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Abstract: We classify extended Poincaré Lie super algebras and Lie algebras of any
signature (p, q), that is Lie super algebras (resp. Z,-graded Lie algebras) g = go + g1,
where go = 50(V)+V is the (generalized) Poincaré Lie algebra of the pseudo-Euclidean
vector space V = RP:? of signature (p,q) and g, = S is the spinor $0(V)-module
extended to a go-module with kernel V. The remaining super commutators {@;, g;}
(respectively, commutators [g;, §1]) are defined by an 50(V')-equivariant linear mapping

Vzgl — V' (respectively, /\291 = V).

Denote by P*(n, s) (respectively, P~ (n, s)) the vector space of all such Lie super
algebras (respectively, Lie algebras), where n = p+¢ = dimV and s = p — ¢ is
the classical signature. The description of P%(n, s) reduces to the construction of all
$0(V)-invariant bilinear forms on .S and to the calculation of three Z,-valued invariants
for some of them.

This calculation is based on a simple explicit model of an irreducible Clifford
module S for the Clifford algebra Cl,, , of arbitrary signature (p, ¢). As a result of
the classification, we obtain the numbers L% (n, s) = dimP*(n, s) of independent Lie
super algebras and algebras, which take values 0,1,2,3,4 or 6. Due to Bott periodicity,
L*(n, s) may be considered as periodic functions with period 8 in each argument. They
are invariant under the group I” generated by the four reflections with respect to the axes

=-2,n=2,5—1=-2and s — 1 = 2. Moreover, the reflection (n,s) = (-n, s)
with respect to the axis n = 0 interchanges L* and L~ :

L*(—n,s)= L™ (n,s).
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Introduction

General relativity is a gauge theory with the Poincaré group P(1,3) = R!3*x Lor(1, 3)
of Minkowski space R as gauge group. In N-extended supergravity the N-extended
Poincaré supergroup plays the role of (super) gauge group.

The Lie super algebra of this super group for N = 1 is defined as follows: p)(1, 3) =
g=go+0 =p(1,3)+ S, where p(1,3) = R+ 50(1, 3) is the Poincaré Lie algebra
and S = C? is the spinor module of the Lorentz algebra 50(1,3) = s[(2,0) trivially
extended to a (1, 3)-module. The supercommutator i-, -} :S®S = R!3is defined as
projection onto the unique vector submodule V = R in the symmetric square V2S.

We remark that in this case there exists also a unique vector submodule in A2S,
which defines on p(1,3)+ S the structure of a Z,-graded Lie algebra p‘~1(1, 3).

Our goal is to classify for any pseudo-Euclidean space V = IRP? all similar ex-
tensions of the (generalized) Poincaré algebra p(V) = p(p,q) = RP?+50(p,q) to a
super Lie algebra or to a Z,-graded Lie algebra. The super Lie algebra extensions of the
Poincaré algebra P(p, q) are the natural gauge algebras for supergravity theories over
space times of signature (p, ¢). Since the time when the classical (i.e. (p, q) = (1, 3))
super Poincaré algebra was discovered [G-L] these (generalized) super Poincaré alge-
bras play a mayor role in many super symmetric field theories, see e.g [O-S and F] for
further reference. However, despite the various realizations of particular super Poincaré
algebras as infinitesimal symmetries of supergravity theories (for special dimensions
and signatures of the space time), a systematic classification, as given in our paper, was
missing.
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Another motivation to study such extensions is that extended Poincaré Lie algebras
are closely related to the full isometry algebra iSom(M ) of homogeneous quaternionic
Kihler manifolds M (see [dW-V-VP, A-C1]). In fact, isom(M) = p + R A, where P is
an extension of the Poincaré algebra p(3, 3 + k) of the pseudo-Euclidean space R33+*
of signature (3,3+ k), k = —1,0,1,.., and A is a derivation of P defining a natural
gradation.

Definition 1. A super Lie algebra (respectively a Z,-graded Lie algebra) g = go + gh
is called an N -extended (respectively — N -extended) Poincaré algebra of V = RP¢
if the following conditions hold

1) go = p(V).

2) @1 is a sum of N irreducible spinor or semi spinor modules of p(V) = V + s0(V)
with trivial action of the vector group V.

3) The super bracket {S,S} C V (respectively Lie bracket [S,S] C V).

Let S be a p(V)-module with trivial action of the vector group V. Then defining
on g = p(V)+ S the structure of a super Lie algebra (respectively of a Z,-graded Lie
algebra) such that go = p(V), g1 = S and {S,S} C V (respectively [S,S] C V) is
equivalent to defining an $0(V)-equivariant mapping j : V* — V2S* (respectively
j : V* = A2S*). The super bracket (respectively the Lie bracket) is given by j* :
Vv2S — V (respectively j* : A2S — V). Remark that under these assumptions the
Jacobi identities are automatically satisfied since [[z, y], z] = 0 for z, y, z € gi.

We show that the classification of N-extended (N € Z) Poincaré algebras easily
reduces to the classification of equivariant embeddings V* < V2S* if N > 0 and
V* < A2S* if N < 0, where V is the vector module and S the spinor module of
$0(V). In other words, we reduce the classification to the cases N = +1, 2.

We prove that the following three vector spaces are isomorphic:

1) the space J of §0(V')-equivariant mappings j : V* = S* ® S*,
2) the space M of $0(V)-equivariant multiplications z : V* ® S — S, and
3) the space B of $0(V)-invariant bilinear forms 3 on S.

Let p : V*® S — S be the (standard) Clifford multiplication, where we have
identified V = V* using the scalar product on V = RP9. Then an isomorphism
Jo : B = J is given by

Jp(B) :v" €V > Bop(v™)=B(p(v"), ) €S ®S”.

In particular, the classification of $0(V')-equivariant mappings V* — S* ® S* is
equivalent to the classification of $0(V)-invariant bilinear forms on the spinor module
S. The latter amounts to the description of the Schur algebra C of $0(V)-invariant
endomorphisms of S. The structure of C as abstract algebra depends only on the signature
s = p — q of R?*2 modulo 8; it is a simple real, complex or quaternionic matrix algebra
of rank 1 or 2 or a sum of two isomorphic such algebras.

To construct equivariant embeddings of the vector module V* into the symmetric
square V2S* (or into the exterior square A2S*) we introduce the notion of an admissible
bilinear form 3 on S and also the corresponding notion of an admissible endomorphism
of S, which depends on the choice of an admissible bilinear form 3.

Definition 2. An $0(V)-invariant bilinear form 3 on the spinor module S is called
admissible if it has the following properties:
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1) Clifford multiplication p(v) is either B-symmetric or (3-skew symmetric. We define
the type T of 3 to be T7(3) = +1 in the first case and T(3) = —1 in the second.

2) B is symmetric or skew symmetric. Accordingly, we define the symmetry o of 3 to
be o(B) = +1.

3) If the spinor module is reducible, S = S* + S—, then S* are either mutually
orthogonal or isotropic. We put 1(3) = +1 in the first case, «(3) = —1 in the second
and call «(B) the isotropy of 5.

Every admissible form j defines an §0(V)-equivariant embedding j,(8) : V* — Vv2S*
if r(B)o(B) =+lorj,(B): V* — A2S* if 7(B)o(B) = —1. Moreover, if S = S* + S—,
then either S* are orthogonal or isotropic for every bilinear form in the image of j,(3).

The main part of the paper is the construction of an admissible basis for the space
J of equivariant mappings V* — S* ® S*, i.e. a basis consisting of embeddings j,(5),
where 3 are admissible bilinear forms on S.

To describe all admissible forms 3 we make use of very simple explicit models of
the irreducible Clifford modules inspired by RaSevskii [R]. We prove that the problem
reduces to the three fundamental cases V = R™™, R*:0and R%* using the isomorphisms
Clmsk,m = Clm m@Cly and Gy, mak = Cly m ®Clo i and the algebraic properties of
the fundamental invariants 7, o and ¢ with respect to Z,-graded tensor products.

Moreover, we establish that for every pseudo-Euclidean vector space V' = R?:7 there
is a preferred non-degenerate $0(V)-invariant bilinear form % on the spinor module S.
This allows us to define canonically the notion of an admissible endomorphism of S and
the invariants 7, o and ¢ for such endomorphisms. They are multiplicative with respect
to the composition h o A = h(A-, ), A € C admissible.

Finally, we explicitly construct in all the cases an admissible basis for the Schur
algebra C. This canonically yields admissible bases for the space B of invariant bilinear
forms and the space .J of equivariant mappings.

This gives an explicit description of all extended Poincaré algebras g = p(V) +
S, where S is the spinor module. The super (respectively Lie) brackets VS — V
(respectively A2S — V') are given as linear combinations of mappings j;, where the
ji 1 V* = Vv28* (respectively V* — A2S*) form an admissible basis for the space of
50(V)-equivariant mappings V* — V2S5* (respectively V* — A2S*).

If the spinor module S is an irreducible $0(V)-module, we obtain all N = +1
extended Poincaré algebras. If S is reducible, then we obtain all N = +2 extended
Poincaré algebras and using the invariant ¢ we can determine all N = +1 extended
Poincaré algebras. Sometimes there exist only trivial N = 1 (or N = —1) extended
Poincaré algebras, i.e. {S, S} =0 (or [S, S] = 0). ‘

Given a pseudo-Euclidean vector space V = R?:, let |N| = 1 or 2 denote the
number of irreducible summands of the spinor module S of §0(V'). For fixed N = +|N|
or N = —| N| we give now the dimension d v of the vector space of N -extended Poincaré
algebra structureson g = p(V) + S.

The function dy, which depends only on the signature (p, ¢), admits a symmetry
group I' generated by reflections. Moreover, there is an additional supersymmetry
which relates the dimension L* := d,n| of the space of super algebras to the dimension
L~ :=d_|n) of the space of Lie algebras.

More precisely: Denote by n = p + ¢ the dimension and by s = p — ¢ the signature
of V = R?9 and let L* = L*(n,s) (respectively L~ (n, s)) be the maximal number
of linearly independent super algebra structures V2S — V (respectively Lie algebra
structures A2S — V) on g = p(V) + S. The functions L* and L~ are periodic with
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period 8 in each argument, hence we may consider them as functions on Z2 = Z x Z.
The value of the pair (L*, L™) is given in Table 1.

Table 1. The numbers L* of super algebras and L~ of Lie algebras g = p(V') + S are given as functions of
the dimension n and signature s of V. A fundamental domain for the reflection group I" is emphasized in
boldface. The supersymmetry axis is given by the equation n = 0.

s (L*(n, s), L~ (n, 5))
5 1,3 1,3 3,1 3,1
4|44 26 44 6,2 44
3 1,3 13 31 3,1
21| 44 2,6 44 6,2 4.4
1 1,3 1,3 31 3,1
0] 1,1 0,2 1,1 2,0 1,1
-1 0,1 0,1 1,0 1,0
2] 1,1 0,2 1,1 2,0 1,1
-3 1,3 1,3 3,1 3,1
n: -4 -3 -2 -1 0 1 2 3 4

It follows from the inspection of this table, that the function (L*, L ™) is invariant under
the group I" generated by the reflections with respect to the 4 axes defined by the
equationsn=—2,n=2,5 :=s - 1=—2and s’ = 2. A fundamental domain F for I
is

F={(ns)€Z)-2<n<2, -2<s=s5s-1<2}NnG,

G={(n,s)3p,q)€Z?:n=p+q, s=p—q}={(n,s) EZn+s even}

and consists of 12 points. The values of the pair (L*, L™) at these points are typed in
boldface in Table 1.

Moreover, the reflection 6 with respect to the axis {n = 0}, 8 : (n,s) = (—n, s), is
a supersymmetry of the pair (L*, L™), that is it interchanges the number of Lie algebras
and Lie super algebras:

(L+(+n) 3)5 L—(+na S)) = (L_(_n) 3), L+(-ns S)) .
In short:
A fundamental domain F for the group I =< I',0 > is given by

F={(n,9)=(0,0), (0,2), (1,-1), (1, 1), (1,3), 2,0, (2,2)}.

In terms of the coordinates (p, ¢) a fundamental domain with p > 0 and ¢ > 0 is given
by

D={(,9=(2,0, 1,1, 3,0, 2,0, (1,2), (3,1), 2,2)}.
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1. (Super) Extensions of the Poincaré Algebra p(p, q) and
Spin(p, q)-Equivariant Embeddings R?? — S* @ S*

1.1. Extending the Poincaré algebra. Let V = R?'? be the pseudo-Euclidean space
with the metric < 2,y > = Y7, z*y* — -0 | 27y/. We denote by 50(V) = $0(p, ¢)
the pseudo-orthogonal Lie algebra and by p(V) = p(p, ¢) = 50(V) + V the semidirect
sum of §0(V) and the Abelian ideal V/, it is the Lie algebra of the isometry group of

V,< -, - >). We call p(V) the Poincaré algebra of the space V.

Definition 1.1. A Z,-graded Lie algebra (respectively a super algebra) § = go + @1 is
called an extension (respectively a super extension) of p(V) if go = p(V), V is in the
kernel of the representation of §o on g1 and [@1, §1] C V (respectively {g1, 81} C V).

Remark 1. Sometimes, for unification, we will refer to Z,-graded Lie algebras and to
super algebras as e-algebras, where € = —1 or +1 respectively. Correspondingly, we will
speak of e-extensions.

Proposition 1.1. There exists a natural one-to-one correspondence between extensions
(respectively super extensions) of P(V') up to isomorphisms and equivalence classes of
pairs (p, w), where

p:so0(V)— gl(W)

is a representation and
T:N2W 5V (resp. VW V)

is a $0(V)-equivariant linear map from the space of skew symmetric (respectively
symmetric) bilinear forms on W* to the vector module V. Two pairs (p, ©) and (¢’ , n')
(p' : s0(V) — gl(W’)) are equivalent if there exists an automorphism ¢ : p(V) —
p(V)and a linear map ¢ : W — W’ such that the following diagrams are commutative
(for pairs of skew symmetric type):

so(V) 5 gl(v) ANW SV
¢ I v I v Lelv,
so(V) 2 gliw) 2w v

where § is the induced automorphism of 50(V) = p(V)/ V. For pairs of symmetric type
N? must be replaced by V2.

Proof. Given a pair (p, 7) of skew symmetric type, we define a Z,-graded Lie algebra
g=g0+91,=pV)=50(V)+V,g, =W by

[A,w] = p(Aw,
[wi,w2] = m(wi Awy),
[v,w] = O,

where A € s0(V),v € V and w, w;, w, € W. For a pair of symmetric type we define a
super algebra g = go + @1 by the same formulas replacing only the middle equation by

{wi, w2} = w(w Vuwy).

The Jacobi identity is satisfied because p is a representation, « is equivariant and the
(anti)commutator of W with W is contained in V and hence commutes with W. The
other statements can be checked easily. [m}
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Recall that the spinor representation is the representation of 50(V) on an irreducible
module S of the Clifford algebra C¢(V). It is either irreducible or a sum of two irreducible
semi spinor modules S*.

Definition 1.2. (¢f. Def. 1) Let g = g(p, 7) be an e-extension of p(V') associated with
a pair (p, ). We say that § is an ¢N -extended Poincaré algebra if p is a sum of
N =0,1,2,... irreducible spin 1/2 representations, i.e. irreducible spinor or semi-
spinor representations.

The purpose of this paper is to classify all N-extended (N € Z) Poincaré algebras.
Before starting this classification we explain how, given a (super) extension of the
Poincaré algebra, we can construct more complicated e-algebras.

1.2. Internal symmetries and charges.

Definition 1.3. Let § = go + g1 be an e-algebra. An internal symmetry of g is an
automorphism of § which acts trivially on go.

Now we give a simple construction which associates with an e-extension g = g(p, 7)
of the Poincaré algebra p(V) and | € N an e-extension g™ and also a —e-extension
g2 which admit O(!), respectively, Sp(2!, R) as internal symmetry groups. We define
g™ = g(p™), 7)), where

P=lp:so(V) > IW=WeR,

7w ® v1, w2 ® 1) = T(wy, W< V1, v2 >,

< -,+ > is the standard Euclidean scalar product on R'. Similarly, we define
g =2p:50(V) > 2AW =W @R?%,

7wy @ v, wa ® v2) = (Wi, W (v, v2),

where w is the standard symplectic form on R%. Here we have used the convention that
w(wy, wp) = w(wy V wy) if € = +1 and m(w), wr) = w(w; A wy) if e = —1.

Proposition 1.2. If § is an c-extension of the Poincaré algebra p(V'), then g is an
e-extension and g\~ is a —e-extension. The standard actions of O(l) (respectively
Sp(2l,R)) on R! (respectively R?) are naturally extended to actions on g(‘” (respec-
tively =) by internal symmetries.

Proof. The first statement follows immediately from Prop. 1.1 and the remark that
the bilinear map 7™ (respectively 7(~2)) has the same (respectively the opposite)
symmetry as «. The last statement is immediate. a

Example 1: Applying this construction to an e-extended (see Def. 1.2) Poincaré algebra,
we obtain an el-extended Poincaré algebra and also an —e2!-extended Poincaré algebra
with internal symmetry groups O(l) and Sp(2!, R) respectively.

Definition 1.4. A Z,-graded Lie algebra (respectively a super algebra) § = @o + @ is
called a charged extension (respectively a charged super extension) of the Poincaré
algebra p(V) if

1) go =p(V) +C is a trivial extension of p(V), i.e. [C,C]=0.
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2) The action of V + C on the §o-module W = @, is trivial.

3) The Lie (respectively super) bracket © : N>W — g (respectively V?W — @o) is
asumm =y +nc, where 1y : N°W = V and ¢ : N2W = C (respectively
my : VW = Vandrc : V2W — C). Inparticular, (p(V)+W, v ) is an extension
(respectively super extension) of p(V').

If moreover, [s0(V),C1 =0, and hence [C,g] = 0, then g is called a central charge
extension (respectively a central charge super extension) of p(V).

Let an extension (respectively super extension) p(V) + W admitting a connected

Lie group H of internal symmetries be given. Without restriction of generality we can
assume that H is simply connected and we denote the Lie algebra of H by §. To
construct a charged extension (respectively super extension) (p(V)+C)+ W preserving
the internal symmetry group H it is necessary and sufficient to define an (50(V) + )-
equivariant map ¢ from the exterior (respectively symmetric) square of W to an
(s0(V) + h)-module C.
Example 2. Let p(V)+W be an extension of p(V'). Consider the extension g™ = p(V)+
W ® R’ with internal symmetry group H = O(l) defined above. Let h € V2W* Q R"
be a symmetric $0(V)-invariant (possibly trivial) vector valued bilinear form on W and
n € A’W* @ R* a skew symmetric such form. Define

e AW QRN 5 C=R"® A’R'+R* @ V2R!,

mo(wy ® T, w2 ® z2) = h(wy, w2)z) A x2 + (w1, wo)z1 V 22,

where wy, w; € W and z1,z, € R’ Then 7c defines on (p(V) + C) + W ® R’ the
structure of central charge extension of p(V') with symmetry group O(l).
Analogously, we can define on (p(V)+C)+W QR%, C = R"@ VZR?+R*Q AZR%,
the structure of central charge super extension of p(V') with symmetry group Sp(2!, R)
by
Tc VAW RY) - C,

Te(wr @ x1, w2 @ x2) = h(wy, wy)zy V T2 + n(wy, wa)z A Z2.

Example 3. Let p(V) + W be a super extension of p(V'). Consider the super extension
g™ = p(V)+W @R with internal symmetry group H = O(l) and let h be a symmetric
and 7 a skew symmetric vector valued $0(V )-invariant bilinear form on W, as above.
Define

mc : VAW QR - C=R"® VIR + R* @ ATR’,

Te(w) @ T1, w2 @ 22) = h(wy, w2)zy V T2 + n(wy, w2)T) A 2.

Then 7¢ defines on (p(V)+C)+ W ® R’ the structure of central charge super extension
of p(V) with symmetry group O(l).

Analogously, we can define on (p(V)+C)+WRR?%, C = R"@ A2R¥ +R* @ VIR?
the structure of central charge extension of P(V') with symmetry group Sp(2!, R) by

e NM(W QR 5 C,

e (wr @ x1, w2 @ x2) = h(wy, w2)z) A z2 + n(wy, wr)z1 V 22

In the physical literature (see [F]) the expression “central charges” is used for a
special case of Example 3.
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1.3. Reduction of the classification of N -extended Poincaré algebras to the cases N =
+1,+2. Letg = g(p,7) = p(V) + W be a £ N-extended Poincaré algebra, N =
1,2, ... Then either the spinor representation pg : $0(V) — gl(S) is irreducible and
p=Npy, W = NS =SQRY, orit decomposes into two irreducible subrepresentations
po=ps+p_,S=8*+S"andp=N,p,+N_p_,W=N,S*+N_S~ =S*QRM +
S~ @RN-, N = N,+N_. The description of all ¢ N -extended Poincaré algebras g(p, 7)
reduces to the description of all 50(V)-equivariant mappings 7 : A’W — V ife = —1
and 7 : VAW — V if € = +1. If 7 # 0, the dual mapping defines an 50(V')-equivariant
embedding 7* : V* < A?W*if e = —lor7* : V* < VZW* if € = +1. To find all
such embeddings it is sufficient to determine all submodules isomorphic to V* in A2WW*
and V2W* or, equivalently, all vector submodules V in A2W and VW . Tables 2 and 3
reduce this problem to the cases N =1 or 2.

Table 2. Decomposition of the symmetric square of W

o Npo Nips + N_p_

w: NS=S®RYN NS*+N_S— =

S*@RM++S- @RVN-

VW | V2SS @ VRN + A28 @ A2RN | V2§t @ VIRM+ + v2ZS— @ VIRN-+

AZS* @ A2RN+ + A25— @ A2ZRV-+
St ® S— ®RN*N'

Table 3. Decomposition of the exterior square of W

p: Npo Nepe + Nop—

w: NS=SQRYN N:S*+N_S— =

S*@RN++ S~ @RN-

AW | A2ZSQ VIRYN +vIS @ AZRYN | A2S* @ VZRM+ 4+ A2S— @ VIRV-+

V25t @ AR+ + v2S— @ AZRN-+
St ® S ® RN"N‘

If p, and p_ are equivalentthen p = N,p, + N_p_ = Npy, po ¥ p+,

V25, @ VRN + A2Sy @ AZRN
Vv2So ® A’RY + A2S, @ VRN |

viw
NW

n w

where Sp = S* and N = N,+N_. Table 2 shows that the classification of all equivariant
embeddings V < V2W (case € = +1) reduces to finding all equivariant embeddings
V < V2§ and V < A%S if S is irreducible and equivariant embeddings V < V2S<,
VA28t and V <3 §* ® S~ if S = S* + S~ . Table 3 shows that the same reduction
applies to the case € = —1, i.e. to the problem of finding all equivariant embeddings
V <> A2S. We see that e.g. the classification of N-extended Poincaré algebras for
N > 0 (i.e. super algebra extensions) reduces to the classification of N = +1-extended
Poincaré algebras in case there is only one irreducible spin 1/2 representation of s0(V).
The same is true for N < 0, i.e. for Lie algebra extensions.

To illustrate this reduction we consider the case € = +1 and p = N pg in more detail.

Lemma 1.1. Assume € = +1 and p = N py, where py is an irreducible spin 1/2 repre-
sentation on Sy. Then any $0(V )-equivariant embedding



486 D.V. Alekseevsky, V. Cortés

j:V VW =25, @ VRN + A2Sy @ ARV

is given by

i@ =) ¢a(®)® Aa+ %) ® By,
a b

where ¢, : V — V2S, and ¥y 1 V. = A2Sy are equivariant embeddings, A, € VRN
and B, € N’RV.

Proof. Choose bases (A,) and (Bp) of VZRY and A2R¥ respectively. Then j(v) can
be decomposed as above and the coefficients ¢, and ), are equivariant embeddings or
Zero. a

1.4. Equivariant embeddings V* < S* ® S* , modified Clifford multiplications
and Dirac operators.  We reduced the problem of the classification of N-extended
Poincaré algebras to the description of 50(V)-equivariant mappings V* — S* ® S*,
where S is the spinor module of §0(V'). We will denote by 7 the vector space of all
such mappings.

Now we will show that this space is closely related to two other vector spaces:

- the space B of all s0(V)-invariant bilinear forms on S, and
- the space M of 50(V)-equivariant multiplications p : V* ® S — S.

Denote by C the Schur algebra of $0(V)-invariant endomorphisms of S. We define
two natural anti-representations of C on B and 7 and also a representation and an
anti-representation of C on M by:

58 = BA-,),

naB = B(,A),
€N = 3G,
MINW") = 756G,
EX'wE*) = Aop"),
A W@") = p@oA,

where AeC,v*eV*,feB,jeTJand u € M C Hom(V*, End S). Remark that
a non zero equivariant mapping j : V* — S* ® S* is automatically an embedding.

Definition 1.5. Anequivariantembedding j : V* — S™®S™ is called non-degenerate,
if j(V*)S = S* and j(S) = S, where we consider j as mapping j : S - V @ §*. An
equivariant multiplicationp : V* ® S — S is called non-degenerate, if u(V*)S = S.

Using the following identifications, we define mappings from two of the spacés B,
J and M into the third:

B = (5"e5)*°",
(*)
J = Hom(V*,S*®S")°Y) = Hom(S,V* ® $*)*°V),
M Hom(V* ® S, $)*°*V) ¥ Hom(V*, End S)*°")

R N

Hom(V* ® S*, §*)*°V)
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At (¥) we used the metric identification V* = V. The mappings are defined as follows:

BxM —= J
B,p) — jB,p=PBopu

i@, p*) Bp*)-, ), v*eVv*;
MxJ - B
3 — Bp,j)=poj,
By, j)s,t) = <p@@e),t>, stesS;
BxJ - M
B,3) = pB,j)=poj

@B, HEY) = PG, )ES®S* X EndS,

where < -, - > denotes the natural duality pairing S* x S — R and for the last mapping
we have used that j(v*) € S* ® S* ¥ Hom(S*, S).

Theorem 1.1. The choice of a non-degenerate element Jy, jo or pg in any of the spaces
B, J and M defines vector space isomorphisms between the two others:

Jag M = T

g = jBo,p)=Poop,
/‘ﬁo:J - M

i = pBo,j)=Pooj;
,Bjo:M - B

b= B, jo)=pojo,
ﬂjo:B - M

B = pB,jo)=PB0ojos
Jue:B = J

B = j(B,po)=PBopo,
Buo : T -5 B

J = PB(po,j)=pooj.

Proof. The statement is trivial for jg, and pg,, because these mappings amount to
“raising and lowering” indices of tensors via the non-degenerate form Jy.

It is clear that u;, and j,, are injective, since jo and yo are non-degenerate. Hence,
itis sufficient to prove that 3;, and 3, are injective.

Consider first 8,,(j) = poo j, where j : S = V* ® S* and po : V* @ S* — S*.
The kernel of 3,,, equals

ker Bu, = {j € J1j(S) C ker po}.

If0 # j € ker B, then ker pg contains the non-trivial submodule j(S). This is impossi-
ble, because ker po does not contain spin 1/2 submodules. Indeed, after complexification
the $0(VC)-module (V*)€ ® (S*)T has the decomposition

Ve (S =Z @ (5" = (ker ) & (ST)°,

where X = ker u§ contains only spin 3/2 modules, i.e. Kronecker product of the vector
module VC = (V*)C (spin 1) and an irreducible spin 1/2 module.
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Consider now gj,(¢) = p o jo, where jo : S > V* @ S* and pu : V* @ S* — S*.
As before we have the decomposition (V*)C ® (5*)C = X @ (S*)C, where X has no
submodules isomorphic to submodules of (S* )C. If u #0, ker pc =Y ¢ SF, where
SF # (S*)C is a proper submodule of (S*)C. Since jj, is non-degenerate jo(S) = S
cannot be contained in ker p. a

Lemma 1.2. Let S be the spinor module of S0(V'). There always exists a non-degenerate
$0(V)-invariant bilinear form 3 on S.

Proof. The existence of 3 is equivalent to the self duality of S, i.e. to the condition
S* = S as 50(V)-modules.

The self duality of the complex 50(VC) spinor module S follows from the criterion
of self duality given in [O-V], p. 195.

Now we discuss the real case. Assume first SC has the same number of irreducible
summands as S. Then the self duality of S follows from that of SC, see [0-V], p-
291. In the opposite case S admits an invariant complex structure J and (S,J) & S
(complex spinor module of 50(V'C)). Then the real part of a non-degenerate complex
60(VC)-invariant bilinear form on S = S gives a real 50(V)-invariant bilinear form on
S and it is easy to check that this form is non-degenerate. |

From Theorem 1.1 and this lemma we now derive an important consequence. Recall
that by definition the spinor module S is an irreducible module over the Clifford algebra
CY(V). The restriction of the multiplication mapping C¢(V) x S — Sto V x S defines
a non-degenerate $0(V)-equivariant multiplicationp : V@ S ® V* ® S — S, which
is called Clifford multiplication (as above V and V* are identified using the pseudo-
Euclidean scalar product of V'). The composition j(3, p) = 3 o p with a non-degenerate
$0(V)-invariant form 3 gives a non-degenerate $0(V')-equivariant embedding V* —
S* ® S*. Using the lemma and this remark, we obtain the following corollary from
Theorem 1.1.

Corollary 1.1. The spaces B of $0(V)-invariant bilinear forms on S, J of s0(V)-
equivariant mappings V* — S*®S5* and M of 50(V)-equivariant multiplications V* ®
S — S are isomorphic. In particular, Clifford multiplication p defines the isomorphism
Jo : B = J and hence any $0(V )-equivariant embedding V* — S* ® S* is of the
form

J=73pB) :v" = Blp(v*),"), BEB, v eEV™.
Remark 2. Using an $0(V)-equivariant multiplication 1 : V* ® S — S one can define
a Dirac type operator D* on a pseudo-Riemannian spin manifold M as follows. Let

pr : TyM ® S; — S be a field of equivariant multiplications, where S(M) =
Uzem Sy — M is the spinor bundle. Then

(D*8); = pz(Vs) = po()_ €' @ Ve,9),

where (e;) is a basis of T M, (') the dual basis of T+M and V is the spinor connection
induced by the Levi Civita connection.
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1.5. Zo-graded type and Schur algebra C. Itis well known (see [L-M]), that every
Clifford algebra ClV), V = RP4, is isomorphic to K(!) or to 2K(!) = K() & K{),
where K(!) is the full matrix algebra over K of rank ! depending on (p, ¢) and where
K=R,CorH

Definition 1.6. We say that a Clifford algebra C¥{(V) has type K, r = 1 or 2, if
CUV) = rK() for somel € N.

Recall that the Clifford algebra C¢(V') has a natural Z,-grading C4(V) = CO(V) +
Ct\(V). If V = RP (# 0), then the even part C#(V) is isomorphic to the Clifford
algebra C¢(V') of V! = RP~19if p > 1 and V/ = R?7!if p = 0. Remark that
dim C°(V) = dim C¢(V')/2. By the preceding remarks, the following definition makes
sense.

Definition 1.7. The pair t(C4(V)) = (roKKo, rK) = (type CCO(V'), type CU(V)) is called
the Z,-graded type of the Clifford algebra C{(V').

The following proposition describes the periodicity of the type t of the Z,-graded
Clifford algebras C¢, , = CU(RP-9).

Proposition 1.3. The Z-graded type t, ; = t(C¥p ) depends only on the signature
s = p — q modulo 8 and t(s) = t(p — q) = t,, 4 is given in the table.

s 1 2 3 4 5 6 7 8
t(s) | R,C|CH | H2H | 2HH | H,C | CR | R,2R | 2R,R

Proof. The proof reduces to the investigation of [L-M], Table II. O

Corollary 1.2. The Zs-graded type t, , = t(s = p — q) is mirror symmetric with respect
to the diagonal {p + q = 0}: t, o =t_q _p; in other words, t(Cl, 4) = t(Clgk—q 8k —p):
8k >p,q.

Moreover, the Z,-graded type tp 4 = t(s) = (t9(s), t'(s)) is mirror super symmetric
with respect to the axis {s =p — ¢ = 3.5}, i.e.

%7 - 5),t'(7 - 8)) = (t'(5),8°(5)) -

The type rC and Z,-graded type t,, = (roC, rC) of a complex Clifford algebra C¥¢,,, =
CY(C™ ) are defined by putting V' = C™ in Definition 1.6 and 1.7, where C™ is equipped
with a non-degenerate (complex) bilinear form, e.g. the standard one: < z,w >=
Yo Zzjwj, z,w € C™.

Proposition 1.4. The Z,-graded type t,, = t(Q,,) depends only on the parity of m:

_ ) @G C) if miseven
™ (C,20) if misodd

Let S = S, 4 be an irreducible C¢;, g-module. Recall that by definition the Schur
algebra C = Cp q of S is the algebra of all its 50(V)-invariant endomorphisms; it is
the algebra of endomorphisms which commute with C@o . Analogously, we define the
Schur algebra C¢, of the complex spinor module S; it 1s the algebra of endomorphism
of S commuting w1th
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Corollary 1.3. The Schur algebraC, 4 = C(p — q) depends only on s = p — ¢ modulo 8
and is given in the table. In particular, it admits the mirror symmetry (p, q) — (—q, —p).

s 1 2 3 4 5161|717 8
CH | RQO|(CQ) | H{HeH H|C|R|[ROR

Proof. Remark that if ¢(C¥, ;) = (roKo, rK), and hence Cf° q S roKollo), Ctp g =
rIK(l), then [/ is completely determined by [/ and vice versa; f lp or 2ly. This follows
from dim C¢,, ¢ = 2dim C&Y .

Using this remark, Proposmon 1.3 shows that the pair (C10
to one of the following:

5,q» Clp,q) is isomorphic

®O),K'Q) , S=K',

®D,2K¢) , S=K,
®@O,K2) , S=K¥,
QKO), K@) , S=K*,

where K=R,CorHand R'=C,C =H

In the first case the K(/)-module S = K is a sum of two irreducible equivalent
modules S* ¥ K and hence the Schur algebra C = K(2).

In the second (respectively third) case S = K' (respectively K?) is irreducible as
K()- (respectively K’ (l)-) module and hence C = K (respectively K').

In the last case C = K @ K, which follows from the next lemma. ]

Lemma 1.3. Let S = K% be the irreducible module of the algebra K(2l) and A =
2KK(l) a subalgebra of K(2l), then the A-module S is decomposed into a sum of two
nonequivalent submodules S*.

Proof. 1tis clear that the A-module S is the sum of two irreducible submodules S* and
S~ . They are not equivalent because .4|S* and .4|S™~ have different kernels, namely
the two ideals K(/) C A. a

Remark that the algebras C @ C and H(2) do not occur as Schur algebras of the real
spinor module S.

Corollary 1.4. The Schur algebra C¢, of the complex spinor module S depends only on
the parity of m:

= CoC if miseven
m C if misodd

The proof of Corollary 1.3 shows that the structure of the matrix algebra C contains
the following information about the C¢°(V')-module S.

Proposition 1.5. C is a simple K-matrix algebra (respectively a sum of two isomorphic
K-matrix algebras) if and only if C€®(V) is a simple K-matrix algebra (respectively a
sum of two isomorphic such algebras). S is an irreducible C£°(V')-module if and only
ifC 2 K= R, C or H). S is decomposed into a sum of two equivalent (respectively
inequivalent) CZ2(V')-modules if and only if C = K(2) (respectively C = K @ K).
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The corresponding statement in the complex case is given for the sake of complete-
ness: :

Proposition 1.6. If m is even, then the spinor module S = S,, is the sum S = S*+ S~
of two inequivalent irreducible (2, -modules. In this case, &2, and the Schur algebra
C¢, are the direct sum of two isomorphic simple (complex) matrix algebras.

If m is odd, then the spinor module is an irreducible module of the simple matrix
algebra (%, and its Schur algebra is also simple.

Since, due to Lemma 1.2, S admits a non-degenerate $0(p, ¢)-invariant bilinear
form, by Schur’s Lemma the dimension b, , of the space B = B, , of 50(p, ¢)-invariant
bilinear forms on S equals

bpq =dimBp,q = dimCy 4 .
Hence we have:

Corollary 1.5. b, , = b(p — q) is a periodic function of s = p — q with period 8. In
particular, it admits the mirror symmetry (p, q) — (—q, —p). Its values are given in the
Jfollowing table:

s |112]1314|15]6|7]8
bis) |4 (8|4 |8|4|12|1]|2

Denote by b,, the (complex) dimension of the space of $0(m, C)-invariant bilinear
forms on the complex spinor module S, then b,,, = dim¢ CS, and we have:

2 if miseven
bm = . .
1 if misodd.

2. Fundamental Invariants 7 , o and : and Reduction to the Basic Signatures
(m, m), (k,0) and (0, k)

2.1. Fundamental invariants.  As before let V denote a pseudo-Euclidean vector
space and S its spinor module. In Corollary 1.1 we have established that every s0(V)-
equivariant embedding j : V* < S* @ S* is of the form

j=jp(ﬂ) : ‘U* — ﬂ(p(v*)'w ')1 U* € V* 3

where p is Clifford multiplication and 3 € B. The dimension of the space B of s0(V)-
invariant bilinear forms on S was given in Corollary 1.5.

Now we will concentrate on a class of bilinear forms 8 € B for which j,(8)V* C
Vv2$* or Jo(BV* C A2S* and define fundamental invariants 7, o and ¢ for this class.

Definition 2.1. A bilinear form (3 on the spinor module S is called admissible if it has
the following properties:

1) Clifford multiplication p(v), v € V, is either 3-symmetric or (3-skew symmetric. We
define the type T of 3 to be T(B) = +1 in the first case and 7(3) = —1 in the second.

2) The bilinear form (3 is symmetric or skew symmetric. Accordingly, we define the
symmetry o of 3 to be o($) = *1.
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3) If the spinor module is reducible, S = S* + S—, then S* are either mutually
orthogonal or isotropic. We put «(3) = +1 in the first case, «(3) = —1 in the second
and call «(3) the isotropy of 5.

Due to 1) every admissible form § is $0(V)-invariant and hence defines an s0(V)-
equivariant embedding j,(8) : V = V* — S§* ® S*. In addition, j,(8)V C v2s*
if 7(B)o(B) = +1 and j,(B)V C AXS* if T(B)o(B) = —1. If S = S* + S, then for
every bilinear form y € j,(8)V the semi spinor modules S* are either y-isotropic (if
t(y) = —(B) = —1) or mutually y-orthogonal (if :(y) = —¢(B) = +1).

Given an admissible form 3 € B and A € C, the composition o A = §(A-,-) € B
is in general not admissible. However, if A is -admissible (see Definition 2.2 below)
then 3 o A is admissible.

Definition 2.2. Let 3 € B be admissible. An endomorphism A of S is called 3-
admissible if it has the following properties:

1) Clifford multiplication p(v), v € V, either commutes or anticommutes with A. We
define the type T of A to be T(A) = +1 in the first case and T(A) = —1 in the second.

2) A is B-symmetric or [3-skew symmetric. Accordingly, we define the 3-symmetry o
of Atobe op(A) =+1.

3) If the spinor module is reducible, S = S* + S~ then either AS* C S* or AS* C
S¥. We put 1(A) = +1 in the first case, .(A) = —1 in the second and call 1(A) the
isotropy of A.

Due to 1) every B-admissible endomorphism A is §0(V)-invariant and hence o A € B.
Moreover, 3 o A is admissible and the fundamental invariants are multiplicative:

T(BoA) = T(B)r(A),
o(BoA) = a(Ba(A),
UBoA) = uP)(A).

In Sect. 3.1 (see Definition 3.1), for every pseudo-Euclidean space V, we will
construct a canonical non-degenerate §0(V)-invariant bilinear form k2 on the spinor
module S. We will define that an endomorphism A of S is admissible of symmetry
o(A) = £1, if A is h-admissible and o, (A) = +1.

Remark 3. The complete classification of admissible forms 3 € B, which we will give
in this paper, implies the following. Let ¥ € B be non-degenerate and admissible. Then
a y-admissible endomorphism A € C is #-admissible for every admissible 3 € B. In
particular, admissibility (i.e. h-admissibility) implies #-admissibility.

2.2. Reduction to the basic signatures. Let V; and V, be pseudo-Euclidean spaces
and V = V) + V; their orthogonal sum. We recall (see [L-M] L. Prop. 1.5) that there is a
canonical isomorphism of Z,-graded algebras

CUV) = CU(V)RCUV3) ,

where @ denotes the Z,-graded tensor product of Z,-graded algebras.
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Proposition 2.1. Let My = M + M} be a Z,-graded C{(V1)-module and M, a (not
necessarily Z,-graded) C(V3)-module. Then M = M) ® M carries a natural structure
of C¥(V)-module, V = V) + V,, given by:

(a1 ® az)(m; @ my) = (—1)%E@I ¥ @ aym,

where a; € CU(V;), m; € M;, i = 2. If M = Mg + M} is a Zy-graded CL(V5)-
module, then this formula defines on M the structure of Zj-graded CL(V)-module:
M°=M)@ M)+ M| @ M}, M' = M) ® M} + M{ ® M3.

Corollary 2.1. Let S; be an irreducible C{(V;)-module, i = 1,2, and assume that
Sy = St + Sy is reducible as Ct®(Vy)-module. Then S = S| ® S, is an irreducible
(CU(V) = CUV1)RCU(Va))-module. The CEO(V)-module S is reducible, S = S* + S, if
and only if S, is reducible as C*(V3)-module, S, = Sy +S;.

Proof. Let S) be an irreducible C#(V;)-module which is reducible as C#(V;)-module
and let S be an irreducible C¥°(V;)-submodule. Then

S} = CUVY) @coovyy St

is an irreducible C#(V})-module, hence without restriction of generality S; = S as
C¥(V1)-modules. Moreover, S is a Z,-graded C¢(V;)-module (see [L-M] I. Prop. 5.20):
81 = 5%+8,1,8,° = COWV))®cpwySt = Sfand S}' = ' (V1)S$}° = CO' (V)@
St.

Therefore, we may assume (as usual) that S; = S} + S| is a Z,-graded Cl(V)-
module: S? = Sf, S| = ST = C¢(V1)S{, reducing the first statement to Proposition 2.1.
The remaining statements also follow from the structure of Z,-graded Clifford module
on S; and on S, (in the reducible case). (]

Now we investigate the algebraic properties of the fundamental invariants with
respect to Z,-graded tensor products.

Proposition 2.2. Under the assumptions of Corollary 2.1 let 3; be admissible bilinear
formson S;,i=1,2.
If T(81) = UB1)T(B), then B = B ® B is admissible and

@) = 7(6) = UB)T(B),
c® = o(B1)o(B2),
WB) = BB,

where (3) and 1(3;) are defined if and only if S, (and hence S) is reducible as a module
of the even part of the corresponding Clifford algebra.

Let A; be B;-admissible endomorphisms of S;, t = 1,2. If 7(A1) = t(A1)7(A2), then
A = A ® A3 is admissible and

T(A) = T(A1) = U(A1)T(A),
og(A) = o03,(A1)og,(A4r),
(A) = (Au(Ay),

where «(A) and «(A3) are defined if and only if S, is reducible as CP°(V)-module.
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Proof. The only non-trivial statements are the ones concerning the type 7. For 3;,1; € S;
and v; € V; we compute:

Bvis1 ® 52,11 @ 13) =
T(B1)B1(s1, vit1)Pa(s2,t2) =
T(B1)B(51 @ 82, (v1 @ 1)t @ 12))

Bl(v1 @ 1)(51 ® s52),t1 @ ¢2)
Br(v151,1)B2(52,12)
7(B1)B(51 @ 82, v1t1 ® t2)

and

(—=1)%8*1 B(s) ® v282,t1 @ t2) =
(-2 r(8)B1(s1,1)B2(s2, vata) =

B((1 ® v2)(s1 @ 82),t1 ® t2)
(—1)%221 By (s1, 1) B2(v252, )

(—1)% 82 7(3)B(51 ® 52,11 @ vat2) =
(—1)deesHe1(3,)3(51 ® 52, (1 @ v2)(t) @ 12)).
If (1) = (—1)%8*1*de8 41 we obtain
B(1 ® 1)(s1 @ 52), 11 @ t2) = L(B1)T(B2)B(51 @ 52, (1 @ 1)1 ® 12)). (¢

Otherwise, both sides of (1) vanish. Hence, Eq. (1) is always true.
Similarly we have:

(v1 @ 1)(A1 ® A2)(51 ® 52)) = T(A1)(A1 @ A2)((v1 @ 1)(51 ® 52))
and

(1 ® 12)((A1 ® A2)(s1 ® 52))
(—1)%EA1) A 51 ® v A28,

(1 ® v)(Ar1s1 ® Azsy) =
(—=1)%EADL(A)A151 ® Agvasy =

(= 1)*EADL(Ar) (A @ Ar)(s1 @ v2s2) =
(—1)desizrdeesir(4,)(A; @ A)(1 ® v2)(s1 @ 7)) =
(ADNT(A)(A1 @ A)(1 Q@ v)(s1 ® s2)). O

Now we point out that every pseudo-Euclidean space V' can be decomposed as the
orthogonal sum V' = V| + V; such that the assumptions of Corollary 2.1 are satisfied,
i.e. such that the spinor C£°(V})-module S; is reducible. In fact, we can decompose V
into V; = R™™ and V;, = Rk or R4,

Proposition 2.3. Let V = V| + V, be the orthogonal sum of the pseudo Euclidean
spaces V| = R™™ and V. Let S be an irreducible C{(V\)-module. Then S| = St + S
is a sum of two inequivalent irreducible C?°(Vy)-submodules Sli and an irreducible
(CUV) = CU(V))QCU(V2))-module S is givenby S = S1® Sz, where S, is an irreducible
CU(V3)-module. S is reducible as C€(V )-module if and only if S is reducible as C°(V3)-
module.

Proof. The first statement follows from the fact that the Schur algebra of S is Cpn y, =
C(s = m—m = 0) = R @ R. Now all other statements follow immediately from
Corollary 2.1. O
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3. Case of Signature (m, m) and Complex Case

3.1. Signature(m, m). LetU and U* denote two complementary isotropic subspaces
of V=R™™ soV =U+U*. Wedenote by < -, - > the scalar product of V and identify
U* with the dual space to U by

u*(u) = 2< u,u* >, v eU*, uel.

Proposition 3.1. The following formulas define an irreducible C¢,,, ,,-module on S =
AU:
pu)s=uAs,

pu*)s=—u*sds,seNU,uelU,u* €eU*,
where /L is the interior multiplication.

Proof. This follows from the obvious identities p(u)? = p(u*)?> = 0 and p(u)p(u*) +
p(u*)p(u) = =2< u,u* >Id. n}

Forany a € AU and o € AU™* we define nilpotent endomorphisms ¢, and ¢, of S = AU
by:

€Ga=aAls,

to=als.

Proposition 3.2. The Lie algebra $6(m, m) — End S of the spinor group admits the
following graded decomposition:

so(m,m) = g'2+g°+g2 = 1p2ye +SIU) +ep2y

sl(U) = Lw-, evl, [9¢, 971 C g9 (g7 = O for |i + j| > 2). In particular, 152y and
€2y are Abelian subalgebras.

It is very easy to describe the semi spinor modules S* in our model of the spinor
module S.

Lemma3.1. S = AU is the sum of the two inequivalent irreducible $6(m,m)-
submodules S* = A**U and S~ = A°%U.

Proof. 1t is clear that A®*U and A°%U are irreducible 50(m, m)-submodules and we
already know that they are inequivalent, see e.g. Proposition 2.3. o

Remark 4. The statement that A®*U and A°%U are inequivalent 50(m, m)-modules
follows also from the fact that these are eigenspaces of the volume element wp, m =
€y - -eyn € O, 1, (e;) an orthonormal basis of R™™,

We can define an 50(m, m)-invariant endomorphism E of S by
E|St =+Id.

To construct an admissible bilinear form f on S = AU we fix a volume form vol € A™U
on U* and define ) i
FNUNUY=0, if i+j#m,

f(s;t)vOI'—'fis/\t, SEAiU’tEAm—iU’
where ¢; = (_1)i(i+l)/2. Remark that ¢;,; = (—1)“’1 €.
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Proposition 3.3. The space B of 50(m, m)-invariant bilinear forms on S = Sy, yn is
spanned by the admissible elements f and fg = f(E-, -). Their fundamental invariants
(7,0,t) depend only on m (mod 4) and are given in the next table:

f ——— | ——4 | —+— | —++
fE | ++— | +—+ | +——= | +++
m: 1 2 3 4

An f- and fg-admissible basis for the Schur algebra C = R & R is given by the
endomorphisms Id and E of S:

rE) = -1, op(E)=0;5(E) = (=)™, u(E)=+1.

Proof. We first check that p(v), v € U + U*, is f-skew symmetric. For v = u € U,
s € NU,t e Ami-IY:

(f(p(u)s,t) + f(s, pwl))vol = €41 (uAS)AL+e;sAN(uAL)=0.
Forv =u* € U*, s € N'U,t € N[
—(f(p(u®)s, ) + f(s, p(u™)vol = €_1(u*Ls)ANt+es AN(u*Lt)=
G1W L) A+ (=1 U L(s At) — (W Ls)A L) =
(ei—1 — (=1e&)w L) At =0.
The symmetry properties of f follow from the computation
ft, s)vol = €t A 5 = €je;(=1) f(s, tyol = (—=1)™™D/2f(s tyvol ,

where s € AU, t € MU andi+j =m.

Finally, f(AS*U, A°%U) = 0 if m is even and f(AYU, A®Y) = F(A°%U,A°%U) =0
if m is odd. This proves all the statements about f. It is immediate to see that E
is f-admissible with fundamental invariants given above. Since f is admissible and
E is f-admissible, fr is admissible and its fundamental invariants are computed by
multiplicativity:

™(fe) =1(f)r(E), o(fe)=0(flos(E), u(fe)=uHE).
This proves the proposition. a
Proposition 3.3 implies the following theorem:

Theorem 3.1. Every $0(m, m)-equivariant embedding V* — S* @ S*, where S =
Sm,m is the spinor 50(m, m)-module, is a linear combination of the embeddings j,(f)
and j,(fE). Their image is contained in the dual of the subspaces indicated in the table
depending on m (mod 4).

G | V2S* +V2IS~ | §*V ST | AZS*+ A28 | S*AS
Jo(fE) | V2S* +V2S~ | S*AS~ | A2S*+ A28~ | S*v S~
m 1 2 3 4
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Now put V; = R™™ =£ 0 and let V; be an arbitrary pseudo-Euclidean space. Denote
the spinor module of s0(V;) by S;,i=1,2.

Proposition 3.4. Let 3, be an admissible bilinear form on S,. Then there is a unique
(up to scaling) admissible form 31 on S} such that T7(32) = «(81)7(81). In particular,
B1 ® B2 is an admissible bilinear form on the spinor $0(V; + V3)-module Sy ® S;.

If moreover, A; is a [2-admissible endomorphism of S,, then there is a unique
B1-admissible endomorphism A, of S\ such that 7(Az) = t(A1)7(A)), in particular,
Ay ® Az is a B @ (r-admissible endomorphism of S) ® S».

The fundamental invariants of B ® > and Ay ® A, are easily computed using the
rules given in Proposition 2.2.

Proof. This follows from ¢«(fg)7(fg) = —«(f)T(f), (E)T(E) = —«(Id)r(Id) and Sect.
2.2. o

If we assume that V; is of definite signature, i.e. V5 = R*:0 or R%*, then there is a
unique (up to scaling) Pin(V>)-invariant symmetric bilinear form h; on the irreducible
module S, of the compact group Pin(V3).

Lemma 3.2. The Pin(V,)-invariant scalar product h; is admissible: T(hy) = -1 if
Vo = R*¥Cand 7(hy) = +1 if V2 = R%%; a(hy) = +1 and if S, is reducible, S, = S +S5,
Sy = (¥ (V2)S3, then u(hy) = +1.

Proof. Let p(v) denote Clifford multiplication by a unit vector v € V3. Then h; is
p(v)-invariant and p(v)? = —Id if Vo = R¥%and p(v)? = +Id if V; = R%*, This implies
T(hz) =Fl.

To see that ¢(h;) = +1 in the reducible case, consider the scalar product k) on S,
defined by

(S3,87)=0, hy|SE =hy|SE (#0).

It is easy to check that k) is invariant under Clifford multiplication by unit vectors
v € V; using that S~ = vS™*. This implies k) = h;. o

By Proposition 3.4 for every V; = R™™ = ( there is a unique admissible bilinear
form h; on the spinor module S; of $0(V}) such that 7(hy) = «(hy)T(hy).

Definition 3.1. The canonical bilinear form on the spinor module S = S; ® S, of
s0(V1 + V) is h = hy ® hy, where hy is the canonical bilinear form on the spinor
module S, of 50(V2) = $0(k), i.e. the Pin(V3)-invariant scalar product. In line with
this definition we say that an endomorphism A of S (respectively A; of S;) is admissible
of symmetry o(A) = 1 (respectively 0(Az) = 1) if A is h-admissible (respectively
h;-admissible) and o,(A) = £1 (respectively o1,(A2) = +1).

Remark 5. For V; = R™™ we have two (non-degenerate) admissible bilinear forms f
and fg on S| = S, m. If we want to choose a canonical one, which is not necessary
for our purpose, we can consider on .S; the structure of irreducible C¥, ym.1-module
defined in Sect. 3.2. Then only one of the forms remains admissible for the Cl,;, 41-
module S} = Sy, m41, itis in fact the canonical bilinear form on this module. Moreover,
its complex bilinear extension is the unique (up to scaling) s0(2m + 1, C)-invariant
complex bilinear form on the irreducible @2s,41-module Som+1 = Smmet @ G s.
Corollary 3.1.
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3.2. Complex case.  Case of even dimension. The following theorem follows im-
mediately from the fact that an irreducible module S,,, of &5, can be obtained as
S2m = Sm,m ® C and that Sy, splits as (3, -module: Sy, = S}, +S5,., where
S3,=S% ,®C.

2m>

Theorem 3.2. Every §0(2m, C)-equivariant embedding C*™ < S, ® Som is a linear
combination of the embeddings j,( T and Jo( fE)C. Their image is contained in the
dual of the subspaces indicated in the table depending on m (mod 4), where we have
putS = Sop,.

Jo(HC | VES*+ VS~ | StVST [ AZS*+AZST | S*AST
Jo(FE)C | VIS*+ VS~ | S*AS™ | AZS*+AZS™ | S*V ST
m 1 2 3 4

Case of odd dimension. The odd dimensional complex case can be obtained from the
real case of signature (m, m + 1) by complexification.

We fix the orthogonal decomposition (R™™*! < - . >) = Reg + R™™, where
< ep,e0 > = —1, and denote by p the irreducible representation of C¢, ,, on Sy, m
constructed in Proposition 3.1.

Proposition 3.5. An irreducible representation p of Clm ms1 00 Smmsl = Spm iS
defined by

ﬁlRm’m = lem,m ’ 5(60) = p(wm,m) )
wherew, r, isthe volume element of C¥,, r,. The Cf‘,’n’m +1-module Sy, .1 isirreducible
and has Schur algebra Cp, 41 =R Id.

Proof. ltis sufficient to check that {5(eo), p(x)} = 0 for z € R™™ and that (o) = Id.
This follows from the next lemma. O

Lemma 3.3. The volume element w = Wy m = €162 - - - €21, ((€;) an orthonormal basis
of R™™) of Cly, 1 satisfies {w,z} =0 forallz € R™™ and w? = +1.

Proposition 3.6. If m is even, then every 50(m,m + 1)-invariant bilinear form on
S = Sm,m+1 is a multiple of the admissible (canonical) form fg (see Proposition
3.3) and hence every $0(m, m + 1)-equivariant embedding R™™*! — (S ® S)* is
proportional to the embedding j;(fg), which maps R™™*! into V2S* if m = 0 (mod 4)
and into N2S* if m = 2 (mod4). If m is odd, then every §0(m, m+ 1)-invariant bilinear
formon S = Sp, ma is a multiple of the admissible (canonical) form f (see Proposition
3.3) and hence every 50(m, m + 1)-equivariant embedding R™™*! < (S ® S)* is
proportional to the embedding j;(f), which maps R™™*! into V2S* if m = 1 (mod 4)
and into A2S* if m = 3 (mod 4).

Proof. If m is even, then p(eo) = p(wm,m) is fe-symmetric and 7(fg) = +1. If m is
odd, then j(ep) is f-skew symmetric and 7(f) = —1. (u]

Corollary 3.1. If m is even, then every $0(2m + 1, C)-invariant bilinear form on S =
Som+1 = Sm,m+1 ® C is a multiple of the form fg and every S0(2m + 1, C)-equivariant
embedding C?™*! — (S ® S)* is proportional to the embedding Ja( fe)C. If m is odd,
then every $0(2m + 1, O)-invariant bilinear form on S = Symy1 = Smma @ Cis a
multiple of the form fC and every $0(2m + 1, C)-equivariant embedding C*™*' —
(S ® S)* is proportional to the embedding j;(f )C.
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4. Case of Signature (k, 0)

4.1. Case of even dimension.  We fix the orthogonal decomposition R2™ = R™+R™,

where “: R™ — R™ is an isometry. Denote by o the involution of C¢,, (respectively
@, ) extending z — —z on R™ (respectively C”).

Proposition 4.1. Ifm = 00or3 (mod 4) the following formulas defineon S = Sy, o =
C¥,, the structure of irreducible Cly,,-module:

p(x)s = s,
p(F)s = wsz if m=0 (mod4),
p(®)s = wa(s)z if m=3 (mod4),

where x € R™, s € S and w is the volume element of CY,,, i.e. w =€) ---e,, for an
orthonormal basis (e;) of R™. The $0(2m)-module S is the sum S = S* + S~ of the two
inequivalent irreducible modules S* = C2, and S~ = Ct}, ifm =0 (mod 4) and is
irreducible ifm =3 (mod 4).

Ifm = 1o0r2 (mod 4) the structure of irreducible Clyp,-module on S = Sy o =
Som = &,y is given by:

p(z)s
p(&)s
As 50(2m)-module S = S* + S~ is the sum of the two irreducible modules S* = @°,

and S~ = @, which are equivalent form =1 (mod 4) and inequivalent for m = 2
* (mod 4).

zs,
ia(s)z, z€R™, s€S.

Proof. Ttissufficient to check the identities p(x)? = —< z,z >Id, p(%)? = —< z,z >Id
and {p(z), p(§)} = O for z, y € R™. This is straightforward using the following lemma.
a

Lemma 4.1. The volume element w = wy, =€) - - - €, of Clpy, satisfies {w,z} =0ifm
iseven and [w,z]=0ifmis odd, x € R™ C C¥,,. Moreover,

2 _ +1 if m=0 or 3 (mod4)
"1 -1 if m=1 or 2 (mod4).

Now we describe the Pin(2m)-invariant symmetric bilinear form k on S using the
canonical identification AR™ — C¥,,, of Z,-graded vector spaces given by

e N...N\ej, —e -6,

with respect to an orthonormal basis (e;), ¢ = 1,..., m, of R™.
The standard scalar product < -, - > on AR"™ induced by the scalar product on R™ is
invariant under exterior x A - and interior /- multiplication with unit vectors z € R™.

Lemma 4.2. Using the identification C{,, = AR™, Clifford multiplication of x € R™
and ¢ € C¢,, is given by:
z¢
oz

AP —xld,
z Aa(d)+zLa().
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Proof. The proof is similar to [L-M] I. Prop. 3.9. a

Corollary 4.1. The standard scalar product < -, - > on AR™ = C{,, is invariant under
left and right multiplications by unit vectors x € R™. In particular, if m = 0 or 3
(mod 4), h = < -,- > is the (admissible) Pin(2m)-invariant scalar product on the
irreducible Cly,,-module S = C¢,,,.

If m = 1or2 (mod4), we extend the standard scalar product on AR™ to a
symmetric complex bilinear form < -,- >¢ on S = AC™. Using the operator ¢ of
complex conjugation, we define a symmetric real bilinear form h = Re< c¢-,- >¢ on

Lemmad4.3. Let m = 10or2 (mod 4). Then h = Re< c-,- >¢ is the (admissible)
Pin(2m)-invariant scalar product on the irreducible Cl;,,-module S = @, .

Proof. We check that p(z) and p(Z), ¢ € R™, are < c-,- >¢-skew symmetric and
hence h-skew symmetric. By Corollary 4.1 left and right multiplication, L, and R, by
z € R™ are < -, - >¢-skew symmetric endomorphisms of S = @, , in particular, p(z)
is < -, - >¢-skew symmetric. It is easy to see that o and the operator / of multiplication
by i are < -, - >¢-symmetric endomorphisms. Moreover,

[/,R:]1=U,al={a,R;} =0
and hence p(Z) =1 o R; o ais < -, - >¢-symmetric. From the relations
[e,Lz]1=[c,Rz]=[c,a]l = {C, I} =0

we obtain that [p(z), ¢] = {p(&), ¢} = 0, which implies that p(z) and p(Z) are < c-, - >¢-
skew symmetric. (]

Now we construct admissible, i.e. h-admissible, bases of the Schur algebra C = Cyp, 0
for all the values of m (mod 4).

Proposition 4.2. Ifm =0 (mod 4), an admissible basis of the Schur algebra Cyp, o =
R & R is given by the endomorphisms Id and E = a of S = Cly,: 7(E) = —1,
o(E)=or(E)=+1, «(E)=+1.

Ifm =3 (mod 4), an admissible basis of C2m 0 = C is given by the endomor-
phisms Idand J =L, oa of S =Cly,: 7(J)=—1,0(J) = —1.

The space B of $0(2m)-invariant bilinear forms on S is spanned by admissible
elements:

B=span{h,hg} if m=0 (mod4),

B=span{h,h;} if m=3 (mod4).

The fundamental invariants (1, o, t) are given by (1, o, t)(h) = (=1, +1, +1), (1, 0, t)(hg) =
(+1,41,+4) if m = 0 (mod 4) and (1,0)(h) = (—1,+1), (r,0)hy) = (+1,=-1) if
m=3 (mod 4).

Proof. We show that J is admissible and 7(J) = o(J) = —1. All other statements are
immediate.

Letm =3 (mod 4). From [L;, L,] = [Rs, L,] = {Lz,a} = {R;,a} = 0 (see
Lemma 4.1) it follows that { L., J} = {R;, J} = 0. Since p(z) = L, and p(¥) = Ry 0 J,
we conclude {p(z), J} = {p(%),J} = 0.

The operator J is skew symmetric as the product of two anticommuting symmetric
operators, namely L,, and « (the scalar product is L, -invariant and L2 = +Id). O
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Ifm=1o0r2 (mod 4), we consider the following operatorson S = @,, :
I:s—is,J=L,oc, K=1J and E =q,
wherew =e¢; - - - ey, € (¥, C @&y, is the volume element.

Proposition 4.3. Letm = 1or2 (mod 4). The Schur algebra Com, o (= C(2) ifm = 1
(mod 4)and = HOH if m =2 (mod 4)) is generated by the admissible operators I,
J and FE satisfying the following (anti) commutator relations:

P=J2=L[}=-1, E’=c’=+1,

{I,J}=[I,E)=[I,L,)={I,c} =0,

[/, Lul=1J,cl=[E,cl=[Ly,c]=0,
{J,E}={L,,E}=0 if m=1 (mod4),
[J,E1=[L,,E1=0 if m=2 (mod4).

An admissible basis of the Schur algebra is given by the endomorphisms Id, I, J, K, E,
EI, EJ, EK. Their fundamental invariants (T, o, L) are given in the next table, where
the value of m is modulo 4.

m: | Id I J K E EI EJ EK
1 +++ | +—F+|+—— | +—— | -+ | ——+ | —+— | —+—
2 +++ |-+ | ——+ | ——+ | —F++ | ——+ | +—+ | +—+

The fundamental invariants of the corresponding admissible basis of B are also
listed for convenience:

m:| h hi hy hk hg | her | hes | hek
1 —++ | —=—+ | —=—= | === | +++ | +—+ | ++— | ++—
2 —++ | ——+ | +—+ | +—+ | +++ | +—+ | ——+ | ——+

Proof. The proof is similar to the proof of Proposition 3.3 and 4.2. One uses the
multiplication rules for the invariants and also that L,, is skew symmetric, ¢ is symmetric
and they commute. a

Theorem 4.1. Every 50(2m)-equivariant embedding R?™ < (S ® S)*, S = Sam,0, is
a linear combination of the embeddings

Jp(h) :R*™ <3 (S*AS™) and j,(hg) :R™ < (S*VS™)
ifm=0 (mod 4) and a linear combination of
Jo(h) :R™ 3 A2S*  and  j,(hy): R™ — ALS*
ifm=3 (mod4).
Ifm=1o0r2 (mod 4)every 50(2m)-equivariant embedding R*™ < (S ® S)* is

a linear combination of the embeddings jo = j,(ha), A € C admissible, whose image s
contained in the dual of the subspaces indicated in Table 4 depending on m (mod 4).
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Table 4. $0(2m)-equivariant embeddings j4 = jp(h4): R¥™ — (SQ® S)*

71d StAS— StAS™
ir Stvs— StvS-
i VISt +v2S— | StAS—
ik VIS* +Vv2IS— | St AS™
IE S*vsS— StvsS—
JEI StAS~ S*AS™
igy | V3S*+Vv2S— | Stv S~
jex | V2S*+viS— | stvsS-
m: 1 2

4.2. Case of odd dimension.  To reduce the odd dimensional case to the even dimen-
sional, we consider the orthogonal decomposition R?™*! = Reg + R?™, where eg is
a unit vector. Let p denote the irreducible representation of Cfz, on Sy, o defined in
Sect. 4.1. We will extend p to an irreducible representation § of Clsr41 0n S = Syma1,0
where Som+10 = Sampoif m=1,20r3 (mod 4) and Soms1,0 = S2m,o Q@ C = Som
ifm=0 (mod4).Ifm=1or2 (mod4),Sim,o0=S2n admits the C¥,,,-invariant
complex structure I. For m = 0 (mod 4) multiplication by ¢ is a Cf,,-invariant
complex structure on S, 0 ® C and will also be denoted by 1.

Proposition 4.4. The following formulas define an irreducible representation p of
Cloma+1 0n Sama 0.

AIR?™ = p|R*™

- plwam) if m=1 or 3 (mod4)
pleo) = { . _
Topwyn) if m=0 or 2 (mod4),

where, in the case m = 0 (mod 4), p has been extended complex linearly to a rep-
resentation on Sym 0 ® C denoted by the same symbol. S = Sym.1 0 is irreducible as
C8 . ,-module if m £ 0 (mod 4) and the sum S = S* + S~ of the two equivalent
irreducible Cf3,,,,,-modules S* = S3m 0+ iSom 0 = R +iC¢l and S~ =iS*ifm =0
(mod 4).

Proof. 1t is sufficient to check that 5(ep)? = —Id and {5(ep), p(z)} = O for z € R?>™,
since all other information can be extracted from the Schur algebra, see Corollary 1.3.
These identities follow immediately from Lemma 4.1 and the fact that I is a C¥y,,-
invariant complex structure. O

Now we describe the Pin(2m + 1)-invariant scalar product h on S = Sy;m.1,0. Let
ham o denote the Pin(2m)-invariant scalar product on Sz;m41,0 = Somoif m = 1,2 0r3
(mod 4) and by hg,,,o the complex bilinear extension of the Pin(2m)-invariant scalar
product on Sz, o to @ Pin(2m)-invariant complex bilinear form on Sypm41,0 = Som =
Smo®@Cifm =4 (mod 4).

Lemma 4.4. The Pin(2m + 1)-invariant scalar product h = hypmi1 0 0n S = Soms1,0
isgivenby h = homoifm=1,20r3 (mod4)andbyh = Rehg:m’o(c-, Jifm=4
(mod 4), where c is complex conjugation with respect to Sy, o C Sam 0 ® C.
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Proof. If m $ 4 (mod 4), the statement follows from Schur’s Lemma, since Sam+1,0 =
Sam,0. If m = 4 (mod 4), the Hermitian form h2m o(c-,) is I-invariant and hence

invariant under j(eo) = I o p(w2m) and the same is true for k = Re kS, o(c-, -). ]

If m #3 (mod 4), we have on Sy,410 = &, = Cly + iCYyy, the operator ¢ of
complex conjugation. Hence, we can define an endomorphism J of Sypm410 = @), by
the formulas

J__{ Lyoc if m=1 or 2 (mod4)

aoc if m=0 (mod4),

where L, is left multiplication by the volume elementw = w,,, of C¢,, and o|@°, = +Id,
a|@}, = ~1Id.

Proposition 4.5. Let m # 3 (mod 4). An admissible basis of the Schur algebra
C = Cama+1,0 is given by the endomorphisms Id, I, J and K = 1J of Som+1,0 = Um. If
m=1or2 (mod 4), then I* = J* = —Id, {I,J} = 0and Comn1 o T H Ifm =0
(mod 4), then I*> = —J? = —Id, {I,J} = 0 and Coms10 = R(2). The space B of
50(2m+1)-invariant bilinear forms on Sym.1 o has the admissible basis (h, hy, hy, hk).
Ifm =3 (mod 4), then the Schur algebra Cypm+1,0 =R Idand B = Rh.

Proof. Straightforward, cf. Proposition 4.2. (|

Theorem 4.2. Ifm =3 (mod 4), every S0(2m+1)-equivariant embedding R?™*! —
S* ® 5*, S = Sama1,0, is a multiple of j,(h) : R?™* <3 A28* Ifm £ 3 (mod 4),
every 50(2m + 1)- -equivariant embedding R*™*! < (S ® S)* is a linear combination
of the embeddings ja = jo(ha), A = Id, I, J or K, whose image is contained in the
dual of the subspaces indicated in Table 5 depending on m (mod 4).

Table 5. 50(2m + 1)-equivariant embeddings j 4 : R2™*! — (S @ S)*

m: JId J1 JJ JK
1 A28 v2s v2s vis
2 AZS vis AZS AZS
4 S*AS™ | VISt+Vv2iS— | Stv ST | VISt +vis—

5. Case of Signature (0, k)

Now we discuss the case of signature (0, ). The proofs are similar to the proofs in the
case of signature (k, 0) and will mostly be omitted.

5.1. Case of even dimension. As in the positively defined ned case, we fix the orthogonal
decomposition R%2™ = RO + ROm_ where™: R%™ — RO is an isometry.

Lemma 5.1. The volume element w = wym =€ - €y ( (e,) an orthonormal basis of
R%™) of Clo m satisfies {w,z} =0 if m is even and [w,z] =0ifmis odd, x € R%™ C
C¥ m. Moreover,

2 _ +1 if m=0 or 1 (mod4)
-1 if m=2 or 3 (mod4).
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The next proposition is checked using Lemma 5.1.

Proposition 5.1. Ifm = 0or1 (mod 4) the followingformulasdefineon S = S om =
Clo,m the structure of irreducible Clp ,,-module:

p(z)s = zs,
p(&)s wsz if m=0 (mod4),
pE)s = wa(s)zr if m=1 (mod4),

where € R%™, s € S and w is the volume element of Cfo . The $0(0, 2m)-module
S is the sum S = S* + S~ of the two inequivalent irreducible modules S* = czg,,, and
5= =C,, ifm=0 (mod 4)andisirreducibleifm =1 (mod 4).

Ifm =2o0r3 (mod 4) the structure of irreducible Cl 2, -module on S = Sp 2 =
Som = @,y is given by:

p(z)s
p(Z)s

zs,
ia(s)z, z€e€R"™ C @, =Clhm®C,seS=U,.

As $0(0,2m)-module S = S* + S~ is the sum of the two irreducible submodules
S* =@° and S— = @}, which are inequivalentform = 2 (mod 4) and equivalent
form =3 (mod 4).

Recall (see Corollary 4.1) that the standard scalar product on AR™ = C¥,, = C¥p, o
is invariant under left and right multiplications by unit vectors z € R™ = R™:%, We can
consider R%™ as subspace

RO™ = {R™ C W = Clpy @ C = Cly +iCl,, .

Then Clo,m = C8) ,, + C¥} ,, = €3, + iCe},,. We define an isomorphism of Z-graded
vector spaces ¢ : C¢, — Cly ,, on elements a € Cly, of pure degree deg(a) = 0 or 1
by:

a — i%89g

A scalar product < -, - > on Cly », is defined by the condition that ¢ : C¢,,, = Clym
is an isometry for the standard scalar product on AR™ = C¥,,. The following lemma is
true by construction.

Lemma 5.2. The scalar product < -,- > on C¥ n, is invariant under left and right
multiplications by unit vectors x € R%™. In particular, if m = 0 or 1 (mod 4),
h =< -,- > is the (admissible) Pin(0, 2m)-invariant scalar product on the irreducible
Clo 3m-module S = Sp 2 = Clo,m.

If m = 2 or3 (mod4), we extend the scalar product < -,- > on Cfp,,, to a
symmetric complex bilinear form < -, - >¢ on S = AC™. Using the operator ¢ = cg.m
of complex conjugation with respect to the real form Cfy,,,, = G, +iCL., of (&, , we
define a (real) scalar producth = Re< c-,- >con S.

LemmaS3s3. Let m = 20r3 (mod 4). Then h = Re< c-,- > is the (admissible)
Pin(0, 2m)-invariant scalar product on the irreducible Cly 2m-module S = @y, .

Now we construct (h-)admissible bases of the Schur algebra C = Cg 7, for all the
valuesof m (mod 4).
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Proposition 5.2. Ifm =0 (mod 4), an admissible basis of the Schur algebra Co 5, =
R @ R is given by the endomorphisms Id and E = a of S = Clypy: T(E) = —1,
o(E)=op(E)=+1, «(E) = +1.

Ifm =1 (mod 4), an admissible basis of Co2m = C is given by the endomor-
phisms Id and J = L, o a of S = Clym (Where w is a volume element of Cly ,):
r(J)=-1,0(J))=~-1

The space B of 50(0, 2m)-invariantbilinear forms on S is spanned by the admissible
elementshand hg ifm =0 (mod 4)andbyhandhyifm =1 (mod 4). Their fun-
damental invariants (1, 0, ) are (1, 0,1)(h) = (+1,+1,41), (1,0, ) (hg) = (—1,+1,+1)
ifm=0 (mod4)and(r,o)h)=(+1,+1),(1,0)h;)=(-1,-1)ifm=1 (mod4).

Ifm =2o0r3 (mod 4), we consider the following operators on S = (Z,, :

I:s—is,J=L,oc, K=lJandE=a (w=wom).
Proposition 5.3. Let m = 2 or 3 (mod 4). The Schur algebra Co 2, (¥ H & H if
m=2 (mod4)and = C2) ifm = 3 (mod 4)) is generated by the admissible
operators 1, J and E, which satisfy the following identities:
P=J=12=-1, E’=c’=+1,
{I,J}=U,El=I,L,1={l,c} =0,
[J, Lol1=1J,cl={E,cl=[Ly,c] =0,
[J,El1=[L,,E]1=0 if m=2 (mod4),
{/,E}={L,,E}=0 if m=3 (mod4).
An admissible basis of the Schur algebra is given by the endomorphisms Id, I, J, K, E,
EI, EJ, EK. Their fundamental invariants (1, 0, 1) are given in the next table, where
the value of m is modulo 4.

m: | Id 1 J K E EI EJ EK
2 +++ | +—+| ——+ | ——+| —++ | ——+ | +—+ | +—+
3 +++ | +—+|+—— | +—=| —++ | —=F+ | —+= | —+ -

The fundamental invariants of the corresponding admissible basis for the space
B = By 2m (0f 50(0, 2m)-invariant bilinear forms on So 2 ) are as follows:

m. h h] hJ hK hE hEI hEJ hEK
2 +++ | +—+|——+ | ——+ | —F++ | ——F+ | +—+ | +—+
3 +++ | +—+ | +——= | +—= | -+ | ——+ | —F+—= | =+ -

Theorem 5.1. Every 50(0, 2m)-equivariantembedding R%*™ — (S®S)*, S = So,2m,
is a linear combination of the embeddings
Jp(h) : RO?™ s (S*V S™)* and j,(hg) :R"™™ < (S*AST)
ifm=0 (mod 4)and a linear combination of
Jo(R)and j,(hy) : R%?™ — V2S* if m=1 (mod4).
Ifm =2o0r3 (mod 4) every $0(0, 2m)-equivariant embedding R%?™ — (S ® S)*
is a linear combination of the embeddings js = j,(ha), A € C = Co2m admissible,

whose image is contained in the dual of the subspaces indicated in Table 6 depending
onm (mod 4).
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Table 6. $0(0, 2m)-equivariant embeddings j 4 : R%2™ — (S ® S)*

J1d StvsS— Stvs—
ir S*AS™ S*AST
iy S*vS— | AZS* + A28
iK Stv S~ | A2St + A28
IE StAS™ StAS~
JEI StvsS— StvsS—
igy | S*AS— | AZS* +AZS—
Jex | StAS™ | A28t + A28
m: 2 3

5.2. Case of odd dimension.  Consider the orthogonal decomposition

RO2m+ <. . >) = Reg+R%*™, where < e, e9 > = —1. Let p denote the irreducible
representation of C¢p 2» on Sp 2m defined in Sect. 5.1. We will extend p to an irreducible
representation j of C¥p 241 0N S = Sp 2m+1, Where Sp 2ms+1 = So2m if m = 0,2 or 3
(mod 4) and SO,2m+l = So,zm Q@C=S,,ifm=1 (mod4).Ifm=20r3 (mod4),
So,2m = S2m admits the Cfp 2,-invariant complex structure I. For m = 1 (mod 4)
multiplication by ¢ is a Clp 2m-invariant complex structure on Sp 2» @ C and will also
be denoted by 1.

Proposition 5.4. The following formulas define an irreducible representation p of
Co,2m+1 0n So 2m+1-
AIR?™ = pRO2™,

- _ pwo2m) if m=0 or 2 (mod4)

PEO=Y Topworm) if m=1 or 3 (mod4),
where, in the case m = 1 (mod 4), p has been extended complex linearly to a repre-
sentation on Sp 2m+1 = So,2m ® C. S = So2m+1 is irreducible as a Ci‘fg,z,n +1-module if
m#3 (mod 4) and the sum S = S* + S~ of the two equivalent irreducible C¥) 2m+1”
modules S* = S and S— = iS’ ifm=3 (mod 4), where 57 is the fixed point set

of a $0(0, 2m + 1)-invariant real structure JonS (the explicit expression for J will be
given below).

Next we describe the Pin(0, 2m + 1)-invariant scalar product A = hg 2m+1 00 S =
S0,2m+1. Let ko 2, denote the Pin(O 2m)-invariant scalar product on Sp 2m+1 = So,2m if
m=0,20or3 (mod 4)andby ho 2m the complex bilinear extension of the Pin(0, 2m)-
invariant scalar product on Sp 2 ‘o a Pin(0, 2m)-invariant complex bilinear form on
S0,2m+1 = Som = So,2m ® C ifm=1 (mod4).

Lemma 54. The Pin(0, 2m + 1)-invariant scalar product h = hg 2,41 01 S = Sp,2ma+1
is givenby h = ho2m if m =0,20r3 (mod 4)andbyh = Rehoz,n(c ,)ifm=1
(mod 4), where c is complex conjugation with respect to So 2m C So 2m @ C

If m #0 (mod 4), we have on Sy 2m+1 = & = Cly m + iCl m the operator ¢ =
co,m of complex conjugation. Using it we define an endomorphism J of So2m+1 = Um
by

J=L,o0aoc,

where w = wo , is a volume element of Cfy ,, and o|@?, = +Id, a|@), = ~Id.
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Proposition 5.5. Let m £ 0 (mod 4). The Schur algebra C = Co 2m+1 is generated
by the endomorphisms I and J of S = Soom+1 = Tm, which satisfy the following
relations: I* = —1, {I, j} = 0. Moreover, j? = +Id and Coo2m+1 T RQ)ifm =3
(mod 4) and J2=—Idand Coom+1 THifm=10r2 (mod 4). An admissible basis
of Co,2m+1 is given by the endomorphisms Id, I, J and R = IJ. Their fundamental
invariants (T, o, ) together with the invariants of the associated admissible basis for the
space B of §6(0, 2m + 1)-invariant bilinear forms are given in Table 7 (1 is only defined
ifm=3 (mod4)).Ifm=0 (mod4),Corm+ =RId

Table 7. Fundamental invariants of admissible endomorphisms and bilinear forms of So 2y+1

m: | Id I J K h hy hj hg
1 ++ +— - - +H | - - -
2 ++ +— +— +— ++ +— +— +—
3 +++ | +—— | =4+ | —+— +4+4+ [ +—— | —++ | —+—

Theorem 5.2. Every $0(0,2m + 1)-equivariant embedding R%?™+! « (S ® S)* is
proportional to j,(h) : R%2m+ 3y v25* ifm =0 (mod 4) and a linear combination
of the embeddings j4 = j,(ha), A=1d, I, J and K ifm #£0 (mod 4). The image of
the j 4 is contained in the dual of the subspaces indicated in Table 8.

Table 8. S0(0, 2m + 1)-equivariant embeddings j 4 : R%2™*! <3 (S @ S)*

jra | V23S | v2s Stvs—
jr | A28 | A28 S*AS—
jy | V23S | A2S | A2S*+AZST
Jg | VIS | A2S | AZS* 4+ AZS—
m: 1 2 3

6. Complete Classification

Every pseudo-Euclidean space V' admits a (unique up to an isometry) orthogonal de-
composition V = V; + V5, where V| = R™ ™ and the scalar product of V; is positively
or negatively defined. Now we consider the case when V; # 0 and V; # 0, the other
cases were treated in Sects. 3.1, 4 and 5. We denote by S;, ¢ = 1,2, the irreducible
C{(V;)-module constructed in Sects. 3.1 and 4, S respectively. Then S = S; ® S, carries
the structure of irreducible module for the Clifford algebra C4(V) = C&(V))QCU(V,), see
Proposition 2.3. By Proposition 3.4, to every admissible bilinear form 3, (respectively
endomorphism A;) on S, we associate an admissible bilinear form 8 = 3; ® (3, (respec-
tively endomorphism A; ® A;) on S. In Sects. 4 and 5 we have contructed admissible
bases for the space B; of 50(V,)-invariant bilinear forms on S, and for the Schur algebra
C> of S,. Therefore, this explicit correspondence defines an injective linear mapping
¢ : o — B = ¢(B2) (respectively ¢ : A — A = (Az)) from B; into the space B of
§0(V)-invariant bilinear forms on S (respectively from C, into the Schur algebra C of
S). Moreover, ¢ and v are actually isomorphisms, because the Schur algebras of S and
S, are isomorphic, due to the fact that V' and V; have the same signature s, see Corollary
1.3. So we have essentially proved:
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Theorem 6.1. There exist natural isomorphisms ¢ : B, — B of vector spaces and
¥ : C3 — C of algebras mapping admissible elements onto admissible elements. Under
these maps, the fundamental invariants of admissible elements transform according to
the rules given in Proposition 2.2. In particular, if m = 0 (mod 4), then ¢ and
preserve the fundamental invariants ((4,4)-periodicity).

Proof. We recall that by Proposition 3.3 the Schur algebra Cy,, ;m of Si = Sy, m has the
admissible basis (Id, E) and E? = +Id. This implies that the vector space isomorphism
¥ is actually an isomorphism of algebras. The (4,4)-periodicity follows from

o(fe) =ufE)=05(E) =055 (E)=u(E)=+1. O

Recall that B, , denotes the space of $0(p, g)-invariant bilinear forms on the 50(p, ¢)
spinor module S, ; and C,, 4 is the Schur algebra of S, ;.

Corollary 6.1. ((8,0)- and (0,8)-periodicity) There exist natural isomorphisms
¢g,o : Bp,q e d Bp+s,q and ¢o,3 : Bp,q - Bp,q+3
of vector spaces and

V8,0 :Cpg = Cpis,g and o3:Cpq— Cpgis

of algebras mapping the admissible elements onto admissible elements preserving their
fundamental invariants.

Proof. By Theorem 6.1 B, , and C, , have admissible bases. Now we recall from
Sect. 4 and 5 that if £ = 0 (mod 8), then Cx o = Cox has an admissible basis,
which was denoted by (/d, E), such that (7, 0, )(F) = (—1,+1,+1) and, of course,
(1,0,0)(Id) = (+1,+1,+1). The existence of the maps 3o and 9y g follows from
T(Id)(Id) = —7(E)(F). They preserve the fundamental invariants, because o(/d) =
t(Id) = o(E) = «(E) = +1. The existence and properties of ¢g o and ¢ g are proved
similarly. a

Corollary 6.2. Every $0(V)-equivariant mapping j : V — (S ® S)* is a linear
combination of the embeddings ja = j,(ha), where h is the canonical bilinear form on
the spinor module S of 50(V') and A are admissible elements of the Schur algebra C of
S.

To obtain an overview over all possible N-extended Poincaré algebras p(V) + S,
N = %1, +2,itis useful to define the invariants o and ¢ forembeddings j : V — (5®S)*
having special properties. More precisely, we put o(j) = +1 if jV C V2S* and 0(j) =
—1if jV C A2S*.If S = S* + S, we define 1(j) = +1if jV C (S* @ S*+S~ ® S~)*
and «(j) = —1if jV C (S* ® S™)".

Note that the fundamental invariants of j4 = j,(h4), A € C admissible, are easily
computable:

0(Ga) = 7(ha)o(ha) = T(R)r(A)o(h)o(A) and 1(ja) = —u(ha) = —t(R)(A).

Recall that ;7 denotes the space of $0(V)-equivariant mappings j : V — (S ® S)*.
We define the subspaces

J% :={j € Jlo(G) =00} U{0} and
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T = {j € T”|uj) = 10} U {0}
and put
L% :=dimJ%, L :=dim J°"
We shall write L*, L*~, ... instead of the more cumbersome L*!, L*1 -1 ..
Remark that L* (= L++ L*~ if § = S* + S7) is the maximal number of lmearly

independent super algebra structures on P(V) + S and that L~ (= L~ + L~ ") is the
number of Z,-graded Lie algebra structures on p(V') + S.

Theorem 6.2. The numbers (L*,L™) and (L**, L*~, L%, L~ ") depend only on the
dimension n = dimV = p + q and the signature s = p — q of V = R?'9 modulo 8.
Moreover, they admit the mirror super symmetry n — —n. More precisely,
L*(-n,s) = L™ (n,s) and
L**(—n,s) L™ *"(n,s), w==%.

Their values are given in Table 9.

Table 9. Numbers of extended Poincaré algebras P(p, g) + Sy, of different types dependingon n = p + g
and s = p ~ g modulo 8

8 L, L, L=, L= )n,s)or (L*, L™ )(n, s)
4 2,0,6,0 0,4,04 6,0,2,0 04,04
3 1,3 1,3 3,1 3,1
2 0,242 2222 42,02 2222
110,121 0,12,1 2,1,0,1 2,1,0,1
0 0,0,2,0 0,1,0,1 2,000 0,1,0,1
-1 0,1 0,1 1,0 1,0
-2 0,2 1,1 2,0 1,1
-3 1,3 1,3 3,1 3,1
n: -3 -2 -1 0 1 2 3 4

Proof. This follows from Theorem 6.1 and the tables of Sects. 3.1, 4 and 5 by straight-
forward computation. a

In the complex case we consider the space J. of $0(m, C)-equivariant mappings
C™ - (Sm ® Sp)* and define the invariants o, ¢ and the spaces J}, J}~, etc. as in
the real case (¢ is only defined if the complex $0(m, C) spinor module S, is reducible
Sm =S}, +S;;,). Their dimensions are denoted by L}, L}~ etc.

Theorem 6.3. The numbers (L, L;) and (L}, L}~,L;*, L7 ™) depend only on m
(mod 8). Moreover, they admit the mirror super symmetry m — —m. More precisely,
Liy(-m) = L;(m) and
L:®(—m) L;"(m), w==.

Their values are given in the next table.
o1(0020|01]0,10,1|1,01{200,0]1,0]0,1,0,1
m: | =3 -2 -1 0 1 2 3 4
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Proof. Follows from Sect. 3.2. o
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