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Abstract: This paper continues the analysis of the low temperature expansions for
classical N-vector models started in [1]. A main part of it is a derivation of renor-
malization group equations and a construction of their solutions. To do this we
have to introduce “a fluctuation integral” connected with a next renormalization
transformation, and to make its preliminary analysis. The results of the paper are
summarized in theorems stating that the renormalization transformation preserves
the space of densitites, or actions described inductively in [1].

1. Introduction, Formulation of Main Theorems

This paper is a continuation of the paper [1], and we use the notations, definitions
and results established there, as well as in the following papers [2, 3]. Our main
purpose here is to define renormalization procedures for new contributions to the
effective actions and the generating functionals, and to set up and analyse renor-
malization group equations for the “running” coefficients in the main term of the
effective action. The new contributions come from “small field” fluctuation integrals
connected with a successive k 4+ 1% renormalization transformation, and our other
purpose is to set up such fluctuation integrals, and to define the new contributions.
The renormalization procedures, and in particular the renormalization group equa-
tions have to be defined under the assumption that the effective actions are defined
on the whole lattice, i.e., in the framework of paper [1]. To give some more precise
shape to this paper we assume also that the fluctuation integrals are defined on the
whole lattice, i.c., the lattice is “a small field region,” but it is very easy to general-
ize constructions and results obtained in this case to general cases when small field
regions are subregions of the whole lattice. If the renormalization procedure and the
renormalization group flow depended on such a region, then a new renormalized
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action would depend on it also, and even after a localization expansion terms lo-
calized in smaller subdomains would depend on it. This would be inconsistent with
one of the fundamental properties of our procedure, that an expression constructed
by some operation from previous expressions, and subsequently localized in some
domain, depends on the previous expressions localized in the same domain also.
To preserve this property we define the renormalization group flow globally on the
whole lattice, actually even on the whole lattice Z¢, so it is independent also of the
torus 7. This was not stated so clearly in [1], so we stress it again here that the
renormalization conditions in [1] can be formulated in terms of functions defined by
proper “thermodynamic limits,” as we do it in the inductive hypotheses formulated
in this paper. With the above assumption we present the constructions and results
of this paper as a theorem that the renormalization transformations together with the
renormalization procedures preserve the form and bounds of the effective densities
described in [1]. This is a main theorem of many renormalization group approaches,
and our final results will have this form also, but for complete densities including
contributions from “large field domains.” Let us stress again that in this paper the
theorem gives only a coherent way of presentation of results, we have explained
above our main goals. We need here more precise formulations of some inductive
hypotheses, so we start writing them in a proper form. Let us stress that the changes
in the hypotheses make them more precise and restrictive, so they do not affect the
considerations and results of [1]. We only formulate them here, and we refer the
reader to Sect.2 of [1] for all remarks, explanations and definitions.

Let us recall the definition of the function determining the main term in effective
actions, which is

1 1 A
A §sha,2ov) = salld = Oulf + S 101 + F16? — 117 + Slp— A2,

1 3
n:L_k,§<a<§,igl,O<v§1, (1.1)

where a “new” spin configuration i is defined on Tl(k) , an “old” spin configuration
¢ is defined on T, both have values in R", % belongs to a neighborhood of the unit
sphere S¥~! in RY. The norms in (1.1) are L2-norms, the first on the unit lattice
Tl(k ), the remaining three on the lattice T,. We consider densities p; satisfying the
following inductive hypotheses.

(H.1) There exist positive coefficients PBr,ar, Ae, vk, 3 < ax < 3, A = L%, 0 <
v < 1, functioncs (Y, h), Fr(Yi, h, g), and constants Ey, o,y such that

(W) = xx expl ey + Fi(i, h, 9)1 ,

i = — B (W b 1y i, s Vi) + G 1) — Ex | TV

where . is a “new” spin variable on the lattice T®, and ¢r = ¢r(Yi; b, ag, Ak, Vi)
is the minimal configuration defined in Sect.2 of [1], and constructed in [2].
The function &,(y,h) is defined and real analytic on the space Ei(1,¢), where
e = do e, ook = do(1+ > oy ), og is positive and small, o = 452 —y, y is

a constant from the interval 0 < y < min{%,%}. The function F (Y, h,g) is
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defined and real analytic on the space Zy(1,&) X {g: g is defined on T and has
values in RY, ||g||,n < 1}

(H.2) There exist functions zf’k(j )( y; Wi h), where y € TY) and ; is a spin variable
on this lattice, such that

k . .
E (Wi, h) = _21 EP WY Wy h), h)
j:

where ' '
VW = X & (viuh),

yeT(J)

and where tﬁ,fj )(zﬁk,h) are the minimal configurations of the variational prob-
lems (2.6) in [1], constructed in [2]. The functions é"k(] X ;Y. h) are defined and
real analytic on the space Z;(1,¢;), where €; = o x &%, & = L™/, and the coefficients
aj, A;,v; in the definition of this space are connected with ay, Ay, Vi by the equalities

1 — L—2k

ak 1-1-%° /1]‘ = /lk(Lj”l){ V= Vk(Ljﬂ)2 .

aj=

(H.3) The functions fk(j )( Y; W, h) satisfy the symmetry properties
&7 (v Ry, Rh) = & (y;y,h), R e OIN),

&yt ) = &7 (i )
for all Euclidean transformations r of the lattice T/ onto itself, where (ri; )(y) =

Y (r=ty).

(H.4) There exist functions é",fj N(y,X; V;, h) defined for localization domains X €
9; = 2{T), y €X, such that

sy = S EP(nXsyh).
X€eY: yeX

A function (v, X3, h) depends on ; restricted to the domain X, and it
does not depend on the torus T if X does not “wind around it,” for example
if X Ccl{xm, <x, <M, p=12,...,d} and M, —m, < 2L, for the torus
in the &-scale. This function has an analytic extension onto the complex space
ES(Bj(X); 1,¢;) defined in Sect. 4 of [3], and the extension depends on configura-
tions (Y + /', h + 1) restricted to X, i.e. on (Y; + Y, h +h') restricted to X and
it satisfies the bound

672, X3 + Y h+ )| < Egexp(—xd; (X)) ,

where Ey, k are positive constants, k can be chosen arbitrarily large, depending on
the size M of large cubes. It is invariant with respect to orthogonal transformations
R € O(N) applied to the configurations, and covariant with respect to Euclidean
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transformations r of the lattice of large cubes in T, i.e., the lattice TU*™ where
M = L™ is the size of the cubes.

Let us interrupt for a moment formulating the inductive hypotheses, and let us
notice that it is the above one which has been strengthened in comparison with
the corresponding hypothesis (H.5) in [1]. The analyticity domain, which is now
the space Z(IB;(X);1,¢;) restricted to X, contains the domain considered in [1],
which was the whole lattice space Z5(1,¢;) restricted to X, in fact it contains any
space Zj(IB;;1,¢;) with IB; “larger” than B;(X), i.e. B; > B;(X). An advantage
of using the space E7(IB;(X);1,¢;) is that its definition is localized to a relatively
small neighborhood of X, which is important in constructions of localization ex-
pansions. From the fact that each term in the sum on the right-hand side of (H.4)
is analytic on the space Zj(1,¢;) it follows that the sum, which is the function

é"k(J )( Y3 ¥, h), is analytic on this space, so its restriction to the real subspace Z;(1,¢;)
is real analytic on it. Thus the analyticity assumption in (H.1) follows from the
assumption in (H.4), and in the future we will be concerned only with the last
one. The hypotheses (H.3),(H.4) imply existence of an effective potential defined
by

7y, M= hm é”‘”(y,lp h)— hm g’(”(l// h), (1.2)

T

where W, h are vectors from IRV such that the constant configuration equal to i be-
longs together with £ to the space Z;(1,¢;). The hypothesis (H.4) implies existence

of various other thermodynamic limits, like ﬁk(j’oo)( Y; ¥, h) = limr,_, ez é’k(j )( iy,
h), and in particular of the function )

' 2
g,g”oo)(x—x')z lim (—a—,) >(el’el)

To—ézd \ O (x)oy;(x
& i oo))
B EA D) ; =(1,0,...,0). ,
y;d (&P,(x)c'hpj( /)é" (y;er,e1), e (1,0,...,0) (1 3)

We formulate the next inductive hypothesis, the renormalization conditions in terms
of 79, 4°°) We assume that

(H.5)

; 0
”Vk(j)(el,el) = (5}1%(])) (e1,e1)-e1 =0,

Kl 6

S [Gx) - (e @ )P = — 4, tr [B () - (2 @ €2)]] po
xezZ4

0 o
= d(a 2@]2122))(0):0, ,u=1,2,...,d.
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(H.6) The coefficients P, ax, A, vi are connected with the fixed coefficients B,a, 2, v
by the equalities

1—L2

m, )*k = Mzk, Vg = VL2k5k ’

Bi = BLK= Dy, ar=a

-2
or Py = PLKE"Dy,, qp = a%yk_], e = ALy, v = vL**6;, depending on renor-
malization procedures, and the positive constants Y, 0y satisfy the inequalities

k .
Ve Vk Ok 0f | < exp <08 ZL—2Y1> ’

J=1
where the positive constant cg can be chosen arbitrarily small if B is large enough.

Inductive assumptions on (Y, h,g) have a form analogous to the assump-
tions (H.2)—(H.4), but we formulate them in the one hypothesis below.

(H.7) The function F(Yy, h,g) has the form
k _ .
Filhohsg) = (g 601 + 2 F W W) )
j:

FO Wy g) = (g, MWy b )1

where the scalar products are taken on the unit lattice T,. The functions ,//Zk(j )(x; v,
h,g), x € T, are defined and real analytic on the space E;(1,¢;) x {g: [|g]ln < 1},
and they satisfy the symmetry properties

M (% RYy, Rh, Rg) = RM (x;Y5,h,9), R € ON),

M (rx; 1, hyrg) = M (x5, k. g)
for all Euclidean transformations r of the lattice T onto itself, which are deter-
mined by transformations of the lattice T) onto itself. These functions have the
localization expansions

M @b g) = S M x X)),
X€Y:xeX

where a term ,/%k(] )(x,X Vi, h,g) depends on W, g restricted to X, and does not
depend on the torus T for X as in (H.4). It has an analytic extension onto
the complex space ES(Bj(X);1,¢;) x {g: g is defined on T, and has values in
CM,|lgllsr < 1}, and the extension depends on configurations (Y + /', h + I, g) re-
stricted to X, hence on (Y; + w;,h + H,g) restricted to X. This extension satisfies
the bound

. =2,
|, X0+ h+ B g)| < coé 2 T exp(—kd;(X)),

where x is as in (H.4), co, 01 are positive constants, which can be chosen arbitrarily
small for B large enough. It satisfies also the above symmetry properties, with r
as in (H.4).
To finish the inductive description let us recall that y; is the characteristic func-
—1
tion of the space Zi(1,B, > p(Br)), where p(B) = Ao(log f)?°, po is a fixed even
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integer and A is a sufficiently large positive constant. Let us notice also that (H.5)
can be formulated with e; replaced by an arbitrary vector # € S¥~!, and e, re-
placed by a unit vector orthogonal to %, or e; ® e, replaced by I — 4 ® h. Finally,
let us make the important remark that the initial density po defined by (1.1), (1.5)
in [1] is not described by the above inductive hypotheses. The way they are for-
mulated presupposes that £ = 1. We can extend the definitions for k£ = 0 taking
Qo = I — the identity operator on the lattice 7', and Yy = ¢ — the basic spin vari-
able on this lattice, then po satisfies the inductive hypotheses with &y(¢o, ) = 0,
Fo(o,h,g) = (g, Po)1. Unfortunately this is not of much help, because the first
renormalization transformation applied to po yields the integral (1.13) in [1], which
has to be treated in a slightly different way than integrals arising at remaining renor-
malization transformations, because of the range of the coefficient 4 = . We will
discuss it in the next section, after a discussion of a general case.

To formulate a main theorem of this paper it is convenient to introduce spaces
of densities satisfying the inductive hypotheses. Such a space is determined by the
positive integer k, the coefficients f,a, 4, v, and the constants M, k, ag, 1,7, Eo, ¢s, Co
appearing in the conditions of the hypotheses. Notice that we consider the torus T’
as one of basic variables on which p; depends, so actually we consider families of
densities corresponding to all admissible tori as elements of the space. We define

Ri(B,a, 4,v, B,V; M, k, g, 01,7, Eo, €3, C9 ) (1.4)
= { pr: pi satisfies the hypotheses (H.1)—(H.7) determined by

the constants in the parentheses, with f; > B,0 < v < V}.
Now the main theorem can be written as follows.

Theorem 1. For any constants M, k, a1, y, cs, ¢, 7 from the interval 0 < y <
min %, %}, M, k sufficiently large, oy,cs,co positive and sufficiently small, there
exist constants B, og, Ey, such that if v < %L‘z, then the small field renormalization

transformation y ;1S T® y®) establishes a mapping
L1 SOTO O R (B, a, 2, v, B,V; M, xc, 00,01, 7, Eo, 8, C9)
— Ryy1(B,a, 4, v, BLY 72, VL?, M, i, o9, 011, 7, Eg, 3, Co) . (L.5)

Let us make a few comments on the above theorem. At first notice that its formu-
lation is purely existential, no constructive definitions of “new” coefficients and ef-
fective actions are given. In fact the renormalization transformation y S 7% y(*)
itself does not determine them uniquely, their definitions depend on a renormalization
procedure we apply. It would make sense to introduce a third operation following
S® T® and corresponding to the renormalization procedure, because only this de-
fines uniquely all elements of “new” densities. Unfortunately a definition of such
an operation would be very complicated, practically impossible without going into
many complicated details of the whole procedure, so we have decided not to in-
troduce it here, it is buried in the existential statement of the theorem. Of course
a detailed and precise description of the renormalization procedure is given later in
the paper, in fact two sections are devoted to it. Notice also that we have not yet
defined the characteristic function . It is a very simple function restricting fluctu-
ation variables, but a definition of these variables is quite technical, involving some
operators which appear later in the paper. We could introduce all these definitions
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here, but it is much more natural to postpone the definition of ) to a proper place
later. Finally let us remark that the transformation (1.5) is obviously a non-linear
one, it depends in a complicated non-linear manner on various elements of densi-
ties py, in particular on f, and on “new” constants f;.; through the characteristic
function yg4.

Densities p; in a space (1.4) are uniquely determined by coeflicients S, ax, A, v
and functions (g’,gf ),37,5’ ), j=1,...,k. We define spaces of these elements

Ak(ﬁ’ a, A’ V,Ba V9Ma K, 0o, 0‘1,)’,E0, 08,09)
= {(Bir @k Ay Vs () st (M );1): B @i, A, e satisfy (HL1), (H.6),
and B > B, 0 < v £ 9, e?”',fj)satisfy (H.2)-(H.5), /%,fj)satisfy (H.7)} .
(1.6)

The conditions (H.2)—(H.5), and (H.7), except the bounds in (H.4), (H.7), define
real vector spaces of the functions (gk(] ))jgk, and (%k(’ ))jék. The bounds define
open domains in these spaces, which are open balls with respect to appropriate
norms. The conditions in (H.1),(H.6) define a closure of an open domain in a
four-dimensional real vector space of the coefficients P, ay, A, vi. Because of the
one-to-one mapping between the spaces (1.4) and (1.6) the renormalization transfor-
mation (1.5) defines a mapping between appropriate spaces (1.6). We reformulate
Theorem 1 in a more precise way.

Theorem 2. Under the assumptions of Theorem 1 the small field renormalization
transformation establishes a real analytic mapping

FOTE: 7 (B, a, A, v, B,; M, Kk, 4y, 01,7, Eo, cs,Co)
- Ak-}-l(ﬂsa’ )'9 v, BLd-2,VL2;M K, 0, OCI,V,EO,C&@) . (17)

A value of the mappmg on an element of the first space is an element (Byi1, g+,

A1 Vials (é"k+1)j<k+1,(/%k+1)j<k+1) of the second space, for which the following
equations are satisfied.

& =6, M = forj<k, (1.8)
L2 aay Ck+1
_ Ld_z _b , a — Bk _ + ,
Br+1 = P et 1 S e T a Ben
+ diy1 BkL?™2 — by + disr
b = e E e g
k+1 k Bde_z k ﬁde_Z s
[4-2 b
Vg1 = __'[ﬁ‘__vk]} - kaﬁ , (1.9)
Brt1 + exq1 Br+1 + ext

where the constants byi1,Cri1,dr+1,€x+1 are real analytic functions of B, ax, Ak, Vi,
(&) <. They are small compared with Bl or Pis1, more precisely

_ _ _ _ |
Bt ibest s Bt ekt s 1Bt dirls 1B ves | < aosl (et 1)2y (1.10)

for B large enough.
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The formulation of the above theorem requires several comments. The first con-
cerns the equalities (1.8). The functions on both sides have different domains, be-
cause the spaces Z;(1,¢;) depend in fact on k through the constant o ; and the
coefficients a;, 4;,v;, which are connected with a;, A, v, by the equalities written
in (H.2). These spaces decrease when k increases, so the domains of the func-
tions on the left-hand sides of (1.9) are contained in the domains of the functions
on the right-hand sides, and the functions with the subscript “k + 1” are restric-
tions of the functions with the subscript “k.” Because of this property we drop the
subscripts from the symbols of these functions from now on, so we denote them
simply by &), () as in [1]. This property is very important, it means that the
“new” action &%, determined by the renormalization transformation can be obtained
from the “old” one & replacing the functions ,Sj ) in (H.2) by tﬁ,ﬁi)l, and adding a
new contribution £**1). The same is true for %, 1. The second comment is about
the renormalization group equations (1.9). The corrections with by, ¢+, etc. are
called renormalizations. The coefficients must be renormalized in order to create new
terms, which are included into the new contribution £**1), so that it satisfies the
renormalization conditions (H.5). This can be done in many different ways; there is
no uniqueness in the renormalization procedure. We analyze here a class of possible
procedures leading to the class (1.9) of renormalization group equations with some
additional restrictions. The third comment concerns the constants E; in (H.1). We
have not included them in the above theorem because they do not play any role in
the small field analysis. They are included in Theorem 1, and they change in a sim-
ple way with each renormalization step, which is precisely described later on, but
the description is not included in the formulation of the inductive hypotheses and
the theorem. The final comment is about the real analyticity of the mapping (1.7).
This property does not play any role in the method, it follows simply from the fact
that the mapping is given by explicit, though quite complicated expressions, which
can be extended analytically in obvious ways to a complex small neighborhood of
real actions. We will repeat this statement in proper places in the text, but it will
always be obvious.

The above theorem implies Theorem 1, even in a more precise form. The two
theorems imply the fundamental Theorem 2.2 in [1].

Let us describe now briefly contents of subsequent sections. In Sect. 2 we reduce
the renormalization transformation T®) to a fluctuation integral, which is a small
perturbation of a simple Gaussian integral, and we define various contributions to a
“new” action. In the very short Sect. 3 we perform the scaling operation S®), and
we summarize results obtained until then. In Sect. 4 we describe a renormalization
procedure of the effective action, or rather of the new contributions to the action.
In Sect. 5 we discuss resulting renormalization group equations for new coefficients.
This completes the proof of the two theorems. The paper ends with the short Sect. 6,
where a last step in this renormalization group approach is discussed together with
some simple conclusions. In the whole paper we freely use notations and results
of the three preceding papers [1, 2, 3], making references only for most important
definitions and theorems.

Let us stress again that constructions and results of this paper, although formu-
lated for the case when the whole lattice is a small field domain, are valid in a
most general case with an arbitrary admissible small field domain.
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2. The Renormalization Transformation 7 and a Fluctuation Integral

We take a density p, from a space (1.4), and we apply the renormalization trans-
formation 7)),

(T®3®p)(0) = [ dyt(0,4; Br, )™ 1x explti (W) + Fr(¥, 9)]

= Jaur® e |~ { 01210 - OVl + o)}

&) — ELT®) + .%(w,g)],

ﬂkaL_2

- 2.1)

1
E, =E; — EL_dN log
The characteristic function y*) is a product of two functions, one is equal to

({10 = 0| < 28, p(B}) (2.2)

and another is a characteristic function introducing restrictions on fluctuation vari-
ables, which will be defined later on. Let us remark that the spin configuration 6 is
not equal to the new spin configuration Y, in fact they are connected by a scal-
ing transformation determined later. We use the variable 6 at this stage to simplify
notations. For the same reason we write i instead of y.. Consider now the function
of  in the exponential in (2.1). It is a sum of two terms, one is the function in
the curly brackets multiplied by the large parameter f;, another is the remaining
bounded in f function of . In such a case it is natural to apply the saddle point
method to “calculate” and estimate the integral. A first step of the method is to find
critical points of the function in the curly brackets. This problem has been analyzed
thoroughly in Sect. 4 of [2]. To apply the results of that section we have to under-
stand restrictions on variables 0,y implied by the characteristic functions in (2.1).
The characteristic function y; implies that configurations ¥ in the domain of inte-
1

gration belong to the space ‘i’k(3ﬂk_7 P(Br)), by Lemma 3.1 of [1]. Repeating some
arguments from the proof of this lemma we see easily that the restrictions defining

the space 'f’k(3ﬁk_ : p(Br)) together with the restrictions defining the characteristic
function (2.2) imply the following ones:

10'0] < BL+ 3B, p(Bi). 10 — 1) < 887 % p(Bi)

ve(1 = h-00) < 12287 p*(Bo) , (23)

assuming that f; is sufficiently large. These conditions imply that 0 € ¥(8,) with
1

0y =4Lp, > p(Pr). If 6, is sufficiently small, then we can apply Proposition 4.1

from [2] and conclude that the function in the curly brackets in (2.1), considered

on the space ¥;(L2c;), has exactly one critical point, which is a minimum of the
function. Keeping the notations of [2] we should denote this minimal configuration

by %ﬁﬁ)p but for simplicity, we drop the subscript and denote it by y*). Let us write
the corresponding equations and expansions around their solutions, because we need
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them to study the effective action in the integral (2.1). We have

1
EaL'2||9 — Q|1 + AW, dx) = S0, P, ) 5 (2.4)

where

Jk(09 '10’ d)a Oﬂ) = %aL—ZHH - Ql//“% +Ak(W? ¢,d) s

A, 6.0 = 3l — QeI + 10BN + 3 (|6 — 1)

1 1
—EH“HZJF Evk||¢—h||2- (2.5)
We have then
ir.},fj"(e’ v, oY), e (Y)) = hql,f i%f supJy(0,¥, ¢, ) . (2.6)

It follows that if v is a critical point of the function (2.4), then (Y, dx (o), (o))
is a critical point of the function (2.5), and it satisfies the following variational
equations:

%Jk(w, $.0) = aL 20" (QY — 0) + (Y — Oxb) = 0

%Jk(e, Ve .1) = OOk — ) — A+ i+ b — h) = 0

5 R 1
a']k(edlj’ ¢:a) - §(|¢| - 1) - )._ka =0. (27)

The function J; and the equations are defined for all 0, ¢, o, and the first two
equations are linear in ¥, ¢. The first equation has a unique solution for ¥ without
any restrictions on 6, ¢, and we get
al=? alL™?
= — 2.8
V=0 = —— 0" Qk+1¢+ = —— 0" (2.8)
Of course the equation and the solution are connected with calculating the compo-
sition of the renormalization transformations 7*) and T}. Substituting the solution
into the second equation and defining

ara

ap +al=%’ (2.9)

Akl =

which is the second equation (1.10), we obtain the following system of equations
for ¢, a:

(—4"+ a1 L7205 1 Ok + ) = a1 L2051 0 + vih

1 2 1 _
59| —D=ga=0. (2.10)
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If we calculate « from the second equation, substitute it into the first, and then
multiply the obtained equation by L?, we obtain the variational equation for the
problem of finding

i%fAkH(H, &; by agsr, ML, viL?) (2.11)

Denoting Ax1 = 4L?, viy1 = v L?, which are extensions of the equalities in (H.2),
we have the basic variational problem defining the minimal configurations ¢y
on the natural scale L~'5. They are defined by the unrenormalized coefficients
ka1, Akt Vi1, SO in the future we will write also the coefficients and the minimal
configurations with the subscript u. On the n-scale, the configurations are determined
by Egs. (2.10) with the coefficients a;, L2, A, i, so we have the scaling property

it (L7150, 1, gty A1, Virt) = P16 0,k a1 L2 ey vi), x € Ty o (2.12)

The function ¢4 (0) is defined if (0,4) € Pis1(c1), hence if (0,4) € P(L 2cy),

because the last two conditions in the definition (3.18) [1] of these spaces involve
—1

the constant vy = v L72. This is satisfied if 8, * p(B) is sufficiently small, or S

sufficiently large. Then the solution of the variational problem on the left-hand side

of (2.6) is obtained by substituting ¢;.; instead of ¢ in the formula (2.8), and

we have

VR0) = Qiprn(0) + TTHLTONO ~ Quadinn(0) . (213)

We conclude that the system of Eqs. (2.7) has a solution if (6,%) € ¥y1(c1). The
solution is unique in the space of all functions V¥, ¢, o satisfying only the condition
|| < coL™2, and is given by the configurations Y*)(0), r1(0), 04 11(0). They satisfy
the composition formulas

oW P(0)) = i1 (0), (W (0)) = 4y41(6) (2.14)

holding for 0 such that y*)(0) is in the domain of the function ¢ (). This holds
certainly if fy is sufficiently large, by Proposition 4.1 [2].

Let us study expansions of the functions ¢y, and the action J; around the
minimal configuration *). We write

v =y +y oW + ¥y = i + ¢, (W B + ') = oy + o

(2.15)
and we substitute the above equalities into J,. We get

1
0,1, (), 0 (§)) = A1 (0, b)) + SaL QW7 + %aknxﬁ' - oI
+ %(d)', (=4" + a1 + o))
/ 1 / 1 /
(b0 + 0P - W, 216

where we have used the variational equations (2.7) satisfied by the configurations
Y® dri1,0r41. We determine the functions ¢/, o by solving the variational problem
of taking a supremum over o’ and an infimum over ¢’ of the function of ¢’,o on
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the right-hand side above. The corresponding variational equations are

(—A" + ax O; O + Vi + o1 + &) = @ OFY' — o',
/ 1 712 1 2
Gry1- @ + S| — —o' =0. (2.17)
2 Ak

These equations are special cases of Egs. (3.19), or (3.20) in [2], with oy = ¥/, ¢ =
Pr+1, % = t+1, f1 =0, 0 = 0. Applying Proposition 3.1 of [2] we obtain that
there exists exactly one solution, denoted by d¢y, oo, if [Y'| <K, lcg and Py is
large enough. This solution is an analytic function of ¥/, ¢ 1,41, and it satisfies
the bounds

[0 (W), 1070k (W), | A"0r ()], [0 ()] < KoY . (2.18)

These bounds will be used several times in the future. They show that the analytic
functions 8¢ ('), oy (') are at least of first order in /. Substituting the solutions
into the function on the right-hand side of (2.16) we obtain

(0., $i(), () = A}, (6, 1) + %aL‘zlth//’II% + %aknn// — QoY)
S OOB W (414 i+ e ) ()

1 N2
+ mll&xk(l// = (2.19)

where we have used the second equation (2.17) to simplify the expression. To
find out the quadratic form in ¥’ we have to find linear terms in expansions of
dpr(Y"), dax(¥'), and to substitute them into the above expression. Notice that it is
quadratic in those functions. Let us write

S = 0L + ddro(W'), (W) = el (W) + o2 ('), (2.20)

where the functions 54),((1)((//’ ), 50(,((1)(%’ ) are linear in ¥/, and 3¢y 2(Y'), ooy 2 (') are
analytic and at least of second order in /. The linear parts can be found from the
corresponding linear variational equations

(—A4" + ak O Ok + Vi + oei1)P = ar QLY — o,
1
Grv1- @' — /1_“/:0~
k

A solution of the first equation is

¢ = Gl 1) QY — Gr(our1)Prrr ot (2.21)
Substituting it into the second and solving it we get

1 —1
* = L—k + Grit - Gl 1) Pry1 | brrt - Grlous1)ar Op Y (2.22)

The operator in the square bracket above and its inverse have been analyzed in detail
in paper [2]. The inverse is basically a bounded perturbation of the operator —A",
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and the above linear operator is bounded and has an exponential decay property.
The function in (2.22) is equal to 505,9)(1#’ ), and substituting it instead of &’ in

(2.21) we get 5(]55{1)(1//’ ). Substituting these linear functions into the expression in
(2.19), we obtain the quadratic form

Lo a0yty = aknw'—Qm;”(W)lF

N —

1
3 OB W4+ v+ 00300 W) + 5008 W

= Jas 1P~ S QG JOLY)

<¢k+1 - G041 OF Y, [ + st Gr(Gr 1) Prr1|  Prst
'Gk(ak+1)Q;lV> . (2.23)

The operator of this quadratic form is a unit lattice bounded operator with expo-
nentially decaying matrix elements, the bound and the decay rate are uniform in £.
The last term on the right-hand side above is non-negative, so we have the bound

1
a I = W' QG OpY) = Ot DIVIZ . (2:24)

N —

WAy 2

where Gy = G4(0), and we have expanded Gy (o) up to the first order in o 1. The
first two terms on the right-hand side above define a quadratic form which is equal
to the effective quadratic form obtained by applying & times the Gaussian renormal-
ization transformation 7, to the Gaussian density determined by the quadratic form
(@, (=4 + v L™%*)¢). These effective forms have been investigated thoroughly in
many papers, e.g. in [2c] it has been shown that they are bounded from below by
190(W, (=4 + v )y') uniformly in k. From this and the bound (2.24) we obtain that
the quadratic form in the expression on the right-hand side of (2.19) satisfies the
bound

SaLZIOW I} + 3 W, A0 = Syol I (2.25)

with the absolute positive constant yg. Thus the operator of this form satisfies all
the assumptions of the theorem in Sect. 5 of [3] on unit lattice operators, hence its
inverse has a uniform exponential decay. This inverse is denoted by C*) and it is
a covariance of the corresponding Gaussian measure. It can be expressed explicitly
in terms of operators like Gy, which are some bounded functions of —A". Actually
of more interest to us are various localization expansions constructed in [3], but
these will be discussed in a following paper. All the above operators depend also
analytically on the configurations ¢y.1, 1. Let us write now the expansion (2.19)
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separating explicitly the quadratic form in y/,

1
0,1, G, awW)) = AL (0, desr) + 5aL [ OY|” + %W,A(W) +7OWH,
(2.26)

where

VOW ) = —ap (Y — 00 (W), Qkdi2(¥"))
akHQkamz(v/ W + (8 ), (=4 + vi + 0y 1)0br (W)

+ %<5¢k,2(¢l),(_d + Vi + 010 2(Y))

1
(0P, 804200)) + 35 12O (2.27)
k k

The above expression is an analytic function of W/, ¢xy1, 0441, invariant with re-
spect to transformations R € O(N) of the configurations ¥/, ¢4 1, and invariant with
respect to Euclidean transformations » of the configurations ¥/, ¢y 1,041, Which
transform the lattice 7**1 onto itself. This is true because the effective actions and
the variational equations have the corresponding invariance or covariance properties.
An important property of the function ¥'®) is its localizability. This function is a
sum of terms which are defined by scalar products on corresponding lattices Tl(k)
and T,. Let us define a function ¥®)(z), z € TV, restricting the scalar products
to points of the block B;i(z). We have

Oy = X vOEy), (2.28)

(k+1)
z€T)

and the functions ¥*)(z) have the following symmetry properties:

VO RY, Rppi1,001) = VO W, dryr, oa41) (2.29)
for orthogonal transformations R € O(N),
VOGz 1 s, rogesr) = VOV, drgr, tsr) (2.30)

for Euclidean transformations » mapping T**! onto itself. The functions V®)(z)
are obviously analytic functions of ¥/, ¢gy1, 0411, at least of third order in y/, i.e.
V®(z; 4"y = O(Jy']?). A crucial property of V) (z; (), dry1,0441) is that it has a
localization expansion with an exponential tree decay property in localization
domains of the type described in (H.4). This will be constructed in the following
paper.

Let us come back to the analysis of the integral in (2.1). We have noticed
already that the conﬁguratlon 0 satisfies the restrictions (2.3), so the function
Ji(0, ¥, d)k(lﬁ), ax()) in the curly bracket in (2.1) has exactly one minimum y*)(0)
in the space %(c;). In general the configuration ¥*)(6) may not belong to the do-
main of integration in (2.1) determined by the characteristic functions. To assure
that it does belong to this domain we impose new small field restrictions on 6



Low Temperature Expansion for Classical N-Vector Models 11 689

introducing the characteristic function
3 1 1 -1
Xe+1,u = X <{|9 — Okr1Pr1] < Eﬁ" 2 p(Bi), 10" | < '2“,5'k 2 p(Br)s
1 1 1 1
|47 by 11| < Eﬁk 2 p(Br)s oy | < fﬁ" ? p(Br),

bt =< 3 B s ) 231)

The subscript # here means that the function is defined in terms of unrenormalized
configurations and coefficients. The restrictions above together with the composition
formulas (2.14) and the formula (2.13) imply that the configuration y*)(0) satisfies
the restrictions defining the characteristic functions y; and (2.2) with the additional
factor 3 on the right-hand sides. The remaining conditions defining x*) are for-
mulated in terms of the fluctuation variables i/, so by definition the configuration
Yy®)(0) is in a center of the corresponding domain. Thus this configuration is inside
the domain of integration in (2.1). Let us notice in connection with the definition
(2.31) that the factor % is to some extent arbitrary, any number smaller than 1, but
not too small, could be used.

Making the change of variables ¢ = y*) 4y’ we write the integral (2.1) in
terms of the fluctuation variables ¥'. We have studied the expansion in ' for the
main term of the effective action. Consider now the remaining terms. They have

the representations (H.2),(H.7), and the j terms in those representations depend
on w,fj )(}). The expansions

Y =y®0) + v, Sk(Y) = Pr1(0) + o (Y'), () = o41(0) + doe(Y')

(2.32)

(/) je. we have

and the formula (4.21) in [2] imply corresponding expansions of i,

v = O + su W), (233)

where the last function on the right-hand side is given by

YWY = Qo) + WP (W — Qeddi(¥)). (234)

aj

The expansion (2.33) determines expansions of &U(Y)) and F (YY), for
example

EDYLW)) = EDWYD(0)) + 88D (W) . (2.35)

Denote the sum over j of the last terms above by 6 (4’). Similar formulas hold
for ) and 6.%. All these expansion formulas yield the following representation
of the renormalization transformation (2.1):

2t 1,u(TO 70 p)(0)
= Y+ 1,u €XPL—PiA 1 (0, st ) + EWH(0)) — E + F(y®(6), 9)]

S Ve | i3l QU+ 0 A

~ BB+ 580+ 65V 236)
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The Gaussian part of the above integral has the covariance C), i.e.
C® =(@L?0" 0+ 4% ", (2.37)

It is a positive operator and its square root Cc®1 s a positive operator also. We
make a next change of variables in the fluctuation integral in (2.36), we take

W = B e®iy (2.38)

The variables  are the final fluctuation variables in terms of which we write the
integral. The reason for introducing them is that the quadratic form in the integral
becomes the purely local quadratic form 1|y, which simplifies a construction of
localization expansions.

Consider the characteristic functions in the intergral in (2.36). We would like to
define restrictions on the fluctuation variables ¥/ in such a way, that the functions y;
and (2.2) are equal to 1 on the domain of integration, taking into account the
characteristic function yx11,,. This is satisfied if the following bounds hold:

1l 1 1 _1
B 2CO2, [0k, 0"k, | A"dhil, [0 | < 3B 7 p(Bi) (2.39)

where we have put 8, %C(k)%l// in the argument of the functions d¢y, o, and we
have used the formula (2.13), the restrictions in (2.31), and the bound vy < 1. The

operator C¥)2 is bounded, e.g. by a constant Bs. Then by the inequality (2.18) all

1
the expressions in (2.39) can be bounded by K»Bsf, ||, so it is enough to assume
that K,Bs|y| < % p(Br). Let us introduce the remaining characteristic function by the
formula

1Yl < pi(B)}), p1(Br) = A1(log Br)™,

where
pi(B) A

p(Br) Ao

and p; is an even integer greater than 2. With these assumptions the above function
is the only characteristic function left under the integral in (2.36), and we may
identify it with y®. Notice that this function is invariant with respect to ortho-
gonal transformations R € O(N) of the variables , and with respect to Euclidean
transformations » mapping the lattice 7 l(k) onto itself.

The change of variables (2.38) and the above statements on the characteristic

functions yield the following equality:

(log )P =P < (3BsKy) ™!, (2.40)

11 (TE 7O pe)(O) = Js1,0 P {—ﬁkAzH(e, b)) + EWRO)) — E|TE)|
1 1 1 1
+7W1(0),9) + 5 log det c“)] Jdwo® exp [—znwnz = BV OB COy)

+ 08By 1My 4 0F (P, Fe®ly, g)] , where EJ = E} + %N log Bx . (2.41)
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The integral on the right-hand side above is the basic fluctuation integral. Its deriva-
tion has been done in the case £ = 1. The case £ = 0, which is connected with
the first renormalization transformation, is slightly different, as we have remarked
already in the first section. The difference is connected with the fact that the co-
efficient A may be arbitrarily large, in fact we may have A — +o0o and we would
like to have a procedure which is uniform in A. Of course A; may be arbitrarily
large also, or Ay — 400, but the dependence on 4; in (2.41) is taken care of by
the minimal configurations ¢y 1(0; 4, ars1L72, e, Vi), 0k41(0; by a1 L2, 2t vi ), and
all the expressions in (2.41) have properties and bounds uniform in ;. This would
not be true in the first renormalization transformation; we have to perform some
additional operations, and the whole procedure is slightly different, so we have to
discuss it separately.

The first transformation applied to the initial density po is defined by the
integral

<T<°>x<°>po><¢):fd¢m<°>exp[ ﬁo{ YaL=ly — 041} + Loal?

N A+ P~ W2 )+ 0.0 - Bl | . 242)
where the characteristic function yo is defined by the restrictions
to=x ({10 — 081 <28, p(Bo) on T', 16| < * plBo),
6P = 11< 25 23 * pCBo), 16— H <vg B3 " p(Bo) on T}).

18> = 1] < vy "By P2(Bo), P(Bo) = Ao(log o) . (2.43)

We expand the action in (2.42) around the minimal configuration ¢; taking ¢ =
¢1 + ¢'. We have the equality

_ _ 1
Ay, ds hoal ™, Ao, vo) = A1 (Y, d1; hyal ™2, Ao, vo) + {EaL *lod'|IP

310017 + 30 (o +a)d) + —°n2¢1-¢'+|¢'12||2}, (2.44)

and we obtain an integral in ¢’, for which the effective action has good positivity
properties. To analyze this integral uniformly in 4y we make a change of vari-
ables. We decompose ¢’ into two orthogonal components ¢’ = y(¢1)o + ¢, where

(1) = l%i_l’ 1 =(h1)o- ¢, (¢1)o+¢” = 0. Thus we have
201+ ¢ + @' =2|p1lx + 12+ 19",

and we can write the integral in (2.42) in terms of y, ¢”. Let us make some remarks
about invariance properties of the expressions and variables above. The expression
in the curly bracket in (2.44) is invariant with respect to simultaneous transforma-
tions of ¢y,¢’ by elements of O(N), so x is invariant and the expression is in-
variant with respect to the transformations of ¢, ¢”. The characteristic function (%,
which will be defined below, restricts ¢’ to a sufficiently small neighborhood of

0(|¢'| <O(B, : p(Bo))), hence y, ¢ are small also. We make a change of variables
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¥ = x(x',¢") such that
21l + 1 + 10" =2/¢ulx

This equation has a unique solution

X = \/I¢1I2 +20¢lx' = 9" = 11| = ' + (. 6") (2.45)
where /; is an analytic function with an expansion starting with second order terms.

This change of variables transforms the integral in (2.42) into an integral in variables
¥', ¢". Finally, we rescale these variables:

-1 1
" =By ¢, 1 = (hPo) 2.
The above transformations give a fluctuation integral in which the integration vari-
ables ¢,y are restricted by the condition (¢;)o+¢ =0 and by the characteristic

functions yo, ¥¥). We remove yo from the integral by introducing new restrictions
on Y by the characteristic function

3 1 1 1
T =1 ({Iw = 01| < 5By " p(Bo) on 11", |ogn| < 5607 p(Bo. 14|
1 1 1 _1 1 _1 1
< Eﬁo 2 p(Po), || < Eﬁo 2p(Po), |1 — Al < 5% *By 2 p(Po) on T1}> .

We assume sufficiently strong restrictions on @, y, so that y1 ,%0%® = y1..x?. Using
this equality we can write the following formula for the renormalization transfor-
mation (2.42):
Ty = —Bod shyal ™2, — EJ|T,
x1,u(T % po) (W) = x1,u expl—Pod1 (Y, P15 h,al ™=, Ao, vo) + (g, d1) — Eq | 1] -

- [ dodyd((d1)o - ¢)x exp [—%<¢ + g (1ot (—A+aL 200 + v + ay)
_1 1 _1 1
(P + 4y 2(D1)ox)) — 5()(, |911%%) — BV OBy 2 b, (BoAo) 1)

+{g, ﬁo_%d’ +(¢1)o((Boho) Ty + hz))} , (2.46)

where we have separated terms quadratic in the fluctuation variables from terms of
higher order, or small. These are gathered together in the function ¥(®), and we have

OBy b, (Boio) 1)
= ﬁo—% (¢ + /10-%(4)1)0%, Gy (o) (P1)oh2) + %((d)l Yoha, Gy (1) (1 )ohs)

1
+ﬂ01§

toel 1+ 2(Buiny xx) |¢(x)|2> 2
x;n Og( + (ﬁO 0) '¢I(x)' .80 |¢l(x)|2 > ( 47)
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—1
where h, = hz((ﬂolo)‘%x, B, > ¢) is given by (2.45), and
Gl ()= —A4+al7?Q* 0+ vo + 0y . (2.48)

Consider the function ¥(®. It is an almost local function of the fluctuation variables,
more precisely it is a sum of terms involving the variables either at one site, or at
two nearest neighbor sites, or at sites of one block. Each term has also the same type
of the almost local dependence on ¢;. It is analytic in ¢; and small. The function 4,
is at least of second order in y, ¢, so it is O(f, ! P2(Bo)), and the formula (2.47)

implies that fo¥® = O(By * p3(Bo))|Til.

Consider the integral in (2.46). From the above it follows that the integrand is
a small and local perturbation of a Gaussian measure in the variables ¢, y, ¢ in the
subspace defined by the condition (¢1)o+ ¢ = 0. We make a change of variables
introducing a new variable ¢’ by the equality ¢’ = ¢ + (¢1)ox. This new variable
considered at any point of the lattice 7} has values in the whole space IRY, un-
restricted by any conditions. This change of variables is given by an orthogonal
transformation between the corresponding spaces, so the Jacobian is equal to 1. The
quadratic form in (2.46) can be written in the new variable ¢’ as

(¢, —(1— /10_%)(¢1)o ® ($1)olGy (o) — (1 — /10—%)(4)1)0 ® (¢1)019")
+ <¢', (1 + 2%) (¢1)0 ® (¢1)0¢'> . (2.49)

The operator of this form is bounded and short-ranged. The operator Gl'l(ocl) is
bounded from below by an absolute positive constant yy (see [3] for a proof), and a;
is bounded by a small constant ¢;. Thus the quadratic form (2.49) is bounded from
below by

Y0(@ L — (P10 ® ($1)0]9") + (1 + : ;0200> (@',(d1)0 ® (P1)09") Z 0@, 9") ,

assuming that ¢; < % and yo < 1. From the above properties it follows that the op-
erator of the quadratic form (2.49) satisfies the assumptions of the theorem on unit
lattice operators in [3], so its inverse has an exponentially decaying kernel and a
localization expansion (see (5.17) in [3]). Denote the inverse by C©. The square
root of this operator has the same properties. We make the next change of vari-
ables ¢/ = C©1¢, which yields the following formula for the first renormalization
transformation:

1T O7L o) (W)

1
= J1,u €XP [—ﬁoAl(lff, brshal ™2, Ao, vo) + 5 log det (¥
1 _1
BT+ )| S oxp [ 1017 — ok 5Ol

g B — (1= A3 )10 ® (1)oICO¥ b + (b)) | . (2.50)
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The functions ¥(® and h, above are obtained from the corresponding functions
in (2.46) by substituting (I — (¢1)o @ (¢1)0)CO2¢, (1) - CD2¢ in place of ¢, .
We define the characteristic function ¥(©) by (2.40) with & = 0. The fluctuation
integral in (2.50) has the same form and properties as the integral in (2.41). The
underintegral expressions have bounds uniform in the whole range of Ay, in fact

1
they are analytic functions of A, ?. The integral in (2.50) is now simpler than the
integral in (2.41), so we continue our analysis of the last one.

The integral in (2.41) is the basic fluctuation integral which we will analyze
now, and also in the next section. At first let us describe some of its basic prop-
erties. It is obviously convergent and defines a function of 6,4,g through various
functions Y}, 8, #U). By the previously described symmetry properties it is
invariant with respect to Euclidean transformations of 6,%,¢g, which map the lat-
tice T*+1) onto itself, and with respect to orthogonal transformations R € O(N)
of 0,h,¢g. This integral determines new contributions to the effective action and the
generating functional. Let us write explicitly formulas for these contributions. Define
a two-parameter family of measures

1 —1 1
s () = 25~ O exp| =S WP = BV OB sy
& Wy + 7B CP g, (2.51)

where Zs(ﬁ) is a normalization factor, or the integral over y of the expression after
dyy above. The new contribution to the generating functional is given by

_1 ! d -1 1
Z3 @) = 0.8 A @) = [t f ) A i)

- 1 1 1
=By [t [du, () < (6%,6%) (B, 2 CWanyp), C(")w>, (2.52)
0

or
ME D (x,9) = fldtfdﬂl,t(‘//) < ((%5@) (63 By T CO A, C<k>%¢,>
0
+3° jl"dzfdm,t(tﬁ)<<a%/5ﬂ<j>> (x; 5%&;)@;%@@5@),{})’ C(k)%‘//> (253
J=10

The new contribution to the effective action is given by

1
& " = 5 logdet CW + £ (2.54)
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where

0

400 = T fano) (-5 ( (557 Gt coly)

oy’

w0t (508 ) s

The above expression can be written as a sum of localized terms

et = éal(k+l)(z),

zeTék-H)

which are given by the following formula:

A0 =gt 5 a5 ) (B €L

YEB(z) 0

1 -3 1
. (C(k)ilp)(y) + ﬁk 2 Z fdgfdus,o(lﬂ) (a!p/( )5éak>

y€B(z) 0

X (B 2C®hsy) - (CRRy)(y).

695

(2.55)

(2.56)

(2.57)

The two formulas (2.57),(2.53) are the fundamental formulas for the future discus-
sion of localization expansions and bounds. We have to write also %log det C®) as

a sum of localized terms. We have

1 1
5 log det C®) = —5 logdet(aL™20*Q + 4®))
1
— —ETrlog(aL_zQ*Q + 4%

I Z tr(log(aL 20" Q + A®)) (3, ),

yGT(")

where the symbol “tr” denotes algebraic trace of N x N-matrix.
This allows us to write é"ékH) as a sum of localized terms

k+1 k+1
&GV = Y &),
e

where

5@ = 3 T tllogaL Q"0+ 4V))(3.y) + 64 ().

Y€EB(z)

From the previously discussed symmetry properties it follows that

&z r0,h) = 8 (230, )

(2.58)

(2.59)

(2.60)

(2.61)
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for Euclidean transformations » mapping T**! onto itself, and
&2, RO, RR) = £5V(2; 0, h) (2.62)

for orthogonal transformations R € O(N'). Similar properties hold for the new con-
tribution to the generating functional, i.e. for (2.52), or (2.53).
The equality (2.41) and the definitions (2.51)—(2.60) yield the equality

2T 7O 0 )(0) = sper,w expl—BrAl, 1 (0, drir) + G WP (0)) + &5V (0)
~E{\T0 |+ ZWD0),9) + #D0.0))

where L2
E) =E! —log [ ayx({|y¥| < pi(Br)})e 21" . (2.63)
RN

The density on the right-hand side has already some basic features of densities in a
space (1.4) with k£ + 1 instead of k. The new contributions are defined at the moment
on the domain of the characteristic function )4 ,. We would like to show that
they have localization expansions satisfying (H.4) and the corresponding properties
in (H.7). These imply all the analyticity properties in the inductive hypotheses, as
we have noticed already before. A construction of the localization expansion will
be given in a later paper, now we formulate the results only. A first result concerns
the new terms (g@ékH)(z) of the effective action, and is described in the following
proposition.

Proposition 2.1. If  or B are large enough, then the functions gékﬂ) defined by
the formulas (2.60), (2.57) have localization expansions satisfying all the condi-
tions of the inductive hypothesis (H.4) for j =k + 1, but the bounds hold with E,
replaced by NL*B, + 1, and x replaced by 2k — 3 — 6ky.

Let us recall that the “absolute” constant By was defined in Sect. 3 of [3] in con-
nection with the localization of the functions of the operator aL~2Q*Q + A®), where
A% is defined by (2.23). Obviously we assume here that x — 3 — 61 = 0. It fol-
lows from the above proposition that we can take Ey as any number > NL/B, + 1.
This is not a final restriction on Ej because there will be other contributions to the
effective action introduced in the next sections. We have a similar result for the new
contribution to the generating functional.

Proposition 2.2. For f or B large enough the functions ﬁékﬁ)(x;g) defined by
(2.52),(2.53) satisfy all the conditions of the inductive hypothesis (H.7) for
j=k+1, but the bounds hold with ¢y replaced by const. p~3+% < %ﬂ“%, and
K replaced by 2k — 4 — 6kq,.

From this proposition we obtain that we can take co as any number = %B‘%.
Again it is not a final restriction on c9, we will have other contributions to the
generating functional. We assume that ¥ — 4 — 6xy = 0, and the exponential factors
in the bounds for the new contributions ﬁékﬂ),g’ékﬁ)(g) can be taken exactly the
same as in the hypotheses (H.4), (H.7).

The above two propositions will be proved in a more general form in one of
the following papers. The generalization is connected with restricting the effective
action and the fluctuation integral to “a small field” subregion of the whole lattice,
and also with some other technical issues.
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3. The Scaling Operation S®

A next operation is the scaling operation S®). It is simply a rescaling of the lattice
T, to T;-1,, and corresponding rescalings of the lattices T, L(f z to the lattices 7, L(fl. 0"
The spin configurations and the external fields are unchanged by the rescalings, or
their values on the rescaled lattices are equal to values at corresponding points of the
original lattices. Functions of the spin configurations and the external fields, like the
effective action and the generating functional, do not change also, they are defined
on new lattices, domains and configurations in the same way as on the original
ones. An exception in this is the main action which is written explicitly in terms of
the L?-norms on relevant lattices. The rescaling implies the following equality:

Bid] (0, disrs arerL ™2, A Vi) = BeL? T2 Apsr1 (0, Pr 1 A tus At Vit 1) > (3.1)

where the action and the configurations on the right-hand side are defined on the
L~ y-lattice, and Agy1, = AL?, Vi1, = viL?. We have also the scaling property
(2.12) for the function ¢y, so the rescaled function depends on a1y, Ak+1,us Vie+1,u-
We write all these expressions with the subscript “u” to indicate that they are
rescaled but unrenormalized. A result of the two operations is written in the follow-
ing way:

Xk+1,u(S(k)T(k)X(k)Pk XO) = Zkr1,u €XPL—PBrr1,udrs1,u(0; Prs1,u) + gk(l/"gk)(o))
+850(0) — B'L TV + ZP(0), 9) + 300, 9)),
where
Brstow = Bl ™2, Ari1,u(0,d) = Aps1(0, &3 @it Artuo Vi) - (3-2)

The characteristic function is written also in terms of the rescaled expressions. The
—1
domain of this function is basically equal to the space &y11,,(L, % B > p(Pr)), except
_1
that in the last condition in (2.20) [1] the constant LZ%,Bk 2 p(Br) is replaced by

_1
3By * p(Be)-

Let us summarize properties of the density on the right-hand side of (3.2). The
“old” terms &; and % satisfy all the inductive hypothesis (H.2)—(H.5),(H.7) but

now the j™ terms depend on the unrenormalized function lﬁ,ﬁfl,u(H) instead of the

function t//,ﬁf )(npk). The analyticity domains are also defined in terms of the unrenor-
malized functions ¢;,, and we denote them by ch.’u(l,sj,u), where ¢;, denotes the
constant after &k steps, which differs by the term kl—zocof“ from the constant after
k + 1 steps. After a renormalization operation we will have to change accordingly
the spaces and to prove proper inclusions. The “new” terms éaékﬂ),ffo(ﬂl) satisfy
the inductive hypotheses (H.2)—(H.4),(H.7) only, but with the analyticity domain
Ef 1.1, &41) defined also in terms of the unrenormalized function @14, and
with constants in the bounds in (H.4),(H.7) independent of E,. These constants are
described more precisely in Propositions 2.2,2.3.

Our basic goal now is to modify the effective action in (3.2) in such a way
that it satisfies all the inductive hypotheses (H.1)—(H.7). This is achieved by a
renormalization operation defined and discussed in the next two sections.
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4. The Renormalization Operation

In the small field region considered here this operation is reduced to rearrangements
of the effective action done in such a way that they create new terms which are
combined with the term é”ékﬂ) and yield an expression satisfying the renormalization
conditions (H.5). They involve a rescaling of the variable 6 and changes of the
constants Sr1,u Bk+1,u> Ak+1,u Ve+1, defining the main action. Before we describe
these operations let us explain why do we need the rescaling. It is connected with
properties of the effective potential, and in particular with the second condition in
(H.5). The effective potential for the whole effective action in (3.2) is defined as the
value of this action on a constant configuration 6, divided by the volume |7, 1(k+1)|
of the lattice. This gives the expression

k X .
Vir1(0,h) = B Vi1 (0, ) — S (L")~ DD (0, h), b)) — v (0, h)
J=1

where for simplicity we have dropped the subscript u. We can write it in terms of
the corresponding functions of the expressions U, V,W? as in (3.45) [1]. We are
interested now only in 6 = ue;, h = e, so we obtain

.f}(‘l’l(u, 1’ 0) = ﬁk+lvk+1(u, 1’ O)

k . . .
- L)y~ F O (wer, e0)),1,0) — 5D, 1,0),
e

where we have used the fact that x//,Efr)l(uel,el) is proportional to e, and its value
at u =1 is equal to e;. These properties follow immediately from the variational
equations determining the functions l//,ii)]. It follows also that u =1 is a criti-
cal point of all the functions on the right-hand side above, except the last one,
and this is true for all admissible values of the constants ayy 1, Axi1,Viy1, allowed
by the existence theory for the variational problem. This means that no change
of the constants can produce a new contribution to fék“)(u, 1,0) changing the
derivative Za% fékﬂ)(l, 1,0), so it cannot make the point # = 1 a critical point of
the function fékH)(u,l,O). We have to change this function in some other way.
One possible way is suggested by the following remark. The whole effective po-
tential f;,1(x,1,0) has a critical point which is close to 1. This follows from
the fact that the first term in the definition of f;4; is dominating, so we can
write

Sir1(,1,0) = 0 (%ﬁm(u - 1)2) ~f5 1,0,

and the equation

0 0
2 fi1(1,1,0) = O(Bra(u = 1)) = = £ (1,00 = 0

has exactly one solution in a neighborhood of 1. Denoting this solution by z;,; we
have z4 = 1+ O(f,, +11 ). Now we make the change of variables u = z; u’. The
function fi41(zx+1t,1,0) of ' has a critical point at «’' = 1. We can write this
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function as
fk+1(zk+lu/a 1’0) = ﬁk+lvk+1(uls 1,0)

k X i .
- zl L")~ DD (W er,en), v, 0) — 4D, 1,0),
=

where the definition of f**1) is obvious. This function has similar properties and
bounds as fékﬂ) because zxy1 — 1 = O(f;, +11), so the factor S, in the leading
term is cancelled. Obviously by the above definition the point ' =1 is a critical
point of the function f**D(u/,1,0), so the second condition in (H.5) is satisfied.
The above discussion should explain the role of the scaling transformation and the
definition of the scaling constant. The remaining conditions in (H.5) can be satisfied
by proper changes of the coefficients in the main action in (3.1). We do not consider
these conditions separately, but we treat them all at once, in one renormalization
operation.

Let us define now the basic step of the renormalization operation. It consists of
the scaling operation and the change of the coefficients given by the equations

0 =z 1¥t1, Zgpr = 1+ Geqr
Bis1,u = Brs1 + bis1, Brt,uth+1,u = Pr1@rs1 + Cryi s
Brtiu _ Brn
L= + diy1 s Brat,uVkr1,u = Prt1Vie1 + Visierrr . (4.1)
Ml Ml Ak

The constants {11, bg+1,Chr1, dk+1,€x+1 Will be determined later by the renormaliza-
tion conditions (H.5). If they are given, then the above equations determine uniquely
the new coeflicients fii1, @11, Ak+1, Vir1. The above equations determine a decom-
position of the main action in (3.2) into a sum of a new action and a remaining
expression which is called a counterterm. This decomposition is complicated by
the fact that the minimal configuration ¢y;1, is changed also by the change of
the coefficients, we have to expand it around the new minimal configuration ¢y
determined by the new, renormalized coefficients. We study simultaneously the de-
composition of the main action and the expansion of the minimal configuration using
the variational problem (1.6)—(1.9) [2]. We have

B t,udi+1,u(0, Prir,u) = Prsiu if(})fAk+1,u(9,¢) = ﬁk+1,ui2)f sup Ji41,.(0, ¢, %)
o

1 . 1
= 5(ﬂk+1ak+1 + 1 )k — D Yt || + quf SuP{ﬁkH [Eak+1”l//k+l
o

— 2 1 2 l 2_ 1y _ 1 2 l 2
OcdlP + 1001 + 5 I6F = 1) = 37— ol + Jrcllg — ]

1 1 1 d
skl = QeI + 351001 + Jber (e | $ — 1) — - o

12 22511

1
+5vk+1ek+1||¢ - h||2} + Berrarr1 + et (@1 — D¥ests Yo — Qk+1¢>} .

(4.2)
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The expression in the first square bracket above determines the new, renormalized
main action. We take the corresponding minimal configuration ¢;.;, which is a
solution of the variational problem determined by the new action, and we expand
the above expression around it, i.e. we take ¢ = @gyq + 0, o« = o1 + oo, and we
have

ﬁk+l,uAk+l,u(07 ¢k+l,u)

= Brr1 Ak W1, Gr+1) + | Brrrars1 + i1 )1 Wier1s Yierr — Okt Pres1)

1 1
+ 5k W1 — Q1 brr|® + Ebk+1 (|01

2iy1 — d !
+—ﬁl—k+l||dk+l I + Svirr€rs b — Al
241 2

. 1 _
+ Brs1 lgg S(lslp{ {E(akﬂ + Btk DI ks W1 — Ok10|
o

1
+ %(1 + ﬂ;ﬁlbﬂl)llaécﬁllz + 5(1 + ﬁk:_llbk-rl)(é@ (g1 + 00)o)

1+ ﬁk__:]dk+l

2
2 ol

+ (1 + Bl ber1 ) (0, Sopys1) —

+ | =B cr+1(60, Op 1 (Wit — Q1))

1 _
+ 5Vk+1(1 + Bk_‘_lle/H—l )Héd)“2

+ Bt bir1 (0, (—A)Prs1) + Bey 1okt (00, 01 Prr)

Betibrs1 — By dis 4
+ . (00, o) + Vi1 By 1€ 1(00, Pryr — h)] } . (43)
Consider the variational problem above. Variational equations are
[—(1 + Bt brs)A + (st + By chr1)Of 41 Ok
+ (1 + By Yot + 600) + vipr (14 B e8¢ + (1 + Bl bes1)d0ipyst
= (a1 + Bl cks1)Op 1 Lot Wit + Bkt Ot Wit — Ok 1)

—1 —1 —1
+ B bk 4k — B i1 %1 Prrt — Vir1 B 1(Pryr — h)

= (ak+1 + B 1) vo + (1 + B i) fo
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_ 1 1+ B d
(1+ Brlybenn) <5¢ o + -|5¢>|2) Lt Bendin
2 Ak41
~1 - _
_  Beiibrrt — Bk Gy = 1+ B dis 5. (4.4)
Akt Akt

where the last equalities are definitions of the functions v, fo,%. These equations
can be written in the form

(=44 a0;Okv1 +V+ 1 + 00)0¢ + o1 = aQp Yo + fo

1 1 1
6¢ - $ur + 51091 — 700 = ~a0, (45)
where
a1 + B crn 1+ B e
a= +__f+li— = Ak+1,us V= Vk+1++11+— = Vik+Lu >
1+ ﬁk-ku‘H 1+ ﬁk+1bk+l
1+ B bra
b= — T = (4.6)
1+ ﬁk+]dk+l

The above system of equations is a special case of a basic system of equations (3.20)
[2] studied in paper [2]. It is a minor modification of the system (2.17), and it has
basically the same properties described in Proposition 3.1 [2]. If ¥, ¢r+1, %%+1, f0, %o
satisfy the assumptions of this proposition, then the system (4.5) has exactly one
solution in the space of all complex configurations satisfying the only restriction
|oa] < cg. We denote the solution by O¢yi1, 0041 again, though these functions
are different from the solutions of (2.17) discussed in Sect. 2. We do not use those
solutions in the rest of the paper, so this notation should not cause a confusion. The
solution d¢yy1, 0041 is an analytic function of Y, Prr1, %11, f0, % on the domain
described above, and it satisfies the bounds

|00x+1(%0, f0,%0), [00Pk11 (Yo, fo, %), |40 Pr+1 (%o, fo, %0)I, [60k11 (Yo, fo, %0
< Ky max{[Yol, | fol, [ool} - (4.7)

The derivatives above, and in the previous formulas, are on the lattice 7;-1,, but for
simplicity we have omitted the superscript L~'% indicating the scale. Formulating
these results we have assumed implicitly that the coefficients a,v, A are in a proper
range, for example % <a< %, 0<v <1, 4 = 1. This is satisfied in our case, be-
cause they are equal to the unrenormalized coefficients ayi1,y, Vit1,us Ak+1,, Which
satisfy these conditions. Let us check if the configurations Y, ¢xi1, %1, fo,% sat-
isfy the assumptions of Proposition 3.1 [2]. Obviously this depends on assump-
tions for the renormalization constants and the new variables Y. 1,4. Let us start
with the first. Notice that the eqluations depend on these constants only through the
combinations (41, ﬁ;_:lbk+1, et 1Ck+ 15 B;J:Idkﬂ, B Jrllekﬂ. For simplicity let us drop
the subscript £ + 1 in the notations. We assume that these rescaled constants are
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sufficiently small, more precisely

e\ 1B Bl B el |B1d), B el <&, (4.8)

where ¢ is a sufficiently small positive number. This implies that the coefficients
Qk+1,Vk+1, Ak+1 are correspondingly small variations of agi1,y, Vi1, us Ak+1,4- We will
come back to the discussion of these coefficients later on. Consider now the new
variables. We need to consider at first real analytic functions of these variables, so
we assume that

(Yr41,1) € Eri1(L, 8541) (4.9)

Notice that the space above is defined by the renormalized functions ¢y, 0.
With this assumption, and by the definitions of ¥y, fo, % in (4.4) we have

3
o] < 586k 1 5

3 3 3 3 3
[fol < AR S LA SR e VAT L AR Tet1€

log| < 3e-ep1 = 3erpie, (4.10)

where we have estimated ¢y 1,441 and various constants like (1 + f~'56)~1, (1 +
B='d)™", (a+ B 'e)(1 + B71b)"" = agy1,, simply by 3. Assuming that 7Ky 16 <
c¢, the configurations o, Gxi1,0+1, f0,00 satisfy the assumptions of Proposi-
tion 3.1 [2] and there exists exactly one solution of the system (4.4), or (4.5),
with the properties described above. In particular it satisfies the bounds

|0Gk+1l,[00@ks1],|A0Prs1], [dous1| < TKnexir8 (4.11)

on the domains (4.8),(4.9). It follows from the bounds, or even more clearly from
Eqgs. (4.4), that ¢ 1, 0o, are analytic functions of at least first order of the renor-
malization constants. Notice that up to now we do not have any strong restrictions
on ¢, the condition Kyg, 16 < cg is satisfied even with ¢ = 1, we have stronger re-
strictions on ¢;’s. The only other conditions we have used are that various constants
like (1+ '), etc. are close to 1, or <3, and it is enough to take ¢ < .
Thus we have constructed the expansion

Okt1,u = Dis1 + 0r41, Ot l,u = Ohy] + O (4.12)

of the unrenormalized minimal configurations around the renormalized ones, and
the perturbations ¢y 1,004+ are analytic functions of at least first order in the
renormalization constants.

Let us come back to the expansion (4.3) and substitute there the solution of the
system (4.4). We get

1
Puflicera(O, $icri.) = PArer s, dier) + BCUD + Sve((hf? = DITV], - (413)
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where, using Eqgs. (4.4), the counterterm C**! is given by
C(k+1) — C§k+1) _ C§k+1)
= (a+ B (i1 Yrsr — Qi) + %ﬂ_lcnlﬂkﬂ — Ors1¢en |
+ 3B B0k P + 55285 = B Dl

+ 29 el el = 1P + B el el 1 = (Drrro )

- [—%(a + B O [ || + %(a + B7)| Ok 100 1]

50+ B[00kl + 50+ B B0k, (e + 2031 )0b511)
1
5+ B )01 |1> + (14 B~ 5)(dbr1, S0 41 i)

3+ Bl0gnl? | (4.14)

where a,v,A denote a1, Vi+1, Ak+1 now. The above expression is a local function
of the configurations Y1, Pr+1,0Pk+1,00+1, SO We can write a decomposition as
in (2.28) restricting the norms and scalar products to blocks Byy(z), z € T, l(kH).
We get

ctD = 3 (), (4.15)

zer

and the functions C**1)(z) satisfy the usual Euclidean covariance and O(N) invari-
ance properties. Of course the same holds for kaﬂ) and C§k+]) separately. These
functions are analytic on the domains (4.8),(4.9), and ka“) is at least of first order
CékH) is at least of second order.

The expansion (4.12) determines corresponding expansions of lp,ﬁfl,u, ie. we
have

in the renormalization constants,

o _ () )
it = Vi 0Us

where

4 1-L7% . X
S = 00kt + Ty L PO e — Qeidbin) . (4.16)

They cause further changes in the effective action and the generating functional, we
expand them around the new configurations and include perturbations into the new
contribution to the effective action and the generating functional correspondingly.
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We define an unrenormalized k + 1% effective action é",fk“) by the formula

k . .
EX D Wrr, ) = 65 @1, b) + > [EDWD, (Y1, 7)

j=
FOU L W ). ) = EDW s ] . (417)
The k + 1% contribution to the generating functional is defined finally by the formula

FED v, h,g) = (g, M D W1 )

_1 k . :
M1, g) = B M Gt b g) + 0k + 3 LAY (s, )

Jj=1
+ U (W1, 1), b g) — MDY Wisr, ), 1, g)] . (4.18)

With the above definitions of the new contributions the effecti\_/e action & (y®
(Y1), k) has the representation (H.2) with the terms &U)(y; Y, (Y1, k), h) de-

termined by the functions &/)(y; 1y, #). The fact that these functions satisfy all the
inductive assumptions follows immediately from the inclusions

E{(Bj(X); 1,67) C 5 ,(Bi(X); 1,) (4.19)

where ¢; is defined by the formula in (H.1) with the sum over n starting with
n=k+1, and g;, is defined exactly by that formula. Thus ¢;, =¢; + kl—zocoé“ >
g + k%%ej. We postpone a proof of the above inclusions to the paper on localiza-
tion expansions. This remark applies also to the terms of the generating functional
tg—l’k(w(l{)(l//k+l)911’ g)

The first term on the right-hand side of (4.17) has the localization expansion
described in Proposition 2.1, and we have to construct such a representation for the
sum in (4.17). We cannot use the local representations of the actions &) for the
same reason as in the case of the fluctuation integral contribution (2.55), namely
we need the whole resummed &) in order to apply the representation (3.127) [1]
in terms of irrelevant expressions. To construct the representation (2.56) we have
used the first order expansion in the fluctuation variable in (2.57), which yields

1
also a first order expansion in the constant f8, *. Here we may use Egs. (4.5) and
formula (4.16) to construct a first order expansion in the renormalization constants.
Actually we need an expansion in some functions defined on lattices, so that we
can localize it as in (2.57). Let us recall that the coefficients of Egs. (4.5) are
equal to the unrenormalized coefficients a1, 4, Vit1,u, Ak+1,4 SO the only dependence
on the renormalization constants is through the functions vy, fo, %y, and they are at
least of first order in the constants. The solution d¢xi1(¥o, fo, %), dok+1 (Yo, fo, %),
which is an analytic function of Yy, fy,a, is of first order in these variables, i.e.,
0¢+1(0,0,0) = 0, d4+1(0,0,0) = 0, so we can expand in functions y, fo, %. The
function 5(//21)1 given by the formula (4.16) depends on VY, fo, %, and it is equal to 0
if all these configurations are equal to 0. Let us write this dependence explicitly, i.e.,
we write &ﬁ,gfr)l(%, fo,%), and we have 5%1)1 (0,0,0) = 0. Using these properties
we can write the differences in (4.17) as integrals of a derivative with respect to
a parameter ¢ multiplying the configurations Yy, fo,%, and this derivative can be
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expressed in terms of derivatives with respect to these configurations. The obtained
expressions can be localized then in cubes 4(z) = B,1(z). This way we can write

¥ a5 a sum of the local expressions over points of the lattice T, l(kH) as in
(2.56), and the local functions are given by the formula

1

k d .. . )
0@ = & @G zenven ) + X 8 PU + 2 (¢ + s oo
Jj=10

(2 + Ta)) fo, (£ + Thaiz))%), h) - (4.20)
=0

The above functions are Euclidean covariant with respect to transformations of the
lattice T fk‘H), and they are invariant with respect to the orthogonal group. This ends
the first part of the renormalization operation.

A result of this operation can be written in the following way:

21, u(SOTO YO p Y WYer1)

k . .
= Jk+1,u €XP [—ﬁk+1Ak+1(¢k+1, i)+ S EVDUL (W1, ), )

j=1 ()
J yeTL!*ln

+ 2 {EF@ W, ) — Bt C4T (@ 1, h) — EFFD () — By |[TED)

zeTl(k+l)

k . .
+ {(g’ ¢k+1> + Z ‘g;(j)(lplg—)l(‘pk+lsh)aha g) + g'-(k+l)(lpk+l’h’ g)}] 5 (421)

=

where
E®D(2) = %D (z;e1,e1) — frs1 C¥ D (zse1,01)

and E®*1(z) does not depend on z by the translation invariance,
Ei1 = E; LY — E®D(0) .

The density defined by the exponential on the right-hand side of (4.21) has the
form required by the inductive assumptions for £ + 1. We have to verify that it has
all the properties required by the assumptions. The “old” contributions satisfy all
the assumptions, except that we have to prove the inclusion (4.19). With the new
contributions we face the same problems as with the contributions coming from the
fluctuation integral, we have to verify that they are analytic on proper domains, and
we have to construct localization expansions satisfying proper bounds. The formula
(4.21) determines the new contribution to the effective action. It is given by the

sum over z€T l(k+1) of the local functions
0@ P, 1) = 65 D@ i, h) — Bt CH (25 Y, h) — E€TD(2),
zeT*, (4.22)

They are functions of (Y1, %) and the renormalization constants {, f~'b, f~'c,
B~'d, p~'e, and we do not know yet their domains of definition, we do not know
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even if they are defined on the space (4.9). They are certainly defined on suf-
ficiently small domains, and satisfy the symmetry properties in (H.3). We have
to prove (H.4), which implies the analyticity statement in (H.2), and we have to
prove the renormalization conditions (H.5). This is achieved by a proper choice
of the renormalization constants. The conditions in (H.5) determine a system of
equations for the constants, and we will prove that this system has a unique small
solution. Substituting this solution into the functions (4.22) yields the final contri-
bution to the effective action, satisfying all the inductive hypotheses (H.2)—(H.5).
We will prove also that the above solution satisfies the inductive hypothesis (H.6).
Finally, we have to prove that the new contribution to the generating functional sat-
isfies the hypothesis (H.7). In this section we formulate propositions on localization
expansions for the new contributions. These propositions will be proved in the same
paper as Propositions 2.1, 2.2. In the next section we will analyze the renormaliza-
tion group equations for the renormalization constants, and we will prove all the
above mentioned properties. This will end the renormalization operation and the
proof of the basic theorems.
Let us start with a proposition on the functions in (4.22).

Propeosition 4.1. If the constant ¢ in (4.8) is small enough, then the functions
ctV(2), cF(z), &5 D(2) defined by the formulas (4.14), (4.15), (4.20) have
localization expansions satisfying all the properties in the inductive hypothesis
(H.4) for j =k + 1, but with the constant Ey in the bounds replaced by Cyé} 116
Csel, 6%, NL? By + 1+Cs Ege correspondingly, where Cy, Cs are positive “absolute”
constants. Terms of the expansions can be extended to analytic functions of the
variables (Yy.11,h) and the renormalization constants, defined on the spaces

Ef 1 (Bes 1 (X); Lexs1) x {the polydisc (4.8)} , (4.23)
and depending on the variables restricted to the domains X.

This proposition yields also localization expansions of the whole new contribu-
tions £**1)(z) defined by (4.22), but with bounds depending on f;,; and &. We
will come back to a discussion of the expansion in the next section, when we will
determine the renormalization constants, because only then we will obtain a precise

bound ¢ on the constants. For the functions rfikﬂ)(z) we can assume now that
CsEpe = 1, (4.24)

and we obtain the bounds in (H.4) with the constant NLYB, + 2 = Bs. We will
discuss the above assumption in the next section also. The next proposition concerns
the new contribution to the generating functional.

Proposition 4.2. For ¢ small enough the functions M%*V(x;g) defined by the
formula (4.18) have localization expansions satisfying all the properties in the
hypothesis (H.7) for j =k + 1, but with the constant ¢y in the bounds replaced
by %ﬁ_% + CoeL*+D@=2) ywhere Cy is another “absolute” constant Terms of the
expansions can be analytically extended onto products of the spaces (4.23) and
{g: ll9ll;» <1}, and they depend on the variables restricted to the corresponding
domains.
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It follows from this proposition that to complete the proof of (H.7) for the
new contribution #*+1(g) we have to prove that the expression CgeL*T1@1—2) jg
arbitrarily small for f§ large enough. This will follow again from the bounds on the
renormalization constants in the next section. The above propositions will be proved
together with all other results on localization expansions.

5. The Renormalization Conditions, and the Conclusion of the k+15 Step

We start with an analysis of the renormalization conditions (H.S). Consider the first
three conditions there. They are formulated in terms of the effective potential of the
action &%+ i.e. we take a constant configuration Yy ,; = ¥ and define the effective
potential ¥ **D(ys, h) by the equality (2.25) [1]. We distinguish three contributions

to this function, one from the action é”'u(kﬂ), one from the expression in the first
square bracket in (4.14), which is denoted by kaﬂ), and one from the expression
in the second square bracket in (4.14) denoted by Cékﬂ). We have

(g@u(k-H)(Z; l//,h) — ,y/u(k-H)(‘//,h) — u(k+1)(U5 v, W2) , (51)

and we are interested in the function fu(kH)(u, v,0). It is an analytic function of u,v
2

on the discs {|lu — 1] < %50},{]1) —1|< V%}, where we can take 6y = %Kl—lng by

Lemma 3.2 [1]. It is also an analytic function of the renormalization constants on

the polydisc (4.8). For simplicity of formulations let us introduce the notations

1 1 1
&= ;(kﬂa & =B, & =P biis
+1

&4 =B Crets & = P dst - (5.2)

The function f{*"") is analytic in & on the polydisc {]&] <&} with ¢ sufficiently
small, e.g. ¢ < cjg, cjo given by taking the equality in (4.24). On the whole
analyticity domain it satisfies the bound | f,,(k+1)] < B¢K), hence its derivatives satisfy
the bounds

1
{(a—if,f“”) a, 1,0)' < BeKo~- = 6BKoK) —— ,

do E+1
0
‘(a_ u(k+l)) (1,1,0)‘ < B6K0V’(‘S—“2L1 — 4BeK K2 (5.3)
v 0 k1

The functions C,gk“)(z; W,h), p=1,2 have similar representations in terms of

functions c;(,kH)(u, v,w?) and we have to calculate the corresponding derivatives.
For the function cﬁk“) we calculate them explicitly using formulas for solu-

tions of the variational problems for constant configurations. In particular we have
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Gry1(uer,ver) = Ary1(u,v)er, and

0 Q41 1
A (1L, 1) =1, (%Akﬂ) (1,1)= lk+1T— Gt TVie1

0 1 1
(%AlH»l) (1’ vk+1) = j/k-!—l 1+ Y1 FVier ) Vi+1 -

Akt

(k+1)

From these formulas and the definition of c; we obtain easily

Vil

0 (k41 _ _ 7
(ECE " )> (1,1,0) = (ag+1 + ﬁk+11ck+l)C12c+1+(ak+l+ﬂk+110k+1)6k+1—_I_I_a“]l:éﬂl ,
Akt

0 (k+1) -1 1 1
<%c1 (1,1,0) = —(ak+1 + By 1)kt 17 EE Vit

k+1

- ﬁk_:]ekﬂvkﬂ . (54)

We do not need to calculate the derivatives of cng) explicitly, because they are

at least of second order in the renormalization constants, we need only bounds for
them, which will be discussed later. We can write now the three renormalization
conditions in (H.5). Notice that the first condition is satisfied by the choice of the
constant E¥+1D_ Let us simplify the notation omitting again the subscript “k + 17
for all constants. The remaining two renormalization conditions can be written in
the form

(% u<k+1>> (1,1,0) - B [(a +B7) + (a+ ﬁ_lc)llj"—i” CJ

A

+ﬁ(‘7 "‘“)>(1,1,0)=0

_1_ i (k+1)
v<avu+)(110)+ﬂ[(a+ﬁ “JFWH/; }
+B- < “‘"*”)(1,170):0. (5.5)

We obtain two equations for the five unknown renormalization constants.

Now we consider the last condition in (H.5). It is much more difficult to analyze
because we have to calculate second order derivatives with respect to the variables
Yi+1, and we have to do it explicitly for the function kaH). We are interested
in the derivatives calculated at the constant configuration ;. = e}, h = e;, so we
write Y41 = e + ¢ and we calculate the derivatives with respect to ' at ' = 0.
The function kaH) is an analytic function of ¥ in a neighborhood of 0, and it is
enough to expand it in ¥’ up to second order terms. From the form of the function
ka“) it is clear that we have to find an expansion of ¢, 1(e; + ¥/, e1) up to second
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order in ¥/, and an expansion of oy 1(e; + ¥/, e1) up to first order in ¥'. We write
Prri(er + ¥ ven) =1 + G W) + G W)+ amner + ¥ ver)

=) () +-- (5.6)

and by (2.21),(2.22) we have

* 1 ! *
¢§21(¢/) = @ 1Ge105 ¥ — Gl <H+Gk+l> a1Gr1 Qi1 (e1 @ ey,

1 - )
o) () = (‘k— + Gk+1> A1 Ger1Qf e - Y (5.7)

Differentiating Egs. (2.17) up to the second order in i/’ and solving the resulting
equations we obtain a formula for qbk +1(t// ). To write it in a simple form we intro-
duce the notations

Hip1,0¥ = a1 G Q5 (I — e @ e )Y/,
Hii1, 1ong¥’ = a1 Gr1 Qi (€1 Q en W', (5.8)

and we have then

e
¢§:2J:1(W) = —e1Ggy1 (Gk+1 + i_—>
k1

X [(Hk+1, V') s (Hier,oW') + ——Hit1,1ong¥") + (Hici, 1ong¥” )]

12

k+1

—2Gr1((er + Hisr,iong¥ Y His1,0¥") - (5.9)

Substituting expansions (5.6) into formula (4.14) for the function kaﬂ) we
obtain an expansion of this function, and second order terms of this expansion yield
a quadratic form in ¥/, which we write in the simplified form omitting the subscript
€‘k + 1”,

St B P 5+ B e)cler, U )+ a+ W, 09O
3B elly ~ 08w+ 387 Bl0s WP
g OB DO WO + 57 el $OWHIP (5.10)

From the above formula and (5.7),(5.9) it is easy to write explicitly the operator
of this quadratic form. We need a kernel of this operator to calculate the constant
in (H.5) only. This constant is expressed in terms of transversal components of
the kernel, so we need only contributions from transversal components of ¥’ in
(5.7), (5.9). Denoting ¥, = (I —e; ® e1)y/ = 6 we obtain the following formula
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for the transversal part of the above quadratic form:

3@+ BRI + 0+ 500 gz LI+ o 110000 - Q)
3B ell0 — OHOIP + 5~ BHOIP + 55"l HOJ?

= (@t PO + at B0, - a0GO")0)

#307el0.0-a060"0) + 50 (S5t v et} 0.060°0
+%azﬁ‘1b<0, 0G(—4 +v)GQ*0) . (5.11)

This gives also a formula for the kernel of the operator. Actually we need only com-
ponents in the direction of the vector e;, so we may take 0 = 6,e;, which amounts
to taking a scalar function 0 in the above formula. The kernel is a translationally
invariant function of the unit lattice points, we have to take its infinite volume limit,
calculate a Fourier transform of the limit, and the derivative in (H.5). To do this
calculation we use the representations derived in [3]. We have

G=(-4+v)"—a(-4+n'Q"U+aQ(-4+v)"'0)'Q(—4+v)"",
and from this we obtain the formulas
1 —aQGQ* = +aQ(-4+v)"'0")7",

0G*Q* = (Q(—4+v) 20" )I +aQ(—4+v)"'Q*) 2,
0G(—4+v)GO* = (Q(—=A4 +v)'0")T + aQ(—4 +v)"10*)72. (5.12)

They are written in terms of three basic unit lattice operators. They are translationally
invariant, so they are convolution operators and therefore they commute. For their
Fourier transforms we have the following representations:

f(p)=U +aQ(=4+v)"'0")"(p)

w(p+DPY!
:<1+a;%> — (U +agp) ",
_ ey oy = L+ D
op) = (@-a-+v)'0")p) = 5 O
lum(p + D)

— _ —20* = MUAS S A —
Mp) = (@447 P =2 P
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where p € RY |p,| < m, [ =2mn, n€Z% |n,| < 3(L" 1),

d iy —m
A(q) = Zl 0@ Oulq) = L"(e™ " — 1),
p=

d ’qu _
um(q) = [T tmu(q), Um,u(q) = o) ) m=k+1 in our case . (5.13)
u=l1 u

The Fourier transforms of the kernels of the operators (5.12) are equal to f(p),A(p)
f2(p),9(p)f*(p) correspondingly. By (H.5) we have to calculate the second order
derivatives with respect to p; at p =0 for these functions, and also for f2(p).
Take p = te; and write simply f(¢), g(¢), h(¢). From the above formulas we can
calculate easily the values

fO=——  fO)=0

1" _ i 7 =2my,, .2
70 =2 (14 -1 ) |
WO =1 dO=0 =25 (1450 a0))
h(0) = 12 KO)y=0,  #'0)= —2%3 (2 + 11—2(1 — L7y — v302(v)) ,
where
eiv) = 1 : ~ 1.2,

,%0 2L2m(1 — cos L—™]) ' [2L27(1 — cos L=™1) + v]’

the summation is over a one-component index /. Notice the following simple pro-
perties of these numbers: 0 < ¢;(v) < 515, 0<ci(v) —ver(v) <ci1(v) < 21—0. With the
help of these formulas we can calculate explicitly the constant in (H.5) for the
kernel of the quadratic form (5.11). Taking the constants for kernels of the second
order derivatives of the functions & " and &) +1) we write the last renormalization
condition in (H.5) in the form

vi"“""’)—ﬁ{(aJrﬁ Ny (1350 = L72) = v )] ey
X [1+%(1 —L_an)—vzcl(v)] +< 11/30—” [+ vp! >(aiv)3
[ 1+ 24"(1 L) —ave (v) + §(a+v)v2cz(v)]
+ﬁ‘1b;( : G+ 2e0(v) — v cz(v)]} + By = (5.14)

This is a third equation for the renormalization constants, so we have the three
Egs. (5.5), (5.14) for five unknown constants. To analyze these equations we have
to obtain bounds for various functions occurring in them.
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Let us start with the first term in (5.14). We obtain from (H.5)

1
U‘(lk-!—l,oo) _ 2 (g’("“)) (z,Yser,e)x] .

2 YE@k+1(L—Z'qu):OeY x,zze:y <5‘/’2(x)5¢2(0) !

(5.15)
By Lemma 3.2 [1] the functions éa,fk“q)(z, Y;e; + (e, e1) are analytic on the complex
domain

{¢: Cis a € — valued function defined on TV, |¢] < ey + 80,10 | < 80, |{|* < 80}

if &g + K199 < €41, in particular for ¢y = dg = %Kl'lskﬂ.
This domain contains the domain {{: |{| < 10}, hence we obtain the estimate

2
‘<<a¢f5l//2 éj}kﬂ)) (@ Yeren), 551’5C2>

for arbitrary functions 6{1,0(,. We write x? = (x; —z1)? + 2(x; —z1)z; +2z7 and
take 8(, as one of the functions (x; —z;)?, x; —z,1, and 6{, as a corresponding
function J, 2,6, z28, where & is the unit lattice -function concentrated at 0. The
sum over x in (5.15) can be written as a sum of three terms corresponding to the
three choices of the functions d(;, (>, and using (5.16) it can be bounded by

2
< (510) Bg exp(—Kdi1(Y))|001]|002

(5.16)

2

4

4 <5—> Bsexp(—xdy,1(Y))sup |x —z|*.
0 xeY

We have |x —z| < | ;| £ 2dLM + dMd,1(Y) by (3.54)[1]. The sum over z € ¥

in (6.15) gives the factor |Y|. Using the inequality |Y| < (3LM)*(1 + diy1(Y)),

which will be proved in the paper on localization expansions, we obtain the bound

, 2
4 <5i0> B exp(—rcdy11(Y))(2dLM )’ <1 + %dkﬂ(y)) (GLMY'(1 +den (V)

1
< 4(16dK1LM)2(3LM)dB(,82— exp(—(x — 2)dy41(Y)) .
k+1

The sum over Y in (5.15) can be bounded by Kj using the above exponential
factors, so we obtain finally the bound

1
-
Et1

[p®+1:20)| < 2Ky (164K, LM )*(3LM ) Bg (5.17)

Let us recall that vﬁkﬂ’oo) is an analytic function of the renormalization constants

£, and the above bound holds on the polydisc {&: |&] <cjo}. From this we can
obtain bounds on derivatives of v,‘f‘“’oo) with respect to &.

Consider the last term in (5.14). The constant v(‘x’)(CékH)) is given by the
formula (5.15) with C’ékﬂ) instead of &™), The function C§k+1)(z) has been

analyzed in Proposition 4.1. In the proof of (5.17) we have used only the
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general properties established there, so we obtain the following bound also:
[0(CHH)| < 2Ko(16dK LM P (BLM ) Caé? . (5.18)

The function v(°°)(C§k+1)) is an analytic function of at least second order on the
polydisc (4.8). Let us remark that a much better bound can be proved for this
function, without the factor (LM )*2, if we use better analyticity properties of
Cékﬂ), or by more explicit representations, as in the case of kaﬂ), but it is not
important here. The above statements about Cékﬂ)(z) apply also to the case of con-
stant spin configurations, i.e., to the function cgk‘q) (u,v,0). It is an analytic function
of u,v on the discs described after (5.1), and of £ on the polydisc (4.8), and it is
bounded by Cuée7, &> on those domains. Thus the derivatives satisfy the bounds

i 3
(acg"“)) a, 1,0)‘ < c4s,§+lg25—0 = 6C4K 1614167

0 (k41
Kau (k+ >> (1,1 O)!<C48k+18 2 = 4C,KPve? (5.19)

Consider now the system of Egs. (5.5),(5.14). We have three equations for five
unknown constants, so we have to supplement them with two additional equations.
Obviously most important terms in the system are linear terms in &. Besides lin-
ear terms written explicitly there are linear terms coming from expansions of the
functions (Z £57)(1,1,0), (2 A5 )(1,1,0), ol in & but these are very
small in comparison with the first, which are multiplied by f, so we have to con-
sider only the explicitly written linear terms. A closer inspection of these terms
shows that the constant f~'d does not appear at all, and B~'c is multiplied by
a coefficient proportional to v, which is small for a large number of steps. Thus
the equations are singular in f~'c, f~'d and these constants must be determined
by some independent conditions. Intuitively a reason for this is clear, the correspond-
ing expressions multiplied by these constants in the effective action Agi; 4, or in
C*+1) are irrelevant, so they make unessential contributions only. There is no need
for their renormalization, so we may choose f~'c, f~'d basically in an arbitrary
way. One obvious choice is to take ¢ = 0,d = 0. There are plenty of other possible
choices, and we discuss here one of them, obtained by requiring that the constants
ay are determined by a “free” renormalization group flow, i.e. by the recursive equa-
tions ag.; = akffl%, a) = a, and the constants 1; are determined by “pure scal-
ing”, i.e. by the equations A4, = 4L?. The constants Q+1,u> +1,u are obtained by
such equations from ai, A, so these requirements can be written as axi1 = @414
A1 = Ag+1,4- On the other hand by the renormalization group equations (4.1) we
have

Bi+1,uthst,u = (Prst + bes1)akr1 = Prs1@ks1 + Cry1,  hence cry1 = apri1bigr

b 1
Breru _ Berr + b1 Prn N divr, hence dist = bray . (5.20)

Ak41,u A1 kvl Akt

In the simplified notation the requirements lead to the equations ¢ = ab, d = b,
which yield an example of the additional conditions on the renormalization constants.
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We consider the Egs. (5.5),(5.14) with these substitutions, so we obtain a system
of three equations for the three unknown constants {, f~'e, f~'b. We analyze now
these equations. Let us remark that this analysis applies also to other “reasonable”
choices of ¢, d, possibly with some unimportant changes of constants in bounds. We
divide the equations by f, and we divide also the first equation in (5.5) by ;4.
The obtained system of equations is

2
an—c— + |a11Lﬂ—1b+8k+1a(l +p7'b) <i> - L (;u (k+1)> (1,1,0)}

Ep+1 Ek+1 Ek41 Et1

() a0,

Ek+1

{ -1 £ oy 10 iy
a -~ +appf~ e+ [azl—ngﬁ b+ S 3% (1,1,0)
1 /0
a1l 0 gy
- B v (avfu )(1,1,0),

az| i +apple+anf b+ [031 iﬂ_lb - U(Oo)(cékﬂ))] = ﬁ_lvgkﬂ’oo),
Er41 €41

where
A4y a

_, =g —, ap =1,
Ata+v a1 k+li+a+v 2
2

_ a Vo y22y 2
an =t {1+12(1 L) vcl(v)}

ayn =a

a a—v 2 9 1 )
o1 ——— [+ (1 =L7n7) = aver (V) + S (a+ v)e(v)|

(a+v) 24
2 p—
=y [“1 #2017~ ave () + (a v)v2c2<v)} :
1 a2 2 , .
=2 +v)z[1 +vie(v) - v} oM+ Gy [1+—(1 —L7")—v cl(v)].

(5.21)

The explicitly written linear part of the system is given by the triangular matrix
with the above coefficients, so it is important to get bounds for the coefficients
aj1,dx,ass on the main diagonal. To get slightly better bounds we assume that
l<a< %, i.e. all g, are in the interval ]I, %[. They are given by the “free flow”
formula aq; = all—_%, so it is enough to take a € [(1 — L72)7), [ e.g. an optimal
choice is @ = (1 — L™2)7!, and then a; \, 1. With these assumptions we can easily
prove the following bounds:

—1 < <= =1 —1 < <1 d |a | < &p4
a a a an &
2 ]1 2! 22 b 1 33 b 21 k 1!
13 5 14 3
az | < —¢ < <Efyl, AN < V< <. 5.22
I 31| 5 k+1 2 k+1 I 32' 13 2 ( )
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Thus the matrix is regular and its inverse can be calculated by a simple Gauss
elimination procedure. Applying it to the system (5.21), and using the notations
(5.2), we obtain a system of equations of the following form:

E+ (@) =71, (5.23)

where ¢ is now a three-component vector with components &; = Ef—l, =B le,
+

& = B~'b. The functions ¢;(¢), i = 1,2,3, are suitable linear combinations of the
functions in square brackets in (5.21), so they are analytic functions of at least
second order in & From the Gauss elimination procedure and the bounds (5.17),
(5.18) we obtain the bounds

lci(&)] < 9Ko(16dK LM Y?(BLM Y C4e?, i=1,2,3, (5.24)

for ¢ in the polydisc {&:|&| < ci10}. We have written above a common bound
for all the functions. The functions f;(¢) are the same linear combinations of the
functions on the right-hand sides of (5.21), so they are analytic functions of ¢
defined on the polydisc and satisfying the bounds

|£i(&)] < 9Ko(16dK LM Y*(3LM )* Bg p~! —-21— ) (5.25)
k+1

Notice that the number on the right-hand side above is arbitrarily small if f is
large enough. Consider the system (5.23). The right-hand side can be arbitrarily
small, and the function ¢(&) is of second order in &, so the system should have
exactly one small solution. To prove it we notice that a solution is a fixed point
of the mapping & — —c(&) + f(&), so it is enough to prove that the mapping is a
contraction on some polydisc {¢: |€|o <&}, where [£|o = max; || and & < ¢pp.
For simplicity denote K5 = 9Ko(16dK;LM )*(3LM )*. We have the following bounds
for derivatives of ¢;(£), fi(£) on the polydisc with ¢ < %Cmi

C,(é)’ < 4C4K5e, 23:

3¢, f:(f)‘ < 4B6Ks —ﬁ_

They imply that
[[—c(&) + f(E)] — [—c(&€) + f(é")]l

1" 1 1
(4C4K58 + 4BgK5 —B ! ) |él ¢ |oo = _lél —¢ |oo
co Gy 2

dE;

8k+1

. 1
if 16C4Kse < 1, 16B6Ks —ﬁ"
10 &t

|I/\

1. (5.26)

The first condition gives a restriction on the radius of the polydisc, it determines
the maximal radius 7o = min{(16C4Ks)~", %Clo}- The second condition gives a re-
striction on 5. Assuming these conditions we obtain that the mapping is a contrac-
tion, hence Eq. (5.23) has at most one solution. A solution can be constructed as
a limit of a sequence of successive approximations, starting for example with
£0), if | f(0)]|eo < %ro. Then the sequence is convergent and all elements of the
sequence can be bounded by 2|f(0)|eo. The limit satisfies this inequality also, and

it is a solution of (5.23). Consider the condition |f(0)|ec < %ro. By (5.25) it is
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enough to assume that 2B¢Ks ﬁ‘ < ry. By the definition of ry this is equivalent
/r

to two conditions. We write them together with the second condition (5.26) in the
form

16B¢Ks max {2C4K5, —} ﬁk+1 <1, (5.27)

+1
where we have written explicitly that f equals ﬁk+1- If this condition is satis-
fied, then all the above statements and bounds hold, in particular Eq. (5 23) have
a unique solution &° satisfying the bound || < 2[£(0)|co < 2B6Ks B;) 3 2 . Let
+1

us analyze this condition. From Egs. (4.1) and Definition (5.2) it is easy to calculate
that

1 1 1+& 1+&
= = B, 1972 _ VL2
Br+1 ﬁk+1,u1+§3 B Trey T Vel T ¢,
(5.28)
From the first equality and the inductive hypothesis (H.6) we get
ﬁk_+11 < Eﬂ—lL—(kH)(d—z)yk < 2B~ 1L-DE=D) pence
2 2
Bty 5= < BT ILTEE < g7t (5.29)
MEL SR oG
and condition (5.27) is satisfied if
1
32B6 K5 max {2C4K5, } 2ﬂ (530)

Assuming this we obtain that all the previous conditions are satisfied, so this com-
pletes the analysis of Egs.(5.5),(5.14). For the solution &° of these equations
we have

1 1 1
1€ < 2B6Ks B, 57— < 4BgKs — ' L2 < —cgp=2*FD | (531)

€11 % 4
if f is large enough. The equalities (5.28) and the inductive hypothesis (H.6) imply

1 1+¢&3

=g Ok =&,
Vi+1 Vk1+6(3) k+1 k1+é(2)

k
_..] —1 _2 .
Vil Ver1s Okr15 Oy < €XP (Cs SL W)
Jj=1

1 0 0 k )
><max{—0,1—i-éo~1—+é 1+§2} Sexpl|eg Y L%
14+ &8

3’1+€‘2”1+5‘3’ j=1

x exp(|log(1 + &)| + [ log(1 + &) < exp <08 > LT 2”) - (532)

j=1
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This proves the inductive hypothesis for the renormalized constants fri1, ary1,
Ay 1s Vit

Let us make two remarks on the above analysis. The first is that a dependence
on ¢ in Egs. (5.5),(5.14), or (5.23), is somewhat more subtle, besides the explic-
itly written one there is also a dependence through the constants fii1, V41 given
by (5.28), but this does not change anything in the considerations above. The
second is that the equalities (5.32) and the bound (5.31) lead to the following
precise form of the asymptotic behavior of the “running” coefficients [y, vi:

. B . ) Vi .

A, g = = 0 S = i =0, (533
and Yoo, 0o satisfy the inequalities (5.32) with £ + 1 replaced by co. Finally notice
that if &0 is given, then by (5.28) we have fii1,vi+1, hence we can calculate
the constants b1 = P15, exr1 = Pir1Ey. Thus we have proved the following
proposition:

Proposition 5.1. The system of Egs. (5.5),(5.14) supplemented with the
equations ¢ = ab, d = b, or equivalently the system (5.23), has exactly one solution
in the polydisc {¢ € @3 |¢|oo < 1o}, where & = 3,;11(, & =PBle, &=p"1b, if
the condition (5.30) is satisfied. The solution &° is real and satisfies the bound
1€ < 2|1 (0)|0o < 2BsKs ﬁ,;rllé, hence the bound (5.31) and the above one

implies the bounds (5.32) for yiy1, Oxr1 and the inductive hypothesis (H.6) for the
“new” coefficients Bii1, ki1, Aet1s Viti-

The above analysis was done assuming the additional equations ¢ = ab, d = b,
but it holds also for the second natural choice of the equations, namely ¢ = 0, d = 0.
In fact all the above bounds and results hold for this choice without any changes,
except that the equalities (5.28) are complemented with the equalities

aay , 1
=— (1 Akl = L” —— . .34
Ak+1 ak+aL—2( + &), ki = Al T (5.34)

They yield the second set of equalities in (H.6). We could also consider some mixed
sets of equations between the two above sets, for example ¢ =0, d = b, and the
results would still hold for such choices.

The construction of the solution of Egs. (5.5),(5.14) completes the definition
of the renormalization transformation. We substitute the solution into the function
&%+ defined by (4.22), and the obtained function satisfies the renormalization
conditions (H.5) also. We need only to make a few final comments on bounds for
this function, or rather for terms of its localization expansion. We define

E4(Z,Y) = 5, Y) - B CF @ Y), Y € DpzeY,  (535)

and if ¥ is a cube from 7, containing z in its central large cube, then we also
subtract E¥*1(z). From Proposition 4.1 and (5.31) we obtain

1
164D (2, Y)| < (B6+2 C4Bs Ks + 4C4BE K3 B 82—) exp(—xdi1(Y))
k+1

1
< (BG+2 CyBs K5 + 3 Cy4Bs K5 Cg) exp(—kdi1(Y))

< 3C4K¢Ks exp(—kdi+1(Y)) , (5.36)
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for domains Y different from the above cube. For the constant E4*1(z) we obtain
therefore the bound

|[E%D(2)| < 3C4BsKoKs , (5.37)

and the final bounds for terms of the localization expansion of &**1)(z) are
|€% (2, Y)| < 4 C4BsKoKs exp(—rdyi1(Y)) (5.38)

for all localization domains ¥ € 9y, ¥ > z (assuming Ky = 3). The constants in
the above inequality are independent of Ej, so we have to assume that

Ey 2 4C4BKoKs (5.39)

for example we can define it by the equality above. This completes the analysis of
the new contribution to the effective action.

Consider now the new contribution to the generating functional. We have proved
all the properties in the inductive hypothesis (H.7), except the bounds for terms of
the localization expansions. In the bounds formulated in Proposition 4.2 we substitute
& = 4B¢Ks a’—g B~1L=2/k+Don the basis of the inequalities (5.31). The constant there

is equal to

1 1 ;
5B 4B CoKs LT < pE < o (5.40)
0

for f large enough so we obtain the bounds in the inductive hypothesis. We can
define co = 5.

Let us come back yet to the condition (4.24), which is CsEpe < 1, and take
& =4B¢Ks al—gﬁ‘l by (5.31). The condition can be written as

1 1
4BsCsKs ;Eoﬁ_l <1, or even 16B2C,CsKoK? g gl =1, (5.41)
0 0

if we take Ey given by the equality in (5.39), i.e., Ey = 4C4B¢KoKs. It is the
strongest restriction on f. It could be essentially improved by a more careful, but
much lengthier, analysis than the one given here.

Now we have completed the analysis of the renormalization operation. We can
formulate the obtained results in the proposition.

Proposition 5.2. Substituting the solution of the system of Egs. (5.5),(5.14) into
the functions &*+D, FU+D(q) defined by formulas (4.20)—(4.22),(4.18), we
obtain the final k+1% contributions to the effective action and the generat-
ing functional They satisfy the inductive hypotheses (H.2)—(H.5),(H.7) corres-
pondingly, if B is large enough, and Ey satisfies the restriction (5.39).

This completes also the proof of Theorem 2. To complete the proof of Theorem 1
we have to multiply the density (5.21) by the characteristic function y;.;, and
to notice the identity yi+1)Xi+1u = Xk+1- We could write now the constants and
the restrictions in the formulations of these theorems more explicitly, but it is not
important.
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6. The Last Step Procedure

We have stated already that we finish the renormalization procedure if the external
field v; is close to 1, vy = 1. We have to formulate this statement precisely now.
Ideally we would like to have v, = 1, but if we start with an arbitrary v we almost
never get this value. We assume that the renormalization steps are finished when
v 1is for the first time greater than a fixed value, e.g. vy > %L‘z. The sequence
vx is strictly increasing, so the index k is uniquely defined. By the definition
Vi1 < $L7%, hence Vi, = vi—1L? < § and v <1. Denote the index k by k;, it
is a function of v, and of course of the other parameters also, but the dependence
on v is most important. Consider the density pg,, and in particular the characteristic

function yj,. The domain of this function is equal to the space Sk,(l,ﬁ;% p(Br)),
and by Lemma 3.1 and (3.21)[1] we have

Wi (K08, € Br,(1,85,) C W, (30,),  where 8¢, = B * p(Bi,) - (6.1)

This means that the restrictions defining the space are basically equivalent to the
restrictions defining ¥, (J, ). In this step we take finally vectors % in the unit sphere,
h € SN, Then the third condition in the definition (3.18)[1] of the space ¥, (35%,)
can be written as v, |(Yk, )o — k> < 957 . Taking into account the definition
of k; and the second condition there we obtain that

Vi, — Al < (5L + 3)dy, (6.2)

on the domain of the characteristic function yg,. The above restriction of j, to
a neighborhood of the vector 4 is of the same order as the other restrictions on
Vi, . This is a crucial observation, which allows us to perform the final integration
with respect to the variables , without any further renormalization transformations.
Thus we consider the integral

S, 7% x4, expl—Bry Ak, Wy » D13 B) + iy (Yo 1) — En | TV | 4+ o, (W e 9)]
(6.3)

where the fluctuation field characteristic function y*1) will be defined in a mo-
ment. We proceed in exactly the same way as in the previous steps. At first we
look for critical points of the function Ay, (Y, ¥, /). On the considered domain it
has exactly one critical point, which is a minimum of this function. It is the con-
stant configuration , = h, and then ¢, (4, h) = h also. We introduce the fluctuation
field Y’ by the equality Y4, = A+ 1/, and we expand the expression in the expo-
nential around the minimal configuration. In particular for the main action we have
by (2.26),

A Wy B3 1) = 5 0, 4909 4 V), (64)

because Ay(h,h; h) = 0. The quadratic form and the interaction are given by the
formulas (2.23), (2.27), where ¢y, 1 = h and ay,+; = 0. The quadratic form satisfies
inequality (2.24), and by the discussion after this inequality we have

W) 2 Sl a2 g0 (W (<04 1)) 69)

N —
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Thus the operator 4% is positive definite, e.g. 4% > IyL~2, and the lower bound
is an absolute positive number. This is the basic fact which allows us to perform
the fluctuation integral as in the previous steps, because the covariance C*) is de-
caying exponentially with a decay rate of an order of the lower bound for A%
Notice that this lower bound is basically the same as lower bounds for the opera-
tors 4%) 4+ aQ*Q, which are determined by a lower bound of the operator y,(—4)
+aQ*Q, and this is approximately equal to yL~2. Having this basic property of
C*) we repeat the whole procedure described and discussed in the general & + 1%
step for the fluctuation integral, in particular we introduce the change of variables

Y = ﬂk—]%C(k')%t//, and the characteristic function x({|y/| < p1(Bk,)}). We obtain an
expression of the form

expl &, (h,h) + &5 k) — B, |T| + F (hyhyg) + FE D (hhog)l . (6.6)

By the first inductive assumption in (H.5) we have &, (h,h) = 0, and we combine the
remaining two constants to define —FEj, 1. Actually we should define the constant
E in the original action in (H.1) as a normalization constant, which means that
Ey 41 = 0. This determines uniquely E in terms of all the contributions from all
the steps. This is not the final definition of E though, it has to be modified in the
presence of large field contributions. The last term in the above exponential is equal
to Z*+ 5o we obtain finally

exp F+1(h,h,g) (6.7)

and the function in the exponential is the generating functional for connected corre-
lation functions. There is no point in making an extensive analysis of this functional,
this will be done in other papers, but let us point out several facts. The functional
can be written as

ki+1 X
Fr1i(hhg) = (g.h) + 5 (g, M (h,h,g)),

j=1
and the terms satisfy the conditions (H.7), in particular the exponential tree de-
cay property. They imply that we can take the thermodynamic limit 7 — Z9,
and for v > 0 the correlation functions decay exponentially also. If v — 0 then
ki1 — oo by the asymptotic behavior (6.33) and there exists a limit of the gen-
erating functionals. This follows from the bounds in (H.7), which imply that
the series above is uniformly convergent, and also from the fact that each term
of the series has a limit as v — 0. The limit % (h,k,g) is an analytic func-
tion of ¢, and it generates the connected correlation functions, which converge to
0 with separation of points going to oo, so they define a pure thermodynamic
phase.
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