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Abstract: We study continuous and discrete spin systems on a lattice with random
interactions of finite range. In particular for sufficiently large interactions we prove
no spectral gap property in the high temperature region. Moreover we show that
in two dimensions, if the temperature is sufficiently high and the probability of
interaction to be large is small enough, we have an almost sure stretched exponential
upper bound for the decay to equilibrium.

1. Introduction

It is known that the spin systems with random interactions can exhibit a rather
unusual behaviour even in the high temperature equilibrium, [21, 13]. This equilib-
rium behaviour has been extensively studied on the rigorous level, (see e.g. [5,18,7,
6,25,20,14,15,...,40] and references given there), and at the moment we have rel-
atively good understanding of the high temperature phase. In particular it is known
that for random spin systems with short range interactions with probability one we
have an exponential decay of correlations with nonrandom characteristic length. The
understanding of the corresponding stochastic dynamics on the rigorous level is much
less advanced, although recently some progress has been made. In the direction of
mean field models, the asymptotics of Langevin dynamics have been investigated
in [2, 3, 4, 23] and have been proven to exhibit unusual non-Markovian features.
For short range models, it has been shown in [39] that the generator of Glauber
dynamics for the Ising type discrete spin systems on Z¢ cannot have a spectral
gap with probability one, if the couplings are allowed to take sufficiently large val-
ues. This is in distinction to nonrandom spin systems where the spectral gap is a
typical feature of the high temperature phase, (see e.g. [1,33-35] and references
given there). The no spectral gap result of [39] has been strongly based on the
finite volume estimates of the spectral gap in the phase transition region obtained
in [37]. In the present paper we extend the result of [39] to systems where weaker
information is available, including an interesting case of continuous spins. Such a
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property suggests that we can no longer expect to have an exponential decay to
equilibrium for local variables. Indeed it has been proven in [39] that for the one
dimensional spin systems with unbounded interactions, for which the couplings sat-
isfy some exponential bound, one has with probability one an upper bound for the
decay to equilibrium in uniform norm for local observables given by a stretched ex-
ponential. More recently, a very interesting result about the high temperature decay
to equilibrium for random spin systems on Z% d = 1 has been obtained in [20].
Using some clever percolation technique, the authors have shown an almost sure
upper bound for the decay to equilibrium which is faster than any polynomial, but
slower than a stretched exponential.

In the present paper we study further the problem of decay to equilibrium in
disordered spin systems with short range interactions, but including also continuous
spin systems. For such systems there is no similar percolation technique available.
We use a strategy, (originated in [24], see also [33-36 and 39]), based on appli-
cation of local hypercontractivity. For such a strategy to work one needs to have a
stochastic dynamics with a good approximation property by finite volume stochastic
dynamics. In Sect.2 we show how to extend the classical construction (used e.g.
in [34 and 27]) to the case when the diffusion coefficients, respectively in the dis-
crete case when the rate functions, are possibly unbounded with probability one. In
general the finite volume approximation can be rather slow. We show however that
there is a large class of interactions with unbounded couplings for which one has an
exponential approximation property up to linear times (in the size of the volume).
Distinguishing this class is important when we want to study non-exponential de-
cay to equilibrium, (although in view of no spectral gap property shown in Sect. 3,
the class of interactions with uniformly bounded but sufficiently large couplings is
already interesting). In Sects.4 and 5 we show that in such class (including un-
bounded couplings) when the dimension of the lattice is two, one has a stretched
exponential upper bound on the decay to equilibrium with probability one in the
high temperature region. This result is true for continuous as well as for discrete
spins. The main technical ingredient is the almost sure control on the growth of
the logarithmic Sobolev coeflicient for finite volume Gibbs measures. It is presented
in Sect. 5, in the discrete setting; the continuous one is easier. We show that this
coefficient is growing in a sublinear way and thus one gets a stretched exponential
upper bound for the decay to equilibrium. As the temperature is increasing one has
less and less stretching and, in the case of unbounded couplings, in the limit when
the temperature goes to infinity, we approach the exponential decay; for bounded
couplings one gets the exponential decay above a finite temperature, which clearly
suggests some dynamical phase transition. We can show that also in some higher
dimensional disordered systems the almost sure upper bound for the decay is faster
than the one obtained in [20]. To keep the size of this paper reasonable, we decided
to present that elsewhere.

The no spectral gap property and the almost sure upper bounds for the decay to
equilibrium suggest that in disordered spin systems there is a qualitative difference
between the decay to equilibrium and the decay of correlations (which in systems
with the finite speed of propagation of information gives us always the lower bound).
It is also known that for the disordered systems in the high temperature region we
have no analyticity properties. This would somehow confirm a hypothesis (advocated
in [34], see also [28, 29, 32]) that the exponential decay to equilibrium in the
uniform norm is related to analytic behaviour of the system.



Decay to Equilibrium in Random Spin Systems 705

1.1. Preliminaries. Let Z? be a d € N dimensional integer lattice with a metric
d(i,j) = Z‘;’:l li* — j*|, j,i € Z¢. By & we denote the family of all finite subsets
of the lattice. Let #y = {4, € F },en be a countable exhaustion of the lattice, i.e.
an increasing sequence of finite sets invading all the lattice. We will assume that
ZFy is a Fisher sequence, [31]. A cardinality (the volume) of a finite set X € &
will be denoted by |X|. Given a positive number R we define an R-boundary of a
set A C Z¢ as follows:

rA={j € A :d(j,A) <R},

where A° = Z%\A and d(j, A) denotes the distance of j from the set A.
Dependent on the context, our single spin space M will be either a finite set
or a smooth, compact, connected (finite dimensional) Riemannian manifold. In the
first and the second situation we will speak about the discrete and continuous cases,
respectively. The typical examples frequently used in statistical mechanics are given
by a two point set {—1,+1} and an N-dimensional unit sphere S¥ c RV*!, re-
spectively. A configuration space of the infinite spin system on the lattice Z¢ is a

product space 2 = MZ’ with a Borel o-algebra X given by the product topology.
Given a finite set X € & we define a projection

Q5 w— oy e MY,

in particular if X = {j} is a single point set, such a projection map is called a spin
at site j € Z¢ and is denoted by o;. Given a set X € &, we define a measurable
mapping

QX3 (w,d)— weydeQ
by setting )
w; ifjeX
@&; otherwise

(0 ox @); = {

In the case when X = {/} is a one point set, we will simplify this notation by
writing @ ¢; @ = w e ;1 @. We introduce also a measurable mapping

M¥ x MY 5 (yx,zxc) = px ox zx € Q

by setting "
yi ifjeX

Ox Zxe); = . .
O ox zxe); {zj otherwise

For A C Z% we define X4 as a smallest g-algebra for which all the spins o/, j € A
are measurable. A set of continuous and bounded measurable functions on (£, %)
will be denoted by € = %(2) and B = B(L2), respectively. By || - ||, we denote the
supremum norm on B. A measurable or continuous real function f on the configu-
ration space is called a local function if there is a finite set ¥ € & such that f is
2y measurable. This means that there is a measurable (or continuous) function @y
on MY such that f(w) = @y(wy). A set of all local continuous and local measur-
able functions will be denoted by %y = %(2) and By = B(L), respectively. For
a given local function f, a smallest set Z € & for which f is X; measurable will
be denoted by A(f) and called a set of localisation of the function f. Frequently
it will be convenient to use the following notation d(f,Y) = d(A(f),Y), where on
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the right-hand side we have the distance between two subsets A(f) and Y of the
lattice Z¢.

By vm we will denote a probability measure on (M, #m) given by a normalised
counting measure or the normalised Riemannian volume corresponding to a given
Riemannian metric, respectively. A product measure py = vl‘azd on (£,2) is called
a free measure. We will use a notation pf to denote an expectation value of
measurable function f and a probability measure u given on the same measurable
space (whenever it is well defined). A covariance of two functions f and g with
the measure u will be denoted by

wf9)=ufg—ufug -

In the configuration space  we have a natural representation (7);cz« of the
group of translations of the lattice given by the following measurable maps:

(Tjo) = wk—j .

We can use it to induce a representation on the space of measurable functions by
setting

(T; /N w) = f(Tjw) .

Given a measurable function f on (£,2), for every configuration w € 2 and a
finite set X € &, we define a function

MY 3y fx(ylw) = f(yox wx).

In the particular case of the one point set X = {j} we use a simplified notation
fiylw) = f(yo; w) = fi;(y|o). In the continuous case, if for every j € Z* and
o, the function f;( - |w) is differentiable, we say that f is differentiable. For such a
function we introduce its gradient V4 f = (V, f)je, With respect to coordinates in
a set A C Z%, where

V,f(a)) = 6ij(x|w)|xzwj

with 0y denoting the gradient operator on the Riemannian manifold M. Using the
scalar product (-|-); associated to the Riemannian manifold M (at site i), we
introduce the square of the gradient V,f by the following formula:

IVaf(w) = Z;l (Vif()|V,f(®)); -
j€

If A = Z?, for simplicity we will omit the corresponding index in the notation of the
gradient. The space of all differentiable functions for which the following seminorm

is finite
A= 22 VSl

jezd

will be denoted by &'. Inductively, we say that a function f is n-times differentiable
if for every finite set X € &, and w € Q the corresponding function fx(-|w) on
MY is n-times differentiable. Frequently we will use also the following abbreviated
notation:

VA = 1IN T
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and

VAT = ViV £ -

In the discrete case we will use a similar notation, with V; denoting the discrete
gradient defined by the formula

Vi f(w) = f(w) —1\£VM(dx)f(x 0j @ j3e) -

Let (J,4%y,IE) be a probability space. A potential is a family @ = (®x )y 5 con-
sisting of measurable functions @y : J x @ — IR, such that:

— for every X € %, the function ®@x(J, - ) is continuous and Xy measurable (i.e.
depends only on the coordinates (w;, j € X)), and

— for every i € Z¢ we have

S @x(d, )l < 0.

XEF
X3i
— The family {®x(-,w),X € #} of random variables is mutually independent
on the probability space (U, %y, E). Moreover, the random variables @y ;( -, T;w)
and ®x(-,w) are identically distributed.

Example A. Let J = {Jx € R}xcz be a collection of mutually independent (possi-
bly unbounded) random variables, such that Jy and Jy,; are identically distributed
for any X € # and j € Z¢. We set

Oy =Jxox, Xe€F,

where ¢ = {¢x}xcs is a nonrandom Gibbsian potential on (2,2) and Jy satisfies
some moment conditions, [38]. In discrete case we would get a random spin-type
interaction by setting ¢px = ox = HieX o, X €F.

Example B. Let M = SV and let J = {Jy € R}xcs be similar as in the previous
example. Let p = {pxy € R}ycs be a sequence such that

lolli =sup > |px| < o0
i€Z4 XeF
X3i

but

loll2=sup > |X]-|px|=o00.
i€Zé XeF
X>i

For a fixed vector v € SV we define

Dy (J,w) = px cos (JX > o v) .

ieX

Here o, and v denote unit vectors in RV*! and the dot the Euclidean scalar product
in RV*!, In the present situation our potential @ is bounded, but the considerations
of [17], (see also [8]), for nonrandom potentials suggest that dependent on the
behaviour of moments of Jxy, X € &, we can have qualitatively different behaviour
at high temperatures. In general one would expect to have unique high temperature
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phase, (but for random variables with variance var(Jy) decreasing slower to zero
than 1/ \/|X_| it is a hard open problem).

In this paper we restrict ourselves to potentials of finite range, i.e. we assume
that there is a positive integer R such that @y = 0 whenever diam(X) = R. Addi-
tionally in the continuous case we assume that the potential is twice differentiable,
in the sense that for every X € & the corresponding function @x(J, -) is twice
differentiable, for every J € J.

Given a potential @, we define interaction energy U, and Hamiltonian H, in a
finite set A, respectively by

UA(J’OJ) = E (DX(J:CU)
XeF
XNA%0

and
HA(J,(D) = Z @X(J,CO) .
XCA
We introduce finite volume Gibbs measures u%® and u J,4 in a finite volume A with
external conditions given by configuration w € Q and with zero boundary conditions,
respectively, by

13 A(f) = f 15 (dx g e PU 2120 £(x 4 0 0 4c)

Z(J)

and

1 A(f) = f pil(dx g)e P30 £ (x )

1
Z (J 0) v
for local functions f, in the second case satisfying A(f) C A, where ué’ denotes
the restriction of the free measure yg to X4.

2. The Approximation Property for Stochastic Dynamics

In the continuous case we define a Markov generator Ly = Lj 4 in a finite volume
A € F by setting
L A= Z Lil ,
iezd
where
L? = Lf,i =4, — Vil 1 V;

with 4; denoting the Laplace—Beltrami operator and

I_Ii,/l = Z ¢X .
XCa
X3i
Note that when the interaction is of finite range R, for any i € A satisfying
d(i, A°) = R we have
LA :L,-EAi~V,-U,--V,».

4

(Whenever the single spin space M have a nonempty boundary dM, one needs
to specify the boundary conditions for the functions in the domain of our Markov



Decay to Equilibrium in Random Spin Systems 709

generator.) Then for any finite set A and any J € J, we have a well defined Markov
semigroup P/ = P} =e™1, We will be interested in the construction and study
of the infinite volume semigroup P; = P} defined formally by an operator
iez?
which is well defined on the dense in %' subset of smooth cylinder functions (sat-
isfying some boundary conditions if 0M is nonempty). Moreover such an operator
is symmetric and nonnegative in IL,(uy) for any Gibbs measure uy corresponding
to the same interactions. (Following [41], one could also consider nonsymmetric
generators. )
In the discrete case we introduce the finite volume generators by a formula

Lp=Lss= axuLxyis
ieA

Lxiif(0) = Lyx+if(0) = pyif — f(o)
and ay; = ay;(J,w) is a positive bounded (but not necessarily uniformly in J

and X + i), Xx.,;-measurable function. Frequently the corresponding case when all
ayy; are equal to one and Zy, ; is called a heat-bath and Monte-Carlo dynamics,

where

respectively. The corresponding finite volume semigroup 9;‘/’/1 = @,J’X’A is well de-
fined for every J € J. We will be interested in the construction and study of an
infinite volume semigroups 9," "X defined formally by a generator
F=Yy= Z &L X+j
jezd

which is well defined on By and as an operator in IL,(uy), with uy being a Gibbs
measure corresponding to the same interaction, is nonnegative and symmetric (i.e.
satisfies the detailed balance condition).

We will need to show that under some suitable conditions the sequence of finite
volume semigroups converges to an infinite volume Markov semigroup, for [E-a.a.
configurations J € J. For further study of the decay to equilibrium we will need
also to have a control on such a finite volume approximation.

Theorem 2.1. Suppose ® = {®Px}xcs is a (smooth) interaction of finite range R
and there is an K > d such that
sup ||V, V;&x|X < c0. 2)
XeF,i,jerd
Then the limit
Plf =lim P} f
0

exists IE -a.e..
Moreover for any cube A, any A € R* and any local function f € €' we have

1Pl f =P £l < D) 1] 3)

provided that d(f,A¢) = L for some sufficiently large constant L = L(A(f),R,J)
and
d(f, Az Ct )

with a constant C € R" dependent on J, A(f) and the choice of A, and with some
0 € (0,1) such that Ké > d.
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Remark. As the formal infinite volume generator Ly given in (1) is a densely
defined nonnegative and symmetric in L,(yy), for any Gibbs measure py corre-
sponding to the same interaction, its Friedrichs extension defines an infinite volume
Markov semigroup, without any extra restrictions on the distribution [E. Such a semi-
group may not be Fellerian and thus a decay to equilibrium in general could not
be discussed on the space of continuous functions. One can make similar remarks
about the discrete case.

Proof. The proof follows a rather standard line, as e.g. in [34, 27]. Additionally
now we need to take care of the IE almost sure behaviour of the nontranslation
invariant interaction.

Let % = {A,}nen be a countable exhaustion of the lattice consisting of a cube
of size n and centred at the origin. We choose in Z¢ a lexicographic order compatible
with &%, which interpolates between consecutive cubes by filling the faces. We
want to show that for any local function f € ' the sequence P;”A" [, Ay € Fy, is
a Cauchy’s sequence in the uniform norm. For this, given finite volume semigroups
P = el = P;]’A'"’, (I =1,2), corresponding to a given configuration J and the
cubes AD = Ay, (I = 1,2), satisfying A C A®), we need to estimate the uniform
norm of the difference Pﬁz) f - P f. Tt will be sufficient to do that in the case when
AM and AP differ by one point. Then we have

t
PR f—PVf = [dsPO(Ly —L))PDf . (5)
0
If A® = AD U {j} we have
(Lo —L)PP f = V;H;» - V;iPDf (6)
where we have set H;» = H; 40. Since
[(Ly = LOPP [l < Vil - VPP £ £ biIViPP 1 (7)
where
bi=| X IVioxl |, (8)
XeF
X3j
we get
t
P2 f = PO £l < b, [ ds| VPP S 9)
0

with {j} = A@\AD. Thus to complete this estimate we need to study V;P{)f for
j € A®. We note that

t
VPP P = PPV + [ dsPE(Lal VPP £ + AV LPP £V, 1)
0

t
< PPV [ + ({ dsP® 2| Ric(V,PP £, VPP 1)

2
+ Zm Hessﬁk) (VPO f,ViPA f)
ke

, (10)
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@ —

H . .
where Hess; Hessjk"‘z). Since under our assumptions we have

Ric(V,PE £, VPO )| < /IV;PD )P (11)
with some ¥ € R* and

XEF

Hess'P (VPP £,V PP f)] < ;( > Hv,-vk@Xn)lijﬁz’fl-lka§2’fl,
X2j,k

(12)

combining with (10) we obtain

t
IIVijz’széllefH2+fdsde Gl ViPAS| - IViPP £ (13)
0 (J,k

with a matrix

G =Gu(N)=2/0; +2 Y |V Vadx]| . (14)
XeF
X3j,k
Whence we get
VP21 < 171 + fds Gl (15)
d(j,k)=

Iterating this inequality and taking into account that V; f = 0 if k & A(f), we arrive
at the following bound:

2
VPP 1| < Sonom, HGk, Vil - (16)
ic ne © koyenkn €A
nzd(j,i) d(ky, k,f) <R
ko lk—]

To proceed further, let us assume that there is an increasing positive function ¢ such
that

Gy = 0(d(k1,0)) = o(RI +d(i,0)), (17)

where we have taken into account that starting from a point i at each step we can
move at most at the distance R. Using this assumption, we see that for j € A\ A®D
we have

" [d(ji)/R] ey
[H] Gh_vky = IH (Rl +d(1,0)) | o(d(j, 0))"~ 1 (18)
= 1

Since the maximal number of walks from the origin to the point j does not exceed
(2R)%", we obtain the following estimate when j € A@\AD:

dyd(ii) [ [d(),i)/R] .
1w s 5 I (1 awi+ o)) | e aciong, g
I€EA(S) d(j,i)! =1
(19)
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Now using this and (9) we arrive at the following bound:

2 1
1P f = POl

1A

((2RYA 1)) (1dCi)/R] . R 10
bj-t- m — Rl + d(i,0)) | e@R 1e@(;,0)) )
/ ieA%?)( d(j,i! 11;[1 o (,0)) /1

(20)

From (20), by induction, for arbitrary sets A,,, 4, € %, we obtain

2R)? )20
pin) ¢ pldn) o b, - «
IPAf =P Sl = 3 byt max

JEAn\An

[d(ji)/R] Lo
><< I1 e(R1+d(z;0))> e<2R”Q<d<f’°”>|||flll. (21)

I=1

d(j,i)!

To complete our estimates and the proof of existence we need the following prob-
abilistic lemma.

Lemma 2.2. Suppose

sup  E||V,V;ox||f < 0 (22)
XeZF,i,jez?

with some K > d. Then there is 6 € (0,1) such that

sup IVirk Vier @x 4kl £ CIN1 +d(k,0))°, (23)
i,j:d(i,0),d(j,i) <R
X :diam(X)<R
and therefore
sup  [|Vik @y il| < Cr(I)(1 + d(k, 0)) (24)
i:d(i, X)<R
X:diam(X)<R

with some constants Cy(J) and Cy(J) dependent only on J € J.

Proof of Lemma 2.2. By simple considerations involving the Tschebyshev inequal-
ity, we see that for any C € (0,00) we have

E{FkeZ'  sup  [ViuVi®xull 2 C(1+d(k0))
i,j:d(i,0),d(ji) <R
X :diam(X)<R
2R42F’
< oK sup E|V,V;&x X S (1 +d(k0))5, (25)
kezd

the series on the right-hand side of (25) being convergent provided that K6 > d.
Since the positive constant C was arbitrary, we conclude that

IVisk Viss @il £ CANT +d(k,0)) E-ae. (26)
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for every k € Z and i € Z%, d(i,k) < R, with some constant C(J) € (0,00). From
this the property (23) easily follows. As M is compact, the inequality (24) is a
consequence of (23). This ends the proof of Lemma 2.2. [

Using the definition of Gj; given in (17) we see that we need to choose the
majorizing function ¢ in the form

o(n) = o(J,n) = 2k + Co(N))(1 + n)’ = G +n)’. (27)

Given this choice and setting N = d(j, /), we see that

((2RY! 1Y) [ [0/ . R a0
t- max { ————— RI+d(i,0 e 2(d(},0))
I€EA(S) ( d(j, i) 1=H1 o (.0))

. Ct)V [ IR
< C4tl+dlamA(f)(—]i[')— ( ll_ll Q(Rl)) exp{(ZR)dtg(N+C6)}

= C(J,A(S)) exp(F(N,1)) (28)

with some positive constants Cs = C4(J, A(f)) and Cs = Cs(J, A(f)) and Cs =
diam(A(f)) + d(f,0), and

F(N,t) < N(logt + C7) + CstN° + Co(logt + log N) — (1 — 5)Nlog N (29)

with some positive constants C; = C7(J, A(f)), Cs = Cs(J,A(f)) and Co =
Co(A(S)) _ -
As a consequence, for any L = L, with some large constant L = L(A(f), ), and
all N = L, we have
F(N,t) £ —At— N, (30)

provided that
Cr<L'70 (31)

with some sufficiently large constant C = C(J,4). From (21) and (24) it is now
clear that for every 4, and A,, with 4, C A4, and d(f,45) = L for some suffi-
ciently large constant L, we have with some constant D(J)

1P f = PP £l < e DA (32)
Thus the sequence {P,(A")}new converges on a dense set of local %' functions uni-
formly on compact intervals to a Markov semigroup P;. The semigroup P; satisfies
also the desired approximation property (3) with time growing with the size of A,
in a sublinear way (1/C)(d(f, A))' 9, for some & € (0, 1), provided the distribution
E of randomness satisfies the appropriate moment condition. This ends the proof of
Theorem 2.1. O

Remark. 1f the moment condition of Lemma 2.2 would be replaced by a finite
expectation of the exponential of the corresponding quantity, we could take 6 = 0,
i.e. in this case we would have the same approximation property as in nonrandom
case.

By similar arguments one can show in the discrete case the following result.
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Theorem 2.3. Suppose & = {®Px}xecs is a (smooth) interaction of finite range R
and there is a K > d such that

sup  [E|jay|* < o0. (33)
XeF,i,jezd

Then the limit
P} f =limp}"f
Fo

exists IE-a.e. Moreover for any cube A, any A € R and any local function f € By
we have

|2 f =22 fllu < e D)1, (34)

provided that d(f,A°) = L for some sufficiently large constant L = L(A(f),R,IE)
and

d(f,4)'7° =z Ct (35)

with a constant C € R* dependent on J, A(f) and the choice of A, and with some
0 €(0,1) such that K6 > d.

3. No Spectral Gap Property
We say that a generator L, as a selfadjoint operator in IL,(u), has a spectral gap iff

_ _ H(f(=Lf))

0 < gap,(L) = gap,, (L) = re 9}1& TR (36)

In this section we show the absence of the spectral gap property, with prob-
ability one, for some spin systems with random interactions at high temperatures.
A similar property has been first proven in [39] in the case of the discrete Ising
model on Z? with nearest neighbour random couplings taking large values with
nonzero probability. In the discrete case the proof given in [39] was strongly based
on the optimal volume dependence of the spectral gap obtained in [37] for an Ising
ferromagnetic model with free boundary conditions. As there is no reason to expect
that such behaviour of the spectral gap will be true in the general continuous case,
(in particular in dimension two if the interaction is invariant with respect to a con-
tinuous group of symmetries), we need to modify our previous strategy. For this
we observe the following simple fact.

Lemma 3.1. For any Gibbs measure p for a local specification & = {u%} sc7,wece
we have

UL _
rea)ri u(f,f) T AeF \ reaL)slt
A(f)C4a

HA(S(=LS))

WS 37)

u
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Proof. For f € P(L) with A(f) C A and f L1, we have

WS-LS)) _ pSU(-LYY) _ ‘u%cfc—Lfd) WS )
uf f) U N N s
K (L))
é‘;wﬂﬁ ) %)

This implies the lemma. [

For our problem it is convenient to consider local functions of the following
form:

S =Shy (39)
J

where ; = T;y, with some local function € Z(L), ¥ +const and a collection of
real numbers A;, j € Z°. In some applications it will be convenient to consider ¥
as a vector valued function. Then one will need also to adjust the interpretation of
squares.

Then, taking into account also the local structure of our Markov generator, we
get the following convenient upper bound for the spectral gap.

Lemma 3.2.
ZjeA hf-/fﬂvjlﬁjlz

ap,(L) < su . (40)
gl = S s )
In the discrete case for single spin flip dynamics we get
gap,(L) < sup Dixrica( Zj,k€X+i LA (/R 7))) (1)
2= e 2k P (W, )
which in the particular case of the single spin flip dynamics gives
e PG (U )
apy () = sup ZLEAHI Wb (42)

o D jes hitig (Wi ) '

Consider now a spin system with random interaction @ = {@x}xcs of finite
range R, on a lattice Z?. Let us recall that the random variable ®x(-,w), X € &%,
w € Q are mutually independent. For any j € Z¢ we define a translation invariant
interaction

3D = () (0) = Ox(J, Tro) ke 2, X 3 j}.

We assume that there is a set ¢ of Gibbsian interactions for which the corresponding
theory satisfies the Dobrushin—Shlosman uniqueness condition [9] and we have

Viezd E{dV) e 0} = po (43)

with pg € (1/2,1) a positive number to be chosen later. In order to avoid the neces-
sity of considering all the boundary conditions when using Lemma 3.1, we observe
the following simple fact ([1, 28]).
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Lemma 3.3. Suppose for f € D(L) we have d(f,A°) > R and ®9) € O for all
j € AN\AS). Then

[UG(f (L)) — WBP(f (L)) £ Ci(f)|oA]e™M4S-47) (44)

and
|4Cf 1) — BEPCS, )] S Ca(f)|0A|e™MaU- 49 (45)

with some constant M > 0 independent of A, [ and d(f,A°), and some constants
Ci(f) and Cy(f) dependent only on the function f (and O); here u5P denotes
a finite volume measure with free, periodic or given by some other configuration,
boundary conditions.

Remark. A similar result remains true in the discrete case.
The final preparatory remark is the following probabilistic lemma.

Lemma 3.4. Suppose for any j € Z¢ and some set O; D O, we have
VieZ® 0< p < E{dV¢& 0} (46)

with some p; € (0,1). Then for any number C € (0,00), with E probability one
for every configuration J € J there exists an infinite sequence of disjoint cubes A,,
n € N, with diam(A,) —,— . 00, for which we have

Vj such that R < d(j,A,) < Clog|A,|, &P e0 (47)

and
Vi€ A, V&0, (48)

Proof. Let us set
OcrogA ={j € A° :d(j,A) < Clog|A[}.

We need only to observe that the probability of an event ./, described by (47) and
(48) satisfies

E{t,} = pi™ pye =™ = (popr)tl. (49)
Thus if
|44 = (Jlog(pop1)]) " logn (50)
then
;E{dn}=oo, (51)

and the conclusion of the lemma follows by the Borel-Cantelli lemma. [

As an interesting example we would like to consider the two-dimensional plane
rotator model with random nearest neighbour interaction, i.e. a model on Z? with
single spin space M = S! and the interaction given by

Oy — {Jij cos(p; — ¢;)  if X = {ij}
J

2
0 otherwise (52)
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with J;; being i.i.d. random variables such that
E{J; €[0,J0)} = po > 0, (53)

where Jy € (0,00) is a value of the coupling for which the corresponding infinite
system is in the Dobrushin—Shlosman uniqueness region, and

E{J.+1>J;>J}=p >0, (54)

where J, > 0 is a coupling for the nonrandom rotator model in the region of the
Kosterlitz—Thouless phase considered in [19].
We will use the lemmata proven above to show the following result.

Theorem 3.5. In the two-dimensional plane rotator model with random nearest
neighbours couplings satisfying (53) and (54), we have

gap,(L) =0, [E-ae. (55)

Proof. According to Lemma 3.4, for any number C > 0, with IE-probability one
there is an infinite sequence of boxes A, with |4,| = (|log pip2|)~" logn, with p,
given by (54), and such that

V{i,j} C Ay Jij € (o, Je + 1) (56)

and
v{i9j} C aClog/ln Jij € [09 +JO) . (57)
Now it is convenient to choose Y to be a vector oy = (081), 0(()2) )=
(cos @, sin @g). In this representation we have
2

d .
|Vjaj|2 = }%(cos @j,sing;)| =1. (58)

We will take #; =1 for j € A, and zero otherwise. Using Lemma 3.3 and (40),
with some large constant C € (0, 00), we obtain the following bound for the spectral
gap of the generator Ly in ILy(uy),

-1
1 -
gapy(Ly) = sup | = 30 K34, U1, (00805 — @) + o4, | L (59)
o \ [l e,

where ,ug’ AyUde g, denotes the finite volume Gibbs measure with free boundary
conditions, and
o(|4,|71) = D| A, [* - e~ MC el (60)

with some positive constant D independent of A, and the choice of C.

Since by our choice of A,’s all the couplings are ferromagnetic, we can use
correlation inequalities of Ginibre, (see e.g. [12] and references given there), to
show that, for any (j,k) € 4, ,ug AnU0 0g 4,(cos(@; — @,)) is an increasing function

of the couplings so that:

1S, Ayt g1 (€OS(0; = Pk)) = 1), 4, (cOS(@; — @) - (61)
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The couplings in the measure on the right-hand side of (60) are all equal to J,, J,
being a sufficiently large positive constant, so that the corresponding infinite system
is in the region of the Kosterlitz—Thouless phase. Therefore we can use the estimate
of [19]

0 o - const )
:ch,An(COS((PJ (pk)) = (1+d(],k))a/J‘ (6 )

with some positive constants a and const independent of j,k € A, and J.. Thence
we conclude that for large boxes A, we have

gap,(Ly) < [A,|7079/2) (63)

Clearly for sufficiently large J. we can have a/2J, < 1. Since |4,| diverges to
infinity with », this implies that the spectral gap of Ly equals zero, [E-a.e. [

The proof allows an extension to many other cases of random systems. We
would like to mention here two simple systems on Z? with discrete spins related to
the ferromagnetic Ising model at the critical point and to the Z, model for which the
Kosterlitz—Thouless phase transition has been shown in [19]. We have the following
result.

Theorem 3.6. Suppose M = {—1,+1} or M ={0,...,n — 1} with some n €N,
n > 1. Let the interaction be given by

&y — { —Jyoio;  if X = {ij} (64)

0 otherwise

or as in the plane rotator model with ¢ € {2nk/n 1k =0,...,n — 1}, in both cases
with Ji; being i.i.d. random variables such that

E{J;; € [0,J0)} = po > 0 (65)
and
E{J;=J.}=p1 >0, (66)

where J. > 0 is a coupling for the nonrandom Ising and Z, model at the critical
point and in the region of the Kosterlitz—Thouless phase, respectively. Then

gap,(£) =0, E-ae., (67)

where ;’Z(JO) is the single spin flip generator.

Remark.

— In the proof for the case of Z, models one has to use the correlation inequalities
of [30] and [19].

— Let us recall that for the ferromagnetic Ising model with nearest neighbours
interactions, one has a spectral gap up to the critical point, [28].
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4. Decay to Equilibrium in Disordered Spin Systems on Z>

In this section we consider (discrete and continuous) spin systems on the two dimen-
sional lattice. We show that under some restrictions on the distribution of random
interaction, (which are typically satisfied in the random spin systems at high temper-
atures), the corresponding stochastic dynamics has with probability one a stretched
exponential upper bound for the decay to equilibrium of local observables. By this
we strengthen the results of [20] concerning the upper bound of decay to equilib-
rium obtained for discrete spin systems. The method of [20] gives a decay for local
observables faster than any algebraic, but much slower than the stretched exponen-
tial. It is based on some disagreement percolation technique and therefore essentially
uses the fact that the single spin space is discrete. Our method is based on the use
of the logarithmic Sobolev inequality and is free of this restriction.

In this section we assume that we are given a random interaction @ = {®x }xcsr
of finite range R > 0, for which a stochastic dynamics considered in Sect. 2,
Theorem 2.3, exists, and which satisfies the following hypotheses.

(H1) For all £ € R we have

Eexp{&[|(J, )i} < o0, (68)

where

189, Dl = X 12x, )l s

XeF
X3j

and in the continuous case

sup Eexp{¢[[ ViV, 8V, - )1} < oo (69)
kj

(H2) There is a small constant Jy > 0 (specified later), such that

0<p = sgp E{ ||9x|l. > Jo} < p2(2,R), (70)

where pf(Z,R) is a clustering coefficient (see Kesten [25] and Lemma 5.4 below).
We consider the stochastic dynamics constructed in Sect. 3 with the following
additional assumption in discrete case:
(HD) For all { € R, we have

sup Eexp{{|(ax+,(J, - )71} < oo. (71)
J

We remark that, as we have seen in Sect. 2, under the conditions IH1 and IHD
we have with probability one the exponential approximation property for the infinite
volume semigroup up to linear time in the size of the finite volume. The condition
IH2 assures that with probability one we have uniqueness and exponential cluster
property for equilibrium measures.

In view of Sect.3 one can have already an interesting situation if the random
interaction is bounded, but can take sufficiently large values with nonzero probability.
The assumptions given above allows us also to include the case when the interaction
is unbounded, but has a moderate growth when we move to infinity.

In this section we prove the following result.
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Theorem 4.1. Suppose the conditions IH1-H2 are satisfied with p; € (0, p,) and
Jo € (0,Jo(p1)) for some p, € (0, p2(2,R)) and Jo(p1) > O sufficiently small.
Then in the continuous case there is 8 € (0,1) such that for any local function
f € €', with E probability one, we have

IPYf = 1Pl £ A, D[] £]] (72)

for all t = T(A(f),J), with some positive random variables C(A(f),J) and
T(A(S),d). Similarly in the discrete case, if also HD holds with { € ({o,0),
for some sufficiently large (o > 0, then we have

122 f = ws(Dlle < CAELDCNNIA (73)

for all t = T'(A(f),d), with some finite positive random variables C'(A(f),J)
and T'(A(S), ).

This result is derived as a consequence of the following interesting property:

Theorem 4.2. Suppose the conditions of Theorem 4.1 are satisfied. Then for any
cube A, =[—n,+n)?, for almost all J € I, there exists a positive integer N(J)
such that, for any n = N(J),

15 4 f2l0g f2 < 205 4 4, (F(—=Lan )+ 154, [P logul 4 f2 (74)
with
e a, < co(J, X)n'? (75)

with some random variable c(J, X) € (0,00) and ¥ € (0,1) both independent of
n, boundary conditions and the function f. The similar result remains true for
conditional measures ug , uniformly in w, as well as in the continuous case with
the corresponding generator Ly 4.

Remark. As it will be clear later from our proof, to be able to bound the logarith-
mic Sobolev constant ¢y 4,, we need that, for a given # € (0,1), a finite C(R) >0

which only depends on R and an ry = 7y where 7y only depends on (pi,#,R),
7o — 0 when p; — 0, we have:

" 44 ‘ 5. pl <)) 3
~rolog C(R) (¢* — 1) + 12inf (2 R - log Elexp{s|[8" 1 + ;) <o0.
Then, to get a growth of order n!~ with some positive constant 1, we need that:
: 5. pl () 3
12inf  2°roR—log E[exp{s||®""|i}]+ =) <1.
s>0 S s

Now we will present the proof of Theorem 4.1, the main result of this sec-
tion, assuming Theorem 4.2 (proof of which is contained in the next section). As
both cases are very similar, we restrict ourselves to the discrete one, giving only
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a brief remark in the place where some modification for the continuous case is
necessary.

Proof of Theorem 4.1. Let f € %' be a local function localised in a cube
Apy = [—n0, +no]?. Let Jo C J be a set of E-measure one such that for every
J € Jy Theorem 2.3 and Theorem 4.2 are true. Then taking A, = [—n, +n]* with
n = ny € N sufficiently large and [Cf] = n — np, so that Theorem 2.3 is true, we
get

|2 f(@)~paf] 1P (@)~ 1 4, FlHNPEY f =P Nt s f =154, f]
< |2} f(w) = 1§ 4 f1+ e MIfII] + e M| £l (76)

for arbitrary chosen 4 € (0,00); the estimate of the last term with some constant
M > 0 independent of J and f has been proven in [6] (see also [18, 7]).Therefore
it is sufficient to bound the first term from the right-hand side. One can do that
using Theorem 4.2 and the idea of [24] (see also [33-36 and 39]). We include a
short proof for the readers’ convenience. First we observe that for any ¢ € (1,00)
we have

1
25 f(0) = 1§ 4, S| = (25" f (@) = 1§ 4, 1)
< Ml o |20 fC) = g 4, A1 ()

(In the continuous case one needs to use the Holder inequality and to run the
semigroup for a unit time to get such an ultracontractivity estimate, [34].) We want
to use the hypercontractivity for a small fraction § € (0,1) of our time, therefore
we choose

g=1+e¥ (78)

with ¢, = ¢j 4,. Using the estimate on cy, 4, given in Theorem 4.2 together with our
assumption about the interaction, it is not difficult to see that with [E probability
one we have
im 213l
im —=2— =

t—o0 | + e29cn - (79)

On the other hand, since Theorem 4.2 implies the hypercontractivity of the semi-
group 2545 = 0, [22], we obtain

5 $] n 'l' Ja $] n l
U5, 4, |25 f ) = 1§ 4, L1 < (54, | PG5S L) = 1§ 4, )2

__(=ox

n (:uJA,,lf( )—#JA,,fI )2

|I/\

lIA

(80)

where we have used the fact that the logarithmic Sobolev inequality with a coefficient
cn = ¢y, 4, implies a spectral gap at the bottom of the operator —3{,{ 4, of size not
smaller than the inverse of that coefficient. Now application of the bound on the
growth of ¢, of Theorem 4.2 together with our choice [Ct] = n — ngy, (which is
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possible by our assumptions about the interaction), and (77)—(80), yields

PP f(0) — paf] < (Co(A(f),T)e™ 5" + e~ + =My ]|

151

< (Co(A(f),)e” @0eT=7 4 g~ 4 o= MICH )| 71|

< A He A (81)

with some positive random variables Co(A(f),J) and C(A(f),d). This ends the
proof of Theorem 4.1. O

5. Almost Sure Local Logarithmic Sobolev Inequality

In this section we prove Theorem 4.2 for the case of conditional measures u%. The
case of free (or periodic) boundary conditions is similar. We will follow closely the
lines of the proof given in [35], only underlying the main points which need to be
changed.

Let {e;}} be the enumeration of {0,1}? in which / = Y7 €22~ Given L € N
(which will be specified later) an element of IN, we set:

I ={(L+2R)e; + 2L +2R)Z2} N A, Y, = {k +[0,2(L + )’} N 4,

A= U X%.

ker,

By construction the corresponding conditional expectation is a product measure
wh = Q uy,
kel

and therefore using the product property for the logarithmic Sobolev coefficients,
[22], we have

€, = sup max, {e(ui)} = sup max, <gg}>§{cw‘ﬁ)}) : (82)

Let Iy denote the identity operator and define inductively
I, =E4, ol,, where A, =A;if m=Imod4,
where E, is an operator defined by
Eqf(w) = pz(f) -
Then we set for any function f and positive integer m,

2
m— m.fm 1
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Using this notation, for any N € N we have

EA[leog( S )JZNEIEA[EA f210g<f—”2’>]+EA[leog< /i )]
TV = A IR ¥R\ Bl

N 2
< 2¢ mgl EAl|VA, ful*1+ Ex [f%v log (Eﬁ%])] ) (83)

We need to estimate every term in the sum on the right-hand side of (83). The
strategy of the proof relies on some sweeping out relations as proved in Lemma 3.14
of [35], that we now recall:

For Y € &, define py : Q% — (0,00) by:

exp{—Uj,y(d oy @)}
Z.(IlfY ’

pr(d|w) =

Next, for j € Y° and x € M, we set

pr(-|xojwgje)
pr(-|w)

b

Ry j(o|x) =

where x o; wy;)- is a configuration in £ which coincides with @ on A\{,} and has
j! coordinate equal to x. Finally, for §+¥ C ¥, define:

R(Y,Y,j) = sup{|E5[Ry,;(- [x))(@") — E7[Ry,;( - | x)](0")] :
x €M and (o, 0") € Q* & |ye = 0|y} . (84)
With this notation we have the following lemma.

Lemma 5.1. For any set Y € & and any positive function f € €' with the prop-
erty that, for each w € Q, the function fy(-|w) is localized in Y\Y, one has
that:

IVi(EYLf2D)F] < 2e™M(Ey[|V,f 12 + E; 0 Ex[|V; f2]7)
+2R(Y, ¥, /) (EyLf, f1)? (85)
where we have set

ha=sup |8, )i . (86)
JjeA

As a consequence of Lemma 5.1, we can bound the terms E,[|V, fu|?] from the
sum on the right-hand side of (83). Indeed, if for X € # we set

w 2
my = inf LY/

3 87
s uRlf f] @7

then, we have:
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Lemma 5.2. For any function f, any nonnegative integer m, any integer r, and
any .] € aRAm-l-la

EAllV fu1P] £ Ci ALV fu 1+ 2 njeaykE;C,fﬁEA[lvifmlzl, (88)
i€y,

Yy CAp
where
Cy= 214g12ha
Y, — — . oo
Cit =2 mg! ., {2%%1 +|0(B;, N Yi)lmy, ' R(Ye, B, N Ve, j)'} if i € By,

= 212e8hAm"1ﬂ(Yk,B~, NYy, ‘)2 otherwise , 89
Y s J
with B;, being the ball of radius r centered at the point j.

Proof. First we observe that by construction there is a unique / € I', such that
J € 0rYy. Let Ay = Ue il Y. Since E 4, is a product measure, we have

frﬁ-;»l = Hm+1f2 = E/lm,1 o EY1[fri] .

Using Lemma 5.1 and the basic observation that j does not belong to the boundary
of A,,; yields

EAlY frs1 ") = EllV(ni1 £2)12] = Eal|V{(En,, © Ev [ f21)? ]
< 2% E L[| Vi(Ey 2D (90)

(In the continuous case the coefficient before the expectation on the right-hand side
would be equal to one.) Next, let » be an integer number and set ¥ = {i € ¥; :

li—jl<r} and F = (Ey[f,ﬁ])%. Then, again by (85), but this time applied to F
and Y =Y, we get:
217212 21y4 12
EA[V{(Ey [fu)* 7] = EaAl|Vi(EY[F ])?[7]
< M EL[|VF 1+ 22 R(Y,, Y, jYEA[Ey,[F, F1]
< %M E[|ViFP1+ 2RV, Y, jYmy E4[|[VyF*]. (91)
At the same time,
EAlIViF[] £ 2¢"MEA[V; ful'1+ 2 (Y, 0,))’m;  E[|Vy '] (92)
and

EAIViFPIS Y (PeMEANVful 14 2R, 0,iYm; E4[[Vy D). (93)
icY\¥

Finally, since it is clear that
(Y, 0,i) < Uep 4™, (94)
it is not hard to deduce Lemma 5.2 from (90), (91), (92), (93). O
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Thus, the crucial point now is to bound the coefficients C;;. For this we need
to bound the spectral gap coefficients my, from below and the quantities # from
above for an appropriate choice of size L of our cubes. This is the subject of the
following subsection.

5.1. Some Almost Sure Bounds. For a positive integer n, let 4 = A" to be the cube
[—n,+n]*. We choose r =r, = rglogn and L = L, = Lologn, with Ly = 23r,, for
some small 7o > 0 to be specified later. When necessary we will use I'}, A}, Y[,
¥ % to denote the sets constructed above with 4 = A", r =r, and L = L,.

We first prove the almost sure bound on the random coefficients

R (1)) = R[], Bjr,.]) -
Bound on #,(1,)).

Lemma 5.3. Suppose the conditions (IH1) and (H2) are satisfied. There exists a
positive function 7o(p1), fo(p1) — 0 when py — 0, a function o = a(Jy) € (0,1),
oa(Jo) — 0 when Jy — 0, and a constant D € (0,00), such that for any ro = Fo(p1),
for any Jy small enough, for any ¢ € (0,1), for almost every J € I there exists
N(J) €N, so that for any n = N(J), any | € UgI'}, we have:

%;0(1,]-) < De4h4n o logn < Dt logn . (95)

Proof. Let Y C Y be finite subsets of Z? and recall that from the definition of Ry,
we have

(xo,w{j}c )

Ry j(wlx) = % expq— | 2 Px(Jxojwp) = Px(J,o)
Y oot

Hence for any j € drY,

R(Y,Y,j) < 28 sup{

Ey [exp {X%X (Px(w) — Px(x o) w{j}c))}]

_E);

X:jex

exp { > (Px(d) — Px(x o, ca{,‘}C))H ‘

:x €M and (0, ) € Q2 Olye = (Z)lyc}.

Furthermore, ZXZjeX(d?X(w)—q?X(x o; wy 1)) is localised in B; z CB;,, for large n.
Thus, using clustering properties in the small couplings regions proven in [6] (see
Theorem 2.1), one finds that

RY,Y,j) < 4" S T] s (96)
wew(j,Y) XeW

where #°(j,¥) denotes the set of the connected paths W = (Xi,...,X,) of (mutu-
ally different) sets intersecting ¥ with diameter less than R and such that JEX,
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X, N X1 %0, ¥'NX,+0 and

et —1 if |dx| £ Jp .
Yx = .
1 otherwise .

Using our assumption IH1 about the interaction we have the following simple almost
sure bound on the first factor from the right-hand side (96):

by < ;logn (97)

with any ¢ € (0,1) for all sufficiently large n (dependent on J). Thus we need
only to get an almost sure bound of the sum from the right-hand side of (96)
in the case where ¥ =¥ and ¥ = B;,, N Y;. As observed in [6] this boils down
to showing that with probability one in every term [y, 7x a large number of
factors is smaller than one. This is the content of the following lemma (stated in any
dimension).

Lemma 5.4. Let

. . #HX e W: |ox, . £ S}
)= We«/}}g,B,,r) #HX e W} ’

Then, for any n€(0,1), there exists a positive function 7( p1,n,d), Fy(p1,m,d) — 0
when py — 0, such that, for any ry 2 7](p1,1,d):

IE{ n u {jnf 2j(ro logn) %ﬂ}}=1,

keN nzk LJEA"

provided that p; = supy B{||®x||, = Jo} < p’(d,R) with some p’(d,R) € (0,1)
sufficiently small.

In the special case R = 1 this is a result of Kesten [25]. A proof of Lemma 5.4
will be given below (only for the readers’ convenience, as the idea is similar to the
one in [25]). Now we can use it to complete the proof of Lemma 5.3 as follows.
By Lemma 5.4 we have with probability one for n sufficiently large an estimate

1
M= ¥ CR(EM -1 £ m—pna™,
WeWw(j,B,,)XEW ,g[:%] aR(1 — af)
where
1
a= (CR) (M —1)T)*
with some constant C(R) € (0,00) dependent only on the range of the interaction

(for a given dimension of the lattice). This together with (97) implies the desired
estimate of Lemma 5.3. [

Now we prove Lemma 5.4.
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Proof of Lemma 5.4. We will show that the opposite event has probability zero,
i.e. that for some # € (0,1), we have

kEN n=k

IE{ N U{EljeA”:ij(r,,)<77}}:O. (98)

For this, using the definition of A;(r) and that the interaction is of finite range R,
we observe that for a given # € (0,1), we have:

E {1;(r) <n}

= IE{HXI,...,Xk ] € XXM X +0, X NBS, +0k 2 [2] XK+,

k
; Lgyf,>s = (1 n)k} .

Since with some constants C(R,d) € (0,00)
#H3X1,.., X 1 j € X, XN X +0,X NB, +0) < C(R,d)",
using the Tchebyshev inequality, for any positive real number 4, we have:
E{(r)<n} < ¥ C(Rd)e "k (sup IE[eA‘"“’x"PJo])k - (99)
k=[5 X
But, if p; = E{||®x||, > Jo},

sup E[e!1ext=n] = e p +1— p; .
X

As a consequence, if p; is small enough, we can pick # and 4 so that:
A(4) = AR, p1,4,n) = CR)(e" pr + 1 — pp)e 070 <1,

For example, if p; <2C(R), and if we choose 4 = —log p;, we get that, for any #:

A= A(—log p1) = C(R,d)p, "2 — p1) < 2C(R,d)p, ", (100)
which is smaller than 1 if # is small enough. Using (99) we get
Y E{3jeA": di(rologn) <n} < E |A"|AF (101)
neN A(l n€]N
Since by our choice |A"| = (2n + 1)¢ and r, = rylogn we get

SSE{ed:i<n}<oo, (102)
neN
provided that
%OlogA—l—d<—1. (103)

This clearly can be satisfied when p; is small enough. Now, if (103) is true, we
can use the Borel-Cantelli lemma to conclude that (98) is true. This concludes the
proof of Lemma 5.4. O
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Remark. 1f p; <(1/2C(R,d)), it follows from (100) that, for any # in (0, 1), such

that 2C(R,d)p}_" < 1, we can choose ry as any real number in (7o( p;), +00) with
R(d+1)

—log2C(R,d)p, ™"

Fo = Fo(p1,1,d) =
It is clear that 7y(p;) goes to zero when p; — 0. O

Bound on the spectral gap coefficients. We will show the following almost sure
lower bound for spectral gap:

Lemma 5.5. There exists a positive constant t such that:

]E{U N {Vk eUrimy = exp(—rlogn)}} =1
1

N n=N

and

E { UN{veaA mg, = eXp(—‘Elogn)}} =1.

N n=N

Remark. One can choose
. PR =(J) 3
€ | inf [ 2°RLo— log E[exp(s||@ " '||)] + = |, +o0 | .
s>0 S N

We remark that we can choose 7 = 1(Ly) — 0 as Ly — 0.

Proof. We first recall the standard spectral gap lower bound: For any w € Q and
any cube ¥ we have

—1
: 1y IVr fI?
inf = ————— = | |V[supexp | 8 @ , (104)
fELZJfA:‘.(IUY) :uJ,Y(f9f) | | icY Xﬂ;:}:(?) “ X”u
/

where V" = {j € ¥, : |j1 —i1] £ R}. We have also the following large deviation
estimate.

Lemma 5.6. There exists a finite constant 1, such that:

]E{U ON {Vk € LIJF7,L,2, sup exp (8 > ||<I>X||u> < exp(rlogn)}} =1.

N n ieYA” XOVun4(

Proof. Indeed, by Borel Cantelli’s Lemma, it is enough to show that:

> E {Elk eIy, L2 sup exp <8 > |]<PX||,,> > exp(tlogn)} <00
n /

ieyl\" XNven£(
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for some constant 7 € (0,00). But, Tchebyshev’s inequality implies that for any
s>0:

) exp(tlogn)
r 8 Pxlle | > T oan
IE{Hk €Urt, su eXp< > ol > ~ Wologny }

ey XNV

< const.(log n)*n* exp{(—st + 4RL, log E[exp(8s“d~5(j)||1 ) logn},

where we used in the last line the fact that |V»"| < 2R(2Lologn + 2R) and the
invariance by translation of the law of ||(§(J)||1;
independent of n € N. '

As a consequence, if we choose T > 22RL,! log E[exp{s||<1~5(j)||1}] + 2, for some
s, we get Lemma 5.6. Using Lemma 5.6 and the standard spectral gap lower bound
we obtain the first point of Lemma 5.5 with the constant 7 given in Lemma 5.6.

It is clear that we can apply the same strategy to prove the second point of
Lemma 5.5. O

const denotes a positive constant

5.2. Almost Sure Local Logarithmic Sobolev Inequality. As a consequence of
Lemmas 5.2, 5.3 and 5.5 we get the following estimate:

Lemma 5.7. Suppose (IH2) is true with some sufficiently small Jy € (0,00). Then
for almost every coupling J, there exists an integer N(J), so that for any

n =2 N(J), any integer m and any j € 04, and all functions [ € €,

it|li—j| Srologn

Ep[|Vi(p /)2 ] < Ky { S Ep[|ViIT, )

Loolen EAH[W,-(nmfz)%lz]},

i'li—j|<2Lo log n+3R

where
K, = 214Del6hAne‘[logn(1 + 2Rr IOgI’lO("O lognerlogn) . (105)

We now follow the end of the proof of (3.13) given in [35]. With Ly = 237,
by induction we find that:

Lemma 5.8. For almost every coupling J, there exists an integer number N(J)
such that, for any n 2 N(J), any j € 0A%., and for all functions f € €', we
have

Ep[[Va(Maf?)1[] < EEn[|Var ], (106)

where
Z, = (4K, (2Lo log n + 3R))'2o/0 08" | (107)

Now suppose that ryloga + 127 <0, i.e. if Jy is small enough so that there exists
an 1 >0 and a s > 0 such that:

1 - 3
ronlog(e*® — 1) + 12 <22RL0§ log E[exp{s||®||;}] + ;> <0, (108)
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and so =, € (0,1). Then we find that, for n large enough:

[

Z ExllVanaful'l < 775 X EnllVafal’). (109)

m=4 ~n m<

But we can also use Lemma 5.7 to see that, when m < 3:

EA"[IVA"fmlz] é KnEA"[lvA"fm—llz] (110)
so that, again by induction, we conclude that for »n large enough:
1 1+K;
2 EnlVau ()] £ 37— Enl|Va 1. (111)
m=0 — ~n
Hence (83) applied with A = A" and L = L, = [Lylogn], gives that
En [fz log ( i 5 )] < EpEpl|Va fI, (112)
En[f?]
where s
1+ K
R o (113)

=n
Finally, we can bound the logarithmic Sobolev coeflicient ¢, in terms of the spectral
gap coefficients on the cubes Y;' and of the logarithmic Sobolev coefficient ¢y on
(M, vm) as follows.

Lemma 5.9.

1 (i -
c,, < sup ¢ 2co+ —2 sup ||¢(])||%|Yk|co + sup ||d5(j)||1|Yk| +1
keur; Myr xey, JEYx

< CR)(1 + ¢o)(1 + g )(1 + (logn)?)etloe” (114)
for a finite constant C(R).
Now let us recall that for large n,
hp < glogn

with arbitrary small ¢ € (0,1). Let us note also that all the positive constants
o= ay), ro = ro(p1), Lo =23 and the constant 7 = 1(p;) can be made arbi-
trarily small by choosing p; sufficiently small. Therefore, using the formula for K,
Z, and ¢;,, we conclude that there is a constant ¥ = 9(Jy, p1) — 0 as Jo, py — 0
such that for all n = N(J) we have

& < C(IHN? (115)

with some positive constant C(J). In particular by choosing Jy >0 and p; >0
sufficiently small, we get the bound given above satisfied with ¥ € (0,1). Now
taking into account the assumption (IHD), which implies the almost sure bound on
the growth of a}li, one easily arrives at the result of Theorem 4.2 with

cpn=cpp = CH n?

with some positive constant C(J) independent of n € IN. This ends the proof of
Theorem 4.2. [
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