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GLOBAL WEAK SOLUTIONS TO THE RELATIVISTIC
VLASOV-MAXWELL SYSTEM REVISITED *

GERHARD REIN f

Abstract. In their seminal work [3], R. DiPerna and P.-L. Lions established the existence
of global weak solutions to the Vlasov-Maxwell system. In the present notes we give a somewhat
simplified proof of this result for the relativistic version of this system, the main purpose being to
make this important result of kinetic theory more easily accessible to newcomers in the field. We
show that the weak solutions preserve the total charge.
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1. Introduction

When a plasma is sufficiently rarefied and/or sufficiently hot like in the solar wind
or in a powered-up fusion reactor collisions among the plasma particles are sufficiently
rare to be neglected. The only interaction among the particles then is through the
electromagnetic fields which the particles create collectively. For the sake of simplicity
we restrict ourselves to a plasma consisting of just one particle species, say, electrons,
and we allow for the possibility that the particles move at relativistic speeds. The
time evolution of the plasma is governed by the relativistic Vlasov-Maxwell system:

Of+D- 0 f+(E+DXB)-0pf =0, (1.1)
O F —curl B=—47j, 0;B+curl E=0, (1.2)
divE =4mp, divB=0, (1.3)

plt.z) = / f(ta,p)dp, j(t,x)= / 57 (t,2,p) dp. (1.4)

Here f= f(t,x,p) denotes the density of the particles on phase space, t €R, z,p€R3
stand for time, position, and momentum,

b

VT
is the velocity of a particle with momentum p, F=E(t,x) and B= B(t,x) are the
electromagnetic fields, p=p(t,z) and j=j(t,z) denote the spatial charge density and
current, and units are chosen such that all physical constants such as the speed of
light and the charge and rest mass of an individual particle are normalized to unity.
The analysis can immediately be adapted to a plasma with several species of particles.
We are interested in the Cauchy problem for the above system, i.e., in the existence
of solutions satisfying the initial conditions

f|t:0=f; E\t:OZEa B\t:OZB (1-5)
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146 THE RELATIVISTIC VLASOV-MAXWELL SYSTEM REVISITED

where the initial data satisfy the constraint part (1.3) of the Maxwell equations.
Global existence and uniqueness of sufficiently smooth solutions to this initial value
problem is an open problem. Local existence and uniqueness of classical solutions
for smooth, compactly supported data was established in [12]. These solutions can
be extended globally in time provided the momentum support can be controlled,
which has been done for data which are small [13] or close to neutral [7] or close
to spherically symmetric [22]. In lower dimensions global classical solutions exist for
general data [8, 9, 10, 11]. Different approaches to the result in [12] were recently given
in [1, 16]. There is as yet no indication that classical solutions for general data in three
dimensions develop singularities. Nevertheless, it is natural to weaken the solution
concept in order to obtain global solutions. This was done by R. DiPerna and P.-
L. Lions [3]. The authors restricted themselves to the non-relativistic Vlasov-Maxwell
system where p is replaced by p and pointed out that their arguments apply to the
relativistic case as well. Many results on the Vlasov-Maxwell system are reviewed in
the monograph [5], in particular, global weak solutions are discussed following [3], but
using also arguments introduced in [17]. The techniques in [3] are closely related to
those used by the same authors in their seminal work on the Boltzmann equation [4],
and later these techniques have been adapted to a variety of other problems in kinetic
theory; we mention [2, 19] as being related to the present notes.

Given the fact that the global existence and uniqueness problem for the Vlasov-
Maxwell system in three dimensions is still open and the fact that in recent years many
young researchers have joined the field it should be useful to give a simplified proof of
the result of DiPerna and Lions. We emphasize that all the essential techniques we
are going to use are introduced in [3], but some non-trivial concepts and arguments
from [3] are avoided. We concentrate on the relativistic version of the system, firstly,
because being Lorentz invariant it seems better justified from a physics point of view,
and secondly, because the non-relativistic case was considered in detail in [3, 5]. In
passing we note that there are global existence results for classical solutions of the
Vlasov-Poisson system [21, 20, 23] but not yet for the so-called relativistic Vlasov-
Poisson system where p is replaced by p in the Vlasov equation, cf. [6].

We now discuss how the paper and the proof proceed and how our version differs
from the original one. In the next section we recall various a-priori bounds resulting
from conservation of energy and conservation of phase space volume by the charac-
teristic flow of the Vlasov equation. Then we introduce a regularized version of the
system which has global in time, smooth solutions. It will be important that these
regularized solutions exist on the whole time axis. In [3] the system was regular-
ized by adding a sufficiently large power of the Laplacian to the evolution part of
the Maxwell equations (1.2). This destroys the time reversibility of the system and
technically impedes the straight forward application of the velocity averaging lemma,
discussed below. We propose to regularize the system by smoothing the current j so
that conceptually we remain closer to the unmodified system. This regularization is
due to [15] and was used in the context of weak solutions in [5, 17, 18], but its tech-
nical advantages were not fully realized. Given a sequence of solutions to regularized
Vlasov-Maxwell systems along which the regularization vanishes in the limit we show
that the a-priori bounds hold uniformly. Hence we can extract a weakly convergent
subsequence whose limit is the candidate for the desired weak solution of the unmodi-
fied system. The main difficulty lies in passing to the limit in the nonlinear term in the
Vlasov equation. This difficulty can be overcome since additional compactness of the
approximating sequence is provided by the velocity averaging lemma. Its application
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is discussed in Section 5, and to make the present notes self-contained we give a proof
of the relevant relativistic version in an appendix. Since the proof rests on Fourier
transforming the Vlasov equation with respect to space and time it is advantageous
that our approximating solutions are defined on the whole time axis. In the set-up of
[3] a certain cut-off and extension maneuver was necessary. A second problem lies in
passing to the limit in moments of f like p and j, the difficulty being that the relevant
weights in p are not test functions. As opposed to [3] we derive weak convergence of p
and j directly from a-priori bounds for these quantities. In all this a minimal require-
ment is that the initial data have finite energy and finite total charge. The original
proof assumed in addition that f is square integrable. We assume that f is bounded,
and we completely avoid the non-trivial concept of renormalization which was nec-
essary in [3]—in the opinion of the present author the main motivation for studying
weak solutions is not to allow for the greatest possible generality in the initial data but
the lack of global existence results for stronger solution concepts. Having obtained a
weak solution we examine some of its properties in Section 6. Sufficient regularity is
established to make sense of saying that the solution satisfies the initial conditions.
Then we prove that for almost all times ¢ the total charge and more generally any
L%-norm of f(t) equals its initial value, a result which was not obtained in [3] and for
which we exploit the relativistic nature of the system. Since the Vlasov equation is a
conservation law on phase space it is a desirable feature of any “reasonable” solution
concept that solutions preserve the total charge. The energy at times t # 0 is bounded
by its initial value but is not known to be conserved, and neither are weak solutions
known to be unique.

To sum up, our proof is simplified compared to [3] in the sense that the only non-
trivial tool employed is velocity averaging. The rest of the proof consists of straight
forward exploitation of straight forward a-priori bounds.

2. Preliminaries and a-priori bounds

We introduce the main conservation laws for the relativistic Vlasov-Maxwell sys-
tem; the derivations are formal, and in which sense they hold depends on the type of
solution under consideration. Writing the Vlasov equation (1.1) in divergence form

Ocf +divy [pf]+divy [(E(t,x)+px B(t,z)) f]=0 (2.1)
and integrating with respect to p yields local conservation of charge,
Op+div,j=0. (2.2)
On the level of the solutions of the characteristic system
t=p, p=E(t,x)+pxB(t,x)

of the Vlasov equation, conservation of charge is reflected in the induced flow on
phase space being measure preserving and f being constant along the flow. A lengthy
computation shows local conservation of energy,

Ore+div,o =0, (2.3)

where the corresponding energy density and flux are defined by

c(t.a)i= [ VIFRI () dp+ 5o (B + Bto)),

o(t.a)i= [ pf(tap)dp - Blt.) x B(t,0)
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These local conservation laws imply corresponding global conservation laws:

PROPOSITION 1. Consider a classical solution of the relativistic Vlasov-Mazwell sys-
tem with compactly supported initial data f € CL(R®), f >0, E,B € C?(R3), satisfying
the constraints (1.3). As long as the solution exists its energy

[ VTPt dpds o [ (B0 + B )?) de

as well as any Li-norm || f(t)|lq with 1 <g<oo are constant in time.
We use the conserved quantities to derive bounds on p and j: For any R>0,

plt,z) = /|p|§Rf(t’x’p>dp+ / F(t.2.p)dp

lp|>R
47 " 3/4
<FRUOI+ ™ [VIEREfa<( [ VITTFa)

where for the last step we choose

1/4
R= (/\/1+Ipl2fdp> ,

and the constant depends on || f |loo- Taking both sides of the estimate to the power
4/3, integrating in x, and using Proposition 1 we have the following a-priori bounds
on p and hence also j which is dominated by p:

PROPOSITION 2. Along any solution as considered in Proposition 1,
o) llasz, 3 (E)llas<C

where the constant C' depends on the energy of the initial data and on ||]%||C>O

To conclude we observe that the constraints (1.3) propagate: if we have a solu-
tion of the system (1.1), (1.2), (1.4) satisfying the constraints (1.3) initially then the
constraints hold as long as the solution exists, since

Oi(divy E—4mp) =div, 0 E — dwyp = div, (O E 4+ 47j) = divy (curl, B) =0,

Odivy B = —div,(curl, E)=0.

3. The regularized system
For a mollifier

deC>(R?), d>0, /dzl7 d even (3.1)

we consider the regularized relativistic Vlasov-Maxwell system (1.1), (1.2), (1.4) where
in the Maxwell equations (1.2) we replace j by dxj, the convolution referring to x;
recall that the constraints (1.3) propagate once they hold initially. Along a (local)
solution of the regularized system charge is still conserved, hence [|j(t)] < [p(t) <
C and therefore all spatial derivatives of d*j are bounded uniformly in ¢. This is
sufficient to show that the regularized system has global-in-time solutions for initial
data as specified in Proposition 1; details of the proof can be found in [15]. However,
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there is one difficulty with the regularized system: the time derivative of the energy
is

/(j'E—(d*j)~E)dx

which need not vanish. Hence, when constructing a sequence of approximating so-
lutions by the regularization above we have to make sure we preserve the a-priori
bounds, uniformly along the sequence. Let

Liin<R6>:—{geL1<R6>|g>o, / 1+|p|2g<x,p>dpdx<oo}

be endowed with the weighted Ll-norm ||-||xin with weight \/1+|p|2. We fix initial
data

feLl, nL>=(R%), E, BeL?(R?) (3.2)

o

satisfying the c?nstragnt (1.3) in the sense of distributions, and take sequences (f,) C
C(RY) and (EY),(B;) C C2(R?) such that
fo—fin LL NL®[R®), EY—E, BY — B in L*(R3).
With d as above we let d,,(z) :=n3d(nz), define
Ey=dy«EY —EB, B,:=d,+«BY — B in L*(R®),

and denote by (fn,En,By,) the global solution of the regularized system with the
initial data (]%n,l%n,én), where j now is replaced by d,*d, *j,—the two d,’s are
intentional—with j, defined in terms of f,, as in (1.4). This solution exists for all
t € R by the reasoning above. By uniqueness,

(En, Bn)(t) = dnx (E;, BY)(t)

n

where (E;,B;’) solves the Maxwell equations (1.2) with initial data E;,é; and
current d, * j,. The energy

J[ VTPt dpds+ o [ (1B (0P + 1B 4)?) de

now 4s constant in time, its time derivative becoming

Since the modified energy defined above dominates the energy of the regularized
solution we can use the arguments in the previous section to prove the following
result, cf. Proposition 2:

PROPOSITION 3. For initial data as specified in (3.2) there exists a constant C'>0
such that for any n €N the solution (fn,E,,By) of the reqularized initial value problem
described above exists for all t €R and satisfies the a-priori bounds

[ (@) lhcins [1fn(@lloos 1B @2, 1Bn(®)ll2s [loa@)llass [17nE)]lays < C.
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4. The weak limit

PROPOSITION 4. There exist functions
fE€L™(R; Ly, NL™(R%)), E,Be L™ (R;L*(R%)), p,j € L>(R; L**(R?))
such that up to a subsequence
fo—f in L*(IxR%), E,,B,—E,B in L*(IXR?), pn,jn—p,j in LY>(I xR?)

for any bounded interval I CR,

f>0, p:/fdp, j:/ﬁfdp a. e.,

and the Mazwell equations (1.2), (1.8) as well as local conservation of charge (2.2)
hold in the sense of distributions. For almost all t €R the energy of (f(t),E(t),B(t))
is bounded by its initial value.

Proof. The extraction of the weakly convergent subsequence is standard, and by
a diagonal sequence argument this subsequence can be chosen independently of the
interval I. Since f,, >0 for n € N, the weak limit f is non-negative almost everywhere.
That the limits lie in the asserted function spaces is straight forward. For example let
A CR be bounded and measurable with Lebesgue measure A(A), and let R>0. Then

1
[ [ ViFhRrdps g (EP+B7) ) dod
AJjzi<r \Jjp<r 8m
1
:lim// / SITIP fdp+ — (1Bl +|Bo[?) | duat
AJlel<r \Jipl<R 8

n—oo ‘

o 1 o o
<a) (1o 5 (VBB 118) ).

Since R >0 and A CR are arbitrary the assertion on the energy follows, which implies
part of the assertion on the weak limits f,E, B.

For the moments p and j we can argue similarly, but we have to make sure that
the weak limit of p,, is the density p induced by f and analogously for j. To this end,
consider a test function ¢ € C2°(R x R3) and some R>0. Then

[ (o)
:// </p§Rﬁfdp—j> wda:dt+///|pl>Rﬁfdpwdxdt
:JHEO// (/pSRﬁfndp—jn> wdxdt+///p>Rﬁfdpwdxdt

~ Jim_ / / /p>Rﬁ(f—fn)dpwdardt-

The modulus of the latter integral can be estimated by

1 C
ol [ [VIFBRGa+ Ddpdrar<
supp®
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via the uniform bound on the kinetic energy, and since R >0 and the test function
are arbitrary the assertion for j follows. That local conservation of charge (2.2) and
the second of the Maxwell equations (1.2) hold in the sense of distributions is obvious.
As to the first of the Maxwell evolution equations let ¥ be as above. Then with the
abbreviation 0, :=d, *d,,

//5n*jn¢dxdt—//j¢dxdt://(5n*jn—jn)¢dxdt+//(jn—j)wdxdt.

The second term converges to zero, and the first can be estimated by

Hjn||L4/3(supp1/;)||5n*w_w”4

which converges to zero as well. Hence 6, * j, — 7 in the sense of distributions. The
computation in Section 2 which showed that the constraints (1.3) propagate can be
performed in the weak sense, and the proof is complete. O

5. Compactness via momentum averaging

In the present section we want to show that the weak limit obtained in the previous
one satisfies the Vlasov equation in the sense of distributions. Due to the non-linearity
in the latter equation this is the crucial problem in the whole proof. We need to show
that for any ¢ € C2°(R x RY),

///(En—kﬁx Bn)-3p¢fndpdxdt—>///(E+ﬁ>< B)-0,6 f dpdzdt,

possibly after extracting a further subsequence. By a well known density argument
it is sufficient to consider test functions which factorize: ¢(t,z,p) = ¢1(t,x)p2(p) with
test functions ¢1,¢2. The desired convergence will follow once we can show that for
any bounded open interval I C R, any S > 0, and any 1) € C2°(R?) up to a subsequence,

/¢Q&h(wmﬁw—i/w@UTwmﬁ@SﬁmgwinLafxBﬁ, (5.1)

where Bg C R? denotes the ball of radius S about the origin. That this is true is the
consequence of the velocity-averaging lemma, a version of which was established in
[3], cf. also [14], and which for obvious reasons we prefer to call momentum-averaging
lemma. We state it here and give a proof in an appendix:

LEMMA 5.1. Let R>0 and ¢ € C°(Bgr). There exists a constant C >0 such that for
any functions h,go,g1 € L2 (R x R3 x Bg) which satisfy the inhomogeneous transport
equation

in the sense of distributions we have
/WMMmMWGF“@XW>
with

H / w<p>h<-,-,p>de SO (e + ool + o)
Hl 4
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Here H'/* denotes the usual fractional order Sobolev space defined in terms of the
Fourier transform. In the proof one needs to Fourier transform the transport equation
with respect to t and z so that it is essential that the equation holds for all ¢ € R. Since
we apply the lemma to the approximating solutions we avoid considerable technical
complications by having the latter defined on the whole real line.

In order to prove (5.1) we take an arbitrary open, bounded interval I CR, ¢ €
C*(R?), and R>0 such that suppvy C Bg. Moreover, we choose some test function
¢€CZ(R) such that 0<({<1 and ¢;=1. Then for fn(t,x,p) =((t) fn(t,x,p) the
Vlasov equation in divergence form (2.1) implies that

atfn +]f7\' axfn :go+ding1

where go:=('f, and g1:=(E, +px B,)(f,. By Proposition 3 the L?-norms of the
latter functions over the domain R x R? x Br are bounded, uniformly in n. Hence by
Lemma 5.1 we conclude that the momentum averages of the functions fn, formed with
the test function 1, lie in the Sobolev space H/4 (RxRR?), and their corresponding
H'*-norms are bounded, uniformly in n. Over the open, bounded set I x Bg with
S >0 arbitrary this Sobolev space is compactly embedded in L2, by choice of ¢ the
functions f,, coincide with f, on I x Bg, and hence along a suitable subsequence
Eqn. (5.1) is established.

We conclude that the weak limit (f,E,B) obtained in the previous section sat-
isfies the complete relativistic Vlasov-Maxwell system on R x R? x R? in the sense of
distributions.

6. Continuity properties and conservation laws

In order to be justified in saying that the weak solution (f,F,B) satisfies the
initial conditions we need to establish some minimal continuity in ¢. We consider this
problem for f, the arguments for F and B being very similar. We express 0, f,, via
the Vlasov equation in divergence form, integrate in time, multiply the result by a
test function ¢ € C°(R%) and integrate in x and p to obtain, after an integration by
parts:

[[ 1temotepyivas= [[ o) otep)dpda
+/Ot// [D-0:¢+ (En+px By) 0p@] frn(s,z,p)dpdzds.
For t € R we define a distribution f(t) € D'(R®) by
(F6).0) = [ [ Fap)étap)dpdo
+/ / [D-0:0+ (E+px B)-0,0] f(s,z,p)dpdxds.
0

The mapping t|—>f(t) €D'(RY) is continuous in the sense of distributions, f(O) :f,
and one can show that this is a representative of f. By a density argument ¢ +— f (t) is
also continuous with respect to the weak topology of L4(IR®) for any 1< ¢< co. Since
for any bounded measurable set M C R® and s >0 the negative order Sobolev space
W=%2(M) is compactly embedded in L?(M) continuity with respect to the negative

order Sobolev norm follows.
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We already noted that the total energy can at least not increase, and that local
conservation of charge (2.2) holds in the sense of distributions. It is simple to conclude
that for almost all ¢, [ p(t) equals some fixed constant, but we assert that this constant
really is the initial charge. Indeed, more is true:

PROPOSITION 5. The weak solution obtained above preserves all Li-norms of f(t),
more precisely, for every 1 <q< oo,

1FOllq=fllq for a. a. teR.

Moreover, t+— f(t) is a. e. strongly LY continuous in the following sense: There exists
a set of continuity C CR such that the Lebesgue measure A(R\C)=0, 0€C, and for
any q €]1,00[ the mapping C >t f(t) € LY(RO) is strongly continuous.

Proof. Since 0;p, +divj, =0 and |j,| < p, we have for every R>0 and ¢ >0,

d

dt pn(t)de = _/ Pn (t) dS; +/ O¢pn (t) dx
|z|>R+t |z|=R+t |z|>R+t

:_/ pn(t)dsx_ div jn (t) dx

|z|=R+t |z|>R+t

:_/ (pn(t)+y'jn(t))dsx <0
|z|=R+t

where v is the outer unit normal of the domain {|z| > R+t}. The analogous argument
works for ¢ <0 and the domain {|z| > R—t}. Hence

/ pn(t)dazg/ pndz, t€R, R>0, n€N, (6.1)
|| >R+|t| |z|>R
where p:= [ fdp. We claim that

/p(t)da:z/poda: for a. a. tER. (6.2)

Let € >0 be arbitrary. Since g is integrable, we can choose R >0 such that

/ pdr <e.
|z|>R

By the convergence of the initial data and (6.1) we conclude that

/ pndxg/ pndr <€
|z|>R+|t| |z|>R

for all t€R and all sufficiently large n€N. Let ACR be measurable and bounded.

Then
//pdxdtz// pdzdt= hm// pndxdt
A AJ|z|<R+|t] TOJ A x| <R+t
= lim /pndx—/ prdx | dt>NA) [/ﬁdm—e},
n—oojA |z|>R+|t|
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and for sufficiently large S >0 we have by monotone convergence,

//pdmdtg// pdxdt+(A)e
A AJlz|<s

= lim // pndrdt+A(A)e <A(A) (/ﬁdm—l—e).
n—ooJad|z|<S

This implies that there exists a set M. CR of measure zero such that

/podx—eg/p(t)dmg/ﬁdx—l—e, teR\ M..

Hence (6.2) holds on R\ UgenMy ;. For general g € [1,00[ we define

palt,z) = / F9(t,2,p)dp, oltz) = / PF9(t,2,p) dp,

with analogous definitions for p;, and jg;,. Since f and f,, are bounded, these
new densities converge in the same sense as the ones for ¢=1 and the weak limits
are indeed the g-densities induced by f. Moreover, 0;pg.n+divjg ., =0 classically for
every n, and |jq.n| < pg,n. Hence exactly the same argument as in the case ¢=1 shows

that
/ po(t)d = / 5o da (6.3)

for almost all t € R. If we pick a sequence g — 0o we can choose the exceptional set
of measure zero where (6.3) does not hold uniformly in k, and passing to the limit
shows that the L°°-norm of f(t) is preserved in the same sense.

Combining this with the weak continuity of the map ¢+ f(¢) or rather a suitable
representative, the Radon-Riesz Theorem implies that for every g €]1l,00[ one can
choose a set of continuity C; with the asserted properties, and via two sequences
q,j — o0 and ¢, \,1 we obtain a set of continuity C' which works for all ¢ €]1,00]
simultaneously. m]

Note that the relativistic nature of the system was exploited in the proof above.
We are not aware of a proof of (6.2) in the non-relativistic case.

7. The result—statement and comments
Collecting the results of the previous sections we arrive at the following existence
result for global weak solutions to the relativistic Vlasov-Maxwell system:

Theorem. For initial data fOELll(inﬁL‘x’ (R®), E, Be LX(R3) which satisfy the con-
straints (1.3) in the sense of distributions there exists a global weak solution of the
relativistic Vlasov-Mazwell system, i.e., there exist functions

feL®(R;Liz, L™ (R%)), E,Be L™ (R;L*(R%)), p,j € L™(R; L**(R?))

such that (f,E,B) satisfy (1.1)—(1.8) in the sense of distributions with p,j defined
in terms of f by (1.4). The function f is a. e. non-negative.

The mappings t— f(t), E(t),B(t) are (after choosing suitable representatives) con-
tinuous with respect to the following topologies: the standard topology in the space of
distributions D' (R®) or D'(R®) respectively, the weak topology of L?, and the strong
topology of W=2(M) for any s>0 and any bounded measurable subset M of RS or
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R3 respectively. The mapping t— f(t) is a. e. strongly continuous into any LI(R®),
1< g< oo, in the sense of Proposition 5. The initial conditions (1.5) are satisfied.
At a. e. time t the total energy

/ \/1—1—|p|2f(t,x,p)dpda?+8%/(|E(t,x)|2+|B(t,a:)|2) dx

is bounded by its value at t=0. The total charge is conserved,

//f(t)dpdxz/ fdpdx for a. a. teR,

and the same is true for any Li-norm of f(t), 1 <g<oco.

The following deficiencies of weak solutions are obvious: firstly, uniqueness is not
known. Secondly, it is not clear whether energy is conserved and whether L%-norms
of f are conserved everywhere. Moreover, their continuity with respect to ¢ holds
either everywhere in a rather weak sense or only a. e. in the strong L7 sense. A
less obvious disadvantage is the following: it is not clear that any weak solution in
the sense of the theorem can be obtained via the particular regularization which we
employed here, and it is conceivable that results for weak solutions depend on the
way in which these are constructed.

Appendix: Momentum averaging. To prove Lemma 5.1 we let ¢ € C2°(R3)
with suppy C Br and R>0. By the usual definition of the fractional order Sobolev
spaces via Fourier transforms,

H/hﬂp dp

where

S [ oF (e i dgar ()

I(r.6):= / (r.&.p) b (p) dp (7.2)

and h denotes the Fourier transform of i with respect to (£,2). Confusion with the
notation p seems unlikely. By assumption, h satisfies the transport equation (5.2) on
R xRS in the sense of distributions, and hence

i(r+p-&)h=go+divyg. (7.3)

This identity is only useful where the factor on the left hand side is away from zero.
Hence we let ¢ € C°(R) be such that

0<¢<1, supp( C[-2,2], {|-1=1

and we split the integral (7.2) into the two parts

1(r8) = [r&nvc (2L ap
B(r&) = [r&nve) [1-¢ (L) ap

where x>0 will be chosen appropriately in dependence of &.




156 THE RELATIVISTIC VLASOV-MAXWELL SYSTEM REVISITED

For almost all (7,£) € R?,

1/2
“ K
RO <l () Tiisripsan (7.4
where r:= R//1+ R>—as in the rest of the argument, the L?-norm with respect to
p refers to the ball Br with R> 0 fixed, and 1 with some subscript is the “indicator
function” of the set or condition in the subscript. To see (7.4) we apply the Cauchy-
Schwarz inequality and observe that

T+D- ~
/B ¢? <Tp£> dPS/B 17 on,— 426 (P11€]) dp;

without loss of generality we may assume that £ = (|¢],0,0). The integral on the right
hand side vanishes if |7|>7|¢|+2k, and via a change of variables it can easily be
estimated against x/|¢| which proves (7.4).

For the estimate of I the basic idea is to use (7.3) and to integrate by parts in
the term containing the divergence of g;. With the abbreviation

dren =t [1-¢(C2E)|

K T+D-€
it follows that

I(r,€) =i ( [itrepxreniv- [aren -aniren) dp) (7.5)

where this last identity holds a. e. on RxR? if k=1 and a. e. on R x {|¢|>1} if
k=|€&|*/2. The first choice will be used for small |¢| and the second one for large |¢|.
For any multi-index o€ N? with length |a| <1,

o 1 [3
DX &P < Clipi<rlirpeizny — =g (1+ =)

1/2
@ E 1 T+r(¢] 1
||DpX(Ta§,')||2§C<1+% |€|—1/2 e 1|w|25ﬁdw )

The remaining integral is straightforwardly estimated by C/k. In addition, for || >
r|€]4 2k the origin does not lie in the domain of integration of this integral, and we
can estimate it by integrating 1/w? over the domain. Hence,

1/2
|‘DaX(vav')||2<C 1+@ 1|T|<r\£\+2f€ ! +1‘T‘>T|§|+25 ! / .
! - K - K[| T2 —r2¢J?

Let us abbreviate

N(7,€) = [h(1,&,) |2+ G0 (T,&, |2+ |91(7,€,) 2.

Combining (7.4) with (7.5) and the estimate for Dj'x we finally obtain the following
estimate for I,

2
[I(m, )] < CN(7.€) [1|T|§Tf+2f$ (% + (1+ |§|) i)

) Kl

2 1/2
1 1-|—ﬂ # /
[TIZ>7[€]+2K P 72— r2|¢|2 )

Hence
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which holds a. e. on RxR? if k=1 and a. e. on R x {|¢| > 1} if k=1¢|*/2. Hence for
|€] <1 we take k=1 to obtain

1 ) 1/2
I(7,€)| <CN(,€) (179|s|+2H +172”'5'+272—7r2|§|2> ’

and for |¢]>1 we take k= |£|'/2 to obtain

! g\
[1(7,§)| <CN(7,8) <1|T|§T5+251/2 GEE T Lir1>rle 12112 72 —r2|£|2> :

Now we split the right hand side of (7.1) as follows:
[ or e 2 arde= [[ P11 arde
+//|I|2|T|1/21|§|§11|T|>r+2d7d§+//|I|2|T|1/21|§|§11|T|§r+2de§

+//|I|2|£|1/21|§|§1d7-d§+//|I|2|§|1/21\5\>1d7d§

= A1+ A+ As+ Ay + As.

Using the appropriate part of the estimate for I we find that
Ay A A5 <C [ [ N2arde= -+ 130l + 1113)

as desired, while the terms As and Ay can be estimated directly by [|A(7,£,-)|2 via
the Cauchy-Schwarz inequality, and the proof of Lemma 5.1 is complete.
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