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Abstract: We formulate a conjecture about the structure of "upper lines" in the
expansion of the colored Jones polynomial of a knot in powers of (q — 1). The
Melvin-Morton conjecture states that the bottom line in this expansion is equal to
the inverse Alexander polynomial of the knot. We conjecture that the upper lines
are rational functions whose denominators are powers of the Alexander polynomial.
We prove this conjecture for torus knots and give experimental evidence that it is
also true for other types of knots.

1. Introduction

Ever since the discovery of the Jones polynomial, its relation to the objects of
the classical topology, i.e. the fundamental group of a knot, remained somewhat
of a mystery. An apparent similarity between the skein relations for the Jones and
Alexander polynomials did not lead to a better understanding of this relation. There-
fore the discovery by P. Melvin and H. Morton [9] of the inverse Alexander poly-
nomial inside the (q — 1) expansion of the colored Jones polynomial was a very
interesting development.

Let JT be a knot in S3. We denote by J0L{X'\K) its colored Jones polynomial
normalized in such a way that it is multiplicative under a disconnected sum and

s mv^7 q ̂  — q 2

Another popular normalization for the Jones polynomial is

* e * [ * , * - • ] . (1.2)

For a fixed value of color a we can expand the Jones polynomial VJiJ%*\K) in
Taylor series in powers of

h = q - l , (1.3)
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Fig. 1. A surgery link for producing a torus knot from an unknot.

or, equivalently, in powers of

^ l o g ( l + A ) . (1.4)

The coefficients of this expansion are polynomials of finite degree in a:

Va(JT;K) = £ Dm,n(jr)a?mhn, Dm>n(JT) e Q . (1.5)

The coefficients Dmyn(Jf) are rational invariants of the knot Jf. D. Bar-Natan [2]
and J. Birman, X-S. Lin [4] showed that Dm^n(X) were Vassiliev invariants of
order n.

The following theorem was conjectured by P. Melvin and H. Morton [9] and
later proved by D. Bar-Natan and S. Garoufalidis [3] (for a simple path integral
proof see [12]).

Theorem 1.1. Let X be a knot in S3. Then the coefficients Dmtn(Jf) of the
expansion (1.5) satisfy the following two properties:

= 0 form>\, (1.6)

( 1 "

here AA(JfT;z) is the Alexander-Conway polynomial satisfying the skein relation
of Fig. 1 and normalized in such a way that

^(unknot; z)= 1 . (1.8)

The bound on the powers of a in the expansion (1.5) allows us to rearrange it
in "lines"

Va(JT;K) = £ hn £ Dm,n+2m(<xh)2m . (1.9)

From the quantum field theory point of view, the n* line S W £ o ^ ( )
related to the n-loop contribution in the calculation of V^X\K) as a Chern-Simons
path integral over the SU{1) connections in the knot complement (see [12] for
details).

The Taylor expansions (1.5), (1.9) and their link analogs played a key role in
defining the "perturbative" invariants of rational homology spheres (see a review
in [15] and references therein) and in establishing their relation [14] to Ohtsuki's
invariants [11]. The latter application prompted us to look for "integrality" properties
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of the coefficients Dmyn(Jf). We conjecture that this integrality can be exposed by
an appropriate choice of expansion parameters in the series (1.5) and (1.9).

Let us introduce a new variable

z = ̂ f-^-f. (1.10)

We can express <xh as a power series in z and h by expanding the r.h.s. of the
equation

-z + 0(z\h). (1.11)

After putting this expression in place of (a A) in Eq. (1.9) and assembling the powers
of h and z we get a new expansion of the Jones polynomial

Va(X;K) = £ V^(JT;z)hn , (1.12)
n=0

(1.13)
ro=0

The form of the substitution (1.11) suggests immediately that the bottom line in the
expansion (1.9) does not change:

(1.14)

As a result, the second part of the Melvin-Morton conjecture (1.7) takes the form

(1.15)

in new variables z,h. Since J^(JT;z) € Z[z2] and ̂ (JT;0) = 1, it follows from
Eq. (1.15) that

<4 0 ) €Z. (1.16)

We conjecture that the upper lines V^n\jf;z) satisfy the properties similar to those
of(1.15) and(1.16).

Conjecture 1.1 (weak). All coefficients df£* in the expansion of the colored Jones
polynomial Va(Jf;K) of a knot Jf G S 3 in powers ofz = q% — q~^ and h — q—\
are integer,

d^GZ, m,n^0. (1.17)

Conjecture 1.2 (strong). A line F(n)(JT;z) in the series (1.12) is a rational function
ofz:

^ *T}?SZ\ ^ 2 (1.18)
In other words, the expansion of the r.h.s. of Eq. (1.18) in powers ofz produces
the series in the r.h.s. of Eq. (1.13).
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The weak conjecture can be derived from the strong one in the same way as
we derived(1.16) from Eq.(1.15).

It may happen that for some knots the polynomials P^n\jf;z) defined by
Eq. (1.18) would be divisible by powers of AA(ST;Z). This means that for those
knots a smaller power of 4*(Jf;z) could be placed in the denominator. Am-
phicheiral knots seem to present an example of such behavior. These are the knots
which are isotopic to their mirror image.

If X1 is the mirror image of JT, then

K(jr';K)=K(Jtr;-K). (1.19)

This symmetry is not easily seen in the coefficients of expansion (1.12) because it
transforms h into — ̂  rather than into —h. Therefore it is natural to try another
expansion parameter

h = (ft - q~li = (1 + h)l2 - (1 + A)"* (1.20)

instead of h in Eq.(1.12):

g ^ ) h n , (1.21)
H=0

£ dj?\X-yt* . (1.22)
m=0

The symmetry (1.19) converts h into -h and z into - z , so for amphicheiral knots

F ( 2 w + 1 )(jr;z) = 0, n ^ 0 . (1.23)
Since the relation between h and h involves fractional powers, it does not follow

from the weak Conjecture 1.1 that the coefficients d^ would also be integer for any
knot. In fact, our numerical estimates show that some of the first coefficients for the
knot 6i are fractional. However, for the amphicheiral knots only the even powers
of A participate in the expansion (1.21) due to Eq. (1.23). Since the expansion

A2 = £(-1)"*" (1.24)
n=2

contains only integer coefficients (i.e. (—I)71), then the weak Conjecture 1.1 implies
that for amphicheiral knots, d^ should also be integer:

Corollary 1.1. For an amphicheiral knot JT in addition to (1.17),

d™ G Z . (1.25)

Our experimental data also suggests (see Sect. 3 for details) that the following
enhancement of the strong Conjecture 1.2 is true:

Conjecture 1.3. For an amphicheiral knot X a line F (2 / l )(Jf;z) in the series (1.21)
is a rational function

*™lj*z\ (1.26)
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Note that 3/i + 1 ^ 2(2n) + 1, 2(2n) + 1 being the power required by Eq. (1.18),
so the amphicheiral knots require a smaller power of the Alexander polynomial in
denominators.

The integrality of the coefficients of the polynomials P^n\jf;z) gives us a hope
that similarly to the denominator j J n + 1 ( jT;z) , they may also have a direct inter-
pretation in the framework of classical topology.

The weak Conjecture 1.1 has a "practical" application: we will use it in [16] in
order to derive a /?-adic convergence of the series of perturbative invariants to the
total Witten-Reshetikhin-Turaev invariant of rational homology spheres constructed
by rational surgeries on a knot in 53 .

In Sect. 2 we derive the strong Conjecture 1.2 for torus knots. In Sect. 3 we
present experimental evidence that our conjectures are also true for other types of
knots. In Sect. 4 we speculate about the possible explanation for the power of the
Alexander polynomial in denominators of Eqs. (1.18) and Eq. (1.26).

2. The Jones Polynomial of Torus Knots

We denote a type (p,q) torus knot in S3 as ^ q . An expression for its colored Jones
polynomial was derived in [6] within the framework of the quantum Chern-Simons
theory. The (q — 1) expansion of the polynomial was studied in [10] and [1]. We
derived the explicit expansion (1.9) for torus knots in Eq. (A.4) of Appendix of [12].
In our notations there

;K - 2) = y | s i n ( | a ) Fa(Jfm,,,;K) . (2.1)

We will rederive the formula of [12] in a slightly different way that will allow us
to prove the conjectures of the previous section.

Lemma 2.1. The expansion (1.12) for a torus knot Xp^q comes from the formula

[0=0]
v2m)"m'(2m)!

(ml)1 \ Apq ) \ in )

(2.2)
/j=o

here

zp = q2 pq'—q 2^ pq> 9 1^.3)

uq; z) is the Alexander polynomial of CtiCPyq\

T^y. (2.4)

am/ the symbol / - S means that we have to take only the contribution of the

stationary phase point p = 0 to the integral of Eq. (2.2).
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0;P

-p/r; a

a
Fig. 2. A surgery link for producing a torus knot from an unknot.

Note that each derivative dp extracts a factor of ^ from zp. These factors

cancel the prefactor ( ^ ) 2 m , so that Eq. (2.2) presents an expansion in powers of

log(l
/i=2

n (2.5)

Proof of Lemma 2.1. If Xpiq is a torus knot, then the numbers p,q € Z are coprime.
Therefore we can choose the numbers r,s G Z in such a way that

ps-qr=\. (2.6)

It is not hard to see that the surgeries on the 3-component solid link in S3 of
Fig. 2 (with framings (~f , f ,O)) produce again S3. However the dashed unknot
of Fig. 2 becomes a torus knot JfPiq in the new S3. Therefore its colored Jones
polynomial can be calculated by a Reshetikhin-Turaev surgery formula applied to
the link of Fig. 2. The colored Jones polynomial of that link is

The "quantum factor" for a rational surgery with the framing | was worked out by
L. Jeffrey [7]:

x exp ^ i (pa 2 - 2<x(2Kn + /x) + j(2fii (2.8)
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here 4>(U(p'q^) is the Rademacher function:

and s(p,q) is the Dedekind sum:

s(p9q) = -L *jr cot (nJ
z } cot ( n^- ) . (2.10)

Since

we conclude that

p\ p\

We did not include the manifold framing correction because the surgery produces
S3 in the canonical framing. However we had to include the knot framing correction
factor e~&pq^'~x>i because the torus knot is produced with the framing pq.

By substituting Eq. (2.8) in Eq. (2.12) and using the relation

( 2 1 3 )

we arrive at the following formula for the colored Jones polynomial:

fsign(^) -%pq{a?-\)p-\ q-\

AJ2K\pq\ s m ( f ) B l = 0 n 2 = 0 M l , 3 =

(2.14)

The sum over /? in this formula is completely similar to the sums in Eqs. (2.8), (2.9)
of [13] if we substitute there g = 0, n = 3, m\ = n\, mi = «2, ^ ^ = /*3<x. We will
not present the analysis of the large K asymptotics of the formula (2.14) since it is
exactly the same as the one in Sect. 3 of [13]. We will rather use the final result
expressed in Eqs. (3.21), (3.23) and Eq.(3.44) of Proposition 3.1 in that paper.
Namely, if

«<i, (2 . 1 5 ,
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then all the "irreducible" contributions (3.45) of [13] cancel out (note, by the
way, that there are no irreducible flat connections in the knot complement whose

holonomy along the knot meridian is equal to exp(~a03), 03 = (l ^ j for a

satisfying (2.15)). The only survivor is the "reducible" contribution

sin(f)

pq

' ( 2 * 1 6 )

here we used a notation

afi = a+ — . (2.17)
pq

The symbol /-££ means that we have to take only the contribution of the stationary
[0=0]

phase point /? = 0 to the integral of Eq. (2.16). In other words, we have to expand
the preexponential factor in Taylor series in /? around ft = 0 and integrate each

monomial with the gaussian factor e w n term by term with the help of the formula

(2.18)

The result will be precisely Eq. (A.4) of [12]. We present that formula in a slightly
different form. We use the formula (2.4) for the Alexander polynomial of the torus
knot and by introducing a notation

Zp = ft-$-?- (2.19)

we arrive at Eq. (2.2). •

The formula (2.2) proves half of the strong Conjecture 1.2, namely,

Lemma 2. For a torus knot JfB a»

(2.20)
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Proof of Lemma 2.2. For a smooth function f(zp)

)
i = zff\z,) + (*g + 4)/"(Z/?) , (2.21)

therefore
2m

= 2j!imKZ) ' £ • (* ) e Z t z 2] • (2-22)
^ _ Q A P*Q9

The numerator of the r.h.s. of Eq. (2.22) is proportional to z because in view of
Eq.(2.21), the l.h.s. of this equation is an odd function of z. Finally, Eq. (2.2)
demonstrates that a line V^n)(JfPyq;z) is a linear combination of the functions (2.22)
for m < n. •

in ) (dp)1™ AA(Jfp,t

The fractions in the expansion of (1 + h)^{pq~^~^ and lo^h) in powers of h
separate us from the complete proof of the strong Conjecture 1.2. We prove the
next lemma in order to eliminate half of these fractions.

Lemma 3. For a torus knot

z2,!] • (2.23)

Proof of Lemma 2.3. We are going to absorb the factor

together with some other factors of the integrand in Eq. (2.16) inside the gaussian

factor e w w by completing the square. We achieve this by introducing a new
variable ft such that

q-pq- (2.24)

Now the integral of Eq. (2.16) can be rewritten as

We kept P in the last factor of the integrand in this equation meaning that it is
a function (2.24) of ft.

The last factor of the integrand in Eq. (2.25) can be presented as a geometric
series

(2-26)
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here we used a notation

£ ( /(») = £ /(«)" 13 f(H+j)- <2-27>

Since

0js\gfi(pq) +00 , Bn nt 2

= q-P«n , (2.28)
j2K\pq\-oo

Eq. (2.25) becomes

1 1 «

z fi=±i

x lim £ (^5)2/>^(i+/ I)«(^-^-^)(1+/ i)-^2
xv (2.30)

X—

Our immediate task is to expand this expression in powers of h with coefficients
being hopefully rational functions of <fi. Since p and q are coprime, at least one
of them is odd. Therefore \{p + 1)(# - / i ) e Z and

( H / i ) ^ 1 ^ ^ e Z[[A]]. (2.31)

It remains to treat the sum over n. Consider an expansion

USt

Each term in the sum over m is a polynomial in n which takes integer values for
n e Z . Therefore it can be presented as an integer linear combination of binomial
polynomials (J) - j - a ^ - :

A binomial polynomial can be expressed as a derivative

(2.34)

We combine Eqs. (2.32)-(2.34) together and substitute them back into
Eq. (2.29). After summing up a geometric series

x
lim E (gf)2/>g"(l +hy*'"-'-"Xl +e)nxn = ' J(

/
/>;£), , (2.35)

1 1 T"(l£)

(2.36)
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we get

z A*=±1 m=0

-T(h,e)

',*)
(2.37,

e=0

We see from this expression that a line F ( / l ) (J^;z ) of the expansion (1.12) is
a linear combination over %[qK<j~*] of coefficients at monomials

hnisn\ «i + y ^n (2.38)

in the expansion of llfp^fL- A coefficient at hni^2 would have taken the form

(2.39)

V l - ( < 7

with some polynomial /^i,^ ^^t^># *] ̂ n o t f°r ̂ e fractional powers in (1 +1
and (1 -h z)~p. However a simple lemma

=B(H[;]
guarantees that

/?,,.„ €z[$«,r ! .£] • (2-41)
Therefore we find that

^ ^ ! I 1 ' ] ( Z 4 2 )

By using Eq. (2.4) we can rewrite this as

(2-43)

Comparing this with Eq. (2.20) we conclude that Pn(q*) is divisible by (1—
(q%)2P)2n+l over <Q[qK<]~*]- However since the process of division by 1 — (jfi)2p

does not introduce any new fractions in the coefficients of the polynomials, the poly-
nomial F*n\X~pyq;z) of Eq. (2.20) can have only the divisors of p in denominators
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of its coefficients:

^ 4 < ^ 4 » 4 ] (2.44)
Since, according to Lemma 2, P^n)(JfPtq;z) e Q[z2], Eq. (2.44) proves the
lemma. •

Proof of Conjecture 1.2. A proof similar to that of Lemma 3 would prove that

Since p and q are coprime, Z[z2, -M n Z[z2, -] = Z[z2] and this proves the strong
Conjecture 1.2. •

We used the formula (2.2) to calculate the polynomials P(n)(z), n = 1,2,3 for
the simplest torus knots:

(2,3): AA = \+z2

= 2 z 2 + z4

(2,5): AA = l+3z2+z4

10z2 + 21z4 + 12z6 + 2z8

3 _ 19Z2 - 24z4 + 58z6 + 145z8 + 128z10 ( 2 < 4 6 )

+ 12z14+z16

(2,7): AA = l+6z2 + 5z*+z6

28z2 + 126z4 + 180z6 + 110z8 + 30z10 + 3z12

6 - 66z2 - 138z4 + 1398z6 + 7248z8 + 15747z10 (2.47)
+ 19635z12 + 15360z14 + 7776z16 + 2544z18

(3,5): A A = 1 + 8z2 + 14z4 + 7z6 + z8

/>(!) = 40z2 + 314z4 + 908z6 + 1224z8 + 846z10 (2.48)
+308z12 + 56z14 + 4z16 .

3. Experimental Results

In this section we will present the results of numerical calculations of the coef-
ficients d%\X) of Eqs. (1.12), (1.13) for some simple knots. L. Kauffinan and
S. Lins [8] presented conveniently normalized formulas for the Jones polynomial
Va(Jf;K) as an element of Z[q]. Choose an integer number N ^ 0. If we calculate
the polynomial for 1 ̂  a ̂  N + 1, then after substituting q = 1 + h and extracting
the coefficients in front of the first powers W, 0 ̂  n ̂  2N we can determine all the
coefficients Z)m>B(Jf), O^m^N, 0^n^2N ofEq. (1.5) by solving the system of
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linear equations for every power of h (each equation in a particular system corre-
sponds to a specific value of a). Finally we can recalculate the coefficients Dmyn into
the coefficients </j£}, 0<^2N, O g r o ^ W - f o f E q . (1.13). The results are presented
in Tables 1 and 2 for the knots 52 and 6\ respectively (see e.g. [5] for the table of
knots). As we see, all the coefficients in the tables are indeed integer in agreement
with the weak Conjecture 1.1. It is easy to check that the coefficients in the top
line are consistent with the claim (1.15) of the Melvin-Morton conjecture.

We checked the strong Conjecture 1.2 by using all available coefficients cffi in
order to calculate "approximate" polynomials P^ by the formula

+ 1 ) . (3.1)

In other words, we used the highest values of N that our computer could handle, in
order to find the exact values of the coefficients Dmtfl( X\ O^m^
and d{m\ 0 ^ 2N, O^m^N - \ . Thus we determined the exact coefficients of the

iseries

ro^O
(3.2)

(cf. Eqs. (1.13) and (1.18)) up to the power zw~2. This is indicated by the term
^ - " + l ) in the r.h.s. of Eq. (3.1) and the corresponding terms in the following
equations (one can deduce the values of N that were used in the actual calculations
from the powers of z in these terms):

52: AA = 1 + 2z2

'<£& = 2 - Iz2 + 36z4 + 54z6 + 23z8 + 0(z18)

'<!> = 4 - 83Z2 + 140z4 - 156z6 - 467z8 - 358z10 - 103z12

(3.3)

6,:

• = - 2 + z2 + 17z 4 -10z 6 + 3z8 , ^ ,

\ = -35Z2 + 35z4 + 166z6 - 113z8 + 50z10 - l lz1 2 + 0(z18) .

(3.4)

Table 1. The coefficients cffl for the knot 52

m

<4 0 )

d(m}

0

1

0

2

4

19

93

1

-2

-6

-27

-139

-832

-5720

2

4

31

226

1750

14664

133890

3

-8

-114

-1286

-14100

- 158554

-1866899

4

16

360

5843

86613

1262646

18679183

5

-32

-1040

-22974

-443388

- 8145921

-148104718

6

64

2832

81684

1991453

45047755

988048870
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Table

m

dff
d{m}

d(m}

dff

Table

m

J(0)

d(m}

d(m]

d(m}

<48 )

2. The

0

1

0

- 2

0

15

13

3. The

0

1

- 1

4

-35

543

coefficients d

1

2

2

-19

-35

328

1226

coefficients d

1

1

- 5

48

-780

19434

J£} for the knot 6\

2

4

11

-93

-455

2843

24996

jjf0 for the

2

1

-14

266

-7214

270472

3

8

42

-340

-3264

14830

274355

knot 4}

3

1

-30

996

-41875

2251006

4

16

136

-1037

-17389

50071

2107672

4

1

-55

2926

-180510

13395371

5

32

400

-2754

-7720

74117

12766200

5

1

-91

7280

-631436

62736271

L. Rozansky

6

64

1104

-6428

-300255

-399260

65058967

6

1

-140

16044

-1890680

245214729

The coefficients of the series (3.2) are "stable" up to zm 2: they do not change if
one uses higher values of N.

As we see from these equations, the stable coefficients in the series (3.2) ap-
pear to be zero starting from some power of z. An assumption that higher stable
coefficients (which could be determined by the use of bigger values of N in com-
puter calculations) would also be zero, leads to the strong Conjecture 1.2 with the
exact polynomials P ( / l ) being equal to the r.h.s. of Eqs. (3.3), (3.4) with the terms
O^z**-**1) removed.

Tables 3 and 4 contain the lists of the coefficients d^ for the simplest am-
phicheiral knots 4\ (the "figure 8" knot) and 83. All coefficients appear to be integer
in agreement with Corollary 1.1. The approximate line polynomials P$*j£ for the
same amphicheiral knots were calculated by the formula

m=0
(3.5)

As we see, they are also of a limited degree:

4,: 4< = 1 - z 2

(3.6)

- 9 8 9 z 4 -
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Table 4. The coefficients d ^ for the knot 83

m

<4 0 )

<4 4 )

0

1

-4

60

1

4

-76

2746

2

16

-821

58210

3

32

-6868

840696

4

64

-49504

9594881

5

128

-323456

93259044

6

256

-1970944

806300400

83: AA = l-4z2

= - 4 - 12z2 + 1 lz4 - 4z6 + 0(z20) (3.7)

J = 60 + 1066z2 + 1482z4 + 928z6 + 513z8 - 248z10 + 80z12 + 0(z18)

This confirms Conjecture 1.3.

4. Discussion

Let us speculate briefly about the possible origin of the strong Conjecture 1.2
and Conjecture 1.3. We plan to present the expansion (1.9) of the colored Jones
polynomial VX(X;K) of a knot JfeS3 as a contribution of a particular stationary
phase point into a certain finite dimensional integral (such a representation seems
to appear naturally when one tries to derive the expansion (1.9) and strong Con-
jecture 1.2 from the universal R-matdx). The determinant of the quadratic form of
second derivatives of the exponent in the rapidly oscillating exponential is equal to
the Alexander polynomial of X. Thus, in accordance with Eq. (1.15), the stationary
phase point contribution is inversely proportional to the Alexander polynomial in
the leading approximation in K~l.

The subleading terms in the K~l expansion of Va(Jf;K) can be calculated
by Feynman rules. In other words, the lines F(/l)(JT;z) of the expansion(1.12)
will be related to closed (/1 + 1 )-loop graphs. The edges of the graphs repre-
sent the inverse matrix of the second derivative quadratic form. The valence of
the vertices of the graphs matches the order of the higher order terms in the
Taylor expansion of the rapidly oscillating exponent around the stationary phase
point.

The matrix elements of the inverse quadratic form are inversely proportional to
the determinant of that form which is equal to the Alexander polynomial. As a result,
the highest order of the Alexander polynomial in the denominator of V^n\jf;z) will
be equal to the maximum number of edges in a closed (n + 1 )-loop diagram (plus
1 coming from the leading approximation). For a fixed n, this number is determined
by vertices with the smallest valence

#edges g
— 2

The exponent of the rapidly oscillating exponential turns out to be even. Hence, for
a general knot, îmin = 4, so that the r.h.s. of Eq. (4.1) is equal to In. This leads to
the power In + 1 in the denominator of Eq. (1.18).
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One may speculate that for the amphicheiral knots the 4-valent vertices are
absent. Then v^ = 6, the r.h.s. of Eq. (4.1) is equal to §, and we reproduce the
power in the denominator of Eq. (1.26).
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Note added in proof. We proved the strong Conjecture 1.2 for any knot in S3 in [17] by using
the /^-matrix based formula for the colored Jones polynomial.
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