.5 ·1013 4.0556 4.0291 0.3673 0.05945
6 ·1013 4.1157 4.0249 0.5015 0.07604

6.5 ·1013 4.0889 4.0225 0.4454 0.08359
7 ·1013 3.9121 4.0645 -0.1155 0.07989

7.5 ·1013 3.9878 4.0685 0.1860 0.08443
8 ·1013 4.1202 4.0739 0.4792 0.1053

8.5 ·1013 3.9651 4.0997 0.1525 0.1103
9 ·1013 3.5650 4.1291 -0.5736 0.1210

9.5 ·1013 3.5494 4.0696 -0.4925 0.1179
1 ·1014 3.6934 3.9985 0.1166 0.1178

1.5 ·1014 1.2398 3.7281 -0.9529 0.1188
2 ·1014 -3.0858 3.3605 -0.9917 0.1646

2.5 ·1014 -5.1076 3.2541 -0.9895 0.2765
3 ·1014 -5.3155 2.7236 -0.9828 0.3718

The saturation of the full susceptibility is in agreement with the previous work by
Nurhuda, et. al. [31] and as one can see from Table 4.11, the correlation coefficient has
a magnitude near one for high intensities. This confirms the near linear dependence of
the susceptibility on the ionization probability that one would expect from the Taylor
series expansion (2.10). The wild behavior of the susceptibility for low intensities
is a purely numerical artifact due to the fact that the ionization probability is near
or below the accuracy of the simulations. The growth of the standard error as the
intensity increases can also be easily explained. As the intensity of the incident light
increases, so too does the ionization probability. Fitting a line to the (Q,χ) data for
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larger Q values means that determining χ for Q=0 is an extrapolation over a larger
∆Q interval. Even small errors in a linear fit can thus be magnified by this distance
into a considerable extrapolation error. The conclusion is thus that there exists only
a window of ionization probability values for which the extrapolation procedure is
robust.

More interesting is the correlation which exists between the ionization and χb for
large intensities (>1014(w/cm2)). While the low correlation coefficient for moderate
intensities demonstrates an independence of χb from the ionization probability, the
correlation at high intensities suggests that it is incorrect to attribute saturation solely
to ionization. Diagrams which are more revealing of the ionization effects on χ and
χb are in Fig.4.4 and Fig.4.5, which show the saturation of the susceptibility versus
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Fig. 4.4. Sine-Square Pulse: χ Averaged versus Cycle, Instant χ Cubic Polynomial Least
Squares Fit, χ(I)=4.6008+6.0116.10−15I +1.7899.10−28I2−5.1205.10−42I3
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Table 4.12. Sine-Square Pulse: Instant χ vs NRamp, I =8 ·1013(w/cm2)

NRamp 1 2 3 4 5
Cycles Removed

NRamp
χ 4.8133 4.1194 3.7560 3.5849 3.5384

Correlation -0.9988 -0.9398 -0.86358 -0.8621 -0.8879
Std. Error 0.03965 0.2309 0.3293 0.3369 0.3149

NRamp + 1
χ 4.8632 4.6019 4.4423 4.2852 4.1913

Correlation -0.998839 -0.9996706 -0.9999255 -0.9999877 -0.9999927
Std. Error 0.04594 0.024032 0.01141 0.004725 0.003725

NRamp + 2
χ 4.7759 4.5553 4.4197 4.27897 4.1919

Correlation -0.9997089 -0.9999486 -0.9999944 -0.9999887 -0.9999883
0.02654 0.01113 0.003712 0.005376 0.005886

Table 4.13. Sine-Square Pulse: Instant χb vs NRamp, I =8 ·1013(w/cm2)

NRamp 1 2 3 4 5
Cycles Removed

NRamp
χb 4.2359 4.1092 4.07392 4.0543 4.0414

Correlation 0.1767 0.4544 0.4792 0.4945 0.4976
Std. Error 0.05013 0.09307 0.1053 0.1068 0.1121

NRamp + 1
χb 4.3414 4.3041 4.2932 4.2757 4.2732

Correlation -0.9958 -0.9693 -0.9374 -0.8713 -0.8489
Std. Error 0.002931 0.005861 0.007926 0.0105 0.01174

NRamp + 2
χb 4.3377 4.3122 4.3059 4.2938 4.2938

Correlation -0.9953 -0.9792 -0.9735 -0.9641 -0.9652
Std. Error 0.003548 0.006492 0.007344 0.008385 0.008643

time.
Finally, we have analyzed the effect of the number of ramp cycles on the values

for χ and χb. The results are presented in Table 4.12 and 4.13. What is interesting
to note from these tables is the sensitivity to the shape of the pulse. While the
correlation coefficient is always near one and thus clearly indicates a linear dependence
on the ionization probability, the ramp up of the pulse persists in the history of the
polarization even when the amplitude has been fixed to a constant value. Even more
surprising, is the fact that χb has a strongly linear dependence if a sufficient number
of initial cycles are eliminated from the extrapolation procedure.
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Turning to the time evolution of the polarization itself, Fig. 4.6 and 4.7, we
find that the total and bound polarizations follow the electric field for low intensi-
ties. However, the complex behavior for large intensities makes a qualitative analysis
difficult and the evaluation of the transform from a finite time history more difficult
to justify. In the next section, we have therefore considered a Gaussian pulse, which
exhibits a more simply interpreted behavior.

4.3. Gaussian pulse results. In order to ascertain if the results for the
sine-square pulse are specific to that excitation, we repeat the simulations with the
same parameters for the Gaussian pulse. From Fig. 4.8 and 4.9, which depict the
total and bound polarizations, a clearer picture of the atom’s response emerges. In
particular, we find that for high intensities, since the polarization is proportional to
the expected position of the electron and the electron may be ionized and free to move
away from the nucleus, the total polarization grows linearly. In contrast, the bound

0 110.32 220.64 330.96 441.28 551.6 661.92 772.24 882.56 992.88 1103.2 1213.5
time

-6e-05

-4e-05

-2e-05

0

2e-05

4e-05

6e-05
E(t)
P(t)
P

bound
(t)

Fig. 4.6. Sine-Square Pulse: Polarization versus Time, I =8 ·106(w/cm2)

0 110.32 220.64 330.96 441.28 551.6 661.92 772.24 882.56 992.88 1103.2 1213.5
time

-0.4

-0.2

0

0.2

0.4 E(t)
P(t)
P

bound
(t)

Fig. 4.7. Sine-Square Pulse: Polarization versus Time, I =8 ·1013(w/cm2)



P. KANO, M. BRIO AND J. MOLONEY 75

0 110.32 220.64 330.96 441.28 551.6 661.92 772.24 882.56 992.88 1103.2 1213.5
time

-4e-05

-2e-05

0

2e-05

4e-05

6e-05 E(t)
P(t)
P

bound
(t)

Fig. 4.8. Gaussian Pulse: Polarization versus Time, I =8 ·106(w/cm2)
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Fig. 4.9. Gaussian Pulse: Polarization versus Time, I =8 ·1013(w/cm2)
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Fig. 4.12. Gaussian Pulse: χ(t) vs Q(t) for Pulses of Varying Width, I =8 ·1013(w/cm2)

polarization oscillates around a value near zero.
With respect to the saturation of the susceptibility, this behavior is also observed

for the Gaussian pulse in Fig. 4.10 and 4.11. Since the bound part of the susceptibility
saturates as a function of intensity, we can conclude that the effect is not particular
to the sine-square pulse and not solely due to the induced ionization.

Where the Gaussian pulse and sine-square pulse differ is in the long term behavior
of the value for the total and bound susceptibilities. These quantities converge to a
fixed value as the time progresses unlike for the sine-square pulse where it continues
to decay. Similarly, the ionization probability Q(t) attains a constant value due to
the finite width of the pulse. Therefore, a linear extrapolation of the susceptibility
versus the ionization probability is not feasible, see Fig. 4.12. The failure of the linear
extrapolation is also supported by the data in Table 4.14.

5. Conclusions
From this study, we have been able to draw three main conclusions.
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Table 4.14. Gaussian Pulse: Instantaneous χ versus I(w/cm2)

I(w/cm2) χ(Tfinal) χ Instant Correlation Standard Error
1 ·102 4.5885 -92.4301 -0.3722 80.6040
1 ·104 4.5885 -9.6489 -0.3678 81.9046
1 ·106 4.5885 6.1534 0.01872 28.4999
1 ·108 4.5885 4.7095 0.1618 0.3210
1 ·1010 4.5886 4.5455 0.1635 0.03744
1 ·1012 4.5917 4.5462 0.1630 0.03912
1 ·1013 4.6210 4.5684 0.1580 0.04218

1.5 ·1013 4.6381 4.5813 0.1558 0.04411
2 ·1013 4.6562 4.5943 0.1569 0.04630

2.5 ·1013 4.6758 4.6065 0.1671 0.04896
3 ·1013 4.6974 4.6162 0.1949 0.05234

3.5 ·1013 4.7218 4.6201 0.2508 0.05679
4 ·1013 4.7515 4.6085 0.3582 0.06307

4.5 ·1013 4.7873 4.5662 0.5286 0.06955
5 ·1013 4.8251 4.5025 0.7011 0.06905

5.5 ·1013 4.8692 4.4532 0.8093 0.06191
6 ·1013 4.9331 4.4284 0.8492 0.05687

6.5 ·1013 5.0098 4.4288 0.8131 0.06122
7 ·1013 5.0709 4.4451 0.7018 0.07135

7.5 ·1013 5.1259 4.4614 0.5277 0.08175
8 ·1013 5.2224 4.4754 0.2722 0.09355

8.5 ·1013 5.3478 4.4946 -0.06714 0.1082
9 ·1013 5.4107 4.5197 -0.3836 0.1237

9.5 ·1013 5.3959 4.5413 -0.5858 0.1397
1 ·1014 5.4364 4.5558 -0.6954 0.1593

1.5 ·1014 4.5238 4.8095 -0.9347 0.4960
2 ·1014 -3.8445 5.2490 -0.9585 1.0968

2.5 ·1014 -23.2516 5.8449 -0.9681 1.8378
3 ·1014 -53.0440 6.5360 -0.9742 2.5869

First, with respect to the computation of the total and bound polarizations, we
have found that the multidomain Legendre method with Crank-Nicolson time stepping
is well suited. The method resolves the spatially oscillatory Rl states and is sufficiently
accurate to propagate on the time scale of the fast carrier wave. More importantly,
the conservative nature of the algorithm minimizes amplitude errors which are not
well tolerated by the calculation of the polarization.

Second, we have found that both the total and bound susceptibilities exhibit
saturation for high intensity light. This proves therefore that it is not necessary to
include bound-continuum transitions to observe this effect. Since the saturation occurs
for both the Gaussian and sine-square pulses, it is also not particular to an electric field
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profile. The onset of the behavior however occurs for the total susceptibility at smaller
intensities I∼5 ·1013(w/cm2) than for the bound susceptibility I∼1014(w/cm2).

Regarding the determination of the instantaneous component of the susceptibility
from a linear extrapolation of χ or χb versus the ionization probability Q(t), we have
determined that this procedure is quantitatively unreliable. Instead we have observed
that this approach is highly sensitive to the shape of the electric field pulse and the
magnitude of the ionization probability. For small values of Q(t)(∼10−6), it is not
possible to distinguish simulation errors from the true values; while for large Q(t),
the extrapolation error is considerable. There is thus only a window of Q values for
which the extrapolation procedure is meaningful.

Considering future work, the application of a high order time stepping algorithm
is an improvement which would greatly accelerate the computations [23]. Our simula-
tions have revealed that the majority of the errors incurred are due to the second order
time stepping. The evaluation of the commutator in the Strang splitting between the
spatial derivative and the angular momentum coupling terms of the Rl equations
however presents a formidable challenge. Another application of the multidomain
pseudospectral approach may be the simulation of multiple atoms. In this case, the
savings in computer memory from the high order spacial discretization would be par-
ticularly advantageous. Finally, the next logical step in a further investigation is a
comparison of the bound susceptibility computed from analytic means versus the nu-
merically obtained curves. This may serve to establish to what extent the saturation
is ionization induced or generated by high order nonlinear instantaneous susceptibility
coefficients.
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