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Abstract: We study the relation of the adiabatic curvature associated to scattering
states and the scattering matrix. We show that the curvature of the scattering states
is not determined by the scattering data alone. However, for certain tight binding
Hamiltonians, the Chern numbers are determined by the S'-matrix and are given
explicitly in terms of integrals of certain odd-dimensional forms constructed from
the scattering data. Two examples, which are the natural scattering analogs of Berry's
spin 1/2 magnetic Hamiltonian and its quadrupole generalization, serve to motivate
the questions and to illustrate the results.

I. Introduction

In this paper we study how the adiabatic curvature and Chern numbers of scattering
states are related to the scattering matrix. One motivation comes from the theory
of quantum transport where the adiabatic curvature, Chern numbers, and scattering
data are all related to notions of conductance. (In the quantum Hall effect, the Hall
conductance is related to a Chern number [13, 3]; in mesoscopic networks the charge
transport is related to the adiabatic curvature [1]; the Landauer theory of quantum
transport expresses the conductance in terms of scattering data [8].) Our aim is to
study this chain of relations from a general perspective and without specific reference
to quantum transport.

We shall consider local deformations of quantum Hamiltonians that are associ-
ated with a scattering situation and have a band of absolutely continuous spectrum.
We study the adiabatic curvature associated with this band. We shall not consider
deformations that "act at infinity".

As we shall see, the ^-matrix alone does not determine the adiabatic curvature.
This may not be surprising, since even for potential scattering in one dimension
the scattering matrix alone does not determine the scattering potential (one needs to
know certain norming constants associated with bound states) [9]. On the other hand,

* Research supported in part by an NSF Mathematical Sciences Postdoctoral Fellowship and Texas
ARP Grant 003658-037

** Research supported in part by GIF, DFG and the Fund for Promotion of Research at the Technion



686 L. Sadun, J.E. Avron

and this may well be more remarkable, for a class of tight binding Hamiltonians
the scattering data does determine the Chern numbers. Specifically, we construct a
2k -f- 1-form $k from the ^-matrix and its first derivatives. Integrating s^ over energy
gives a closed 2A;-fornι whose cohomology class is the kih Chern class of the bundle
of scattering states.

The classical studies of vector bundles are concerned with finite dimensional
fibers. Scattering situations give rise to bundles with infinite dimensional fibers which
arise from the consideration of all the scattering states that lie in a band of energies.
The geometry comes about by studying how these infinite dimensional subspaces
of a fixed Hubert space rotate as the Hamiltonian is deformed. Our results can be
phrased as stating that the scattering data determine the topology of such bundles,
but not their curvature.

In Sect. II we introduce some notation, recall the definition of the adiabatic cur-
vature and some of its elementary properties, and define the forms •$>. In Sect. Ill we
describe two key examples, the natural scattering analog of Berry's spin Hamiltonian,
where the scattering bundles have nontrivial curvatures and Chern numbers. In Sec-
tion IV we give a family of examples that show that the adiabatic curvature cannot
be computed from the S-matrix. In Sect. V we state hypotheses on tight binding
Hamiltonians under which the forms s> compute kth Chern numbers. This is the
main result of this paper. We also show how these Chern numbers are related to
numerical indices associated to level crossings of the S-matrix. Section VI is the
proof of the main theorem, as stated in Sect. V. In Sect. VII we consider some ex-
ceptional cases. Finally, we include two appendices. The first reviews scattering in
tight binding models. The second describes elements of the Chern-Weil theory of
characteristic classes for bundles with infinite dimensional fibers.

II. The Adiabatic Curvature

Let X be a space of parameters with local coordinates y = ( j/i, . . . , v). Let P(y)
be a family of orthogonal projections that depends smoothly on y G X. We shall
assume throughout that dP is Hubert-Schmidt, i.e. Tr \djP\2 < oo for all j. Range(P)
is a vector bundle over X with a natural connection also known as the adiabatic
connection. The resulting curvature, the adiabatic curvature, is the operator valued
2-form:

F(P) = - i PdP Λ dPP

, djP]P dyt Λ dyj . (2.1)
l^/<7^/

Associated to F(P) are real valued (closed) 2A>forms ω^(P) defined by

p} (2 2)

We shall denote by Ck(Σ,P) the periods of ω^CP) associated with a closed 2k
dimensional manifold Σ £ X. These are closely related to the kth Chern numbers
and are topological invariants.1 For scattering states we need to consider situations
where P is infinite dimensional.

1 More precisely, c^ is the &th Chern number plus certain products of lower Chern numbers. We are
typically interested in the lowest nonvanishing Chern classes, whose periods are exactly Ck



Adiabatic Curvature and the S-Matrix 687

Now let S(y) be a family of unitary operators, depending on y, acting on a fixed
finite-dimensional vector space. Let the αth eigenvalue of S be exp(/0α), and let Pα

be the projection onto the corresponding eigenspace. We define the 2k + 1-form

Sk(y) = ^-Σ,dθΛ/\ ω*(Pα) . (2.3)
2π α

In scattering situations, the S-matrix depends on energy and on the parameters gov-
erning the system. The form sk is then a 2k + 1 form on energy x parameter space.
The relation of ω^(P) and Ck(Σ,P) to the scattering data and •$>, where P is the
spectral projection on the scattering states, is the subject of this work.

Although F(P) is not linear in P9 it turns out that ω^(P) has certain linearity
properties in P9 which we shall use in studying the curvature of scattering states.
What we need is summarized by:

Proposition 1. Let P be a family of smooth orthogonal projections, with dPP
Hubert-Schmidt, and Pj_ = 1 - P, then

1. dP and PdPP± are also Hilbert-Schmidt.
2. cθk(P) and ω^(l — P) are well defined and finite for all natural k. Further-

more,
ωk(P) = -ωk(l-P). (2.4)

3. Let Q be a second orthogonal projection with dQ Hilbert-Schmidt and with
PQ = QP = 0. Then

ωι(P + β) = ωι(P) + ωι(β). (2.5)

Proof. Since P = P2, dP = PdP + dPP and PdPP = 2PdPP = 0. Thus PdP =
PdPP±_ and

djP = P(djP)P± + P±(djP)P , (2.6)

which implies statement 1. Consequently,

(djP)(dkP) = P(djP)P±(dkP)P + P±(djP)P(dkP)P± . (2.7)

The product of two Hilbert-Schmidt operators is trace class [12], so F(P) and F(P±)
are trace class and ω^(P) and ω^(l — P) are well-defined. To derive Eq. (2.4) note
that

- i P±dP± Λ

= - / dP±P Λ PdP_L

= -idPP/\PdP. (2.8)

Now, with A = dPP and B = PdP, the commutativity of trace and anticommutativity
of forms gives:

Tr(A Λ B)k = Tr[(A Λ B)k~l(A Λ B)]

= - Tr[B f \ ( A / \ B)k~l Λ A] (2.9)

from which Eq. (2.4) follows. To prove Eq. (2.5), use the algebraic identity

F(P + β) = F(P) + F(β) - ίCC] - iC^C , (2.10)
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where C = (dQ)P. Since TrC& = - TrC^C by the commutativity of trace and
anticommutativity of forms, Eq. (2.5) follows.

Remark. For & φ l , a>k(P + Q) is not, in general, the sum of ω^(P) and
For example, for k = 2,

F2(P + β) = ̂ V) ~ ίί^CPλ ctc> - C fCC fC + (terms with (β C) <-> (p, C f)) ,

(2.11)
so

β) = ω2(P) + ω2(Q) - ~ Tr(F(P)&C + F(β)CCt) . (2.12)

However, we shall see that Ck(Σ,P + Q) does equal Ck(Σ,P) -f Ck(Σ9 Q).

It sometimes happens that symmetry, in particular time-reversal symmetry, forces
certain periods to equal zero. We recall [2]

Proposition 2. Suppose P commutes with an antίunίtary operator. Then

0. (2.13)

The example below gives the curvature of certain families of infinite dimensional
projections. This example will play a role in Sect. IV.

Example 1. Let X = R2, let Λ(x) be a fixed, smooth real- valued function, and let
U(a,b) be a two parameter family of unitary operators on Z2(R) associated with
gauge transformations and translations:

(U(a,b)ψ)(x) = exp(ι bΛ(x - a))ψ(x - a) . (2.14)

Consider the projections P(a,b) = U(a9b)QU^(a,b), with Q a fixed projection such
that Tr Q(-Δ + Λ2)Q < oo. We compute

2πωι(P) = da/\db Tr(QΛ'Q + [QΛQ, βVβ])

= da/\dbTrQΛ'Q. (2.15)

We have used the fact that Tr[A,B] = 0 if A and B are Hubert-Schmidt. If Λ' is a
non-negative function of x then Tr QΛ'Q ^ 0. For A(x} = x, the curvature for finite
dimensional projections is actually a positive integral multiple of the area form:

2πωι(P) = da/\db TrP . (2.16)

It follows that for A' > 0 and P finite dimensional, the adiabatic curvature is a
positive, increasing function of P. If P has finite codimension, then Eq. (2.4) says
that the curvature is a negative increasing function of P. This is peculiar. Finite
codimensional projections are clearly "larger" than finite dimensional projections,
and the adiabatic curvature increases with P, so how can the curvature be positive
for finite dimensional projections and negative for finite codimensional projections?
A useful analogy, where something similar happens, is negative temperatures in
canonical ensembles; energy is an increasing function of temperature, but ensembles
with negative temperature have more energy than those with positive temperature.
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A key feature of the forms ω^ is that their periods are topological invariants.
This is a result of Chern-Weil theory, as discussed in Appendix II. In particular,
we have the following

Proposition 3. Let P be a family of orthogonal projections such that dP is
Hilbert-Schmidt, and let Σ be a (smooth) closed 2k dimensional surface in pa-
rameter space. Then

ck(Σ,P) = fωk(P) (2.17)
Σ

is a topological invariant of P. If Q is another orthogonal projection with PQ = 0
and with dQ Hilbert-Schmidt, then

ck(Σ,P + β) = ck(Σ9P) + ck(Σ,Q). (2.18)

If k = 1, or if the first k — 1 Chern classes of P vanish on Σ, then Ck(Σ,P) is an
integer, the kih Chern class of P applied to Σ.

III. Examples-Scattering of Spinning Particles

In this section we describe two fairly natural scattering problems where the bundles
of scattering states have nontrivial curvatures and Chern numbers. The question of
recovering the curvature and Chern numbers from the scattering data is therefore not
an empty question. It turns out that the two examples of this section also fall into
the wider class that we shall introduce in Sect. V, for which we show that the Chern
numbers can be recovered from the scattering data. We use these two examples to
illustrate how this procedure works.

Consider an electron with spin 1/2 on a semi-infinite chain with the site at
the origin coupled to an adiabatically rotating magnetic field B. In this example the
S-matrix turns out to be essentially the Hubert transform of Berry's spin Hamiltonian,
so it may be viewed as playing the analogous role in scattering situations.

Let h(B) — B σ + \B\, with σ the triplet of Pauli matrices. Consider the tight

binding Hamiltonian H(B) on the non-negative integers:

(H(B)ψ)(n) = ψ(n + 1) + ψ(n - 1) + δrf>h(B)ψ(n) , (3.1)

where ψ(n) G C2 and ^(-1) = 0.
The spectrum is an interval if \B\ ̂  1/2 (and is absolutely continuous) and it

is an interval and a point if \B\ > 1/2. Namely,

Spec(H(B))= r , i i i ι (3 2)

The bound state for \B\ > 1/2 has an exponentially localized wave function

,n) = (2\B\Γ"u , (3.3)

where u G C2 is an eigenvector of B σ with eigenvalue \B\. Let P be the projection
onto the scattering states; Tr(P) = oo. Pj_ = 1 — P is the projection onto the bound
state with Tr(P_\_) ^ 1. P± is smooth away from \B\ = 1/2 and we can use Eq. (2.4)
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to compute the adiabatic curvature of P. The parameter space in this example is
three dimensional, so only ω\(P) may be different from zero. Using for example
the explicit computation in [3] for a single spin 1/2 electron in a magnetic field,
one finds:

P L )= (3.4)
\-(\/2)dArea if \B\ > 1/2 ,

where dArea is the area form on the unit sphere \B\ = 1. Integrating the curvature
on a 2-sphere S2 enclosing the origin in the 3 -dimensional space of magnetic fields
gives the first Chern number for the bundle of scattering states P:

The on-shell scattering matrix at wave number k is the 2 x 2 matrix (see
Appendix I)

S(k,B) = — (3.6)v ; h(S) - i/z
where z — exp ik, 0 ^ k ^ π. Let PQ j denote the two spectral projections for the
S matrix. The corresponding eigenvalues (related to the phase shifts) and adiabatic
curvatures are:

expί0o(A,£) = -z2, expιθι(*,£) = -(2\B\ -z)/(2\B\ - 1/z) , (3.7)

= -(\/2)dArea . (3.8)

We now consider the 3-form 5*1 defined in Eq. (2.3). In this example,

Sl(k,B) = -(dθQ Λ ωitftf) + dθl Λzπ

= A(rf0ι - ^0o) Λ dArea . (3.9)
8πz

Now let ̂  = (Θ/(A: = π) - ^-(A: = 0))/2π. We refer to // as the winding of θ. From
Eq. (3.7) we compute

ί l for |̂ | < 1/2;
^0 — I? '\ = \ -+ (3.10)

\ 0 for \B\ > 1/2 .

For \B\ φ 1/2, by integrating the 3-form s\ over A: we recover ω\(P\ as given in
Eq. (3.4). By integrating s\ over energy x S2 we recover the Chern numbers.

The spin 1/2 example is a basic paradigm for adiabatic curvature of scat-
tering states in situations where time reversal invariance is broken. In systems
with time reversal invariance, the abelian curvature ω\(P) vanishes identically, by
Proposition 2, and only the even forms a>2n(P) are interesting. A basic paradigm
for a non-abelian adiabatic curvature is a spin 3/2 particle interacting with an adia-
batically varying quadrupole field (for details, see [2]).
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Consider a spin-3/2 particle on a semi-infinite chain interacting with a quadrupole
at the origin. That is, let

= ψ(n + 1) + ψ(n - 1) + δ^ h(Q)\l/(n) , (3.11)

where ψ(n) G C4, ψ(-l) = 0 and

Σ βyV (3-12)

Q is a real, symmetric, traceless 3 x 3 matrices and {J/} are the usual angular
momentum operators and \Q\2 = \ Tr(Q2). The parameter space associated with
unit quadrupoles is a 4-sphere of the form \Q\ — 1.

The spectral analysis of H(Q) shows that the spectrum is an interval if \Q\ ^ 1/2
and an interval and a point if \Q\ > 1/2. More precisely

[-2,2] if Igl < 1/2

! } i f i e ι > ι / 2 . <3 13>
The main difference with the spin 1/2 example is that the multiplicity of the con-
tinuous spectrum is now 4, rather than 2.

The bound state, with spectral projection P±, is doubly degenerate and has cur-
vature c02CPj_) which is 3/(8π2) the area form on the 4-sphere [2]. The scattering
states, with spectral projection P, have the complementary curvature by Eq. (2.4).
Consequently

£K; ,,,4,

where dVol is the volume form of the unit 4-sphere. For the Chern numbers, which
are now integrals of the curvature on the 4-sphere one has

/2;
2 (3-15)

The on-shell scattering matrix at wave number k is now the 4 x 4 matrix (see
Appendix I)

where, as before, z — exp ik, 0 ^ k ^ π. It has two eigenvalues

exp/θ0(*,β) = -z2, expi0,(*,β) = -(2|β| -z)/(2|β| - 1/z) , (3.17)

each of which is two-fold degenerate. Let PQ'J denote the two spectral projections
for the S matrix. The corresponding adiabatic curvatures are:

ω2(PJ) = -ω2(Pf ) = -j^dVol . (3.18)

Consider now the 5-form s2(k, Q), defined in Eq. (2.3). By integrating s2 over k
we recover 012 of the scattering states, and by integrating 5-2 over energy x S4 we
recover 02.
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At this stage, the fact that in both examples the adiabatic curvatures ω/ have been
recovered from the scattering data might appear to be a coincidence. We shall see
in Sect. V that the dependence of Chern numbers on scattering data (by integrating
forms such as s\ and ^2) is a general phenomenon. However, the recovery of the
forms ωz pointwise is indeed a coincidence and is a consequence of the rotational
symmetry of these examples.

IV. Curvature is not Computable from Scattering Data

Here we construct examples that show that ωi of the scattering states need not
be computable from the S-matrix. In these examples ωi of the scattering states is
nonzero, but the on-shell S-matrix is independent of one of the parameters, so s\ is
identically zero.

Let V be any reasonable perturbation of the Laplacian in one dimension such
that there is a good scattering theory and one or more bound states. For example,
let V be a short range potential on the line. Consider the family of Hamiltonians

H(a,b) = U(a,b) (-4j + v) U\a,b) = ί-i^- - bΛ'(x - a)] + V(x - a) ,
\ ax J \ ax J

(4.1)

where U is as in Eq. (2.14). Let y — (k9a,b) and let ψy be a solution of the differ-

ential equation (H(a,b) — k2)ψy = 0. Since ι//y = £/(0, 6)1^,0,0 we have, in the limit
#| — » oo,

ιl/y(x) = e/M(±00V*,o,o(* - «) - (4.2)

From this and the definition of the on-shell S-matrix (see appendix I), we see that

bΔΛ

(4'3)

where ΔΛ = Λ(oo) — Λ(— oo). In particular, if Λ(oo) = Λ(—oo)9 the S-matrix is
independent of b. Since curvature is a property of pairs of variables and only one
parameter affects S, S cannot see any curvature.

Now let Q be the projection on the (finite dimensional) subspace of bound states
of H, and suppose that Tr Q(-Δ + Λ2)Q < oo. Let P = 1 - Q. P is the projection
on the (positive energy) scattering states. From Proposition 1 and Example 1 we
have that

2πωι(P) = -2πωι(β) = - da Λ db Tr QΛ1 'Q . (4.4)

Since A can be chosen independently of V9 and hence of Q, we can easily arrange
for Tr QΛ'Q to be nonzero. For example, we can take

{ I \x\<L;

-1 \x-2L\<L\ (4.5)

0 otherwise ,

for a large value of L. ΔΛ = 0, so S sees no curvature, but Tr QΛ'Q — > rank(Q)ή=0
as L — > oo.
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V. Chern Numbers are Computable from Scattering Data

In this section we describe the main result of this paper. We give sufficient conditions
for the scattering data to determine the Chern numbers of the scattering states.
When these conditions hold, the Chern numbers are given by explicit integrals of
odd-dimensional forms s>. The proof is deferred to Sect. VI.

We shall consider a class of scattering problems which we describe below. We
shall assume various properties, some of explicit nature, and some about spectral
and scattering properties. The scattering problems discussed in Sect. Ill can be seen
to satisfy all the assumptions.

Let X be a manifold with coordinates {yj}. Consider the family of (self-adjoint)
Hamiltonians on the positive integers

(H({y})ψ)(n) = ψ(n + l) + ψ(n- 1) + Σ^CMW^) , (5.1)
m

where ψ(n) <G <CN

9 ψ(-l) = 0, hmn = h\m, and hnm = 0 if either n >M or m >M.
Such models can be thought of as describing a spin (N — 1 )/2 particle on a half
line reflected and scattered by h. Alternatively, one may consider a spinless par-
ticle moving on N semi-infinite chains with cross links in a finite ball. In either
picture there are precisely N scattering channels. We shall assume that h depends
smoothly on y.

We first recall some elementary facts about the spectral properties of such
Hamiltonians. The band of scattering states (i.e. the absolutely continuous spectrum)
is the interval [—2,2] and has multiplicity N. The rest of the spectrum is made of a
finite number of eigenvalues. Those outside the interval [—2,2] have exponentially
localized eigenfunctions, while embedded eigenvalues have eigenfimctions of com-
pact support. We shall denote by P the spectral projection on the scattering states.
Clearly Tr(P) = oo.

It is convenient to parameterize the energies by the wave vector k with k G / =
[0, π]. For notational convenience, we let yo = k. We set Y = I x X.

In order to even begin to ask geometric questions about the bundle of scattering
states we need to assume certain spectral properties. In particular, the bundle P is
smooth on X if its complement, Pj_ is. This is the case if no eigenvalues dissolve
or get absorbed into the continuum as y changes.

In addition, in order to discuss geometric issues associated with the scattering
data we need to assume certain things about the on-shell ^-matrix. The on-shell
S-matrix S(y) is an N x N matrix which, we assume, is unitary and depends
smoothly on all variables y. The phase shifts, θa(y), are the arguments of the
eigenvalues of S and α G l,...9N. A priori the determination of the phase shifts
involves two ambiguities. One is that phases are determined modulo 2π and a sec-
ond is associated with the assignment of the index α. In order to fix a determination
we need to discuss eigenvalue crossings.

We assume that S(y) has, at most, level crossings on a set Z of codimension
2k + l,k ^ 1. This implies that Y/Z has the same fundamental group as X, so, once
we fix a determination of phases and indices at a single surface k$ x X, there is
a unique continuation to all points of X/Z. We shall, in fact, determine the phase
shifts and the labels α at one energy k$.

In ordinary potential scattering theory it is customary to determine the phase
shifts by the condition that the phase shifts are zero at infinite energy. In tight-
binding models there are no infinite energies, and the natural analog is to fix the



694 L. Sadun, J.E. Avron

phase shifts at the thresholds of the absolutely continuous spectrum. In order to do
that we assume that the S-matrix approaches —1 at the bottom of the (absolutely
continuous) spectrum, and set

To assign indices α near the bottom of the spectrum we assume

> (5 3a)

with A({yi}) smooth, Hermitian, matrix-valued function that has no level crossings
in X. (Compare also [7] which discusses threshold behavior in potential scattering).
This allows us to fix a determination by assigning α to the phase shift according to
the order of the eigenvalue of A. By continuity (using standard facts from analytic
perturbation theory) we have a unique determination of the phases and their labels
throughout X/Z.

In tight-binding models the bottom and top of the continuous spectrum play
similar roles, and therefore together with Eq. (5.3a) we assume also

S(yo, {yt}) + 1 = i(yo ~ π)T({yί}) + O((y0 - π)2) , (5.3b)

with T({yι}) smooth, Hermitian, matrix- valued function that has no level crossings
in X. Other limiting values for the S-matrix occur when threshold states exist at
yQ = 0 or jo — π In Sect. VII we shall discuss an extension of Theorem 1 below
to situations where Eq. (5.3a) and Eq. (5.3b) fail.

Theorem 1. Let P be the infinite dimensional spectral projection on the scattering
states for the Hamiltonian (5.1), where X is a closed and smooth 2k manifold, with
k ^ 1. Suppose that the on-shell S-matrix is smooth and has eigenvalue crossings
on a set Z of codimension 2k + 1 and near threshold has the form (5.3a) and
(5.3b). Let

*k(y) = ̂ Σ dθΛ(y) Λ ωk(P*} , (5.4)
2π α

where ωn(P^) is the adiabatίc curvature associated with the αth spectral projection
of the on-shell S-matrix. Suppose sk(y) = 0(|dist(.y,Z)|~2*), y e Y = / x X. Then
Ck(X,P) is determined by scattering data:

(5.5)

The proof of this theorem is based on a one-to-one correspondence between scatter-
ing states and eigenstates of the on-shell ^-matrix. This correspondence is enough
to recover topological information such as Chern numbers. It is not sufficient to
recover local geometric information such as curvature. The proof of Theorem 1 is
deferred to the next section.

Remark. In general, only unitary invariant properties of the on-shell S-matrix have
physical significance [4]. Equation (5.5) implies that the adiabatic curvature for the
scattering states is given by

(5.6)



Adiabatic Curvature and the S-Matrix 695

where χ is an undetermined exact form. The form cθk(P) is physically significant,
yet fj Sk is not invariant under unitary transformations of S. The phase shifts θa are

unitary invariants, but the curvatures of projections for the ^-matrix, ω^CPf), are
not. For example, under the transformation S —> U^SU, Pf — > U^P^U and

+ d Tr(P^dU) . (5.7)

It follows that fjSk(y) is not invariant under jμ-dependent unitary transformations,
and requires a basis-dependent correction χ. The cohomology class of /7 ,s>, however,
is defined independent of basis.

When X is 2-dimensional (or when we are studying a 2-dimensional surface
Σ in X) the generic level crossings occur at isolated points in 7. We associate
numerical indices to these level crossings, as follows:

Index. Let z7 be a crossing point for the α and β eigenvalues of the ^-matrix with
0 < yo < π. Let 2πn(zj) = θa(zj) — θβ(zj). The index is defined to be

Index(zj) = n(Zj)cι(S2(zj)9PΪ) , (5.8)

where S2(zj) is a small sphere centered at z/. For a generic crossing, this index is
±1 [1, 12].

Proposition 4. The first Chern number of the scattering bundle is given by

cι(Σ,P)= E Index(zj) + 'Σ^cι(Σ,P^), (5.9)
0 < (zj )o < π α

where c\(Σ,P%) is the Chern number associated with the αth spectral projection of
the hermitίan matrix T(yt) of Eq. (5.3a) and 4 = (θα(π) - θα(0))/2π.

Remark. If the ^-matrix has no eigenvalue crossings, the first term on the rhs of
Eq. (5.9) is absent. Furthermore, in the absence of level crossings, two windings 4
and fβ can differ by at most one. Since ^ac\(Σ,P^) = 0, the second term on the

rhs of Eq. (5.9) is bounded by Σα \c\(Σ9P^)\.

Proof of Proposition 4 (given Theorem 1). Since ω(P) is closed, dθ/\ω(P) =
d(θω(P))9 so

2π / Sl(y) =
Y/{Z}

(5.10)

By Prop. 1, ωι(P£) + ω\(PJ) = ω^(P^ +PJ). Since Pα

5 + PJ is smooth near the

α, β level crossing the /h crossing contributes

I + θβ(y)ω(PJ)) = 2πn(zj) f ωι(PΪ). (5.11)
C2

This gives the first sum on the rhs of Eq. (5.9). By our normalization θα(0, y^y-i) =
— π. Since Σα

ω(^α) — ^» me integral over 0 x Z vanishes. Now 0α(π,.Vι,.y2) =
π(2/α — 1). Since the spectral projections for S(π — 0, y) and T(y) coincide, the
integral over π x Σ gives the second term on the rhs of Eq. (5.9). D
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VI. Proof of Main Theorem

This section is a proof of Theorem 1 given the hypotheses in Sect. V. We shall first
prove Eq. (5.5) for the first Chern number and then outline how the general case is
treated.

By assumption our scattering "potential" h is supported on a disk of radius M
for some integer M.

Now pick an integer L ^> M and apply a Dirichlet condition at L. If L is chosen
large enough, this causes only a small change in the wavefunctions of the bound
states, and their curvatures are only slightly deformed. Since the Chern numbers
of the bound states are topological invariants, this implies that they are unchanged.
Thus the Dirichlet condition at L also does not change the Chern class of the
complementary part of the spectrum, corresponding to the energy interval [—2,2].

The cutoff at L breaks the system up into two noninteracting subsystems. The
exterior states, supported on {n > L}, have absolutely continuous spectrum and are
completely independent of {>>/}. These states contribute nothing to the curvature and
are henceforth ignored. The interior states, supported on {n < L}, have a discrete,
in fact finite, spectrum. This spectrum contains small perturbations of the discrete
eigenvalues of the original problem, plus a number of new eigenvalues between —2
and 2. Since the space of states supported on {n < L} is a subspace of the original
Hubert space, by the variational principle the number of eigenvalues below —2 for
the system cut off at L cannot exceed the number for the original unregularized
system, namely the number of bound states with energy below —2. Since each of
these states remains, there can be no others. Similarly, new states with energy greater
than 2 cannot appear.

We therefore look for the states with energy between —2 and 2. For L > n > M,
the wavefunctions take the form

Ψm,*(n) = Cα(*,>0(exp(-/fcι) + exp(/(θα + **))) , (6.1)

where ψ takes values in (CN, £α(&, {j>/}) is an eigenvector of S(k, {yi}) with eigen-
value exp(/0a(>>))5 and the "energy bands," &wα({^}), solve

2kL = (2m - l)π, m= l,...9L + tΛ- I . (6.2)

Equation (6.2) is equivalent to the Dirichlet condition ψ(L) = 0. Although k = 0 is
a solution to Eq. (6.2) with m — 0, ι̂ o,α is identically zero, so this solution is not
counted. Similarly k = π solves Eq. (6.2) for m = L -f /, but this also generates the
zero wavefunction.

We temporarily suppress the α index and, as before, write yQ = k. We also write
ω for ωi. Subscripts on ω will refer to spatial indices, so ω\2 is the component of
ω in the 1-2 plane, etc.

Taking derivatives we find that, for fixed m, dk/dyj = —(dθ/dyj)/2L. We also
define a density-of-states function

p(k) = (2L + dθ/dk)/2π . (6.3)

Of course, l/p(k) is not precisely the spacing between levels. Rather,

) . (6.4)
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Each energy level km(y) satisfying Eq. (6.2) is associated to two line bundles.
One is the sub-bundle of the trivial Hubert space bundle Σ x fa spanned by ι//m.
The other is the sub-bundle of Σ x (£N spanned by ζ(k,y). These two bundles are
isomorphic, as the limiting behavior of ψ defines ζ, and as each ζ, together with a
solution to Eq. (6.2), defines an eigenfunction ψ. Isomorphic bundles have the same
Chern classes, so we may compute the Chern class of the ψ bundle by integrating
the curvature of the ζ bundle. This is just the restriction to the surface km(y) of the
2-form ω(Ps) on / x X.

Two tangents to the surface km({yj}) are (-d\θ/2L, 1,0) and (-δ2θ/2L,0, 1).
Applying ω to these two vectors, we find that ω, restricted to the surface km({yj})9

equals f(km(y\y\,yi)dyl Λr fy 2 , where

f( , ,
f(y) = ωi2 + - — - . (6.5)

So we can write, using Eq. (A. 5),

I n i+Λt-i

Cl(Σ,P) = — Σ Σ SMka,m(y),yι,y2)dylΛdy2. (6.6)
zπ α=l m=l Σ

Next we replace the sum over m with an integral over £0> using the fact that

(km+km+ι}IΊ

f(km,yι,y2) = I f(k,yι,y2)p(k)dk + O(L~2) . (6.7)
(km-ι+km)!2

Note that f(y) is defined by Eq. (6.5) for all yQ, not just for yQ = km(y). Some
care is required for f(k\) and f(kι+t-\). Equation (6.7) still applies, as long as
we take ko = 0 and kL+t = π. We also have that

/ f(y)p(y)dk = f(0,y

Plugging (6.7) and (6.8) into (6.6) we find

(6.9)

By Eq. (2.4) Σα

ω(^> is identically zero, so ΣαΛ(°^ι? J V f c ) + Σ«/«(π,^ι,^) =
1). We are thus left with the triple integral of Σα /αOOPαOO But

f(y)p(y) = -ω12 + ̂ (ω^θ + ω0ιδ2β + ω12a0θ) + O(L~l ) . (6.10)
π 2π

Summing over α eliminates the O(L) term, as Σα

ω(^α) = ^ The O(l) terms of
Eq. (6.10), summed over α, are precisely 2πs\(y). This shows that

cι(Σ,P)= / Sl(y) + 0(L-1). (6.11)
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Since c\(Σ,P) and fIxΣ

s(y) are independent of L, the O(L~l) correction must in
fact be zero. This establishes Theorem 1 for the case k = 1.

The proof for other values of k is almost identical, and so is only sketched here.
The form Sk(y) is defined everywhere except at level crossings. Near level crossings
sk = O(d~2k), which is integrable in dimension 2k + 1.

As before, we apply a cutoff at a large distance L and examine the finite number
of interior states. By Proposition 3, Ck for the bundle of interior states is the sum
of the Q 'S of the individual eigenbundles. Eigenstates of the Hamiltonian are in 1-1
correspondence with eigenstates of the ^-matrix on the energy bands (6.2). Since
the integral of ω^ is topological, we can use the curvature of the eigenbundles of S,
restricted to the energy bands, to compute the topological class of the eigenbundles
of H. The form ω^Pf), restricted to the surface km(y), takes the form f(y}dyλ

Λ Λ dy2k, where

1 2*
f(y) = ωlm2k + Σ(-WW<»^i-ι,l,i+ιr..,2k > (6 12)

where ί denotes that the subscript / is not included. We replace the sum over m
with an integral over k. As before, this involves multiplying f(y) by the density
of states:

f(y)p(y) = -ωι,...,2* + =-(dθ Λ ω*)o,ι,...,2* - (6.13)
π 2n

Summing over α and integrating eliminates the O(L) term, since the trivial C^
bundle has zero invariants. What remains is the integral of Sk(y). D

VII. Threshold States

In this section we prove an extension of Theorem 1, allowing threshold states to
exist at k = 0 and k = π. That is, we replace Eq. (5.3a) and Eq. (5.3b) by more
general limiting conditions. We no longer require all the eigenvalues of the S-
matrix to approach — 1 as k — » 0 or k — » π. Rather, some -hi eigenvalues may
occur, corresponding to threshold states. Specifically, we assume that

, j 0 j 0 near yQ = 0
j \ 2R({yj}) + i(yo - π)T({yj}) + O((yQ - π)2) near y, = π ,

(7.1)

withA({yj}), T({yj}) smooth, Hermitian, matrix-valued functions that have no level
crossings in X, and with B(yt)9 R(yt) orthogonal projections on C^ that depend
smoothly on {>>/}. This implies that Range(B) and Range(R) are finite-dimensional
bundles over X with well-defined Chern numbers.

Theorem 2. Assume the above hypotheses. If Σ is an oriented surface in X, then
the first Chern number of the bundle defined by P over Σ is

. (7.2)

IxΣ
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The proof of Eq. (7.2) is almost identical to that of Eq. (5.5). The only difference is
that, for the states in Range(B), 9(0) = 0 instead of — π, and as a result k\ — π/L -f
O(L~2), not 2π/L + O(L~2). Replacing the sum over m with an integral over k gives
an integral with lower limit k = 0, not k = k\/2. This, and similar considerations at
k = π, cause Eq. (6.9) to be replaced by

Cl(Σ,P) = ±- £ / fΛ(y)pa(y)d3y
zπ α=l IχΣ

l-, -
Σ β $Range(B} ^π Σ

(7.3)

Since ̂ α /α(0, >>ι, ̂ 2) = OC^"1 ), a negative sum over β $Range(B) can be replaced
with a positive sum over β G Range(B\ with a similar substitution for γ. As a result,

Cl(Σ,p) = -L Σ /
zπ «=l/xΣ

+ 7^/ Σ //K0,7i,72)+^:/ Σ Λ(π,^2) (7.4)
^π Σ βeRange(B) ^π Σ γ<ERange(R)

= / S l ( y ) 4- C!(Σ,5)/2 + d(£,*)/2 . D
/ X Σ

The example of Sect. Ill, with \B\ = 1/2, illustrates this theorem. There is no
bound state, but there is a threshold at k = π whose Chern number is +1. As k
goes from 0 to π, ΘQ goes from — π to π, as before, but θ\ goes from — π to 0.
From Eq. (5.10) we see that the integral of s\ is —1/2. Adding this to half the
Chern number of the threshold state gives 0. This is indeed the Chern number of
the scattering states, since, in the absence of bound states, the projection P = 1.

Appendix I. Scattering and Tight Binding Models

Here we recall some basic facts from scattering theory and tight-binding models on
graphs, for Hamiltonians of the form (5.1).

Bound States. Bound states with exponentially decaying solutions behave at infinity
like (±l)ne~κn with K > 0 and have energies ±2coshκ;. These are always outside
the continuous spectrum [—2,2]. Eigenvalues embedded in the continuous spectrum
[—2,2], if they exist, are associated with compactly supported eigenfunctions. Com-
plex hermitian Hamiltonians with embedded eigenvalues are of codimension 2N
while real symmetric Hamiltonians with embedded eigenvalues are of codimension
N. This is because, for an eigenfunction ψ to be compactly supported, ψ must vanish
at TV vertices, the ends of each strand. The condition that ψ vanishes at a vertex is
codimension 2 in the complex case and codimension 1 in the real case. For a con-
nected system, our hypotheses in Sect. V preclude embedded eigenvalues, as these
would conflict with the unitarity of S on C^. In the real case this is the generic
setting if N ^ 4. In the complex case one needs N ^ 2. The example in Sect. Ill
is of this type since one strand with spin is equivalent to two strands without spin.
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Scattering States. Let ψ be a solution of the difference equation (H — 2cosk)ψ = 0
with k e [0,π]. To each such ψ we can associate two vectors in C^ so that \j/(x) — >
ζout£lkx + ζine~lhc as x — » oo. The on-shell 5-matrix is defined by

taut = S(k)ζin . (A.1)

There is a class of tight binding models for which there is a simple formula for the
on-shell ^-matrix. Consider the Hamiltonian Eq. (5.1), where only /z0o is different
from zero, and let h — AQO be an TV x TV Hermitian matrix. The scattering states are
determined by the solutions of

(A - E)(\l/in + ψout) = -(Ψin/z + ̂ W) . (A.2)

It follows that

where z = Qxpίk and the energy is E = z + l/z. At the edges of the continuous
spectrum, where z = ±1, the phase shifts are exp/θα = — 1, except in the special
case where h has eigenvalues ± 1 . If h q= 1 is invertible, the ^-matrix at the edges
of the spectrum is -1 and Eq. (5.3a) holds with A = 2/(h - 1), T = 2/(h + 1).

The condition Ker(h =f 1 ) = 0 is a codimension 1 condition, (since h is a hermi-
tian matrix). It follows that a generic matrix family h(y) may violate the conditions
in the hypotheses in Sect. IV. This is not surprising, as the hypotheses do not allow
bound states to appear or disappear. If two Hamiltonians have different numbers of
bound states, then any path between them must contain a point where the hypotheses
are violated. On the other hand, it is easy to construct examples where the nature of
the spectrum does not change, and where the hypotheses are satisfied. For example,
take h(y) = u(y)hou^(y), with hG a fixed Hermitian matrix (whose spectrum does
not contain ±1), and with u(y) a family of unitary matrices.

Appendix II. Chern-Weil Theory

Here we review the essentials of Chern-Weil theory, first for finite dimensional
bundles and then for infinite dimensional bundles. See [5, 10] for details on the
theory of Chern classes for finite dimensional bundles and [6, 11] for its extension
to infinite dimensional bundles.

Given a manifold M, a fiber bundle E over M with structure group G, and
a connection on that bundle, we may define a classifying map f from M to an
infinite dimensional manifold BG, the classifying space of G. Two G-bundles over
M, with isomorphic fibers, are isomorphic if and only if their classifying maps are
homotopic. Moreover, there is a G-bundle EG over BG, called the universal bundle,
such that the principal bundle associated to E is the pullback of EG by /. Indeed,
the connection on E is just the pullback of a universal connection on EG, and the
curvature of E is just the pullback of the curvature of EG.

Next we specialize to unitary bundles. The classifying space BU(n) is the quo-
tient of a contractible space (namely EU(n}) by U(n). The cohomology ring of
BU(n) is freely generated by a 2-dimensional class CΊ, a 4-dimensional class €2,. .,
and a 2«-dimensional class Cn. That is, as a ring, H*(BU(n),Ίί) ~ Z[Cι,...,Cn].
The cohomology classes Q are called the Chern classes of BU(n). By definition,
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the Chern classes of the bundle E over M (denoted Ck(E)) are the pullbacks of
these integral classes by the classifying map /. Since homotopic maps induce the
same pullbacks in cohomology, Ck(E) depends only on the topology of E ana not
on the connection.

On BU(n), one can relate the cohomology classes Q to the curvature of the
natural connection on EU(n). Such formulas are called Chern-Weil formulas. The
simplest such formula states that the form ω\ is in the cohomology class CΊ, hence
that the period c\(Σ,P) equals the cohomology class C\(P) applied to the homology
class of Σ, and hence that c\(Σ,P) is an integer. Other formulas relate ω^ to Q. In
the special case that Q is the lowest nonvanishing Chern class, they state that the
cohomology class of ω^ is Q. In all cases these formulas show that the periods of
ωk are topological invariants. Once such formulas are established on BU(n\ they
apply to M as well, since both the Chern classes and the curvature forms on M are
pullbacks of the corresponding objects on BU(n\

For infinite dimensional bundles, the existence of Chern classes depends on the
structure group. The full group U(H) of unitary operators on the infinite dimensional
Hubert space H is contractible, so BU(H) is contractible, so every £/(//)-bundle
is trivial. To obtain nontrivial characteristic classes, one must reduce the structure
group to a small enough subgroup of U(H), where Chern classes are defined and
can be expressed by curvature formulas.

Let UC(H) be the space of unitary operators U with U — I compact. An element
of Uc is the norm limit of a sequence of operators U with U ~ I having finite
rank. It should be no surprise, then, that the cohomology of BUC is the same as
the direct limit of the BU(n), namely H*(BUC,7L) = Z[d,C2,...]. Thus, whenever
the structure group of a unitary bundle can be reduced to UC(H\ Chern classes
are well defined topologically. For each integer p9 let UP(H) be the subspace of

UC(H) such that U —I is in the pth Schatten ideal £p. In particular, U\ means
U — I is trace class and C/2 means U — I is Hubert-Schmidt. Freed [6] showed
that, when the structure group is Up, the Chern-Weil formulas for Ck hold for all

* ^ P.
The situation where dP is Hubert-Schmidt is, at first glance, intermediate

between U\ and ί/2. For any path y, the operator Uy that gives parallel transport
along the path may be obtained by integrating the equation dU = [dP,P]U along
the path, with initial condition U = I. Since the right-hand side is Hubert-Schmidt,
every path y has Uy — I Hubert-Schmidt, so our structure group reduces to C/2.
However, we have more. The curvature is trace class and holonomies along closed
null-homotopic loops are actually in U\. Pressley and Segal [11] showed how to
construct the determinant bundle of P, from which one can show that the first Chern
class is indeed represented by ω\.

Finally we consider additivity properties. Let P and Q be orthogonal projections
with PQ = 0 and with dP and dQ both Hubert-Schmidt. The bundle defined by the
range of P + Q is the direct sum of the bundle defined by P and the bundle defined
by Q. On this direct sum bundle we consider two different connections. The first
is the adiabatic connection of P + Q. The second is the direct sum of the adiabatic
connection of P and the adiabatic connection of Q. The curvature of the second
connection is just the direct sum of the curvature of the adiabatic connection of P
and the adiabatic connection on Q.

Let α>k(P -f Q) be constructed by Eq. (2.2) from the curvature of the first con-
nection, and let co'k(P + Q) be constructed in the same way from the curvature of
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the second connection. Since the periods a>k are topological invariants,

β). (A.4)
Σ Σ

However, ω'k(P -\- Q) is just the sum of a>k(P) and cok(Q), so

/ ωk(P + β) = / ω,(P) + / ω*(β) . (A.5)
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