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Abstract: We introduce a family of polynomials Pn(z\9...,zn) with complex co-
efficients, having the same property as the real Lee and Yang polynomials: the
zeros of Pn(z,. ..,z) all lie on the unit circle. We deduce from this construction
a class of inner functions in several complex variables.

In the book by D. Ruelle "Statistical Mechanics" [2], Ch. 5 (The Problem of
Phase Transitions) begins with the study of a family of polynomials Pn(z\,...,zn),
introduced by Lee and Yang in 1952 (see also the article [3] by Ruelle for
an update). They have the remarkable property that, for all n, the associated
one-variable polynomial Pn(z) — Pn(z, >>,z) has all its roots on the unit circle.
This property of the zeros of Pn(z) is deduced from the following assertion
on Pn(z\,...9zn):

ifPn(zu...9zn) = 0 and if H g l,..., |zΛ_i| S 1, then \zn\ ^ 1. (1)

Two comments are in order:

- The way (1) is proved by Lee and Yang is by means of complex analysis, and
more precisely by means of "bilinear maps" of the form z —• (az + b)/(cz + d)\
the whole proof looks quite similar to the one given by J.L. Walsh for the so-
called "Walsh's contraction principle" (see J.L. Walsh [4], B. Beauzamy [1]).
This is also the case for more recent proofs, such as Asano's (see [3]).

- No direct proof is known (at least to me) of the fact that the PΛ(z)'s have their
roots on the unit circle (except in a special case, see below). Apparently, one
"has" to go through the "decoupling procedure" Pn(zι,...,zn) in order to ensure
this.

We say that we have a decoupling procedure if we can replace a polynomial
Pn(z) in one variable by a polynomial P(zi,. . ., zn), linear in each zy (not neces-
sarily symmetric), with the property that P(z,...,z) = P(z). The author gave in [1]
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an example of a symmetric decoupling procedure, using Walsh's contraction prin-
ciple, which allows the construction of an algorithm finding the zeros of a complex
one-variable polynomial. Here, the Pn(zι,...,zn) appear as another (non-symmetric)
decoupling procedure of the Pn(z). Since these decoupling procedures appear to be
very efficient tools for the study of one-variable polynomials, it is quite important
to understand them in their full strength: how do they work? To what polynomials
do they apply?

The polynomials introduced by Lee and Yang have one "drawback" (connected
with their physical interpretation): they have real coefficients, though the methods
of study are purely of complex nature. So clearly the study of a general decoupling
procedure based upon these ideas can be made only within the proper frame, which
is that of complex polynomials, and this is what we do here, so as to eliminate all
"artefacts" connected with real numbers.

In some sense, we provide a partial answer to the question raised by David
Ruelle in [3]: why is the Lee-Yang theorem an isolated result? We view it, here,
as one element in the general frame - still to be constructed - of the decoupling
procedures.

I thank Enrico Bombieri for pointing out the reference Ruelle [2] and its possible
connection with Walsh's principle.

1. The Real Lee and Yang Polynomials

We use the notation from Ruelle. Let (Aij)i^j be a family of real numbers such
that — 1 ^ Aij ^ 1, Aij =Ajj, for / = l,...,w, j — 1,...,«. We define

Σ Π Π Ay
s ies jesf

where the summation is over all subsets S = {z'i,..., is} of 1,...,«, zs = ziχ zis,
and S' = {j\,... Jn-s} is the complement of S in 1,...,«. If ^ or S' is empty, the
corresponding coefficient is assumed to be 1.

Thus we have

Pi(zi) = 1 + z i ,

P2(zUZ2) = 1 +^1,2*1 + A2ΛZ2 + ZχZ2 ,

A first remark is that, for n ^ 3, the polynomials Pn(z\,...,zn) are not symmetric.
If we set A\^2 — A2^\ = a, A\^3 = ^3,1 = b, A2y3 = A3^2 = c, then P3( 1,0,0) = 1 +
ab, P 3 (O,l ,θj= l + ' α c .

A second remark is that the statement "Pπ(z) has all its roots on the unit circle"
is wrong in general if we do not assume all the coefficients to be real. Indeed,
consider P2(z\,z2) = 1 + iz\ + /Z2 + Z1Z2, then P2{z) — 1 + 2iz + z2, which does not
have its roots on the unit circle. The fact that all coefficients need to be real for the
proof to work is well-hidden in [2]!
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The polynomials Pn(z\,... ,zn) satisfy the following relation, easily deduced from
the definition:

Pn(z\9...9zn) = znΛnΛ Λ,«-Λ

4- Pn-\(Λnt iZi,. . . ,Λ ) B-iZB-i ) (3)

and they are "reciprocal", in the sense that

Pn(\/zι,...,l/zn)=—!—Pn(zl9...9zn). (4)
Z\'"Zn

We now turn to the complex definition.

2. The Complex Lee and Yang Polynomials

Our starting point will not be an intrinsic definition such as (2), but an induction
relation of the type (3). We observe indeed that Pn(z\,...,zn) is affine in each
variable, so the equation Pn = 0 is equivalent to a relation of the form zn = {Azn-\ +
B)/(Czn-\ + D), where A,B,C,D depend only on zi,...,zΛ_2.

Lemma 1. An expression of the form

. . Az + B
Φ ) = Cz-^D

satisfies \ψ{z)\ = 1 for all z, \z\ = 1, if and only if it can be written

f Λ az + b

bz + a

for some complex numbers a,b,κ, with \κ\ — 1.

This lemma is obvious.

Proposition 2. Assume we have a family of polynomials Pn(z\,... ,zn\ with com-
plex coefficients, satisfying the following induction hypothesis'.

Pπ(zi,...,zn) = znAnΛ - Anfn-ιPn-ι(zι/Aniι9...9zn-ι/Anfn-ι) (5)

Then the conditions

zi| = ••• = |zπ_i| = 1 and Pn(zu...,zn) = 0

imply \zn\ = 1.

(In this proposition, there is no restriction on the Aif/s.)
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Proof. We write αy = Anj, βj = An-\j9 A = αi αrt_2, B = β\ - βn-2 We have

If Pw(zi,...,zw) = 0, we get, substituting in (5):

n

= (6
^ ^ ^ ^

The condition \zn\ = 1 for all zΛ_i, |zM_i| = 1, is equivalent, using Lemma 1, to:

i,... ,Έ~izn^2l βn~2) = κ:α

Pn-2(<X\βlZU ",<*n-2βn-2Zn-2) = K

ABPn-2(zι/θlιβu...9Zn-2/<Xn-2βn-2) = *

This gives the equations

We denote by P the polynomial with conjugate coefficients. Thus we get, since

1
U..., l/<Xn-2βn-2Zn-2) = -=Pn-

^5
^

Pn-2(βl/<*lZl,...,β»-2/<*n-2Zn-2) = —=Pn-
K4

Both formulae follow, with JC = zi zw_2 (which satisfies \κ\ = 1), from the rela-
tion

J>i(zu...9zn) = zι -znPn(l/zu...9l/zn), O)

written for n — 2.
Formula (7) itself is satisfied by P\, and (as one checks easily) follows from

the induction relation (5). This finishes the proof of Proposition 2. We observe that
formula (7) may be considered as the complex analogue of (4).

We may now give an explicit formula for each Pn(zi,...,zπ). Let us construct
the first ones, using the induction formula (5):

+A1Z1Z2 ,

= A\

+^1^2,1^3,1^2^3
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At that stage, the distribution of conjugates Atj looks unclear. Since the induction
(5) reduces to (3) when all coefficients are real, we have obviously

Pn(zu...,zn) = ΣzSΠ Π 4 y . (8)
s ies jes'

where A*j is either Atj or AUj (and A*j = A*j). The choice is made according to
the following rule:

- if A\ is in a term which contains z\, it will be A\, otherwise A\,

- if v4| j is in a term which contains z2, it will be A^i, otherwise A2,\,

- if A\ 1? A\ 2 are in a term which contains z$, they will be A^i, ^3,2? otherwise

^3,1, ^3,2? and so on.

So for instance the term A\A\^A\^z2z^, in P3, will be A\A2^\A^^z2z^ (no zi,
one z2, one z3).

This rule is clear from the induction procedure: if I want to construct, say, P%,
the coefficient ^4,3, for instance, will be met in the construction of P4, and it appears
as ^4,3 with z4, and as A4^ without z4, and these properties will not be modified in
the further stages of the construction.

Until now, as we already said, no assumption has been made on the Λ,/s, and
the sole implication

{ P n ( z u . . . , z n ) = 0 a n d \zλ\ = ••• = \zn-\\ = 1 i m p l i e s \zn\ = 1 }

does not, in itself, guarantee that the contracted polynomial Pn(z) has all its roots
on the unit circle. Indeed, take P2 with A\ = 1, A2,\ = 2: P2{z\,z2) = 1 + 2z\ +
2z2 +ziz 2 , but P2(z) = 1 + 4z + z2 does not have its zeros on the unit circle. The
assumption \Ajj\ ^ 1 will ensure this conclusion.

Proposition 3. Let (Atj) be a family of complex numbers with \Atj\ ^ 1. Then
the complex polynomials Pn(zι,...,zn) defined by (5) or (8) satisfy

IfP,(zi,...,zw) = 0 and \zλ\ ^ l,..., |z,_! | ^ 1, then \zn\ ^ 1. (9)

Proof It is made by induction and follows the lines given by Ruelle. The first
step is for n = 2. If P2(z\,z2) = 0,

A\z\ +AιA2,\ M Z\

The last fraction is of the form f^Jf, with |α| ^ 1, so it is the inverse of a Blaschke

term and satisfies \z2\ ^ 1 if \z\\ ^ 1.
Assume now the property has been proved until n — \ and assume it is false

for n: there are complex numbers z^,...,z^, with

|z?| ύ l,..-,ko_,| ^ 1, | z « | < l , P«(zo

lt...,z°n) = O. (10)

We can assume that in Pn all A,/s satisfy \Aij\ < 1, for the limit cases follow by
continuity.

Fix z\ = zj, . . . ,zw_2 = zj)_2> a n ( i consider the condition
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It determines a correspondence between zn and zn-\ of the form

azn_ι +b
Zn = -—j =φ(zn-l)

czn-ι +d
(the explicit form is given in (6)).

Let us call z\_x the point zn-\ such that φ{z\_λ) — 0. By (5), if zn == 0,

= 0 .

Since l ^ i z j l < \z\\ :g \9...9\Anίn-2Z®_2\ < \z®_2\ ̂  1, this implies, by the induc-

tion hypothesis, that {A^n-iz^l ^ 1, and so \zλ

n_x\ > 1.

So the function φ maps z®_l9 with \z®_λ\ ̂  1 to zJJ, with |zj | < 1, and maps
zl-\9 with lz«-il > 1? to 0. We conclude that there is an intermediate point, say z'n_l9

with \z'n_λ\ = 1, such that the associated zn9 say z'n9 satisfies \z'n\ < 1. This means, in
fact, that we can take \zn-\\ = 1 in (10).

Now, all variables play a similar role (this is clear from the form (8)), so we
can consider the correspondence between zn and zw_2, which will be determined by
a formula similar to (6). The same argument shows that we can take |zn_2| = 1
in (10), and so on: we get finally \z\\ = 1,..., \zn-ι\ — 1? \zn\ < 1? which contradicts
Proposition 2 and finishes the proof.

3. A Simple Proof in a Special Case

There is a case in which a direct proof can be given, of the fact that the polyno-
mials Pn{z) have all their zeros on the unit circle, without using the many-variable
Pn(z\,...,zn). Indeed, if for each n all Anj are equal, say to αΠj the induction rela-
tions (5) and (7) give relations simply on the Pn(z), which are

π i ( W ) ,

K(z)=znPn(l/z).

Assume you have proved by induction that all zeros of Pn-\ are of modulus 1,
and write

.(αΛz - yn-χ),

So,

and

by

(*) =

the

(11),

condition Pn

\~OL~n

- 0 reads

z — -
(XnZ

z-unyx z-QLnyn-\

But each term jzp1- is the inverse of a Blaschke term, so has modulus ^ 1 inside

the unit disk. So equality (12) is possible only for z with |z| = 1.
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4. Where are the Roots of the Complex Lee-Yang Polynomials?

Of course, by what we saw previously, they are on the unit circle. But are there
further restrictions, as it was the case with the real polynomials? The answer is
no:

Proposition 4. For any choice of z\9...9zn9 with \z\\ = = \zn\ = 1, there is a
complex Lee-Yang polynomial Pn9 the zeros of which are exactly z\9...,zn.

Proof The proof will be by induction on w, and, for all «, the Pn we build will
satisfy (as in Sect. 3 above)

AnΛ = •.. = Λ , « - i = ocn , (13)

with now \(xn\ = 1.
For n— 1, the statement is clear. Assume the proposition holds until n — 1. Then,

Eq. (11) reads

So, given z\9... 9zn with \ZJ\ — 1, we choose first an so that |αw | = 1 and — 1/α""1 = zn.
Then, using the induction hypothesis, we choose αi,. . . ,α w _i so that the zeros of
Pn-\(z) are precisely o^z\9...9o^zn-\: so the zeros of Pn_i(3foz) will be zi,...,zn_i.
This completes the proof of the proposition.

5. A Class of Inner Functions in Several Variables

The complex Lee and Yang polynomials, which we just introduced, will allow
us to define a class of inner functions in several complex variables. Indeed, if
pn = 0, — \jzn satisfies l/\zn\ = 1 if \z\\ — \zn-\\ — 1 and l/\zn\ ^ 1 if \z\\ ^
l,.. ., |z n_i| ^ 1. This leads to the following proposition:

Proposition 5. Let Pn(z\9...9zn) be the complex Lee and Yang polynomials defined
above. Let oc\,...,an be complex numbers with |αy | ^ 1. The function

fn(zu...,zn)= -—

is an inner function: it is analytic in D x x D and satisfies

fn(zu...,zn)\ = 1 if\Zι=..' = \zn\ = l.

Proof This is just the expression of —\/zn+\ when Pn+\ — 0, where we have set

For n = 1, we get

A
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which is just a Blaschke term. For n = 2, we get

Axzλz2 + A\A2Λ&λz2 + A\A2Λa2zx

J2(Z\,Z2) = == •—= =
A Έ Έ + A A ΰ + A A o i + A \

and so on. The nth function depends on 1 + uiϋ±-2 complex parameters. We observe
that a zero ( z i , . . . 5 z π ) cannot be too close to ( 0 , . . . , 0 ) : if \z\\ ^ | α i | , . . . , \zn-\\ ^
| α π _ i | , then \zn\ ^ | α π | .
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