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Abstract: We study the relation of the adiabatic curvature associated to scattering
states and the scattering matrix. We show that the curvature of the scattering states
is not determined by the scattering data alone. However, for certain tight binding
Hamiltonians, the Chern numbers are determined by the S'-matrix and are given
explicitly in terms of integrals of certain odd-dimensional forms constructed from
the scattering data. Two examples, which are the natural scattering analogs of Berry's
spin 1/2 magnetic Hamiltonian and its quadrupole generalization, serve to motivate
the questions and to illustrate the results.

I. Introduction

In this paper we study how the adiabatic curvature and Chern numbers of scattering
states are related to the scattering matrix. One motivation comes from the theory
of quantum transport where the adiabatic curvature, Chern numbers, and scattering
data are all related to notions of conductance. (In the quantum Hall effect, the Hall
conductance is related to a Chern number [13, 3]; in mesoscopic networks the charge
transport is related to the adiabatic curvature [1]; the Landauer theory of quantum
transport expresses the conductance in terms of scattering data [8].) Our aim is to
study this chain of relations from a general perspective and without specific reference
to quantum transport.

We shall consider local deformations of quantum Hamiltonians that are associ-
ated with a scattering situation and have a band of absolutely continuous spectrum.
We study the adiabatic curvature associated with this band. We shall not consider
deformations that "act at infinity".

As we shall see, the ^-matrix alone does not determine the adiabatic curvature.
This may not be surprising, since even for potential scattering in one dimension
the scattering matrix alone does not determine the scattering potential (one needs to
know certain norming constants associated with bound states) [9]. On the other hand,
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and this may well be more remarkable, for a class of tight binding Hamiltonians
the scattering data does determine the Chern numbers. Specifically, we construct a
2k -f- 1-form $k from the ^-matrix and its first derivatives. Integrating s^ over energy
gives a closed 2A;-fornι whose cohomology class is the kih Chern class of the bundle
of scattering states.

The classical studies of vector bundles are concerned with finite dimensional
fibers. Scattering situations give rise to bundles with infinite dimensional fibers which
arise from the consideration of all the scattering states that lie in a band of energies.
The geometry comes about by studying how these infinite dimensional subspaces
of a fixed Hubert space rotate as the Hamiltonian is deformed. Our results can be
phrased as stating that the scattering data determine the topology of such bundles,
but not their curvature.

In Sect. II we introduce some notation, recall the definition of the adiabatic cur-
vature and some of its elementary properties, and define the forms •$>. In Sect. Ill we
describe two key examples, the natural scattering analog of Berry's spin Hamiltonian,
where the scattering bundles have nontrivial curvatures and Chern numbers. In Sec-
tion IV we give a family of examples that show that the adiabatic curvature cannot
be computed from the S-matrix. In Sect. V we state hypotheses on tight binding
Hamiltonians under which the forms s> compute kth Chern numbers. This is the
main result of this paper. We also show how these Chern numbers are related to
numerical indices associated to level crossings of the S-matrix. Section VI is the
proof of the main theorem, as stated in Sect. V. In Sect. VII we consider some ex-
ceptional cases. Finally, we include two appendices. The first reviews scattering in
tight binding models. The second describes elements of the Chern-Weil theory of
characteristic classes for bundles with infinite dimensional fibers.

II. The Adiabatic Curvature

Let X be a space of parameters with local coordinates y = ( j/i, . . . , v). Let P(y)
be a family of orthogonal projections that depends smoothly on y G X. We shall
assume throughout that dP is Hubert-Schmidt, i.e. Tr \djP\2 < oo for all j. Range(P)
is a vector bundle over X with a natural connection also known as the adiabatic
connection. The resulting curvature, the adiabatic curvature, is the operator valued
2-form:

F(P) = - i PdP Λ dPP

, djP]P dyt Λ dyj . (2.1)
l^/<7^/

Associated to F(P) are real valued (closed) 2A>forms ω^(P) defined by

p} (2 2)

We shall denote by Ck(Σ,P) the periods of ω^CP) associated with a closed 2k
dimensional manifold Σ £ X. These are closely related to the kth Chern numbers
and are topological invariants.1 For scattering states we need to consider situations
where P is infinite dimensional.

1 More precisely, c^ is the &th Chern number plus certain products of lower Chern numbers. We are
typically interested in the lowest nonvanishing Chern classes, whose periods are exactly Ck
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Now let S(y) be a family of unitary operators, depending on y, acting on a fixed
finite-dimensional vector space. Let the αth eigenvalue of S be exp(/0α), and let Pα

be the projection onto the corresponding eigenspace. We define the 2k + 1-form

Sk(y) = ^-Σ,dθΛ/\ ω*(Pα) . (2.3)
2π α

In scattering situations, the S-matrix depends on energy and on the parameters gov-
erning the system. The form sk is then a 2k + 1 form on energy x parameter space.
The relation of ω^(P) and Ck(Σ,P) to the scattering data and •$>, where P is the
spectral projection on the scattering states, is the subject of this work.

Although F(P) is not linear in P9 it turns out that ω^(P) has certain linearity
properties in P9 which we shall use in studying the curvature of scattering states.
What we need is summarized by:

Proposition 1. Let P be a family of smooth orthogonal projections, with dPP
Hubert-Schmidt, and Pj_ = 1 - P, then

1. dP and PdPP± are also Hilbert-Schmidt.
2. cθk(P) and ω^(l — P) are well defined and finite for all natural k. Further-

more,
ωk(P) = -ωk(l-P). (2.4)

3. Let Q be a second orthogonal projection with dQ Hilbert-Schmidt and with
PQ = QP = 0. Then

ωι(P + β) = ωι(P) + ωι(β). (2.5)

Proof. Since P = P2, dP = PdP + dPP and PdPP = 2PdPP = 0. Thus PdP =
PdPP±_ and

djP = P(djP)P± + P±(djP)P , (2.6)

which implies statement 1. Consequently,

(djP)(dkP) = P(djP)P±(dkP)P + P±(djP)P(dkP)P± . (2.7)

The product of two Hilbert-Schmidt operators is trace class [12], so F(P) and F(P±)
are trace class and ω^(P) and ω^(l — P) are well-defined. To derive Eq. (2.4) note
that

- i P±dP± Λ

= - / dP±P Λ PdP_L

= -idPP/\PdP. (2.8)

Now, with A = dPP and B = PdP, the commutativity of trace and anticommutativity
of forms gives:

Tr(A Λ B)k = Tr[(A Λ B)k~l(A Λ B)]

= - Tr[B f \ ( A / \ B)k~l Λ A] (2.9)

from which Eq. (2.4) follows. To prove Eq. (2.5), use the algebraic identity

F(P + β) = F(P) + F(β) - ίCC] - iC^C , (2.10)
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where C = (dQ)P. Since TrC& = - TrC^C by the commutativity of trace and
anticommutativity of forms, Eq. (2.5) follows.

Remark. For & φ l , a>k(P + Q) is not, in general, the sum of ω^(P) and
For example, for k = 2,

F2(P + β) = ̂ V) ~ ίί^CPλ ctc> - C fCC fC + (terms with (β C) <-> (p, C f)) ,

(2.11)
so

β) = ω2(P) + ω2(Q) - ~ Tr(F(P)&C + F(β)CCt) . (2.12)

However, we shall see that Ck(Σ,P + Q) does equal Ck(Σ,P) -f Ck(Σ9 Q).

It sometimes happens that symmetry, in particular time-reversal symmetry, forces
certain periods to equal zero. We recall [2]

Proposition 2. Suppose P commutes with an antίunίtary operator. Then

0. (2.13)

The example below gives the curvature of certain families of infinite dimensional
projections. This example will play a role in Sect. IV.

Example 1. Let X = R2, let Λ(x) be a fixed, smooth real- valued function, and let
U(a,b) be a two parameter family of unitary operators on Z2(R) associated with
gauge transformations and translations:

(U(a,b)ψ)(x) = exp(ι bΛ(x - a))ψ(x - a) . (2.14)

Consider the projections P(a,b) = U(a9b)QU^(a,b), with Q a fixed projection such
that Tr Q(-Δ + Λ2)Q < oo. We compute

2πωι(P) = da/\db Tr(QΛ'Q + [QΛQ, βVβ])

= da/\dbTrQΛ'Q. (2.15)

We have used the fact that Tr[A,B] = 0 if A and B are Hubert-Schmidt. If Λ' is a
non-negative function of x then Tr QΛ'Q ^ 0. For A(x} = x, the curvature for finite
dimensional projections is actually a positive integral multiple of the area form:

2πωι(P) = da/\db TrP . (2.16)

It follows that for A' > 0 and P finite dimensional, the adiabatic curvature is a
positive, increasing function of P. If P has finite codimension, then Eq. (2.4) says
that the curvature is a negative increasing function of P. This is peculiar. Finite
codimensional projections are clearly "larger" than finite dimensional projections,
and the adiabatic curvature increases with P, so how can the curvature be positive
for finite dimensional projections and negative for finite codimensional projections?
A useful analogy, where something similar happens, is negative temperatures in
canonical ensembles; energy is an increasing function of temperature, but ensembles
with negative temperature have more energy than those with positive temperature.
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A key feature of the forms ω^ is that their periods are topological invariants.
This is a result of Chern-Weil theory, as discussed in Appendix II. In particular,
we have the following

Proposition 3. Let P be a family of orthogonal projections such that dP is
Hilbert-Schmidt, and let Σ be a (smooth) closed 2k dimensional surface in pa-
rameter space. Then

ck(Σ,P) = fωk(P) (2.17)
Σ

is a topological invariant of P. If Q is another orthogonal projection with PQ = 0
and with dQ Hilbert-Schmidt, then

ck(Σ,P + β) = ck(Σ9P) + ck(Σ,Q). (2.18)

If k = 1, or if the first k — 1 Chern classes of P vanish on Σ, then Ck(Σ,P) is an
integer, the kih Chern class of P applied to Σ.

III. Examples-Scattering of Spinning Particles

In this section we describe two fairly natural scattering problems where the bundles
of scattering states have nontrivial curvatures and Chern numbers. The question of
recovering the curvature and Chern numbers from the scattering data is therefore not
an empty question. It turns out that the two examples of this section also fall into
the wider class that we shall introduce in Sect. V, for which we show that the Chern
numbers can be recovered from the scattering data. We use these two examples to
illustrate how this procedure works.

Consider an electron with spin 1/2 on a semi-infinite chain with the site at
the origin coupled to an adiabatically rotating magnetic field B. In this example the
S-matrix turns out to be essentially the Hubert transform of Berry's spin Hamiltonian,
so it may be viewed as playing the analogous role in scattering situations.

Let h(B) — B σ + \B\, with σ the triplet of Pauli matrices. Consider the tight

binding Hamiltonian H(B) on the non-negative integers:

(H(B)ψ)(n) = ψ(n + 1) + ψ(n - 1) + δrf>h(B)ψ(n) , (3.1)

where ψ(n) G C2 and ^(-1) = 0.
The spectrum is an interval if \B\ ̂  1/2 (and is absolutely continuous) and it

is an interval and a point if \B\ > 1/2. Namely,

Spec(H(B))= r , i i i ι (3 2)

The bound state for \B\ > 1/2 has an exponentially localized wave function

,n) = (2\B\Γ"u , (3.3)

where u G C2 is an eigenvector of B σ with eigenvalue \B\. Let P be the projection
onto the scattering states; Tr(P) = oo. Pj_ = 1 — P is the projection onto the bound
state with Tr(P_\_) ^ 1. P± is smooth away from \B\ = 1/2 and we can use Eq. (2.4)
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to compute the adiabatic curvature of P. The parameter space in this example is
three dimensional, so only ω\(P) may be different from zero. Using for example
the explicit computation in [3] for a single spin 1/2 electron in a magnetic field,
one finds:

P L )= (3.4)
\-(\/2)dArea if \B\ > 1/2 ,

where dArea is the area form on the unit sphere \B\ = 1. Integrating the curvature
on a 2-sphere S2 enclosing the origin in the 3 -dimensional space of magnetic fields
gives the first Chern number for the bundle of scattering states P:

The on-shell scattering matrix at wave number k is the 2 x 2 matrix (see
Appendix I)

S(k,B) = — (3.6)v ; h(S) - i/z
where z — exp ik, 0 ^ k ^ π. Let PQ j denote the two spectral projections for the
S matrix. The corresponding eigenvalues (related to the phase shifts) and adiabatic
curvatures are:

expί0o(A,£) = -z2, expιθι(*,£) = -(2\B\ -z)/(2\B\ - 1/z) , (3.7)

= -(\/2)dArea . (3.8)

We now consider the 3-form 5*1 defined in Eq. (2.3). In this example,

Sl(k,B) = -(dθQ Λ ωitftf) + dθl Λzπ

= A(rf0ι - ^0o) Λ dArea . (3.9)
8πz

Now let ̂  = (Θ/(A: = π) - ^-(A: = 0))/2π. We refer to // as the winding of θ. From
Eq. (3.7) we compute

ί l for |̂ | < 1/2;
^0 — I? '\ = \ -+ (3.10)

\ 0 for \B\ > 1/2 .

For \B\ φ 1/2, by integrating the 3-form s\ over A: we recover ω\(P\ as given in
Eq. (3.4). By integrating s\ over energy x S2 we recover the Chern numbers.

The spin 1/2 example is a basic paradigm for adiabatic curvature of scat-
tering states in situations where time reversal invariance is broken. In systems
with time reversal invariance, the abelian curvature ω\(P) vanishes identically, by
Proposition 2, and only the even forms a>2n(P) are interesting. A basic paradigm
for a non-abelian adiabatic curvature is a spin 3/2 particle interacting with an adia-
batically varying quadrupole field (for details, see [2]).
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Consider a spin-3/2 particle on a semi-infinite chain interacting with a quadrupole
at the origin. That is, let

= ψ(n + 1) + ψ(n - 1) + δ^ h(Q)\l/(n) , (3.11)

where ψ(n) G C4, ψ(-l) = 0 and

Σ βyV (3-12)

Q is a real, symmetric, traceless 3 x 3 matrices and {J/} are the usual angular
momentum operators and \Q\2 = \ Tr(Q2). The parameter space associated with
unit quadrupoles is a 4-sphere of the form \Q\ — 1.

The spectral analysis of H(Q) shows that the spectrum is an interval if \Q\ ^ 1/2
and an interval and a point if \Q\ > 1/2. More precisely

[-2,2] if Igl < 1/2

! } i f i e ι > ι / 2 . <3 13>
The main difference with the spin 1/2 example is that the multiplicity of the con-
tinuous spectrum is now 4, rather than 2.

The bound state, with spectral projection P±, is doubly degenerate and has cur-
vature c02CPj_) which is 3/(8π2) the area form on the 4-sphere [2]. The scattering
states, with spectral projection P, have the complementary curvature by Eq. (2.4).
Consequently

£K; ,,,4,

where dVol is the volume form of the unit 4-sphere. For the Chern numbers, which
are now integrals of the curvature on the 4-sphere one has

/2;
2 (3-15)

The on-shell scattering matrix at wave number k is now the 4 x 4 matrix (see
Appendix I)

where, as before, z — exp ik, 0 ^ k ^ π. It has two eigenvalues

exp/θ0(*,β) = -z2, expi0,(*,β) = -(2|β| -z)/(2|β| - 1/z) , (3.17)

each of which is two-fold degenerate. Let PQ'J denote the two spectral projections
for the S matrix. The corresponding adiabatic curvatures are:

ω2(PJ) = -ω2(Pf ) = -j^dVol . (3.18)

Consider now the 5-form s2(k, Q), defined in Eq. (2.3). By integrating s2 over k
we recover 012 of the scattering states, and by integrating 5-2 over energy x S4 we
recover 02.
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At this stage, the fact that in both examples the adiabatic curvatures ω/ have been
recovered from the scattering data might appear to be a coincidence. We shall see
in Sect. V that the dependence of Chern numbers on scattering data (by integrating
forms such as s\ and ^2) is a general phenomenon. However, the recovery of the
forms ωz pointwise is indeed a coincidence and is a consequence of the rotational
symmetry of these examples.

IV. Curvature is not Computable from Scattering Data

Here we construct examples that show that ωi of the scattering states need not
be computable from the S-matrix. In these examples ωi of the scattering states is
nonzero, but the on-shell S-matrix is independent of one of the parameters, so s\ is
identically zero.

Let V be any reasonable perturbation of the Laplacian in one dimension such
that there is a good scattering theory and one or more bound states. For example,
let V be a short range potential on the line. Consider the family of Hamiltonians

H(a,b) = U(a,b) (-4j + v) U\a,b) = ί-i^- - bΛ'(x - a)] + V(x - a) ,
\ ax J \ ax J

(4.1)

where U is as in Eq. (2.14). Let y — (k9a,b) and let ψy be a solution of the differ-

ential equation (H(a,b) — k2)ψy = 0. Since ι//y = £/(0, 6)1^,0,0 we have, in the limit
#| — » oo,

ιl/y(x) = e/M(±00V*,o,o(* - «) - (4.2)

From this and the definition of the on-shell S-matrix (see appendix I), we see that

bΔΛ

(4'3)

where ΔΛ = Λ(oo) — Λ(— oo). In particular, if Λ(oo) = Λ(—oo)9 the S-matrix is
independent of b. Since curvature is a property of pairs of variables and only one
parameter affects S, S cannot see any curvature.

Now let Q be the projection on the (finite dimensional) subspace of bound states
of H, and suppose that Tr Q(-Δ + Λ2)Q < oo. Let P = 1 - Q. P is the projection
on the (positive energy) scattering states. From Proposition 1 and Example 1 we
have that

2πωι(P) = -2πωι(β) = - da Λ db Tr QΛ1 'Q . (4.4)

Since A can be chosen independently of V9 and hence of Q, we can easily arrange
for Tr QΛ'Q to be nonzero. For example, we can take

{ I \x\<L;

-1 \x-2L\<L\ (4.5)

0 otherwise ,

for a large value of L. ΔΛ = 0, so S sees no curvature, but Tr QΛ'Q — > rank(Q)ή=0
as L — > oo.
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V. Chern Numbers are Computable from Scattering Data

In this section we describe the main result of this paper. We give sufficient conditions
for the scattering data to determine the Chern numbers of the scattering states.
When these conditions hold, the Chern numbers are given by explicit integrals of
odd-dimensional forms s>. The proof is deferred to Sect. VI.

We shall consider a class of scattering problems which we describe below. We
shall assume various properties, some of explicit nature, and some about spectral
and scattering properties. The scattering problems discussed in Sect. Ill can be seen
to satisfy all the assumptions.

Let X be a manifold with coordinates {yj}. Consider the family of (self-adjoint)
Hamiltonians on the positive integers

(H({y})ψ)(n) = ψ(n + l) + ψ(n- 1) + Σ^CMW^) , (5.1)
m

where ψ(n) <G <CN

9 ψ(-l) = 0, hmn = h\m, and hnm = 0 if either n >M or m >M.
Such models can be thought of as describing a spin (N — 1 )/2 particle on a half
line reflected and scattered by h. Alternatively, one may consider a spinless par-
ticle moving on N semi-infinite chains with cross links in a finite ball. In either
picture there are precisely N scattering channels. We shall assume that h depends
smoothly on y.

We first recall some elementary facts about the spectral properties of such
Hamiltonians. The band of scattering states (i.e. the absolutely continuous spectrum)
is the interval [—2,2] and has multiplicity N. The rest of the spectrum is made of a
finite number of eigenvalues. Those outside the interval [—2,2] have exponentially
localized eigenfunctions, while embedded eigenvalues have eigenfimctions of com-
pact support. We shall denote by P the spectral projection on the scattering states.
Clearly Tr(P) = oo.

It is convenient to parameterize the energies by the wave vector k with k G / =
[0, π]. For notational convenience, we let yo = k. We set Y = I x X.

In order to even begin to ask geometric questions about the bundle of scattering
states we need to assume certain spectral properties. In particular, the bundle P is
smooth on X if its complement, Pj_ is. This is the case if no eigenvalues dissolve
or get absorbed into the continuum as y changes.

In addition, in order to discuss geometric issues associated with the scattering
data we need to assume certain things about the on-shell ^-matrix. The on-shell
S-matrix S(y) is an N x N matrix which, we assume, is unitary and depends
smoothly on all variables y. The phase shifts, θa(y), are the arguments of the
eigenvalues of S and α G l,...9N. A priori the determination of the phase shifts
involves two ambiguities. One is that phases are determined modulo 2π and a sec-
ond is associated with the assignment of the index α. In order to fix a determination
we need to discuss eigenvalue crossings.

We assume that S(y) has, at most, level crossings on a set Z of codimension
2k + l,k ^ 1. This implies that Y/Z has the same fundamental group as X, so, once
we fix a determination of phases and indices at a single surface k$ x X, there is
a unique continuation to all points of X/Z. We shall, in fact, determine the phase
shifts and the labels α at one energy k$.

In ordinary potential scattering theory it is customary to determine the phase
shifts by the condition that the phase shifts are zero at infinite energy. In tight-
binding models there are no infinite energies, and the natural analog is to fix the


