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Abstract: The fundamental solution E(t,s,x, y) of time dependent Schrόdinger equa-
tions idu/dt = -(l/2)Δι/+ V(t,x)u is studied. It is shown that

• E(t,s,x, y) is smooth and bounded for tή=s if the potential is sub-quadratic in the
sense that V(t,x) = o(\x\2) at infinity;

• in one dimension, if V(t,x) — V(x) is time independent and super-quadratic in the
sense that V(x) ^ C(l + Jc|)2+ε at infinity, C > 0 and ε > 0, then E(t,s,x,y) is
nowhere C1.

The result is explained in terms of the limiting behavior as the energy tends to
infinity of the corresponding classical particle.

1. Introduction

We consider the time dependent Schrόdinger equation with a real potential V(t,x):

idu/dt = -(l/2)Δu + V(t,x)u, (t,x) <Ξ R1 x Rm . (1.1)

The equation generates a unique unitary propagator {U(t,s) : —oo < t,s < 00} in
L2(Rm) under the conditions to be imposed below and u(t,x) = (U(t,s)φ)(x) repre-
sents a unique solution of (1.1) which satisfies the initial condition u(s,x) = φ(x) G
L2(Rm). Standard arguments show U(t,s) is a two parameter family of strongly
continuous unitary operators satisfying the semi-group properties: U(t,t) = 1 and
U(t,s)U(s,r) = U(t,r). We denote by E(t,s,x,y) the distribution kernel of U(t,s):
E — E(t,s,x,y) is the fundamental solution of Eq. (1.1), or FDS for short. In this
paper, we show that

1. E(t9s,x,y) is smooth and bounded with respect to (x9y) for any tή=s, provided
V is "sub-quadratic" in the sense that for all |α| = 2, lim^i^oo |δ£F(f,jt)| = 0

uniformly with respect to t G R1;
2. in one dimension, if V(t,x) — V(x) is time independent and "super-quadratic" in

the sense that V(x) ^ C(l + |^|)2+ε at infinity, C > 0 and ε > 0, then E(t,s9x,y)
is nowhere C1.
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To state our main theorems more precisely, we introduce some notation. Let
dj = d/dxj, DJ = -idj, j = 1,...,m, d = (5 l 9..., dm), D = (A, - . ,Dm), and for the
multi-index α = (α1 ?...,αm), ΣP = D? ••£%, 3« = d? - 3£ . |α = αi + + αw.
For a function F9 dF(x) denotes the gradient vector and d2F(x) denotes the Hessian
matrix. For σ G R, JSff(Rm) is the Bessel space

jSff(Rw) = {/ G y"(Rm) : (1 - Δ)σ/2/ G L^R1")}

and JS?£loc(Rw) is its localization. We say/is nowhere in J^σ

loc(Rm) if φ/φ ^ff(Rm)

for any φ G C0°°(Rm). Note that C^(Rm) C JSfftR1") for all σ < 1. Finally the pair
of functions (x(t9s9y9k)9p(t9s9y9k)) always denotes the solution of Hamilton's equa-
tions corresponding to (1.1):

dx/dt = p(t), (x(s,s,y9k) = y,

dp/dt = -(dxV)(t,x(t))9 \p(s9s9y9k) = k. ( ' >

Theorem 1.1. Assume that V(t9x) is C°° with respect to x G Rm and d*V(t,x} is
Cσ with respect to ( t 9 x ) for all α, where σ = 0,1,... . Suppose that

lim sup|δjK(ί,jc)| = 0, if |α| = 2, and \%V(t9x)\ ^ C«, for all α| ^ 3 .

(1.3)

is C°° with respect to (x9y) and all derivatives d%dyE(t9s9x9y)
are Cσ+1 with respect to (t,s,x, y) for tή=s. Moreover, for every T > 0, there
exists a constant CT > 0 such that the following statements are satisfied. Write
Ωτ = {(t9s9x9y) G R2 x R2m : 0 < t - s\ ̂  T9 \x\2 + \y\2 ^ C2

T}.

1. For (t9s9x9y) G Ωτ, there exists a unique k G Rm such that x = x(t9s9y9k\ The
function S(t,s,x,y) defined on ΩT by

S(t,s,x,y) = f{(l/2)p(τ,S,y,k)2 - V(τ,x(τ,s,y,k))}dτ (1.4)
S

is smooth with respect to (x9y) and all derivatives d%dyS(t9s9x9y) are Cσ+1

with respect to (t,s,x,y). If α + β\ ^2, the following estimates are satisfied:

\dt

xdfy{S(t,s,x,y)-(x-y^l(^t-s))}\ g CaβT\t - s . (1.5)

2. /« ί2^, E(t9s9x9y) may be written in the form

E(t9s9x9y) = (2πi(t - s)Γml2a(t,sΛy)eiS(t>s>x^ , (1.6)

where a(t9s9x9y) satisfies, for all α and β, the estimates

\SPxdtya(t9s9x9y)\ £ Caβτ . (1.7)

3. There exists a constant T(V) such that, for T ^ T(V), Cτ may be set equal
to zero.

In the next theorem, we assume that V(t9x) = V(x) is independent of t. Then
E(t9s9x9y) depends only on (t — s9x9y) and we write E(t9x9y) = ̂ ,0,̂ ,̂ ).



Smoothness and Non-Smoothness of Time Dependent Schrόdinger Equations 607

Theorem 1.2. Let m—\ and V E C3(R!) be real valued. Assume further that
outside a compact interval K the following two conditions are met:

1. V"(x) > 0 andxV'(x) ^ 2cV(x) > 0 for some c > 1;
2. For j = 1,2,3, VU\x) = O(\/x)V^'l\x) as \x\ -> oo.

Then, as a function of(t,x,y\ E(t,x,y) is nowhere in ^/^(R3). In particular, it

is nowhere C1.

Several remarks are in order.

Remark 1. We should supplement Theorem 1.2 by the following two statements:

1. For almost all y £ R1 (resp. x G R1), E(t,x,y) is nowhere in ^/^(R2) with
respect to (t,x) (resp. (t,y)).

2. If V(x) is C°° and satisfies V(x) ^ C|jc|2c for large |jc|, in addition to the

conditions of Theorem 1.2, then for any Φ E C0°(R3), the Fourier transform ΦE

of ΦE decays at infinity as follows: \ΦE(τ,ξ,η)\ ^ C(l + |τ| + \ξ\2 + |^/|2)~1/2c.
The proof of Theorem 1.2 shows that — l/2c is the best possible decay rate.

We shall give a proof of this remark.

Remark 2. When T is small, i.e. T ^ T(V\ Theorem 1.1 is well-known (see Fu-
jiwara [6], and also Yajima [18] for an extension to the case where magnetic fields
are present). Moreover, the results in [6] (and [18]) are proven for small T > 0
under an assumption weaker than (1.3), viz, \d*V(t,x~)\ ^ Cα for |α| ^ 2. For these
potentials, however, E(t,s,x,y) is in general not smooth for larger values of \t — s
When V(x) = *2/2, Mehler's formula [13] shows that

v ' '" (2π/sinOm/2 '

from which one sees explicitly that E is smooth when tή=nπ, n E Z, but is singular
when t = nπ. This "recurrence of singularities" takes places for a wide range of
perturbations of x2/2 (cf. Zelditch [21] and Kapitanski-Rodnianski-Yajima [9]).

Remark 3. Zelditch's paper mentioned above also shows that if V(t,x) is bounded
with all ^-derivatives, then FDS is smooth with respect to ( c, y) when tή=s, — oo < t,
s < oo, and can be written in the form

E(t9s9x9y) = (2πi(t - s)Γm/2ei(x~yΐ/2(t~s}a(t,s,x,y) (1.9)

with a(t,s, , ) E C°° as above. The proof that E is smooth has been extended by
Craig, Kappeler and Strauss [4] to the sub-linear potentials, |3JF(jc)| rg
Cα(l -f I*!)1"'*'"8 for all α, ε > 0, but they do not construct the structure formula
like (1.6) or (1.9). The smoothness of the FDS can also be studied by investigating
the smoothing property of the propagator U(t,s). In this direction, we mention the
works of Ozawa [14] and Yamazaki [20] and the references therein. After submis-
sion of this paper, we learned that Kapitanski-Rodnianski [8] have demonstrated the
smoothness of E(t9s9x9y) for a slightly different class of sub-quadratic potentials.



608 K. Yajima

Remark 4. The FDS of (1.1) can be very singular. If H = -d2/dx2 is the Dirichlet
Laplacian on the interval [0,π], which may be thought of as an extreme super-

quadratic case, then, the FDS E is given by E(t,x,y) — (2/π)]Γ^1e~~ιm sinnxsinny,
which is nowhere locally integrable. Indeed, this is a direct consequence of the proof
of Theorem 1.2 given below. Thus it is somewhat surprising that, for this H, the
propagator of (1.1) still has a rather strong smoothing property,

2π

^ cΊM|L2([0fπ])

(cf. Zygmund [22]). Note however that the solution is much smoother in the whole
space (cf. e.g. Yajima [19]) in the sense

1/4\

\\u(t,.)\\4

LOO(R}dt) ^ c|M|L2(R) .
/

For every (s, y), E(t,s,x, y) is a solution of (1.1) with initial condition E(s,s,x, y)
— δ(x — y), Dirac's measure at the point x = y, and Theorems 1 and 2 may be con-
sidered, partly, as statements on the propagation of singularities for E(t,s,x,y). Thus
one may be tempted to think that the statements are consequences of Hόrmander's
celebrated theorem on propagation of singularities (cf. [7,16]), viz, the wave
front set WF(u) of the solution of the partial differential equation Q(x,D)u =
Σiαi^αW^0^ = ° with real Principal symbol Qn(x,ξ) = Σ|α|=«flα(*Kα is con-
tained in the characteristic set {(x, ξ) : Qn(x, ξ) = 0} and is invariant under the
Hamiltonian flow generated by the principal symbol. Note, however, that the prin-
cipal symbol of the Schrόdinger Eq. (1.1) is ξ2/2 and the characteristic set is
{(t,x,τ,ξ) :t,τ G R,JC <G Rm,ξ = Q G Rm}, (τ,ξ) being the conjugate variables of
(t,x). Hence, each point (t,x,τ,Q) is a stationary point of the Hamiltonian flow
of the principal symbol ξ2/2 and Hόrmander's theorem unfortunately provides little
information about the propagation of singularities for solutions of (1.1). (In this
connection, see Craig, Kappelar and Strauss [4] and Kapitanski and Safarov [10].)

This situation has been analyzed further by Lascar [12] and Sakurai [15]. They
introduced the notion of the quasi-homogeneous wave front set WFa(u) and showed
how the set propagates for solutions of quasi-homogeneous (pseudo- Differential
equations. Their theory, when applied to (1.1), shows that WFa(u) is contained
in {(t,x, τ, ξ) : τ — ζ2/2} and is invariant under the Hamilton flow generated by the
principal symbol ξ2/2 on each plane t — constant. This implies that E(t,s,x, y), as
a function of (t,x\ is singular everywhere on the plane t = s for every fixed (s,y),
however, it still does not tell us whether or not the singularity propagates in the
forward or backward direction of time t.

Our results may be best "understood" if we believe in the following "conjecture":
The singularities of the solution (defined in terms of a suitably modified notion of
the wave front set) of the evolution equation ίdu/dt = P(t,x,D)u with real symbol
P(t,x,ξ) propagate along the limit set, as the energy tends to infinity, of the
trajectories of (t,x(t\τ(t\ p(t)) of the Hamilton equations, not for the principal,
but for the full symbol:

dx/dt = dP/dp, dp/dt = -dP/dx, dτ/dt = -dP/dt . (1.10)

In other words, the singularities propagate along trajectories with infinite energy.
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Let us "explain" our theorems from this point of view in one dimension when
V(t,x} = V(x) does not depend on t and V(x) —> oo as \x\ —> oo, so that all trajec-
tories of (1.2) are periodic functions of t.

When V(x) = Jc2/2, the period of the trajectories is independent of energy and
is always equal to 2π. If t φ nπ, therefore, for any two points jc, y G Rm no solutions
of (1.2) with x(Q) = y and very large \p(0)\ approach x at time t. Hence the FDS
is everywhere smooth when tή=nπ. On the other hand, if t is an integer times
half the period, i.e. t = nπ, all trajectories leaving y at time 0 reach (— \}ny at
time nπ with momentum (—1)" times the initial one. Hence, for any (nπ,x,y\
there is a sequence of trajectories (t,Xk(t\τk(t\ pk(t)\ with fixed initial position
**(0) = y* and a sequence of time ,̂ k — 1,2,..., such that ^ —> wπ, **(ίϋ —» *
and τfa) —> oo, as A: —> oo. Thus E(t,x, y) is singular everywhere when ί = nπ,
n = 0,±1,..., as we see explicitly from Mehler's formula (1.8) above. Since the
smooth perturbation of x2/2 becomes negligible in the high energy limit of the
Hamiltonian flow, this argument also explains the recurrence of singularity results
of [9] and [21].

When V(x) is subquadratic, the period of the trajectories diverges to infinity
as energy increases to infinity. Hence, the trajectories with jc(0) = y and initial
momentum /?(0), |XO)| —* oo, will have gone instantaneously to infinity and will
never come back to any point of configuration space. These trajectories produce
no singularities anywhere and E(t,x, y) is smooth everywhere. If V(x) is super-
quadratic, on the other hand, the period of the trajectories decreases to 0 as the
energy grows to oo. Hence, for any two spatial points x,y and any time t, there
are trajectories with arbitrarily high energy that leave y at time zero and reach x at
time t. Such trajectories create the singularity of the FDS at (t,x, y) and E(t,x, y)
is nowhere smooth. Though this heuristic argument is, of course, not a proof of the
above theorems, it gives a clear explanation why the drastic change of smoothness of
FDS takes place as the potential V(x) changes from sub-quadratic to super-quadratic
at infinity. Indeed, the proof of Theorem 1.1 that we shall present in Sect. 2 is based
on this semi-classical picture.

We now describe the plan of the paper, introduce some additional notation and
then outline the proofs of Theorem 1.1 and Theorem 1.2. In Sect. 2, we prove that
E(t,s,x, y} is everywhere smooth with respect to (x,y) if V(t,x) is sub-quadratic.
The proof is based on two facts, the first, that Theorem 1.1 holds for small time
\t — s\ 5Ξ T(V) and, hence, the propagator U(t,s) is continuous from the Schwartz
space ^(Rm) onto itself for all t,s G R (this is due to Fujiwara [6]); the second,
that for \t — s ^ Γ, T being arbitrarily large, the Hamiltonian flow of (1.2) has a
generating function S(t,s,x9y) outside a bounded set {(x,y) : x\2 + \y\2 ^ C?} and
it satisfies the estimate

\\%S(t,S,X9y)-(t-srl\\ ^ I0-"\t-s\-1

as indicated in statement (1). This is a consequence of the sub-quadratic behavior
of the potential. The major part of the proof is devoted to the construction of the
generating function and to the study of its properties. For arbitrary 0 < t — s ^ Γ,
we divide s = tQ < t\ < - - < tN = t such that tj - tj-\ ^ T(V\ j = l,...9N,
and write U(t,s) — U(tN,tN-\) - - t/(ίι,ίo). We may suppose by induction that
E(tN-\,tQ,x,y) satisfies the statements of Theorem 1.1 and write
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where £(1) is smooth with compact support with respect to (x,y) and a(tN-\9s,x,y)
is smooth and is supported in the set {(jc,y); \x\2 -f \y\2 ^ Cj.}. (Here we have
absorbed the factor (2πi(t — s))~m/2 into a and we will continue to do so in what
follows.) Using the short time result, we write

E(t,s,x9y) =

Since E^l\tN-ι9s9x9y) is Co°(R2m) with respect to (x9y)9 the fact that U(t9tN-\)
is a continuous operator in ^(Rm) implies that £ι(f,,s,Jt,;y) G «5^(R? x R™). To
analyze E2(t9s9x9y) we apply the method of stationary phase using the fact that

is non-singular, which yields the desired properties of E(t9s9x9y). Thus the proof of
Theorem 1.1 more or less follows the semi-classical picture outlined in the preceding
"explanation" of the theorems.

In Sect. 3, we prove that E(t,x,y) is nowhere in Jϋ£ylo^(R3) when V(t,x) = V(x)
is super-quadratic and the spatial dimension m = 1. In contrast to the proof of
Theorem 1.1, the proof here is indirect in the sense that it heavily relies upon
the spectral theory of the operator H = —(l/2)d2/dx2 + V(x}. By the definition of
Bessel space, it suffices, by the Riemann-Lebesgue theorem, to show that for non-
negative p, Φ, Ψ <E Co^R1),

$E(t,x,y)p(t)Φ(y)Ψ(x)eί(tλ+yξ-χη}dtdxdy = (p(λ - H)Φ(y)eίy ' ξ, Ψ(x)eix ' η),
R3

(1.11)

does not go to zero faster than C(\λ\ + \ξ\ + \η\)~l/2c as \λ\ + \ξ\ + \η\ -> oo. Here
p is the Fourier transform of p,

00

p(λ)= / e~itλp(t)dt,
— oo

and ( , ) in (1.11) is the inner product in L2(Rl). We set ξ = η = ±V2λ in (1.11)
and let λ —> oo along the eigenvalues λn of H. Since V is super-quadratic, the one
dimensional operator H has only eigenvalues λn tending to oo and the spacing of

neighboring eigenvalues increases algebraically as follows: \λn — λn±\\ ^ Cλ]l2~λl2c'.
Hence, modulo O(λ~N), only the projection to the «th eigenfunction un(x) contributes
to (1.11),

where N is arbitrary large. But, on every compact interval, un(x) asymptotically
approaches a plane wave as n —> oo, un(x) ~ Re{QMeίλ/^^}, Cχn being a com-

plex constant satisfying the lower bound |QJ ^ C/l^1/4c. Thus, we have |(1.11)| ^

Cλnl/2c and E(t,x,y) is nowhere in JS?jly^(R3). In particular, it is nowhere in C1.
In what follows various constants whose specific values are not important will

be denoted by the same character C. These constants may differ from place to place.
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2. Sub-Quadratic Potentials - Proof of Theorem 1.1

In this section, we always assume that V(t,x) is subquadratic, viz, that the condition
(1.3) is satisfied. Let V'(t,x) denote the vector dxV(t,x)9 V"(t,x) the matrix (%V(t,x)
and set M = supίjc ||Fx/(ί,Λ:)||. For 0 < δ < 1, L$ denotes the smallest number such
that

sup \\V(J\t,x)\\ ^ δ\x\2-J, for |*| ^ Lδ, j = 0, 1,2 , (2.1)
/eR

where || || should be understood as the absolute value, the Euclidean norm of a
vector, and the matrix norm of a linear operator in Rm, for j — 0, 1,2 respectively.
Set

Mjj= sup ||F(%*)||. (2.2)

In what follows, when there is no confusion, we shall often suppress the explicit
dependence of various quantities on the independent variables or parameters.

We begin by studying the trajectories of the Hamilton flow, (x(t,s, y,k\ p(t,s,
y,k)\ corresponding to (1.1), viz, the solutions of (1.2). Standard arguments in
ordinary differential equations (see e.g. Coddington-Levinson [3]) show that

• for fixed (t,s), (x(t,s,y,k), p(t,s,y,k)) is C°° with respect to (y,k\
• the derivatives of (x(t,s9 y,k), p(t,s,y,k)) with respect to (y,k) are Cσ+1 with

respect to the all variables (t,s, y,k\

Furthermore x(t) =x(t,s,y,k) satisfies the integral equation

x(t) = y + k(t-s)~ f(t - τ)V'(τ,x(τ))dτ . (2.3)

Lemma 2.1. Let N = max(l,2M,2sup,GR |F(ί,0)|). Then, for any (y,k) G R m x R m

and (t,s) G R x R,

(1 + \x(t,s9y9k)\2 + \p(t^y^\2) ^ e2N^(l + \y\2 + \k\2) . (2.4)

Proof. Write F(t) = (1+ x(t)\2 + |XO|2)1/2 and denote by the ^-derivative.
From the Schwarz inequality, and the fact that (x(t), p(t)) satisfies Eq. (1.2), we
have

By the mean value theorem, \V'(t,x)\ ^ IK^O)! +M|jt|, which implies

(d/dt)F(t)2 £ 2F(0(|XO|2 + 2|F/(ί,0)|2 + 2M2jc(0|2)1/2 ^ 2NF(t)2 .

The estimate (2.4) now follows by quadrature. D

Notatίonal remark. In the following we will use 10~10 as a generically small con-
stant. This notation has an advantage of indicating the number of estimates needed
to arrive at our final result. Thus the estimates in the first stage are proportional to
10~10, the estimates in the second stage are proportional to 10~9, etc.
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Lemma 2.2. Let T > 0 and C\ > 0. Then, there exists C2 > 0 such that the
following estimates are satisfied for \y\ g C\9 \t — s\ rg Γ, and \k\ ̂  C2:

(2.5)

\p(t9s9y9k)-k\ ^ 10-10|*|. (2.6)

Proof. We prove (2.5) for the case 5 = 0 ^ ί ^ 5 + Γ only. The proofs for the
general case, and for p(t,s,y,k\ are similar. Define f(t) by

f(t)=-ϊ(t-s)V'(s9y + sk)ds9
o

and let 0 < δ < 1. We split the interval [0,ί] into two parts, I\ = {0 ^ s ^ t :
\y + sk\ ^ A?} and /2 = {0 ^ s ^ / : |>> + sk\ ^ Z$}. It follows, by the definition
of Lδ, that I V'(s, y + sk)\ ^ δ\y + sk\ for j G /i and that | Vf(s, y + ̂ )| ^ Mι?<5 for
s G /2. Since the measure of /2 does not exceed 2Ls/\k\9

5|/|2 |*|. (2.7)

We denote g(t) = x(t) — y — tk and write, via the mean value theorem, the integral
Eq. (2.3) in the form

0(0 - /(O - /(' - *) i/r;W + fe + β^)Xβ) g(s)ds . (2.8)
o lo J

Using the estimate HK'^, ...)|| ^ M and applying GronwalΓs inequality, we obtain

^ (2.9)

Inserting (2.7) into (2.9) yields, for 0 ^ f g Γ, |j;| ^ Ci, and |t| ^ C2,

ι} + \tk\(TeMT* δ} . (2.10)

Thus, choosing δ > 0 sufficiently small and C2 large enough, we arrive at the
estimate (2.5). D

Corollary 2.3. Let T > 0. TTzew, ί/zere e rate a constant C?> such that, for any
R ^ 1, the following estimate holds for (t9s,y,k) satisfying \t — s\ ^ Γ and y2 +
(t-s)2k2 ^R2:

\x(t,s9y9k)-y-(t-s)k\ ^ C3R. (2.11)
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Proof. We assume s = Q^t^s + T and use the same notation as in the proof
of the previous lemma. Using the bound |F'(f,jt)| rg C(l + .x|), we estimate

o

and insert the latter estimate into (2.9). The result is

If we take C3 = 2V2CT2eMT\ this clearly produces (2.11) for R ^ 1. D

The following lemma, which is the key lemma of this section, demonstrates that,
in the sub-quadratic potential field, the variations along a trajectory remain almost
constant for a finite interval of time, if the trajectory starts either with a large initial
momentum, k, or from a point, y, far away from the center of the potential. The
proof will exhibit why this happens: if \y\ is large while \k\ remains small, the
trajectory remains in the region where ||F"(f,Jt)|| is small; if \k\ is large, on the
other hand, though the trajectory can enter the region where ||F"(i,.x;)|| is large,
the sojourn time in that region is short because the velocity is high and because
re-entrance to the region is forbidden, due to the long period of the trajectory.

We now state the lemma and give a formal proof. We use the notation
dyx(t,s, y,k), etc. to represent the differential of the map of y — > x(t,s,y,k), etc.

Lemma 2.4. Let T > 0. Then, there is a constant R ^ 0 such that the following
estimates hold for (t,s,y,k) satisfying \t — s\ ^ T and \y\2 + \k\2 ^ R2:

\\dyx(t9s9y,k)-l\\ ^ 10-10. (2.12)

\\dkx(t9s9y9k)-(t-s)\\ ^ KΓ1 0 |ί-s|. (2.13)

\\dyp(t9s9y9k)\\ + \\dkp(t9s9y9k)-l\\ ^ 1(Γ10 . (2.14)

Here 1 (resp. (t — s1)) on the left-hand sides stands for the m x m identity matrix
(resp. (t — s) times the identity matrix).

Proof. We only prove (2.12) for s = 0 and 0 ^ t ^ T. Proofs for other cases
are similar. By differentiating (2.3) with respect to y9 we have an equation for the
matrix- valued function dyx(t),

dyx(t) =l-f(t- s)V"(s,x(s))dyx(s)ds . (2.15)
o

Since ||(ί — s)V"(s,x)\\ 5Ξ TM9 GronwalΓs inequality implies

which, when applied to (2.15), in turn produces the estimate

\\3yX(t) - 1|| g Te^Ti\\V"(S,x(S))\\ds . (2.16)


