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Abstract: We study the continuum scaling limit of some statistical mechanical models
defined by convex Hamiltonians which are gradient perturbations of a massless free
field. By proving a central limit theorem for these models, we show that their long
distance behavior is identical to a new (homogenized) continuum massless free field.
We shall also obtain some new bounds on the 2-point correlation functions of these
models.

1. Introduction and Statement of the Main Results

In this article, we study the long distance behavior of (lattice) statistical mechanical
models defined by convex Hamiltonians H(ip) which are gradient perturbations of a
massless free Gaussian. Under certain assumptions (see (H-l) and (H-2) below), we
shall prove a central limit theorem for these models and show that their behavior
at long distances is governed by suitable continuum massless Gaussians. The main
idea is that these statistical mechanical models can be expressed (following Helffer
and Sjostrand [8, 12]) in terms of an infinite dimensional elliptic PDE. We develop a
suitable extension of homogenization for this elliptic equation which will then yield
the desired central limit theorem. Along the way, we will obtain new estimates which
are pointwise versions of the Brascamp-Lieb inequalities [1]. When the Hamiltonian
is a "small" perturbation of a massless free field, using the renormalization group
analysis and multi-scale expansions, these models have been studied in [4, 10] and
more recently in [2]. Their methods, when applicable, give more detailed information
than our methods. However, our methods do not require the Hamiltonian to be a
"small" perturbation of a massless free field.

In this introduction, we first define the model and then we state the main results.
Then the notations for the rest of paper are introduced. A brief sketch of the proofs
and organization of the rest of paper conclude the introduction.

1.1. The model. At each point x of the lattice Zd , there is a real random variable
(p(x) and we consider the following Hamiltonian H^9 A = A(L) c Z d a cube of side
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L centered at the origin:

and V G C2(W) is an even function, m in the Hamiltonian will be referred to as
the mass and the second term is called the mass term. The superscript A indicates
Dirichlet or periodic boundary conditions. In this article, the particular choice of
boundary conditions will become unimportant as A | oo. We denote by d/x^(y?) the
induced probability measure and for any allowed functional F((p), we use either of
the following symbols to represent its expectation:

where

J FQp)exP{-H

is the partition function (in volume A) and

def
&A¥> =*

xGil

Note that when V(z) = ^z2, ifm is a free field Hamiltonian of mass m.
We restrict the class of Hamiltonians by imposing the following lower bound on

their Hessians as quadratic forms (ra > 0):

Hess Hi dl=f- [ f ffi 1 > (-«4 + m2), (H-l)

for some 6 > 0, independent of A Let us denote the variance of a functional g by
Varg:

and let

We shall frequently use the following inequalities.

Theorem (Brascamp-Lieb Inequalities).

(a) For any Cl functional g((p),

W
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For a proof, see [1] (see also Remark 6 below).
We can define an infinite volume massless (i.e. ra = 0) probability measure /j,(<p)

through the following procedure1:

/ ec*/) \ = f e c * / ) d (i } « • l i m / cvK/) \ dlf' lim lim ( cC(*f) ) A . (1.1)
\ / J WJ miQ\ / m m i 0 y l T o o \ Irn ^ >

Note that by part (b) of Brascamp-Lieb inequalities (hereafter B-L), the right-hand
side of this equation remains bounded a s m j O whenever / is compactly supported
(and has average zero in d = 1,2). The uniqueness of limit is established in [13]. Note
that in d = 1,2, the condition that / has to have zero average means that the class
of allowed functionals is restricted to those which only depend on the difference of
fields at different points of space.

One can also use B-L inequalities to prove the ergodicity of the infinite vol-
ume probability measure constructed above. This holds independent of the boundary
conditions.

To probe the long distance behavior of massless models, we introduce the slowly
varying scaled field

= £ cp(x)fe(x) ̂  ed'2+l ] T <p(x)f(ex), f € C§°md), e > 0.

If / is an approximation to the characteristic function of a unit box, then v?(/e) will
be the sum of Ld {L ~ l/e) random variables <p(x) divided by the scaling factor
£d/2+i jf {<p(x)} is a family of independent (or even weakly dependent) random
variables, the correct scaling for having a central limit theorem (CLT) will be L~d / 2

but in the massless models, the field variables are strongly dependent and we require
a stronger scaling, namely the factor L"1"^/2, to obtain a non-trivial CLT. However,
the family of random variables {Vip(x)} only needs the standard scaling L~d/2.
Although in d = 1 these gradient random variables are independent, this is no longer
true in d > 1 where even at large separations, gradient fields are correlated and the
correlation functions are not absolutely summable but are bounded as quadratic forms
and allows the standard scaling.

Define Vi/(x) =' f(x + e*) - f(x) and let V* denote its adjoint with respect
to the standard inner product of £2(Zd) (see Sect. 1.2 for more details). To cover all
dimensions in a uniform way, and according to the above argument, we choose to
study the gradient of fields and for / € Cg°(Rd) and an arbitrary integer £,\<£<d,
we introduce

e(x), fe(x) ™' edl2j(ex\ (1.2)

Our main results are stated in Theorems A, B and C below. In addition to (H-l), let

Hess Hm=o < C for some positive constant C. (H-2)

1 By A | oo, we mean that the size of box A approaches oo.
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Theorem A. Fix £ e { 1 , . . . , d}. Then under hypotheses (H-l) and (H-2), the con-
tinuum scaling limit of the above models with m = 0 is a continuum massless free
field. In other words, there exists a constant positive definite matrix q such that for all

d

where
8 d

and <^(V|/e) is defined in (1.2).

Remark 1. The RHS of Eq.(1.3) is the generating function of the continuum Gaussian
probability measure with covariance Q.

Remark 2. It follows easily from our proof that if the model is (statistically) rotational
invariant under lattice rotations, the continuum limit will have the full rotational
invariance, that is q will be a multiple of the identity.

Remark 3. For m = 0, all these models enjoy the formal continuous symmetry H(<p) =
H((p + const.). In the presence of the mass term, this formal symmetry will be broken
and the scaling limit will be a white noise Gaussian. In this case, the appropriate
scaling is different from the one given above. For massive FKG models, a result
due to Newman [11] proves the convergence to white noise. Note that in the nearest
neighbor case, our conditions are sufficient to imply the FKG property.

Theorem B. Letm> 0. Then there is a constant m' > 0 such that

\(ip(x)<p(y)}m\ < Ce"™'11*-3'11, for some C > 0.

Here (• ) m denotes the expectation with respect to the infinite volume massive proba-
bility measure (with mass m)t defined in (1.1).

For the massless model, we prove

Theorem C. Letm = 0. Then for the above models in d > 2, we have the following
estimate:

\(v(xyp(y))\ <C\\x- y||2-d, for some C> 0.

Remark 4. We can relax the nearest neighbor restriction on the Hamiltonian. For any
finite range interaction, Theorems A, B and C hold. See Sect. 4 for more details.

Remark 5. Theorems B and C will be proved separately from Theorem A. For sim-
plicity, Theorem C has been used to prove Theorem A in d > 2, however that could
be also avoided (see the proof of Theorem A in d = 2).

1.2. Notations. We shall always denote by d the dimension of space. 7Ld is the d-
dimensional integral lattice and by Zd, we mean the set

{(xi, . . . ,Xd) : Xj/e € Z,i = l , . . . , d } .
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We always think of 7Ld
e as imbedded in Rd with coordinates which are integer multiples

of £, with respect to a Cartesian system defined by the unit vectors {e* : i = 1 , . . . , d}.
For any x G Rd

9 \\x\\ will denote the Euclidean length of x.
For a real (or complex) valued function f(x) on Md, and i = 1 , . . . , d, define

Note that Ve* is the adjoint of Ve with respect to the standard inner product of
e2(Zd). When e = 1, we shall drop the superscript e. The discrete Laplacian (on 7Ld)
will be denoted by A

Using the above notation, our (formal) Hamiltonian can be rewritten as

d

Let /i be the infinite volume translation invariant massless ergodic probability
measure which was constructed in Eq.(l.l). We denote the expectation of a functional
u w.r.t. this measure by any of the following notations:

}. (1.5)

Let L2(/x) be the Hilbert space with inner product ( u , v)^ =' (uv). For a smooth
functional u(ip), we define

Note that 3* is the (formal) adjoint of d with respect to the inner product:

We define:

-A, *
For the entries of Hessian, we use the following short notation:

TTII def. o2 rr _

We put,

and as a rule, we drop the superscript e whenever e = 1.
To simplify the notations, we shall use

, , def.
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Then a simple calculation shows that H" is a finite difference elliptic operator:

d

(H"u)(x,<p) = YlHxyu^^ = J2V*i(ai(x^)VMx,ip)). (1.6)
y i=l

Hypotheses (H-l) and (H-2) are then equivalent to

0<a^1 <ai(x,ip)<a0, (1.7)

for some constant ao > 0, uniformly in ip and x.
Finally we warn the reader that the constants which will appear in different places

are not necessarily equal, although we might use the same symbol for them.
1.3. Sketch of proofs. To prove our main results, we will use a representation which
was originally introduced by Helffer and Sjostrand [8,12], in a somewhat different but
related context. Fix t £ { 1 , . . . , d} and / € C^°(Md). We seek a solution v£(y, y>), V £
7Ld, to the following PDE:

(1.8)

in the space of gradient functionals, i.e. we assume dyv£(x, <p) = dxv£(y, <p). By taking
another derivative dx of the above PDE, and using this property, together with the
observation that the commutator

we obtain:

Therefore ve satisfies the following PDE:

d
7 V \ d - ' _ A (1.9)

hence,

ve =
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Using (1.8), we can express the pair correlation functions of if fields in terms of v:

where ( , ) denotes the standard inner product of ( )
To prove Theorem A, we will show that (VJ/ e , 3S~xV*tfe) -> const, in L2(/z);

more precisely

( 2 ) 0 a S £ | 0 , (1.11)

where Qf
 d= (V*ef£ , QVJ/ e ) and

for the constant positive definite matrix q given by

def. -. / / r T

Proof (of Theorem At assuming (1.11)). Put

By the Brascamp-Lieb inequality, for any given / there is a constant C > 0, inde-
pendent of s such that

The constant C can be chosen independent of t for t in any compact set. A straight-
forward calculation shows that

dGe(t)
E »«<*' ̂ >v2/£(z) - Qf

Therefore

where Ae(t) = o(l) as e | 0, by (1.11). Theorem A then follows upon integrating the
last equality and then letting e j 0. D
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Remark 6. Following Helffer [7], the proof of B-L inequalities is a straightforward
application of the above representation. To see this, consider g(ip) £ Cl n L2(fi) and
let Ylx ®xv(%i <£) = 9 — (9)» or equivalently v = 2%~l(dg). Then a similar calculation
to the one which yielded Eq.(l.lO) gives

where the last inequality follows since - A*> > 0. This proves part (a) of B-L in-
equalities. Part (b) follows easily from part (a).

Remark 7. Instead of having an I? convergence in (1.11), any IP, p > 1 convergence
would be sufficient. This might be useful if one wants to relax the hypothesis (H-2).

The proof of (1.11) relies on homogenization. To see that, we first rescale as follows:

;) = ed £ ue(x,<p)V?f(x)

where u£(x, (p) d=* el~d^2v£(x/£, <p), x e Zd, satisfies

- 1

il
(1.12)

If the first part of the above operator was absent, this equation could be viewed as
a standard elliptic homogenization problem [15] (where a,i(x/e, (p) would play the
role of the uniformly elliptic coefficients of an elliptic PDE, corresponding to the
realization tp of the random media). In Sect. 3 we show that suitable modifications
of the standard techniques apply even in the presence of the first part of the operator
and we obtain (1.11).

According to the above considerations, to obtain pointwise estimates on the two
point functions, it suffices to obtain pointwise bounds on the kernel of 3§~l (or
{S§ + m2)"1, for the massive case). Since 3§ + m2 > m2, we can simply apply the
Combes-Thomas' trick of conjugation and analytic continuation to prove Theorem
B. This proof is quite straightforward and mainly uses the fact that <3f + m2, for
m > 0 is positive definite, therefore the result can be extended to a wider class of
Hamiltonians. See Sect. 2.2.1 for details.

On the other hand, the massless case (m = 0) is not as easy as the massive (m > 0)
case and uses the specific structure of the Hamiltonian. If we only had the second
part of the operator S§, then the desired bounds would be a simple application of the
Aronson estimates [3], which gives the following upper bound

r(x,x';t,0) < C f d

on the fundamental solution F of the problem

du(x,t) = yv*u
dt *r! %

2 = 1
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where
0 < a,Ql < biix.t) < OQ.

In the proof of Theorem C, we use the semi-group representation for the solution
v of (1.9). Upon trotterizing the corresponding semigroup, we observe that we are
still able to use the Aronson upper bounds to get the desired estimate. Details are
given in Sect. 2.2.2.

Note that Theorem B can be also proved by the same techniques as will be used
in the proof of Theorem C.

1.4. Organization. In Sect. 2, we mainly study Eqs.(1.8) and (1.9). After introducing
the proper spaces and norms, we solve the second order PDE of (1.9) and then we
show that its solution also satisfies (1.8). In the rest of that section we prove Theorems
B and C. Section 3 is devoted to the homogenization of the solution of (1.12). We
shall see that the proof of homogenization follows from [15, 9] and relies mainly on
Hilbert space methods and ergodicity. In Sect. 4, we will see that these results can
be easily extended to long but finite range interactions. Finally, in the Appendix, we
have collected some £P estimates which are used in Sect. 3.

2. Helffer-Sjostrand Representation and Proofs of Theorems B and C

In this section, we study the Hellfer-Sjostrand representation and related PDE's that
will form the bases of our analysis. In Sect. 2.1, we give a rather careful definition of
the relevant PDE's and the spaces in which we seek for solutions of them. We shall
first show that Eq.(1.9), or equivalently Eq.(1.12) has a unique solution in the ap-
propriate spaces. Then we verify that the solution of Eq.(1.9) satisfies Eq.(1.8) in the
suitable sense (see Proposition 2.1). Finally in Sect. 2.2, we obtain some new bounds
on the decay of two point functions, for both massive and massless models. These
can be considered as pointwise extensions of the (form-wise) classical Brascamp-Lieb
inequalities.

2.7. Some related PDE's and the Helffer-Sjostrand representation. We first define the
Hilbert space S@1(JJL) as the completion of the smooth local functional under the
inner product

(u(ip), v(p) )mx ^ (u , v ) + Y] (dxu((f), dxv(ip)) .
fJL ]

x

When there is no danger of confusion, we will use the following shorthand:

(Ou , dv )M ^ ] T (dxU(ip), dxv(<P) V
x

We also define the space C§i3Ld
e,S%Sx) of compactly supported 3@x(\i)~valued func-

tionals.
For anyw,vG Co(^,3&1<JJL)\ define the inner product

i-\
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Completion of Co(Zg, £@1(/J,)) with respect to this inner product will be denoted by

i2i 2 P )
For fixed f(x) € C£°(Md), e > 0 and £ G { 1 , . . . ,d} , consider the following

problem:

- 1 d

(&eu)(x, ip) d= - ^ Z ^ ( z , tp) + £ V f a f (z, ^)Vfii(x, V) = V?*/(x), (2.1)

for x G Zf, where a\(x, </?) =* di(x/e, <p) satisfies (1.7).
We say u £ J)^(Z^,/i) is a (weak) solution to this problem if for every v e

)i(Zf,^), we have

(2.2)

The main tool to treat this type of PDE's is the Lax-Milgram theorem, which requires
that the associated bilinear form be bounded and coercive (see [5]). Verifying these
two conditions is straightforward and uses (1.7).

As we saw in the Introduction, the homogenization will be applied to the solution
of the second order equation (2.1), while the statistical mechanical conclusions will
be drawn using the solution of the first order equation (1.8). The next proposition
identifies these two solutions. Let

<W ** I all smooth local w(<p) s.t. £ < \a£yVKtp)\2 > + £ < \dxw(<p)\2 ) +
I x,y x

( \w((p)\2 ) < oo, (w ) = 0 > . (2.3)

Proposition 2.1. Let tie®1 be the unique solution to (2.2), with e=l. Then for any
w £ W, W defined in (2.3), we have

X

(7LdProof Put e = 1. Let u e &(7Ld, /x) be the unique weak solution to the PDE

Assume that for all x, y e Zd , u is of gradient type, i.e.

( v , dxu(y,if))/i = ( v , dyu(x,<p))^ \/v£ L2(fi). (A)

Then, using this equality, the commutation relation and the definition of u,

= 0.
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Proposition will follow if we show that the subspace

]d*v(x,(p) : v(x,(p)e& \

is dense in (W. To prove this, assume that 3w £ <W such that for all v £ 9^,

= 0.

On the other hand, for w £ <W, v(x,(p) = dxw(ip) £ 2)1, therefore we can put
v(x, if) = dxw(ip) in the above equations to obtain

which shows that w =const, but the only constant in (W is the zero vector so w = 0.
This proves that ^ is dense in (W.

Next we justify the assumption (A). Let

d= {u e CQ(7Ld,3%x) : u satisfies (A) } .

Then one can easily see that S§ leaves Cf^ invariant. If we solve SZu = Vf */
in the completion of this space (which is a subspace of S)1), we will obtain a unique
solution in this space. Note that VJ/ € C^{Zd,S^1) since V*ef(x) = dxw(V*tf).
The earlier considerations about the existence and uniqueness of the solution in the
larger space S)1 and the invariance of C^6 under S% imply that these two solutions
should agree and this justifies the assumption (A) and finishes the proof. D

Remark 8. Equation (2.4) can be extended to be valid for w £ <W+ const., since

( const., ] T d*u(x, ip) - <pCV}f) ] = 0.

2.2. Some new pointwise bounds on the 2-point functions. In the first part of this
section, we will consider the massive models, i.e. m > 0. Bounds on the decay of
massless models will be obtained in the second part. These bounds are the pointwise
extensions of the Brascamp-Lieb inequalities and are comparable to the bounds that
one can obtain for the pure Gaussian models.

2.2.1. Massive models. For a fixed m > 0, consider the operator

d

defined on ^2(Zd;^?1(/x)) . Note that as a quadratic form, 3S > m2 (see Remark 9
below). For any p e Md, define the operator Tp of multiplication by exp(ipx), x e 7Ld

on this space. Tp is a unitary operator with respect to the inner product
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(u, v) ='

with inverse T~l = T_p. Finally define the operator:

Since Tp commutes with -A^, it is easy to check that for small |p|, p £ Cd , SZP is
still positive definite and hence invertible.

Theorem B. There is a constant m! = ra'(ao, m, d) > 0

(Vixypiy)) < C c " m ' | 8 " y | 1 , for some C > 0.

Proo/ The above considerations show that (T~l3fTp)~
l = ^ " ^ " ^ p , which was

originally defined for p e Md, has an analytic continuation into the disk |p| < po of
the complex plane. Therefore we can choose m! = m'Coo, m, d) such that

uniformly in y? and ip!. D

Remark 9. The same argument, and hence result, holds if instead of having an m > 0
explicitly in J2?, we assume that 5S > m2; after all that is the only hypothesis we
have used.

2.2.2. Massless models. We shall obtain a power law decay for the kernel
where

d

where â  satisfy (1.7). Proof of Theorem C will then be a simple application of this
result.

We start with the semigroup generated by this non-negative (self-adjoint) operator2.
Since each of the two parts of 3$ is non-negative, we have the following Trotter prod-
uct representation for this semigroup:

e " ^ = lim
n—>oo

The above convergence takes place in the strong operator topology. Put

and define the following kernels:

kt{x,y\ip) *='
2 The non-negative quadratic form induced by 2% on X)1 gives a self-adjoint extension of *2f which we

will again denote by 3$.
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Therefore the kernel of 4 n ) can be written as

, y; tprf) = £
xn_i,...,

kt/n(x, xn-u<pn-1)'- St/n(<Pl, ip)kt/n(xi, y; <

For fixed y>,y?1,..., (pn~\ip, let

uin\t, x) ™-

Then it is clear that for fixed n and t, u(n)(t, x) is the solution at time s = t of the
following problem:

where

6^n)(x, 5) *=' ai(x, cpk) for (A; - 1 ) - <s<k-, k = 1 , . . . , n.
n n

Back to Eq.(2.5), we know that its solution has the following representation at
time t:

where r(n\t,s;x,y) is the fundamental solution corresponding to Eq.(2.5), with the
initial condition f(x) = 6xy. Since 6f(x,t) is bounded from above and below (uni-
formly in n, x and 0, Aronson's estimate [3] implies the existence of a constant
C(which only depends on dimension d and the ellipticity constant ao) such that

which, in turn, gives us the following bound:

uniformly in </?'s.
Since the operator e x p { £ ^ } preserves positivity, and hence its kernel

St(<P, VO is nonnegative, we can estimate the kernel of i j n ) through the above es-
timate. Putting St/n's together, we obtain:

Since

(Vix)v(y) > = j 2Z~\x, y; <

Theorem C follows by integrating out £ in the above estimate and then letting n —• oo.
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3. Homogenization and the Proof of Theorem A

In this section, we shall extend the standard techniques of homogenization (see [15,
9, 6]) to the elliptic PDE (1.12) to prove Theorem A. Throughout this section, we
will use the massless probability measure constructed in (1.1). Since the whole proof
is rather lengthy, we will break it into two steps which we will describe here briefly.

Step 1. This step is the heart of the proof of Theorem A. Fix A > 0; £ G { 1 , . . . , d}
and / € C£°(IRd), and consider the following PDE:

xeZ*. (3.1)

Let w\ (x) satisfies

The key step is to show that the constant positive definite matrix q can be
chosen so that \\u\ — w£

x\\£ —> 0 as s I 0 (see Theorem 3.1). We construct the
constant effective diffusion matrix q by introducing an auxiliary function xf
which formally satisfies (cf. (3.7))

As /3 i 0, Vixf has a well defined limit, which will be denoted by ^ . A very

important observation is that /?15(xf)2 —• 0 as f3 j 0 (see Proposition 3.1).
We then define

and introduce the error function
d

z£{x, if) = u£{x, ip) - we(x) +

As we just mentioned, the last term in the error function will go to zero as
e i 0, therefore to prove that \\u£

x — w£
x\\£ —> 0, it suffices to prove that

\\ze\\e —• 0. One way of doing this is to calculate (z£,{S%£ + \)z£)£ and
show that this expression vanishes. Since 3§£ + A is uniformly elliptic, this
last statement implies \z£\£ —* 0. These will be our plans for Step 1. It is a
standard result that as e I 0, \\w\ - w\\\e —• 0, where w\ satisfies

- ^ - , xeRd. (3.2)
OXi

As a result, in this step we show that for A > 0, \u\—WAIU —• 0, as e j 0. We
call this step the massive homogenization due to the presence of the positive
constant A > 0, which plays the role of a mass. The main reason for adding
this mass (which will be later removed in Step 2) is that we are solving these
PDE's in the whole space and in the presence of such a mass, solutions have
exponentially fast decay at infinity. We remark that the probability measure
is kept massless.


