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BROWNIAN COAGULATION

J.R. NORRIS ∗

Abstract. We consider a stochastic particle model for coagulating particles, whose free motion
is Brownian, with diffusivity given by Einstein’s law. We present in outline a derivation from this
model of a spatially inhomogeneous version of Smoluchowski’s coagulation equation. Some analytic
results on existence, uniqueness and mass conservation for the limit equation are also presented.

1. Introduction
We will consider two models for the evolution of a cloud of particles, of various

sizes, subject to diffusion and to coagulation on collision. The first model is a stochas-
tic system of spherical particles in R

d, d � 3, starting with N particles, centered at
positions x1, . . . , xN in Rd and having masses y1/N, . . . , yN/N ∈ (0,∞). After k col-
lisions we will have N − k particles, each characterized by a position x, mass y/N ,
radius r/N1/(d−2) and (isotropic) diffusivity a. We assume that y determines r and
a through y = rd and a = rd−1/y. The first of these relations is a homogeneity
assumption. The second is Einstein’s law for the diffusivity of physical Brownian mo-
tion. Each particle performs an independent Brownian motion according to its own
diffusivity. When two particles collide, we replace them by a single particle having the
same total mass and centre of mass. These rules determine a process of normalized
empirical measures (µN

t )t�0 on Rd × (0,∞), starting from

µN
0 =

1
N

N∑
i=1

δ(xi,yi)

which we call Brownian coagulation.
The second model is a deterministic process of measures (µt)t�0 on Rd × (0,∞),

satisfying the following evolution equation

µ̇t =
1
2
a∆µt + K(µt) .

Here we assume that each measure is given by a density µt(dx, dy) = µt(x, dy)dx on
Rd; the diffusivity a = a(y) = y−1/d as above and ∆ = ∆x. The coagulation term
K(µt) is given at each µ = µt(x, ·) by

〈f, K(µ)〉 =
1
2

∫
(0,∞)2

{f(y + y′) − f(y) − f(y′)}K(y, y′)µ(dy)µ(dy′)

for suitable test-functions f , where

K(y, y′) = cd(a + a′)(r + r′)d−2,

cd is the capacity of the unit ball and r = r(y) = y1/d as above.
The spatially homogeneous, discrete mass case of this equation was derived, for

d = 3, by Smoluchowski [11], starting from an account of particle motion correspond-
ing to the stochastic model described above. We will describe two different approaches

∗Statistical Laboratory, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3
0WB, UK (j.r.norris@statslab.cam.ac.uk).

93



94 BROWNIAN COAGULATION

to Smoluchowski’s equation. The first allows us to construct, for suitable initial data,
a small-time solution (µt)t<t0 and to prove that µN

t → µt weakly in probability on
Rd × (0,∞) for all t < t0. We could describe the behaviour of mass under coagulation
in our model as (y, y′) → y + y′: in previous work Lang and Nguyen [3] treated the
case (1, 1) → 1 and Sznitman [9], [10] the case (1, 1) → 0. The sort of limit considered
is similar to Lanford’s derivation [2] of the Boltzmann equation.

The second approach draws on a truncation argument developed in [8],[7]. We
establish long-time existence and uniqueness for the coagulation-diffusion equation,
along with the natural property of mass conservation∫

Rd×(0,∞)

yµt(x, dy) dx =
∫

Rd×(0,∞)

yµ0(x, dy) dx, t � 0.

For related recent work see Amann [1] and Laurençot and Mischler [4], [5]. Full details
of the results presented in this paper will appear elsewhere.

2. Weak convergence in small time
The basic idea is to consider a process in which new particles are created on

collision but the old ones are not deleted. We disregard any collision between particles
having one or more initial particles in common, also any collision which is not the first
between the colliding particles. Write (νN

t )t�0 for the normalized empirical measure
on Rd × (0,∞). The corresponding evolution equation is

ν̇t =
1
2
a∆νt + K+(νt)

where

〈f, K+(ν)〉 =
1
2

∫
(0,∞)2

f(y + y′)K(y, y′)ν(dy)ν(dy′).

We interpret this equation in the weak sense

νt = Ptν0 +
∫ t

0

Pt−sK
+(νs) ds

where

Ptν(x, dy) =
∫

Rd

p(a(y)t, x, x′) ν(x′, dy)dx′

and p(t, x, x′) = (2πt)−d/2 e−|x−x′|2/2t. This weak equation has a minimal non-
negative solution (νt)t�0 for any given initial kernel ν0(x, dy), but this may rapidly,
or even instantaneously, become infinite. However, for suitable initial conditions we
have good small-time behaviour. We assume that µ0(x, dy) = ν0(x, dy) = φ(x)δ1(dy)
for all x, where φ is a probability density function with φ � 1. We assume also that
our initial particles are obtained as a random sample of size N from µ0.

Proposition 2.1. There is a constant A < ∞ such that, for all t � 0, n ∈ N and all
x we have νt(x, {n}) � (At)n−1.

We can show that νN
t → νt weakly in probability on Rd × {n} for all n ∈ N as

N → ∞ using the following result for Brownian motion. See, for example, Le Gall [6]
for related results.
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Proposition 2.2. For i = 1, 2, let X i be a Brownian motion in Rd of diffusivity ai

starting from xi, where x1 �= x2. Set

T = inf{t � 0 : |X1
t − X2

t | = (r1 + r2)/N1/(d−2)}

and let (Xt)t�T be a Brownian motion of diffusivity a starting from (y1X
1
T +y2X

2
T )/(y1

+y2) at time T . Then for any bounded measurable function f on Rd

NE(f(Xt)1T�t) → K

∫ t

0

∫
Rd×Rd

p(a1s, x1, z)p(a2s, x2, z)p(a(t − s), z, x)f(x)dzdxds.

where K = cd(a1 + a2)(r1 + r2)d−2.
This in itself is not sufficient to prove convergence of our original particle system.

For this we must establish convergence of the process (νN
t )t�0 at a sufficiently detailed

level that we can identify which particles should have been deleted, even in the limit.
This requires that we retain in the current state of each particle the historical tree
of all positions and masses of all constituent initial particles, all particles which have
collided with constituent particles, all particles which have collided with the colliding
particles, and so on.

We refer to the appendix for an explanation of the notation we use for trees. For
i = 1, . . . , N , set Si = 0 and let (X i

t)t�0 be a Brownian motion in Rd, starting from
xi of diffusivity a(yi). For a tree i = {i1, i2} ∈ I = T({1, . . . , N}), set

Si = inf{t � Si1 ∨ Si2 : |X i1
t − X i2

t | = (r(yi1 ) + r(yi2 ))/N
1/(d−2)}

and let (X i
t)t�Si be a Brownian motion in Rd starting from (yi1X

i1
Si

+yi2X
i2
Si

)/(yi1+yi2)
at time Si of diffusivity a(yi), where yi = yi1 + yi2 . For i = {i1, i2} and j = (i1, i2)
in I(2) = T

(2)({1, . . . , N}), set Si = Sj = Sπ(i) if Sπ(i) � Si1 ∨ Si2 and Si = Sj = ∞
otherwise. For i = 1, . . . , N and t � 0, set ξi

t = (X i|[0,t], yi) and, recursively for
i = {i1, i2} and j = (i1, i2) in I(2), for t � s = Si, set ξi

t = (s, {ξi1
s , ξi2

s }, Xπ(i)|[s,t])
and ξj

t = (s, (ξi1
s , ξi2

s ), Xπ(j)|[s,t]). Define a measure ν̃N
t on A(2)[0, t] by

ν̃N
t =

1
N

∑
i∈I(2)

δξi
t
1Si�t.

Then we have

νN
t = (ν̃N

t 1A[0,t]) ◦ (xt, yt)−1

where (xt, yt) : A(2)[0, t] → Rd × (0,∞) is the endpoint map.
We now proceed to define the corresponding limit measure on the set of path-trees

A(2)[0, t]. Define for ξ = (ω, y) ∈ A1[0, t]

ν̃t(x, dξ) =
∫

x0∈Rd

µ0(x0, dy) dx0 β0,x0;t,x
y (dω)

where β0,x0;t,x
y is the un-normalized Brownian bridge on C([0, t], Rd), starting from x0

and ending at x, with diffusivity a(y). Then, recursively for ξ = (s, {ξ1, ξ2}, ω), set

ν̃t(x, dξ) =
1
2

∫
z∈Rd

ν̃s(z, dξ1)ν̃s(z, dξ2)K(ys(ξ1), ys(ξ2))ds βs,z;t,x
yt(ξ)

(dω) dz.
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The formula for ξ = (s, (ξ1, ξ2), ω) is the same except that the factor 1/2 is absent.
Then

νt(x, dy) =
(
ν̃t(x, ·)1A[0,t]

) ◦ y−1
t (dy).

Proposition 2.3. We have ν̃N
t → ν̃t weakly in probability on Aτ [0, t] for all τ ∈ T(2)

as N → ∞.
Fix t < t0 = A−1 and define measures ρN

t and ρt on A(2)[0, t] by

ρN
t =

1
N

∑
i∈I(2)

δξi
t
1{Si�t and Sj>t for all j∈N(i)}

and

ρt(x, dξ) = exp

(
−
∫

∆(ξ)

λs(xs(ξ), ys(ξ))ds

)
νt(x, dξ)

where

λt(x, y) =
∫

(0,∞)

K(y, y′)νt(x, dy′).

Then

ρt(x, dξ) =
∫

A[0,t]

νt(x, dξ0)βt(ξ0, dξ)

where βt(ξ0, dξ) is the law of the total tree of a typed branching process starting from
ξ0, where the offspring of ξ0 form a Poisson random measure on A(ξ0) having intensity
measure K(ys(ξ0), ys(ξ′))νs(xs(ξ0), dξ′)ds. This branching process is subcritical as a
consequence of Proposition 2.1.

Proposition 2.4. We have ρN
t → ρt weakly in probability on A(2)[0, t] as N → ∞.

The proof begins by writing

1{Si�t and Sj>t for all j∈N(i)} =
∞∑

n=0

(−1)n
∑

j∈Nn(i)

1Sj�t

and exploits the fact that the partial sums of the series on the right successively
overestimate and underestimate the limit.

Now define measures µ̃N
t and µ̃t on A[0, t] by

µ̃N
t = (ρN

t 1τ∈S) ◦ π−1, µ̃t = (ρt1τ∈S) ◦ π−1.

The atoms of ρN
t comprise all the maximal trees of particle histories which could

result in a particle at time t. The particle is actually formed if and only if its maximal
tree i is a surviving tree (see the appendix). When τ(i) /∈ S some unwanted collision
prevents the i-particle from forming. Hence we obtain

µN
t = µ̃N

t ◦ (xt, yt)−1.

Theorem 2.5. We have µ̃N
t → µ̃t weakly in probability on A[0, t] as N → ∞.
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We now show by a branching process argument that µ̃t satisfies an equation which
implies that µt solves Smoluchowski’s equation. For ξ0 ∈ A[0, t], write p(ξ0) for the
probability that its total tree ξ survives, that is τ(ξ) ∈ S. Then for ξ0 = (s, {ξ1

0 , ξ2
0}, ω)

with yt(ξ0) = y,

p(ξ0) = p(ξ1
0)p(ξ2

0) exp

(
−
∫ t

s

∫
A[0,r]

K(y, yr(ξ′))p(ξ′)ν̃r(ωr, dξ′)dr

)
.

Hence

µ̃t(x, dξ0) = p(ξ0)ν̃t(x, dξ0)

=
∫

Rd

p(ξ1
0)ν̃t(z, dξ1

0)p(ξ2
0)ν̃t(z, dξ2

0)K(ys(ξ1
0), ys(ξ2

0))ds

× exp

(
−
∫ t

s

∫
A[0,r]

K(y, yr(ξ′))p(ξ′)ν̃r(ωr, dξ′)dr

)
βs,z;t,x

y (dω)dz

=
∫

Rd

µ̃t(z, dξ1
0)µ̃t(z, dξ2

0)K(ys(ξ1
0), ys(ξ2

0))ds

× exp

(
−
∫ t

s

∫
A[0,r]

K(y, yr(ξ′))µ̃r(ωr, dξ′)dr

)
βs,z;t,x

y (dω)dz.

3. Long-time existence, uniqueness and mass conservation
We will take d = 3, and set w(y) = y1/3 + y−1/3. Note that

K(y, y′) = (y1/3 + y′1/3)(y−1/3 + y′−1/3) � w(y)w(y′)

and

w(y + y′)p(a(y + y′)t, x, x′) � w(y)p(a(y)t, x, x′) + w(y′)p(a(y′)t, x, x′). (3.1)

Suppose we have a particle of mass y at position x at time t and two particles of
masses z, z′ at x′ at time 0. Then

w(y){w(z)p(a(z)t, x, x′) + w(z′)p(a(z′)t, x, x′)}

is an upper bound for the rate at which the first particle coagulates with one of the
others which remains valid if the z, z′ particles happen to coagulate. This (imprecisely
formulated) observation is the key to the method by which we treat Smoluchowski’s
equation. It allows a truncation argument where we do not keep track of coagulations
between large particles, safe in the knowledge that we can bound, regardless of these
coagulations, the rate at which small particles are captured by large ones. Assume
that ∫

R3×(0,∞)

(y4/3 + y−1/3)µ0(x, dy)dx < ∞

and that µ0(x, dy) � µ∗
0(dy) for all x ∈ R3, with∫

(0,∞)

(y2/3 + y−2/3)µ∗
0(dy) < ∞.
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Theorem 3.1. There exists within the class of kernels (µt)t�0 such that

∫ t

0

∫
(0,R]

y1/2Pt−sK
+(µs)(x, dy)ds < ∞ (3.2)

for all t � 0, x ∈ R3 and R < ∞, a unique kernel (µt)t�0 satisfying

µt +
∫ t

0

Pt−sK
−(µs)ds = Ptµ0 +

∫ t

0

Pt−sK
+(µs)ds, t � 0. (3.3)

Moreover
(i) ∫

R3×(0,∞)

yµt(x, dy)dx =
∫

R3×(0,∞)

yµ0(x, dy)dx,

(ii)

µ̇t =
1
2
a(y)∆µt + K(µt),

(iii) If µ0(x, ·) is absolutely continuous for all x, then so is µt(x, ·) for all t � 0.
In the remainder of this section we will explain the role of condition (3.2) and

then sketch the route to existence, uniqueness and mass conservation. The inequality
(3.1) implies that

〈w, Pt−sK
+(µs)〉 � 〈w, Pt−sK

−(µs)〉

for 0 � s < t. Here 〈., .〉 denotes the integral over (0,∞): the inequality is between
functions on R3. If we knew that∫ t

0

〈w, Pt−sK
+(µs)〉ds < ∞ (3.4)

we could multiply (3.3) by w, integrate over (0,∞) and subtract this term from both
sides to obtain

〈w, µt〉 � 〈w, Ptµ0〉 � 〈w, µ∗
0〉 < ∞ (3.5)

and
||〈w, µt〉||1 � ||〈w, Ptµ0〉||1 = ||〈w, µ0〉||1 < ∞. We do not know (3.4) but by ap-
proximating w suitably and using (3.2) we can arrive at the same conclusions. Thus
the very weak condition (3.2) bootstraps to (3.5), which gives a useful control on the
behaviour of solutions.

The existence and uniqueness of solutions is obtained by constructing a sequence
of solutions to approximating equations (µn

t )t�0 together with some auxilliary func-
tions (ηn

t )t�0 on R
3. These approximating equations involve only K ∧ n and are

solvable by a standard iteration scheme. They are chosen so that we have

µn
t � µn+1

t , 〈w, µn
t 〉 + ηn

t � 〈w, µn+1
t 〉 + ηn+1

t

and indeed, for any solution (νt)t�0 to (3.2), (3.3)
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µn
t � νt , 〈w, µn

t 〉 + ηn
t � 〈w, νt〉 .

Roughly speaking, µn
t corresponds to particles of mass y ∈ [1/n, n] that we are sure

about, and w(y) (〈w, µn
t 〉 + ηn

t ) bounds the rate at which we lose these particles by
coagulation, ηn

t being due to the large particles that we have lost. The monotone
limits µt = limn→∞ µn

t and ηt = limn→∞ ηn
t can be shown to satisfy

µt +
∫ t

0

Pt−s(K−(µs) + ηswµs)ds = Ptµ0 +
∫ t

0

Pt−sK
+(µs)ds

and of course, for any solution (νt)t�0,

µt � νt , 〈w, µt〉 + ηt � 〈w, νt〉.

Thus existence and uniqueness both rest on showing that ηt = 0 for all t � 0.
The key to this is the following a priori argument. Let (µt)t�0 be a solution. Set

v(y) = y−1/3 and note that (3.1) holds with w replaced by wv. Hence

〈wv, µt〉 � 〈wv, µ∗
0〉 < ∞.

Note that

K(y, y′) � 2(w(y)v(y′) + v(y)w(y′))

and for p(y) = p(a(y)t, x, x′)

w2p(y + y′) − w2p(y) − w2p(y′) � w(y)(p(y) + p(y′))w(y′).

Act on (3.3) by Ps, multiply by w2 and integrate over (0,∞). Then, assuming all
terms finite, rearrange to obtain

〈w2,Psµt〉 − 〈w2, Ps+tµ0〉 =
∫ t

0

〈w2, Ps+t−rK(µr)〉 dr

�2
∫ t

0

∫
R3×(0,∞)2

w(y)p(a(y)(s + t − r), ·, x′)w(y′)(w(y)v(y′)

+ v(y)w(y′))µr(dy)µr(dy′)dx′dr

�2〈wv, µ∗
0〉
∫ t

0

(||〈w2, Ps+t−rµr〉||∞ + ||〈w2, µr〉||∞)dr

so, by Gronwall’s lemma,

sup
s�0

||〈w2, Psµt〉||∞ � 〈w2, µ∗
0〉e4〈w2,µ∗

0〉t. (3.6)

We do not know that all terms are finite a priori but a version of this argument works
for (µn

t )t�0. So we obtain (3.6) for the monotone limit µt = limn→∞ µn
t . We then get

the following limiting equation for (ηt)t�0

ηt =
∫ t

0

〈w2, Pt−s(ηsµs)〉ds
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so

||ηt||1 =
∫ t

0

||〈w2, ηsµs〉||1ds �
∫ t

0

||〈w2, µs〉||∞||ηs||1ds.

Since ||ηt||1 is non-decreasing and finite, this implies ηt = 0 a.e. for all t as required.
To establish conservativity, multiply (3.3) by y1y�R and integrate over R3×(0,∞)

to obtain∫
R3×(0,R]

yµ0(x, dy)dx −
∫

R3×(0,R]

yµt(x, dy)dx

=
∫ t

0

∫
R3×(0,∞)2

y1y�R,y+y′>RK(y, y′)µs(x, dy)µs(x, dy′)dxds.

The integrand on the right converges pointwise to 0 as R → ∞ and, we recall,
K(y, y′) � w(y)w(y′) and 〈w, µt〉 � 〈w, µ∗

0〉 < ∞. So we will obtain conservativ-
ity by dominated convergence on letting R → ∞ once we can show for u(y) = y2/3

that ∫ t

0

||〈u2, µs〉||1ds < ∞.

Set uR(y) = y2/31y�R. Then

||〈u2
R, µt〉||1 = ||〈u2

R, Ptµ0〉||1 +
∫ t

0

||〈u2
R, Pt−sK(µs)〉||1ds (3.7)

� ||〈u2, µ0〉||1 + 2
∫ t

0

||〈uRw, µs)〉||1||〈uv, µs〉||∞ds (3.8)

and ||〈uRw, µs)〉||1 � ||〈uw, µ0〉||1 < ∞ and ||〈uv, µs〉||∞ � ||〈uv, Psµ0〉||∞ � 〈uv, µ∗
0〉

< ∞. This provides the necessary estimate.

4. Appendix – trees
Let E be a set. Define T1(E) = E and for n � 2

Tn(E) = {{y1, y2} : y1 ∈ Tk(E), y2 ∈ Tn−k(E), k = 1, . . . , n − 1}
and

T
(2)
n (E) = {{y1, y2}, (y1, y2) : y1 ∈ T

(2)
k (E), y2 ∈ T

(2)
n−k(E), k = 1, . . . , n − 1}.

Set

T(E) = ∪∞
n=1Tn(E), T

(2)(E) = ∪∞
n=1T

(2)
n (E).

When E = {1} we write T, T(2) instead of T(E), T(2)(E).
For y ∈ E define π(y) = y and for y1, y2 ∈ T(2)(E) define recursively

π({y1, y2}) = {π(y1), π(y2)}, π(y1, y2) = π(y1).

Then π : T
(2)(E) → T(E) is a projection.

Now we define the neighbourhood of a tree in I(2). For i ∈ I(2), set

N0(i) = {i}, N0
1 (i) = {(i, j) : j ∈ I}, N0

n(i) = {(j, k) : j ∈ N0
n−1(i), k ∈ I}.
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For i = 1, . . . , N set Nn(i) = N0
n(i) and for i = {i1, i2} set

Nn(i) = {j ∈ N0
n0

({j1, j2}) : j1 ∈ Nn1(i1), j2 ∈ Nn2(i2), n0 + n1 + n2 = n}

Make the analogous definition for i = (i1, i2). Set N(i) = ∪∞
n=1Nn(i).

Define S ⊆ T(2), the set of surviving trees, by
(i) 1 ∈ S,
(ii) {τ1, τ2} ∈ S if and only if τ1 ∈ S and τ2 ∈ S,
(iii) (τ1, τ2) ∈ S if and only if τ1 ∈ S and τ2 /∈ S.
We now define some spaces of path-trees. Fix t>0 and set A1[0, t]=C([0, t], Rd)×

(0,∞). For ξ = (ω, y) ∈ A1[0, t]
set ∆(ξ) = [0, t] and define (x, y)(ξ) : ∆(ξ) → Rd × (0,∞) by xs(ξ) = ωs, ys(ξ) = y.
For τ = {τ1, τ2} ∈ T define recursively

Aτ [0, t] = {(s, {ξ1, ξ2}, ω) : s ∈ (0, t], ξ1 ∈ Aτ1 [0, s], ξ2 ∈ Aτ2 [0, s], ω ∈ C([0, t], Rd)}.

For (s, {ξ1, ξ2}, ω) ∈ Aτ [0, t], we take ∆(ξ) to be the disjoint union of ∆(ξ1), ∆(ξ2)
and [s, t]. Set xr(ξ) = xr(ξi) and yr(ξ) = yr(ξi) for r ∈ ∆(ξi), i = 1, 2. Extend the
map (x, y)(ξ) to ∆(ξ) by setting xr(ξ) = ωr, yr(ξ) = ys(ξ1) + ys(ξ2) for r ∈ [s, t]. Set
A[0, t] = ∪τ∈TAτ [0, t]. For ξ ∈ A[0, t] set

A(ξ) = ∪s∈∆(ξ){s} × A[0, s].

We leave to the reader the analogous definitions for A(2)[0, t].
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