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Abstract: We define and study the properties of observables associated to any link
in 2 x R (where X is a compact surface) using the combinatorial quantization of
hamiltonian Chern—Simons theory. These observables are traces of holonomies in
a non-commutative Yang—Mills theory where the gauge symmetry is ensured by a
quantum group. We show that these observables are link invariants taking values in
a non-commutative algebra, the so-called Moduli Algebra. When X = §? these link
invariants are pure numbers and are equal to Reshetikhin—Turaev link invariants.

1. Introduction

Since the fundamental discovery by V. Jones in 1984 of a new link invariant, there
has been a tremendous interest and activity in low dimension topology using field
theory techniques. The original definition of the Jones Polynomial was purely com-
binatorial and a geometrical understanding of it was finally given by E. Witten
in 1989 [22]. He showed that the Jones polynomial could be interpreted as the
correlation function of Wilson loops (i.e. traces of holonomies) in Chern—Simons
theory. His work opened a new area of research in what is now called three di-
mensional topological field theory. Although this theory is purely topological (i.e.
in a hamiltonian picture the hamiltonian is zero) and therefore contains no dy-
namics, the quantization of this theory is not at all a trivial task, mainly because
there is no direct procedure to quantify this theory. The original method of E. Wit-
ten is a brilliant use of path integrals, heuristic regularization (by a framing) of
Wilson loops and relations with conformal field theory. Although very appealing
and having far reaching consequences, his formalism is not at all mathematically
well defined and this is one of the reasons why many researchers in this field
have used other approaches. These methods can be roughly divided in two classes:
perturbative and non-perturbative methods. On the one hand perturbative methods
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have continuously attracted interest [15] and have provided many interesting recent
results: generalization of Gauss invariants, connections with Vassiliev invariants [6]
etc. .. On the other hand, the geometrical quantization program and combinatorial
methods are the main approaches to quantize non-perturbatively Chern—Simons the-
ory. Combinatorial methods, introduced by Reshetikhin—Turaev [17] and Turaev—
Viro [20] give explicit representations of abstract amplitudes satisfying algebraic
relations of a topological field theory. The essential ingredient in their approach
is the representation theory of modular Hopf algebras which provides family of
numbers satisfying Yang Baxter equation, 6-; identities, etc ~ These combinatorial
methods, although completely well defined, are losing completely the relationship
with Chern—Simons theory

The phase space of Hamiltonian Chern—Simons with gauge group G on 2 x R is
the space of flat connections .2/ on X moded out by the action of the gauge group ¥4
/% is homeomorphic to Hom(7;(Z), G)¢ as a manifold. Hence Hom(m;(X), G)“
is endowed with a natural structure of Poisson manifold. Therefore quantization
of Hamiltonian Chern-Simons thcory can be tackled by a direct quantization
of the Poisson manifold Hom(n;(X),G)” Attempts in this direction, have been
first pursued by V. Turaev [19 and 11] and more recently further investigated
in [1, 2].

In our work we will continue the study of a different type of quantization, named
combinatorial quantization of Hamiltonian Chern Simons theory, which has been in-
troduced by V'V Fock and A.A Rosly [14] and further developed by A.Y. Alekseev
et al in [3—5] and ourself [10] This quantization can be thought of as being a lattice
regularization of Chern Simons theory in the spirit of Wilson After quantization,
gauge invariance is replaced by gauge invariance under a quantum group, and the
lattice variables, group elements before quantization, are replaced by elements of a
non-commutative algebra. The final and central object of our study is a two dimen-
sional non-commutative Yang Mills theory. Elements of this program was already
described in the abelian case in [13].

In Sect 2 of this work we give a summary of works on non-commutative two
dimensional Yang Mills theory We associate to each compact triangulated surface
2 a lattice gauge theory which is covariant under a quantum gauge group. The al-
gebra A of gauge fields is non-commutative because matrix elements of gauge fields
associated to arbitrary edges are non-commuting. Locality is however preserved in
the sense that matrix elements of gauge fields associated to edges having no bound-
ary points are commuting elements. Wilson loops associated to non-self-intersecting
loops on the surface are defined and it is shown that these Wilson loops are gauge
invariant elements A non-commutative analogue of the Yang Mills action is built
following the lines of A A. Migdal. In the weak coupling regime, the exponential of
this action is an analogue of the Dirac delta function which selects gauge fields with
zero curvature. This theory is therefore a topological field theory and the algebra
of observables (the Moduli algebra) A¢s of this theory is expected to be a new
description of the algebra of observables of Hamiltonian Chern Simons theory, i.e.
when the three manifold is equal to 2 x R.

In Sect 3 we generalize this construction to the case where the loop is an arbi-
trary framed link L in 2 x [0, 1]. We obtain observables associated to these framed
links which behave as desired they are gauge invariant and are invariant under
ambiant isotopy As a result we obtain a new type of ribbon invariants which
are not pure numbers but take their values in the algebra Acs. This algebra is
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non-commutative except in the case X = S?, where it is one dimensional. In that
case the ribbon invariants take their value in the field C.

The last part of our work gives the proof that these invariants in the case where
Y = 52 are the Reshetikhin-Turaev invariants.

2. Summary of Works on Noncommutative Two Dimensional Yang Mills Theory

In this section we will make constant use of results obtained in [3, 10, 4]. Let 2 be
a compact connected oriented surface and let J be a triangulation of X. Let us
denote by & the faces of 7, by £ the set of oriented edges and ¥~ the set of
points (vertices) of this triangulation. If / is an edge, —/ will denote the opposite
edge and we have {I,—I} C &.

If / is an oriented edge it will be convenient to write / = xy, where y is the
departure point of / and x the end point of /. We will write y = d(/) and x = e(/).

Let 4 be a quasitriangular Hopf algebra such that each finite dimensional A-
module is semisimple. Let Irr(4) be the set of all equivalency classes of finite
dimensional irreducible representations, in each of these classes o we will pick out

o
a particular representative o. Let us denote by V' the vector space on which the
representation o acts.
We will denote by & (resp. &) the right (resp. left) contragredient representation

o
associated to o acting on V' * and defined by: @ = ‘a0 S (resp. & = ‘a0 S~!). We
will also denote by O the representation of dimension 1 related to the counit e.

As usual, let R =) ,a; ®b; denote the universal R matrix of 4 and let us
define the invertible element u of A4 by u =), S(b;)a; (properties of u can be
found in [12].) Two important elements of A are the ribbon central element v
defined by v? = uS(u) and the element u = uv~!. It will be convenient to define the

endomorphism u— o) and the complex number va by oc(v) = v, 1. If (B) € Irr(4)*"

we will use the notation V to denote the space V R, V and (ft) = ®'.'_1fl.

Let R’ = 6(R), where o is the permutation operator acting on 4 ® 4. We will
use the standard notation:

R =R, RO =R'. €))
The g-dimension of « is defined by [d,] = tr(a(u)).

o a .
Let (¢,]i = 1---dim V) be a particular basis of ¥, and (¢|i = 1---dim V) its

dual basis. We will define the linear forms ¢ F = (el]a(-)] e ).
The existence of R implies that they satisfy the exchange relations:

By Ba
Ri2 919,=929, R12 > (2)
also equivalent to:
B ap po B
R g,9,=9,9, R, 3)

off off
where R= (2 ® B)(R) and R = (¢ ® BY)R()).
Let I' be the restricted dual of 4: it is by definition the Hopf algebra generated

as a vector space by the elements 5;
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The action of the coproduct on these elements is:

AghH= giwgh. (4)

k
o
V' can be endowed with a structure of right comodule over I':
oA x o
Axe) =3 e;®9g]. (%)
J

Let o, f be two fixed elements of Irr(4). By assumption finite dimensional rep-
resentations are completely reducible, therefore we can write:

a@f= D Nyy (6)

YEIrr(A4)

« By
Let us define, for each 7, ( 3",5) _ . a basis of Homy(V ® V,V) and
M Im=1, ,NI/f

’ H 7o f
((b;:’/r;)m:l, ,N;‘ﬂ a basis of HOmA(V, V V):

m’

o Byrh el x B
VoV-—V-—"VeV. )
We have the relation: ;
919,= > b5 9 Ui (8)
v,m
We can always assume that these interwiners satisfy the following relations-
SO = id, g (9)
m,y QV
Yl ¢l = id, 3ol (10)
D, m A aﬂ—l 7, m
¢b“ = Aoy P12 85, d);(:/g s (11)
2
yhe = ;v;ﬁ{/wﬁRﬂP,z, (12)
d. 1z
oy = sy I i D, @), (3)
m’ [d
7. m [d ] [ ]
O = LMy idy @ Ul (@) @d,) (14)
m’ o

where A5, = (v,007 )2 and M € GL(N?)).
B B i off

Definition 1 (Gauge symmetry algebra). Let us define for z € 7", the Hopf algebra
I =Tx{z} and I =Q,., I'.. This Hopf algebra is “the gauge symmetry
algebra.”

If z is a vertex we shall write 52 to denote the embedding of the element 5
in I.

In order to define the non-commutative analogue of algebra of gauge fields we
have to endow the triangulation with an additional structure [14], an order between
edges incident to each vertex, the cilium order.
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Definition 2 (Ciliation). A4 ciliation of the triangulation is an assignment of a cil-
ium c, to each vertex z which consists in a non-zero tangent vector at z. The
orientation of the surface defines a canonical cyclic order of the links admitting z
as departure or end point. Let 11,1, be links incident to a common vertex z, the
strict partial cilium order <. is defined by:

L <. if i*1,—1, and the unoriented edges c,,11,1, appear in the cyclic
order defined by the orientation.

If 14,1, are incident to a same vertex z we define:
+1 if [y <.,
Ah,b) = {—1 if 1o <.y

Definition 3 (Gauge fields algebra). The algebra of gauge fields [3] A is the

algebra generated by the elements u (1 )’ with 1 € £,0 € Irr(4),i,j =1---dim V
and satisfying the following determining relatzons

Commutation rules.

o af o

5 Gey)i b @) R =h (2y)e 8 Gy (15)
o «f o

i ey Ry i (v2)2 =h (vz)a s (o) (16)
af o o

Rua 81 ()1 1 (y2)a =t (y2)a it (o) (17)
Y(yx),(yz) € Lx+z and xy<,yz,

u(Du(-)=1, (18)
Vie ¥,

i Goy)r i (atyy =t (2t 5 () s (19)

Y x, y,z,t pairwise distinct inV" .

Decomposition rule.

i (I 1 (1)

> L w (DYbiPr (20)
y,m
2(l)= 1, VieZ. (21)

Gauge covariance of gauge fields comes from the property that A is a right I’
algebra comodule defined by the morphism of algebra Q: 4 — A QI

Qu (xy)) =g, (x)S(g,) - (22)

The subalgebra of gauge coinvariant elements of A is denoted A™. Moreover it can
be shown that -0 =ﬁ —li g (D). If z is a vertex we will define Q, : 4 - AR,
to be equal to Q, = (id ® p,)L2, where p, : I' — I is the morphism of the algebra
defined by p, = @,y 14,8
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It was shown (provided some assumption on the existence of a basis of A of a
special type) that there exists a unique non-zero linear form 4 € A* satisfying:

1 (invariance) (h®i1d)Q2(a) = h(a)® 1 Va € A,
2. (factorisation) h(ab) = h(a)h(b)
Va€ Ay, Vbe Ay, ¥X, Y CL, (XU-X)N(YU-Y)=0

(we have used the notation Ay for X C & to denote the subalgebra of A generated

as an algebra by " (1) with / € X and « € Irr(4)).
It can be evaluated on any element using the formula-

h(u (1)) = 8,0, (23)

where 0 denotes the trivial representation of dimension 1, corresponding to the
counit.

It is convenient to use the notation [ dh instead of 4. The following formula is
quite important:

WG (D) Joit (~1) = =P (24)
[d]
We will use this linear form % in Sect. 4 to compute link invariants.

A path P (resp. a loop P) is a connected path (resp. a loop) in the graph
attached to the triangulation of X, it will also denote equivalently the continuous
curve (resp. loop) in X defined by the links of P. Following the definition for links,
the departure point of P is denoted d(P) and its endpoint e(P). A colored path is
a couple (P,a), where P is a path and « is an element of Irr(4). In the rest of this
work, we will use as a shortcut the word path instead of colored path This should
cause no confusion

Properties of paths and loops such as self intersections, transverse intersections
will always be understood as properties satisfied by the corresponding curves on X

Let xg,...,x, be points of ¥~ such that x;,;x; is an edge of the triangulation.
This collection of points defines a path P = [x,,...,x], with departure point xo and
end point x,. In [10] we defined the sign &(x,, P) = e((x,1%;), (xix;—1)).

If P is a simple path P = [x,, ,xo] with xo=x,, we can define the holonomy
along P by

o Ly =ty X, 1

fp= vi= = P T Gepept) (25)
p=n
When C is a simple loop C = [x, 11 = X, X, . ,X0], we will define the holonomy
along C by
1S o 0o
o= pf e 80 )= a0, €)) T & Gepirxy) . (26)
p=n

In [10] we defined an element of A, which we called the Wilson loop attached
to C.

o4
We= tr‘(ﬁlylc) (27)

This element is gauge invariant and moreover it does not depend on the departure
point of the loop C This last property can be easily shown using another equivalent
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a
expression of W¢:

i=n Jj=n

o 1 1
We= COa(C)tr;}@m (/oi S P (H gt(xjﬂxj)jAj) ﬁ(x1x0)0> , o (28)

. . _ L rec s C
where 4; is the matrix Rﬁ.j.(f’fc)) ! and 0,(C) = vy 3rec el 2

The equivalence between relations (27) and (28) uses the simple identity:
tr1(fy Pro(x® ) (RO™) = id; , (29)

where ¢ = £1.

Remark 1. Compared to our first definition of w,(C) in [10], we have used a
different normalisation; they are related by a simple factor v,. The normalisation of
the Wilson loops is discussed in [10] in great details.

Remark 2. Expression of the type (28) is reminiscent of the formulas of [16] for
the conserved charges in the context of quantum lax pairs.

o
It can be shown that W satisfies the following fusion relation:

a B y
WcWe= 3, N(ZB We, (30)
yEIrr(4)

where C is any simple loop.
It was also shown that the following commutation relations hold:

a B
(We,Wer] =0 31

when C,C’ are simple loops without transverse intersections.
The geometrical content of this last result is very natural and explained in the
sequel.

Remark. We can define the algebra A for any type of graph provided that the graph
is endowed with a total order of the link incident to each vertex. In particular we
can consider any triangulation of any manifold of dimension greater than three, and
define a non-commutative lattice gauge theory associated to it. Unfortunately in that
case we lose the property (31) which is of central importance to define a non-
commutative Yang Mills action commuting with gauge invariant elements. This is
the reason which prevents us to extend the present formalism to higher dimensions.

Although the structure of the algebra A depends on the ciliation, it has been
shown in [3] that the algebra 4™ does not depend on it up to isomorphism. This is
completely consistent with the approach of V.V. Fock and A.A. Rosly: in their work
the graph needs to be endowed with a structure of ciliated fat graph in order to
put on the space of graph connections .«#/ a structure of Poisson algebra compatible
with the action of the gauge group G'. However, as a Poisson algebra .«//G’ is
canonically isomorphic to the space .# of flat connections modulo the gauge group,
the Poisson structure of the latter being independent of any choice of r-matrix [14].
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In [10] we introduced a Boltzmann weight attached to any simple loop C and
defined by:

oA
dc= 3 lddWc . (32)
2€lrm(4)
It was shown that this element satisfies a delta function property:
dc uch = d,0c . (33)

We were led to define an element ayy,, generalizing to our setting the exponential
of the Yang Mills action in the topological limit and defined by:
ayu = [] d¢y

feF
(note that from the relation (31) the elements of this product are pairwise commut-

ing).
This element satisfies the equation:

ayy tc=layy , (34)

for each homologically trivial simple loop on 2. This element is the non-commutative
analogue of the projector on the space of flat connections. The argument leading to
commutation relation (31) can be generalized, and it was proved in [4] that J., for
f € F is a central element of A,

The algebra Acs = A™ayy was shown [4] to be independent, up to isomor-
phism, of the triangulation As a result it was advocated that Acg is the algebra of
observables of the Chern Simons theory on the manifold 2 x R This is supported
by the topological invariance of A¢s (i.e. this algebra depends only on the topolog-
ical structure of the surface X and not on the triangulation) and the flatness of the
connection

This geometrical representation of Acs is particularly appealing. In particular

3

the element W that we already built should be interpreted as being the observable
associated to the Wilson loop of horizontal curves, i.e. loops in 2 x {t}. The time ¢,
which is the third coordinate in 2~ x R, manifests itself in the algebraic point of view
as an element used to order the observables if C;, ,C, are colored loops on X,
the element Wy, W, is the observable associated to the link L = (J_,{(C;, %)},
where #; < - <t,. Note that we are free to choose any time ¢; provided that they
respect the order 4 < --- <, This relative independence on the time variable is a
simple consequence of the vanishing of the hamiltonian of Chern—Simons theory.

In particular, if C and C’ are curves on X with no intersection points, the curves
(C,t) and (C’, ") never intersect. As a result we obtain that

a f i o
WcWer=WeWe, (35)

which is the result (31) (note that this last result was proved in the more general
case where there are no transverse intersections).

Our aim is now to construct in the algebra A¢s the observables related to the
Wilson loop associated to any link in X x [0, 1]

Remarks 1. In order to simplify our work we have assumed that the surface has
no punctures This situation can be handled using vertical lines as shown in [4].
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2. The definition of the element d¢ assumes that the algebra 4 has a finite number
of irreducible representations. Unfortunately we want to apply our formalism to the
case where A = %,(%). When g is generic we can however formally bypass this
technical problem using the formal properties of d¢ such as (33). The only infinity
which can possibly occur comes from the square of d¢ due to the relation:

6L = ( » [da]2> dc . (36)
a€lrr(4)

The only sensible way to cure this problem seems to work with g being a root
of unity and to truncate the spectrum either by quotienting by an appropriate ideal
or by using the formalism of weak quasi Hopf algebra as shown in [3, 4].

3. Construction of Observables W; Associated to Links L in X x [0, 1]

3.1. Links and chord diagrams. A link in X x [0, 1] is an embedding of (S!)“?
into X X [0, 1]. On the set of links we can define a composition law [19], denoted *
defined as follows: let ji, 5 be any increasing diffeomorphism from [0, 1] to [a, b],
and let us denote ji, ) = idx X jio,5. The composition L * L' is defined by

L+l :j[o,%](L)uj[%,”(L'), 37)

which is an element of

1 1
> x [o, 5} Usxqiy 2 % {5, 1} =z x[0,1].

When the links are considered up to an ambiant isotopy this composition is as-
sociative and admits the empty link as a unit element. This composition law is
commutative if and only if 2 is homeomorphic to the sphere.

In the sequel we will use as a shortcut the term link to denote a colored link in
2 x [0, 1] (a link in 2 X [0, 1] with an element of Irr(4) attached to each connected
component of L) such that the projection of L on X is a union of loops on X in
generic position (i.e. no more than double points and transverse intersections at

these points). Let us denote by (i)i=1 p the connected components of the link Z,
i

o; € Irr(4) the color of this component, and by P the colored loop obtained by

projecting Lon X It is very convenient to associate to the link L a colored chord

diagram [21, 9, 1] which will encode intersections of the loops }l’ This chord
diagram is constructed as follows: the projection of the link on X defines p colored
loops on X with transverse intersections. This configuration of loops defines uniquely

a colored chord diagram by the standard construction. Let us denote by (S’),-zl p
the coloured circles of the chord diagram. Each circle 5’ is oriented. We will denote
by ( }iij) )i=1 n; the intersection points of the circle S’ with the chords. We will assume
that they are labelled in such a way that )lzj appears before j;j 41 Wwith respect to the
cyclic order defined by the orientation of the circles. Let ¥ = [J” { )izj, j=1-n}
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We define a relation ~ on the set Y by:
y ~y' if and only if y and y’ are connected by a chord . (38)
We will denote by ¢ the immersion of the chord diagram in X, in particular we

1 1
have P= ¢(S). Each intersection point of the projection of L on X has exactly
two inverse images by ¢ in the chord diagram and these points are linked by a

unique chord If p,g are two points of S we will use the notation [pg] to denote

]
the oriented arc segment of S having ¢ as departure point and p as endpoint. In

the rest of this work we will assume that cp[)l)j 4 )l/j] contains at least two edges,

1 L 1 [ 1
for all i,j. This allows us to find a point z;€S such that z;€] )l/j)’//,l [and ¢(z;)
is a vertex of the triangulation. This is a purely technical assumption which could

1
be easily removed. Each circle S is the union of 2, oriented arc segments of type

[}jéj] and [é,)i/jhl]. Let us denote by ., this family of segments, & = (J” |.%; and

zZ=Ul{zj=1 --n}
To each segment s = [pg] of .¥; we will as usual denote its end point e(s) = p,
its departure point d(s) = ¢, and associate to s the vector spaces V- and V), such

%
that V- =V, =V .

If a is a point of ¥ U Z, we define s(at) (resp s(a)) to be the unique element
of % such that e(s(a™)) = a (resp d(s(a~)) = a) We shall also use the arc segment
s(a) = s(aT)Us(a™).

Let a€ YUZ and ¢ € {+,—}, we define I(a) to be the link of the path
¢(s(a%)) incident to ¢(a).

& being a finite set, we choose on it a total ordering and denote by < the strict
ordering associated to it. This ordering allows us to define two vector spaces V_
and V, :

V=Q Visy-=&@ Ve and V= Q Vi) = Q Vi, (39)
SEY xXeEYUZ seESL xeYuz

where the order in the tensor product is taken with respect to <.
Let a,b € Y UZ and &5 € {+,—}, and assume that ¢(a) = ¢(b). We will use
as a shortcut the notation:

e(asb") = e(l(a®), I(b")) . (40)

Fig. 1.



Link Invariants and Combinatorial Quantization 341

We define the space Ay by:

Ag=4® ® Hom(Vd(s)—a l’/é(s)*) > (41)
s€S

where the order in the tensor product is taken with respect to <.

Let a,b € YUZ and &5 € {+,—}. We shall always use the notation P, to
denote the permutation operator exchanging the vector spaces V: and ¥} in a tensor
product of vector spaces.

If s is an element of %; we denote by j; the canonical injection j;: A ®
Hom( Y&(S)—, V;:(s)*‘) — Ay

Let us define two types of holonomy along s:

o u; € A ®Hom(Vy)-, Vesy+) is defined by us = uy(s), (the right-hand side has
already been defined so that there is no risk of confusion).
o Us € Ay is defined by Us = js(uy(s))-

We have to introduce both of these holonomies because in the rest of this work
some of the constructions are easier to formulate with U; whereas some are easier
to work with u;. These two points of view were already appearing in our previous
work. Indeed if C is a closed path then W which is defined by (27) can also be
written as (28). The expression (27) only uses the holonomies u(/) (playing the
role of variables u;) whereas expression (28) uses only the variables u(/); (playing
the role of variables Us;.) The definitions and notations we are explaining in this
section have been designed to include automatically the auxiliary space previously
labelled by a number. As a result the holonomy U is labelled by a segment s and
the auxiliary space is also labelled by the same segment. This has the advantage to
greatly simplify the notations. The price to pay is that we have to choose a total
order on & (the order <).

To formulate the exchange relations satisfied by the U; we will introduce one
more definition:

Definition 4. Let a,b be two points of Y UZ such that a eé‘, b e§ and ¢(a) =
¢(b), let us define the endomorphism:

R € Bnd(Vye ® Vi) (resp. End(Vpn ® Vo)) if s(a%) <as(b") (resp. if s(b")<
s(a%)) by:

i _ [ ® )R if s(a®) as(®")
Pysin(@; ® ) REEP)Pyyyif s(B) a5(a°)

From the previous definitions, the endomorphism R@?") acts on the space Vy ® Vp

or Vy ® V¢ depending of the order of s(a®) and s(b%) with respect to <. It will
&

be sometimes useful to use the notation RE“,, db;) to denote the element R or R'~!

(depending on the order of s(a®) and s(b") with respect to <.) represented on the

space Ve ® Vyo or Vgo @ Ve (depending on the order of s(¢”) and s(d?) with respect

to <. Note that the relation RE‘;Z”)R%C“‘,Q) =1® 1 always holds true.
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Proposition 1 (General exchange relations). The clements Us, s € & satisfy the
following exchange relations in Ag.

ot
ROTVDUL0Uns] = Unae Usings - Yzl [0222] € 1 ~ ya s

oty
Uy RO D7 Uz = Upen Upizgs VInizil 2] € o010~ pa

U1 Upi R 2 ) = Uy Uy v, Vzivi L2232l € &30 ~ 32,
N

Uy RGN = Uy Uy, Vs € S, e(s2) = d(s1). 0(d(s2)) F p(e(s))

Upyyz RO 07 UL ) = Uy R 707 Uy, VinziL[zinl € S,y ~ s,
US‘] USz = USz US]) VS],SZ e ya d)(S])ﬂ d)(sz) = (Z) *

Proof. 1t follows straightforwardly from the definition of U, and the exchange
relations of the gauge fields u(/). O

Up to now we have not used the information coming from the topology of the

1
link, i.e over and under crossings of the projected paths P. This will be encoded
in the following definition:

Definition 5. Let < be any fixed strict total order on Y, we define a family
{2} ey of elements of e, Hom(Vyy-, Vys)-) as follows: let {y,y'} be any
pair of points of Y such that y ~ ' We can abvays assume (otherwise we just
exchange y and y') that y <y,

o ROV if o(s(y)) is above @(s(y")) (42)
ROTYDROTIDZIROTY ST if (s(y)) is under o(s(y'))
/ RO if (s(y)) is above @(s(y"))
A — ’ +)

RO RO RN if o(s(y)) s under o(s(y')
This definition defines completely the elements #Y) for any y € Y. Similarly if z
is an element of Z we will define #%) = R = )~1,

The reader can legitimately find the definition of #(*) obscure. This definition
should be clear after reading the next lemmas.

At this point it is very important to understand that #(") depends on numerous
orderings namely

e the total order < on Y
e the total order < on &
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e the partial order coming from the ciliation
o the under and overcrossings of the projection of the link.

We will sometimes write 2(*)(<) to make explicit the dependence in < .
Let us define the cyclic permutation operator:

i e
O':P,‘ 1

o i1, .
zl+y1+j=2 z1tz,* zl"y,-"

We now have defined the framework necessary to associate to L an element of
A denoted W, which generalizes the construction of Wilson loops. We denote by
< the strict lexicographic order induced on Y by the enumeration of the connected
components of L and a choice of departure point for each of these components, i.e.

9,<1%, if and only if i <j or (i=j and p > q.)

i
Let us denote the holonomy along the circle S by

U= o(SYU,, AON<)U, . B*(<)U, . ---U (44)
[z1y,,] [n;2n]

[
Zo; V] Dz’

i LS (5, P+ P)
where @(S) = vy,” pm1 AO0pLPITEDEF)

This holonomy generalizes the holonomy we associated in [10] to simple loops:
the elements 2 contain all the information on the relative crossings of the pro-
jection of the link L.

Let y be a point of Y such that y eé, let [zy] = s(y~) and [yt] = s(3y™), we
can define the holonomy

1 i 1 i
AW — v, “(e((p(z)’Pst((p(y)’PHSWO)’P»U[zy]%(y)U[yt] i (45)
which is such that
i 2 ' ! i
Y= H (%(ym)@(zm))q/(y[). (46)
m=n;

The following important lemmas describe the commutation relations of the ele-
ments %) which explain the definition of %().

i
Lemma 1. Let y be a point of Y in S and let us denote by y' the point of
Y connected by a chord to y, and assume that y <y'. We have the following
commutation relations:

o If s(y)Ns(y') =0 and @(s(y)) is above @(s(3y")), then

/+ +

Ny — ( Yy pGY Ty =19/ (' Ty Q2(
AU = 5, R IORY DT ORYOSwy, (4T)

where RO™Y") = L0 ® ,3;,+,
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. i/;S(y) Os(y) = {z}, with z = d(s(y)) = e(s(y")) and ¢(s(y)) is above ¢(s(y"))
then:

g MRET =107 — > ﬁ’vHR()’HJ’*)%(J")R(J"'y“)~1%(,V)R()"'¥}'7)S2(O(1y‘) (48)
"

Let a,b be two distinct points of Y we denote by 1, < the total order on Y
obtained from < by permuting a and b.
The first relation can also be written:

e if y and y' are points of Y linked by a chord such that s(y)Ns(y') =0 with
y <y and ¢(s(y)) above ¢(s(y")):

QU = L Ay DUy QRS STISNE) L (49)

where RO = S ox,_@p, ..
o if y and y' are points of Y linked by a chord such that s(y)Ns(y') =0 with
y <y and ¢(s(y)) under ¢(s(y')):

U<y (<) = 3 B U (20 <UD, S, )Rj,y,',_)ff ) (50)

(Similarly if s(y) N s(y') = {z} with z = d(s(y)) = e(s()')) the last two equations
hold true if one replaces the left-hand side by U)RE Z)=1q/0"),

Proof  This lemma is a direct consequence of the following computation:
-t 1 1= 1+ 1
UpgRY " UpqUprynRY 2™ Wiy = U Uiy Uy Uper

= 3 U Upeyi Bys R 718200 ) Upyin Uper vy
1
. 2 i
=2 By Uno Uty Upeny Upzr i S7(2,-)
1
_ L RYTIYOU Uy U i Unan RO 82 (o
S B b1 Ui Uiz 31 Upey (o)
1

- Z ﬁ;HR(y Y )U[y/[/]U[Z/),/]R(y vl U[y[) U[Zij(yiy _)SZ(O(}_ )
i

/+)

. St = —1 I N ,— Tt —1
— Zﬁi‘”R() v )U[z’y’]R(y ) U[yw]R(y ) IU[zy]R() »T) U[y[]
1

V' 7Y Q2¢
X R S0, )

Equations (47,48) are a straightforward consequence of the previous computations
and the definition of 2(). O

Lemma 2. Let y1, y, be two points of Y not connected by a chord and let y|, )
be the points of Y such that y; ~ yi, y2~ y5 If we assume s(y1)Ns(y;) =0,
we have the following relation:

U (<UD (<) = U (<A (<) . (51)
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Moreover if we assume y, < y, and {y, s} N{y €Y, y1 <y <y} =0 the last
relation can also be written:

%(yl)(<)%(,"2)(<) — %(yl)(‘fy.,yz <)%(yl)(‘cy1,y2 <). (52)

Of course if s(y1)Ns(y2) =1z} with z=d(s()1)) = e(s(32)) the previous
equations hold true if we replace the left-hand side by: UV (<)RE Z)~1q(n)(<),

Proof. The first part follows straightforwardly from the definition of #0) and
the assumption s(y;)Ns(y2) = 0. The second part comes from the fact that the
relative order of y; and y] with respect to < is the same as the one with respect
t0 Ty, <. O

3.2. Definition and first properties of the observables W, associated to a link
LcXx]0,1]

Definition 6 (Generalized Wilson loops). To each link in X x [0, 1] satisfying the
assumptions of Sect. (3.1) we associate an element W, of the algebra A by the
following procedure: let us denote by W7 the element

S

P i
Wi=usll o [l %, (53)
i=1 i

where gy = Qs He(s)*-

From the definition of & it follows that: #7, € A ® Hom(V_, V).

The Wilson loop associated to the link L is defined by Wy = try_#7, where
try_ means the partial trace over the space V_ after the natural identification
Vi = V_. It will be convenient to write

WL=Trq<ﬁ %) : (54)
i=1

When L is a simple loop in X x {t}, the element ¥, we just defined is equal to
the Wilson loop we already defined by Eq. (27).

This element satisfies very important properties which are contained in the fol-
lowing theorem:

Theorem 1. Let L be a link in X x [0, 1], then W, does not depend on the labelling
of the components nor on the choice of departure points of the components. As
a result W is a function on the space of links with values in A. Moreover this
mapping takes its value in A™.

If L and L' are two links, we have the morphism property:

Wixr = W, Wy . (55)

Proof. We will first show that W, is invariant under relabelling of the connected
components of the link. It suffices to show that W, is invariant under the exchange
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i i+1 .
of S and S for all i. Let j =i+ 1, we can write

i+l

W, = Try(A %W B)

! ! ! /
= Tr (AU ) WU 7). Y0y

(i7) . . . .
Let <, denote the lexicographic order associated to the labelling of the connected

1 1+1
components after the exchange of S and S, it is obtained from the first lexicographic

. . . o j
order <; by exchanging the points )l/n’</ - <y )111 with the points Vo<t <1
In order to prove invariance under the permutation of the connected components it
suffices to show that:

il . : 7 J 7
Tr, (AU (<)) D (< )y (< A - u0D(<))B)

) ] by ) )] : Ly )
= Trq(A”?l(“‘”/)( < 1)9?(2"/) .. %(_\;)( < l)%()"')( <[)g?(zn,) . @/()1)( </)B).

The proof goes as follows if )l/] is not connected to any fvm, then we deduce from
the second lemma that'

i I8 I 7
uzl(y,)(<1)%(1,,/)(<[)%(zn,) .,%(Jl)(<1)

/ ' / /
_ J?l(yn/ )(T, , <[)‘//Z[(yl)(f, , <1)%(Z!1,) . 92[()}1)(<1)
ViV, VsV,

] 7 1
:%“”I)(f;, . <1)92(Z"/)J1/“")(f;, ;
Y1

] T

! n, , , n, , n,
") TLe, <o) 250 a | ] oo, < Tl <)
p=1 YV p=1 Y ¥p p=1 Y1V

Let 7, denote the permutation 7, = H'Zzl 7, ,  We have just proved that if y,
Yy ¥y

]
<)) - A, <))
Y1

y Ly
ESERSY) Sy

. J
is not connected to any y,, we have:

Tr (AU 76 oS ) q00p)

N / / ! ! '
:Trq(Aaz/”“/’(rl <A Y (1 < YU (1 < )R AP (1) <,)B)

This last equation still holds true even if 3’/1 is connected by a chord to j}m . We
will show it if m = n;, the other cases are treated with the same method
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Let us assume first that ¢(s( )izl)) is above ¢(s(§m)) and apply Lemma 1:

Trq(AOZ[(i’ni)’@(én,) .. %(},)%(i’nj)@(énj) o @ld)‘)B)

1 i [} J i
=% Trq(A%(yn,)g(zn,.) . g(h)ﬂ:+ azl(yn,)(ﬁ <DUY(t; <))
r Yn,
[
(I,Vl In, )SZ(O(: )'@(énj) . %(5’1 )B)

xR
2 I,

i 1 i J 1
_ ZTrq(ﬁ:+A%(yni)g(zn,) ... @(zz)%(yn,)(Tl <UY(t; <)
r J’,,J
P
(620 RO B
13 J ! S (a; ))

y]_ynj_ ynj_

x A% ... yVBR

— Trq(Adk(,{}ni)g(én,) .. ,g(éz)%(yn,)(ﬁ <1)%('{)1)(Tl <1)g(5n,) .. -%d’l)B)
' i ' J J J i
_ Trq(A”Zl(y”' ) ) .. ,@(Zz)ql(yn,)(,[l <l)g(2n,) o %(y,)(rl <l)%(y' )(11 <,)B)

_ Trq(A%(y"')(ﬁ <l)g(éni) . ,,%(il)(ﬁ <)U (1, <l)@(5n,-) . “01!(5)‘)(‘51 <))B).

If o(s( jzl)) is under (p(s(fzm)) we use the same type of proof but use instead rela-
tion (48).

Up to now we have shown that we can move %) to the right with an exchange

of <; into 71 <;. The same arguments apply as well to W) up to %), We finally
end up with the following equation:

Trg (AU ) ... A ) . 0 p)

_ G [ { Gn) o[ T
=Trg (AU | ] tp<| R U [z, <

p=n; p=n

1 1 1 i 1
< YOn) ( I T, <> B ) ( H Tp <> B> R
p=n; p=m

. . @) .
which establishes the result because < 1= HL#, Tp <. This ends up the proof that

W, is invariant under relabelling of the connected components of L.
Let us prove now that W, is invariant under the choice of departure points of

1
the curve P used to define W;. From the first part of the theorem that we just have
proved, we can write:

Wy, = Trq(%(}"z).@(é"') .. '”Zl(}'")A) . (56)
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Once again the idea of the proof is to use Lemmas 1 and 2 to move AV 1o the
right.
Let us define ¢; <; the strict order deduced from <, by applying a cyclic per-

. 1 1 1 1 1
mutation to y,, .,y; such that y, ¢ <, </, <;y;¢<;y,

Assume first that j}n, is not connected to any of the points )Iz > we can therefore
write, from Lemma 2

WD gD 0 — g gl L gy
=y g g Gg
= A D )  ggEngh)
which is cqual tor

U (e, <) U (e, <)ATU (¢, <)) . (57)

This proof does not work, but the result is still true, with the exception of n; =2
In that case one has to generalize Lemma 2 to the case where s(y)Ns()2) =
{z,z'},z%z'. We leave the details to the reader

Assume now that )l/,,' is connected to one of the points j/p, and let us choose
p = n;—1 to show the structure of the proof:

W, = Trq(%(.{‘n,)@(én,) . azl(,(*l)/ﬂ

Try(4" =, <O, <G t0A)
" 'n,_,] ‘7:1, “"1—-1

using Lemma 1 and the property of the quantum trace
Finally we obtain.

W, — Trq(%(v”’*l)(f, ’ <l)g?(zn,_1) %(,V,,,)(T, , </)%()’1)(T, . <A
'n, Yn, 1 Vi, .n, ] ‘7)1, 'nl _
= Tr, 4z, <R I, <A
y,,‘ ,”17 1 :n, Yn,fl
X(t, . <p)A)

v, ¥
nny

_ Trq(”?l()""—l)(ci <1)@(Z:,,,1) ”2/("")(0, <1)<@(21)%()‘”')(Ci <NA).

It is easy to show using the same method that this result holds as well whatever
the value of p can be

We have shown that we can always replace the departure point él by its neigh-

bour é,,,. As a result, by a trivial induction, it proves that /¥, is invariant under the
change of departure point of each connected component.

Let us now show that W, is a gauge invariant element It is easy to show that
W, is a co-invariant element under the coaction Q,, where x € 7"\ @(Y) : this is the
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same standard proof of Prop. 2 in [10]. The only non-trivial part comes from the

1
points of ¢(Y), i.e. the intersection points of the loops P . Let y € Y, according to
the previous part of the proof. We can always write Wy, = tr,(%) A% )B), where
y~ 3y, @(y) above ¢()') and 4 and B are elements of the algebra A containing

no variable 102(1 ) with [ incident to ¢@(y).
We have:

Q(/J(y)(WL)
-, Fy_ e SN
= Trg(UpyiS(g,- )RV 77 gy Uy AUy y18(g - RV Y )71 g UpyenB)
= Try(UpygyRY 7 77'S(g,- Wiy AUpryngy+RY ) 718(g, - YU B)
— Ay e N
= Try(gy+ UpnRY 7 718(g,- g+ UpnAUp 1R D 718(g, - YUy B)
e ‘ e .
= Y Trg(gy+ UpyRY 7)7'S(g,- B3+ R 7183 (o2 )g s Upynd
1
X U[Z,y,]R(}”'y’ )_IS(gyl— )U[y/tl]B)
i -ty — Iy
= Y Trg(Byy+ gy UpyiRY 7 718(g,- )RV )71 Upyyd
1
XU[Z/y/]R(yl-yl )_IS(gy/— )U[y/t/]BSZ(OCfV_ ))

i i —vHy— -,/
ZZTr‘?(“lﬁﬁly’*gy*U[zy]R(y YOl s ROV 71S(g, YU
1

XUy iR 718(g - YUpyB)

= trq(R;y’f 'y+ gy+ gy U[zy]R(y—er)_lR(y_yHr)_1 UpnA
X Upry RO D7 Uy1BS(9,-)S(gy-))

= Trq(gy,+gy+R(y{_y,J’+'+)~l U[zy]R(y_f)—lR(y‘y”)—l Uty
x U[Z’)”]R(yl_y“r)_1 U[y’t’]BS(gy— )S(gy" )

= Tr,(RY. VO Yy RYYITIRYTY D1, 4
XUy RY D™ UpynB) .

As a result we get Qy,)(W.) € A® 1. Applying (id ® ¢) and using the comodule
definition, it follows that: Q,,)(W.) = Wy ® 1, i.e. W is an element of A““’

Let L,L’ be two links of X x [0,1], and {SL i=1,...,pr}, (resp. {SLI i=
1,..., pr'}) be the circles associated to the chord diagram of I (resp. L'). The family

1 1
of circles of the chord diagram of L+ L’ is the union {S,i=1,...,pL} U{Sy i=
1,..., prr }. We can choose a labelling of the circles of the chord diagram of L x L'
such that those of L appear before those of L’. Because @(L) is above ¢(L') the
expression of 2 such that ¢(y) € @(L) N @(L') does not connect L and L, i.e.
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2 = RU”Y)=1 From the definition of W,,;, we immediately get W, = W, W,..
This fact is the final step in the proof of the theorem. [J

As already explained in Sect. 2, when L is a simple loop in X x [0,1], W, has
two equivalent expressions: the first one, called “expanded form” (Eq.28), can be
written as a partial quantum trace over the space 4 ® @), Hom(Vyi)-, Ve ),
whereas the second one (Eq. 27), called “contracted form,” is expressed as a partial

%
quantum trace over the space 4 ® @7, End(V). The relation between them is a
direct consequence of the following result:

if 4 € Hom(X,Y) and B € Hom(Y,Z) then BA = try(PyzB® 4) .

The definition of W, for arbitrary links is naturally defined in terms of the U, it

%
can of course be written in terms of a quantum partial trace over 4 ® @7, End(V).
The expression is quite messy, the only essential point being that we can switch from
one expression to the other. This contracted form enjoys the following property:

i
Lemma 3. Assume that there exists a connected open path P CP such that

1. e(P) and d(P) are not intersection points of the projected link
2.Vy €@ Y(P) and y' € Y\ '(P) with y ~ V', ¢(s(»)) is above P(s(y")),
then the Wilson loop associated to L can be uniquely written as

, —lee(P)P)  le(d(P).P
Wy = tr,, (fwy, O upus P g (58)
vV

A A
where A is an element of A @ End(V, V') which components are linear combinations

of the matrix element of(ft (1))iepwyp with coefficients depending only on the set
of links in ¢(L)\P and the ciliation at each vertex of ¢(L)\P. A path satisfying
properties 1) and 2) will be said to be “on top” of the link L

1
Proof. From Theorem (1), we can always assume that P C P, and from the
independence under the choice of the ¢(z) for z € Z, we can always assume

that e(P) = ¢(21) As a result we can write: W, = Tr(iy [1z, o U [17, 2.

Because P is on the top of L we have 2% = RO YD1 if y € ¥ and ¢(y) € P
Using the formula

1
L
trVe(\;)(ﬂe(s; )uis(d(S]) e(s2)™) l”s;) — vifd)(e(SZ))’P)”sl“sz , (59)

we obtain the desired result. [

Proposition 2 (Regular isotopy). The element WL =W, 11 c7 Oar of Acs depends
only on the regular isotopy class of the link L, ie it satisfies the Reidemeister
moves of type 0,2,3.

Proof. Let us first show an already interesting result in itself: if L, L’ are two links
In xR, L (resp L'l ) are connected curves included in L (resp L') and P
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(resp. P') are the projections of L; (resp. L) such that:

o I\L; =L'\L

o BL)\P = $(L')\P'

e e(P) =e(P'), d(P) = d(P’) and none of these points are intersection point

e P (resp. P’) is on top of L (resp. L)

e the curve C = PP'~! is a closed simple homologically trivial curve, then the
following equality is true:

W, =Wy . (60)
In order to show this easy result let us denote e = e(P) = e(P’) and d = d(P) =

d(P’), and assume that P and P’ are colored by o;.
From the definition of a path being on top of L, we have:

o —1le(eL) le@d,L)
I1 derWr = T1 Sartrs (4 va,* upvg A)
FeF FeF 4
H s v—%s(e,L)+%e(d,L)+%s(e,C)—%s(d,C)
= oF Vo,
FeF

le(e,C le@,C
38( )quo%, ,C)

xtr;}-(,al‘i (vs, pr—1 Yupr )
= 1II 56F0a_i%s(e’L)+%8(d’L)+%8(e’C)—%e(d,C)

Fes

><tr®j;}(7i ucuprA)

[] Sopvs H2EDF 1@ DHeEO Je@CH ool )= fe(@ L)

FeF
o —le(el! Le@d, L’
Xtr (U va,z( )up/vo%,( )A)
®,V
= [ 6orWr .
FesF

The last line comes from the identity:
&(e,C)+e(e,L') —e(e,L)=1. (61)

This ends the proof of the intermediate result.

The proof of Reidemeister moves of type 0,2,3 is a direct byproduct of the
previous result, the proof of all these moves being easily reduced to move an open
strand on the top of the link. [

In [4] it was shown that if J and ' are two ciliated triangulations of X, the
algebra Acs(J) and Acs(J') are isomorphic. Let us denote iz g : Acs(T ) —
Acs(F') as this isomorphism. It was shown that this isomorphism preserves the
linear form A: if a € Acs(7), then h(a) = W' (iz +(a)), where h (resp. 4’ ) is the
linear invariant form on A(J) (resp. on A(J")).

Proposition 3 (Invariance under the change of triangulation). Let 9 and ' be
two triangulations of X, and let R(,7') be any triangulation which is a common
refinement of 9 and F'. Let L (resp. L') be links in X such that L (resp. L)
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|

Fig. 2.

has all its projected components composed with links of T (resp T'). If L and
L' are related by a ﬁmte set of moves of type 0,2,3 involving the triangulation
R(T,T') then: is, (WL) = WL/ A direct consequence of this result is the equality

of expectation balues ie: h( WL) = W (Wy).

Proof. This is a direct consequence of Proposition 2 and the expression of
if,f/. D

The only move which cannot be deduced from Proposition 2 is the first move.
Although being reduced to the move of strand on top of the link, the strand P
which is moved to P’ is such that e(P),d(P) are elements of ¢(Y) or PP’ is not
a simple curve So we cannot apply directly the intermediate result.

In the next theorem we study the behaviour of W, under the move of type 1.

Proposition 4 (Type I moves). Let L be as usual a link in X x [0,1] and P the
i
set of projected curves on X and let L% be another link whose projection P **

differs from P by a move of type 1 (see Fig 2) applied to a curve colored by w,,
we have the following relation.

Wy = 02 W, (62)

Proof. Let C denote the closed curve C = ¢([y'z2]) U ¢([z2]), we have:

SeWys = Sevy 3O A IO G0 T e

xtry CH ey e U,y 23 A)

—e(z )= LT vt ) Ty ) +Hiem T

= 5C Uy,
o oA % o
><tr (P+ e P+ o Pyt B Py [y L
Vo, @V, ®V,®V -
N _1 — 7% _1 71— Y/*‘ _
X”[:Iy]R” O gy RS2 g, R gy 04)
= Sev =36 T )= 1TV )@ a ) e (Y T Y e T )
11
XtrV ®1 o, /®f/l(Pl '+PZ+Zﬂ+P4 ,L[V+,uz,+,u‘/

s

<tz R 720 gy g RO ORYT D g 14)
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_ 5C0—%6(Zn‘zﬁ)—5(8(y‘y Ye(y Ty )+ie@ T a )+ Ty
=S¢,

o o o
Xtr a,(P+ oy + U+ U+ U
V,@V, &V oy 2y ey

—le(y ™) le(z"z) - - i+
Xvaizsy y u[yzz]va%,«a 272 U[ZZy’]u[zly]R(y YOIRG ™y )u[y’23]A)

- 5Cv—%(s(zl‘zﬁ)—%(s(y-y+)+e(y"y’+>)+%e(za"z3+)+%e<y"y+>
= dcvy,

o a o
Xtr u,(P+ i+ P+ + U+ U+ U
V,QV, @V vy Ny yriry

. - — = I+ —1
Xid, ., RY 7 ORYY D gy 4)

_1 ( r— 4+ 1 - +) .
= (after the use of dcvy, 2°7 7 )u[m]vaﬁe(z2 2 Uy = ocidy,. v, )

where idy,, v ,_) denote the identity endomorphism)
r— 1+ 1 -1+

__5Cv—%(€(y'y+)+€(y YIN—e( Ty eV Ty ) 5e (T Y )L Ty
=S¢,

1 -t Le(y—y't 1 27t
Xtra;}(;(i Uac,ZS(ZI Z1 )u[z]y]vozz,S(y y )u[yzﬂl]é,s(ﬁ z3 )A)

B R e e A e e L e L e

From the relation:
ey YD) +e(y Ty ) =e(y ¥y +1,

we can write:

1 _ o _ 1 1
—sTYD e YN Ty ) +e(V Y = 56y ) + 56y )

2 2 2

1 B B _ _
= 5@ Y HeOTY) Fe T+ Y TN H =1,

which leads to 5c Wt =v,,6cW,. We finally obtain the relation:

Wioer = vy Wy . (63)
The proof in the other case is very similar and it can be shown that:
P =o', O (64)

From Propositions 2 and 3 we immediately obtain that WL is a ribbon invariant,
the link being endowed with the “blackboard framing” associated to the projection
2 X [0,1] — Z. Let n; be the writhe of the ribbon defined by L;, Propositions 2 and
3 imply that

p _
(L) =] v, "Wy (65)
i=1

is a link invariant element of the algebra Acs.

A particularly simple situation appears when X = S2, because in that case Wy is
essentially a number.

Indeed let X = S?, then from the independence of the algebra structure of Acs
under the choice of graph [4] we obtain that Acs(S?) is an algebra of dimension
1, (this comes from the fact that S? is homeomorphic to a disk whose boundary
has been identified to a point). As a result we get Acs(S?) = C[] re 790ar. We then
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deduce that.
Wy =w I] der (66)

with w; € C.
This number w, satisfies the following equation:

Wi = WiWpr (67)

which is a trivial consequence of the identity W; Wy = Wi and dim Acs(S?) = 1.

In the next section we will show that w; is the Reshetikhin—Turaev invariant
(denoted RT(L)) of the framed link L. We will have therefore a new description of
these invariants in term of traces of holonomies of flat connections in the spirit of
the work of E. Witten.

When X is not homeomorphic to S?, Acs is no more a trivial algebra. It is then
a quantization of the space Fun(Hom(m;(2), G)/G,C), a presentation by generators
and relations being given in [4]. This presentation is simply obtained by generalizing
the definition of A to arbitrary cell decomposition of the surface. By taking the
simplest one, i.e. one 2-cell, 2g edges and one point, these authors have obtained a
nice presentation of the Moduli algebra. This description is one of the steps to obtain
the complete set of irreducible unitary representation of Acs (even with punctures)
as described in [5]. We also have to mention the work [19, 2] for other interesting
constructions related to quantization of the moduli space of flat connections.

4. Relation Between the Observables W; with L C S? x [0, 1]
and Reshetikhin—Turaev Invariants

The aim of this section is to show that in the case of the sphere the invariant of link
wy, is equal to the Reshetikhin—Turaev invariant of the ribbon (endowed with the
blackboard framing) associated to L. The idea of the method is very simple: because
WL = wpayy, we obtain w;, = h(wpayy )/h(ayy ). It remains to integrate wyayy over
all links of the triangulation. This is quite technical, the final answer being just the
Reshetikhin—Turaev invariant of the link L in the shadow world

Before explaining this proof we will first show that when 4 = %,(s/,) and L is

a link colored with the fundamental representation, then w; = q%Zf”IP(L, q*), where
P(L,z) is the Jones polynomial of the link L.

Proposition 5 (Skein relations-Jones Polynomial). Let L, ,L_,Ly be links in X x
[0, 1] which coincide outside a ball and look as in (Fig 3) inside the ball.

In addition assume that A = U ,(sly) and that the links L. ,L_, Ly have all their
components colored with the fundamental representation of A. We have the skein
relations

G, —q W =(q—q W, . (68)
Moreover.
wp = ¢ >="P(L,q%), (69)

where P(L,z) is the Jones polynomial of the link L in the variable z.
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XX XN

L+ L Ly Lo
Fig. 3.

Proof. Let us assume first that y, and y, belongs to the same circle of the chord
diagram. We can write:
%(1) U[z 1Vn ]R(y” y” lU[y'th]A U[szrl)"p]R(y;y; - U[,szp]B . (70)

Using this notation we obtain:

Wi, =Tr (H %(i))

= Tty(Upzy 3RO 77 Uty 21 AU, 1) RO Y207 Uy 2, 1BC)
= Trg(Upy,zn1 Utz 14 U[ypzpl Utzp19,1BC)

vy ¥y 1 )
- Trq(U[Ynzn]AU[zn+lJ’n]ﬁ ! R(y" yP) SZ(“,V; ’ )U[ypzl’] U[ZP+1yp]BC)
oy vy 2, v

- Trq(ﬁ p [][}’nzn]AU[ypzp]U[zn+l,Vn]Uv[zp+lyp]S (ay”" g )BC)
— Tr/(Upya1AUsy a1 U1 Usso sy RO 2 BC
= Trg (Uit Uty ) Vs yd Uiz vl R - 2" BC)

=yt =) R0 Y3
= Tl‘q(U[ynzn]AU[szyp]R(yP 7p) lU[szP] U[Z"“y"]R(yp ” )RY?J’? BC)

-ty -+
= Trq(U[)’nZn]AU[ZpH,Vp]R(yP yp) IU[}’pzp]BR(Z"HZ"H) !

T y7) vy
XU[ZIH-I,Vn]R pon R — C)'
Vi Vo
Using the same method, we can check that:
+ o+ — Y -,y
WL-— = Trq(U[zn+ly”]R(yn yp )R(y" y”) lR(y” yp) IU[y’lel]A
=51 p(y= =) pWp Ii)
X U[Zp+|J’p]R(yp yp) R(y" 7r )Ry;Py,,— U[J’pzp]BC)
—yFy_ -+ y_
= Trq(U[)’nZn]A U[Zp+lJ’p]R(yp yp) Il][}’pzp]BR(z"HZ’H'l) !

Oy yn) vy
XU[ZH‘H,v"]R v ? C)
yn Yp

From the standard expression of R in the fundamental representation

R= ‘%< ZEU®EH+ZEU®EJI+(q q_')E12®E21> (71)
i=1
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we obtain:

qu(l,;)” )R(J,, vy) —qﬁfR Yp Y )R(},,),,) (q )R(\p) »)

Vo Vp Yo Vu o ¥a Vp Yp Va i Yp

As a result we get
1 _1
WL, —q W =(q—9q 1)Trq(P» vy Uy,z04ULz . v, RU» )~ IUVp zp)

« BRGi1 rHl)U[Z"+Iy (V’L ),”)C)

p Vn

= (g = TPy 1 Upyye)AUpe 1, Utz ) BRETD U, 4,1 C)

VpZp
The effect of the permutation operator after taking the trace is to identify the points
v, with y} and y, with y,, therefore,

GWe —q W =(g—q "Wy,

where Wy, is the obvious generalization of the construction of the Wilson loop to the
link L{, (ambient isotopic to Ly) whose projection has a non-transverse intersection

at ¢(y,) (see Fig. 3).
We can now conclude that

GWy, —q W, =(g—q "W, . (72)

Similar arguments would also lead to the same result when y, and y, do not
belong to the same circle.

One can easily compute the factor v, in the fundamental representation, we get
vy = q‘% As a result we obtain that i(L) = q%z'”'wL is a link invariant, satisfying
the skein relations ¢%i(L,) — ¢ 2i(L_) = (¢ — q¢~")i(Lo). From uniqueness of link
invariants satisfying these axioms we get i(L) = P(L,¢*). [

We can now sketch a proof of the equality w, = RT(L) in the case where
A = ,(s12) for any colour of the components of L. We will assume for simplicity

x B
that L has only one component. Let L # L be the cabling of the framed knot L
with two components coloured by « and f. It can be shown (it is not completely
obvious) that we have.

W(L#L)— ZN’ (L) (73)

This last equation generalizes the fusion equation (Eq. 30) to the case of links. From
the structure of the fusion ring of s/(2) (it is a polynomial algebra in one variable),
we immediately obtain that we can write:

(L) = 35 AL ™) (74)
n=0

with 4,(n) € C. But we also have the same fusion equation for the Reshetikhin—
Turaev invariant (this is trivial from the quasitriangularity property). As a result we
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also get:

o m
RT(L) =} Aa(n)RT(lj: ) (75)

n=0
with the same A4,(n) as in (Eq. 74). It remains to use the equality RT(L') = wy =
P(L',q*) for any link with arbitrary components coloured with the fundamental
representation to obtain the equality RT(L) = wy, for any knot L arbitrarily colored.
When L has more than one component, it is easy to see that a generalization of this

proof works as well.

In the rest of this section we will give the proof of the theorem announced at
the beginning, i.e. in the case of the sphere the invariant of link w; is equal to the
Reshetikhin—Turaev invariant. This result is quite technical and the details are not
particularly interesting in themselves.

Let L be a link in D x [0,1], where D =[—1,1]? and choose a braid with n

1
colored strands which closure gives L. We will denote by Q,_; , the projections of
the strands on D and assume that they are in generic positions. Let f; be the colour

of the strand é These f; take their values in the set {a;}. Let 4 = [0,1] x [0, ]

1
be the domain depicted in the picture where all the crossings of the Q,_; , are

located, and divide 4 in r strips 4; = DN ([0, 1] X [4,’_”1]) 1 <j<rsuch
that in each of these strips there is only one crossing. Let us denote by C; and C’
the upper horizontal part and lower horizontal part of the boundary of A and by
L; and R; the left vertical part and right vertical part of the boundary of A;. Let
us also define dg = (D\4)N{(x,y),y = 0} and 4,1 = (D\4)N{(x,y),y < 0}.

It will be convenient to use the paths Q;=0 N4, for j € {0,...,7 + 1}. In each of
the domains 4; the piece of the link is an elementary braid composed of » strands
with at most one crossing.

We now construct a cell decomposition of D as follows:

o the set ¥~ of vertices is defined to be

V={xeddind)0=i<j= p+1}U<U é)ﬂ (”Ja4) ui,ﬂ(éﬂé)
j=0

i
(76)
e the set & of faces of the cell decomposition is defined to be the set of connected

components of D\ (U, Q U"+1 04;).

The ciliation at each vertex is shown on the following figure:
Let us denote by f,,...,[:, in this order (from left to right), the incoming

1
colors of the curves {Qj,i =1,...,n} according to Fig. 5 below, and denote by the
couple (m;,m; — 1) the location of the elementary braid (in order to simplify the
notations we have put m = m; in some of the formulas below).
We can define an element B; for 0 < j < r+1

Bx,, ﬂ!l ﬂi,,, ﬁ‘m—l ﬁln
BeA®End(V® RV, VR VRV ®@--V) (77)
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A
0
Je
0
Pad
A
2
3 4
I o 0
Ay
Fig. 4.
Bn BnAl Bm+l &n Bm-l Bl
Xntl X Xp-1 Xm-1_ aXm ey X'm-1 x| X
N U I f ... £,
'Xn+1 X ¥ X1 T X1 *X xm -V'Xm_l 'xl 'xo
Bn Bn-l Bm-v—l Bm-l Bm Bl
Fig. 5.
defined by:
Iy Im Im—1 1
B, = U(Bj)Pmm—lu(Qj)n : u(Q,)mu( Qj)m—l e u(Qj)l
Im Im—1
if O, isabove Q and 1=/ =r, (78)
in Im—1 im iy
B; = u(B))Pum—1u(Q,)n - u( Qj)m—lu(Q/)m e u(Qj)l
Im Im—1
if Q;isunder O, and 1 = j =, (79)
iy Iy Im—1 i
By = v(Bu(0) - w0l O Y+ u(0))
ifj=0orr+1 (80)
with

Vk lk l]\' ’A
nLed0).0) . . SO 0) o
U(B/) _ H U;‘Z( (Q/)Q) 1f]:|:0 and U(B/) — kH] Uﬂlkgﬂ(d(Qo)Q) lf] =90
k=1 =

It is not difficult to see that:
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Lemma 4. W, can be expressed as:

W, = try, <(;’? 11 B) @81)

Jj=r+1

where () = (Bu,---,P1)- WL can also be written:

~ ® L =
WL=< I1 5af> WL=tr(Iu/><ﬁ I1 Bj>, (82)

fesF
where we have defined Ej = (Hf eFn4, 047 )B;.

Proof. The reader is invited to prove it. It is not difficult and uses only the ex-

1
change relations between the edge variables u(Q;). U

Our strategy will consist in showing that W, = (I1 feF 5af)tr(,3)( ;1 H —1B))

can also be written as:

I’/I}L=< H 56f> tr(ﬁ)(# H R) s (83)
feF J=r+1

where R ' is the matrix Ppyy—1(Bm @ Pm—1 )(RT) associated to the colored braid gen-
erator defined by the strip 4;. This will be sufficient to show that w; = RT(L).
However this is not at all a trivial result and we will use integration over the links
of the cell decomposition to obtain it.

Using again the commutation properties of Proposition 1 and the specific choice
of ciliation, we have:

By = Tl 6osB;
fEFNY;

m+1 ix
v(B;)Pmm—1 < II 56fku(Qj)k> 00fn00s  0ofm_,

><u( Q Im— 1U(Q )m H 5afku(Q i -

We will first establish a formula giving the expression of
JB  T1 dhwD)) (84)
legm{éj,izl, ,n}

in term of specific elements of the algebra A (which will be described in the sequel)
and in terms of the R matrix expressed in the shadow world.

V3 b V4
Let us denote by R(i) a |, where p,q,a,b,c,b’ are irreducible rep-
, p

V2 Vi

resentations of 4 and vy, v,,v3,v4 are integers labelling multiplicities, the value of
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pq
RZE! in the shadow world, i.e

b

b'pica . . Qq:tl b,vy : avr _ p(E) 5 " i

VRO, @ id iy o REGE @ idpd =R (¢ a )iy 69)
V2 b V1

Lemma 5. The result of integration over gauge fields associated to interior links
of a plaguette P = AU BU CUB' describing an overcrossing:

has the following expression:

[ dh(u(xy))dh(u(yz"))ah(u(zy))dh(u(yx'))dea0280aczm 1 (xyz')a 1t (zyx )y

1 Vg Upy : V3 b Va V3 o V4
=(pvg) 2 Y, ldd| —— R(pt[) c a | Ip| c a |,
a,b,e,b’ €lre(A) UpUc v, b b

12030 Vi V2 V1
v b'ovy ¢ p g P
where Ip | ¢ a | is an element of A QEnd(V @ V,V @ V) defined by.
v, b v

/

V3 b V4 «c b a

Tp| ¢ a | =tr(uu ()c’x)d)?’]‘,'2 u (xz) ¢y, u
Vo b Vi v

% ¢q
x(z2' WP u (Xt R (86)

In the case of an undercrossing the same formula is valid after the exchange of
5(xyz’)2 gt(zyx’)l in gt(zyx')l 5(xyz’)2 and R in R,

Proof. We first show the identity:
p N 4 ’ P N 4 ’ot o
00400800c00p (1 (xyz )y u (zyx" )a— u (xzz')y u (22'x")2) = 0 (87)

which is a simple consequence of the flatness condition and the particular choice of
ciliation
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Indeed,

S0460805c0op 1 (xyz' )1 1t (zyx' )y
— Sonbacdan 1t Cey vy @804 i (vz2' ) e (zyx)s
= 8340op0scdom U (xyzz' )y 1 (zyx')a
= 8040080000 1 (x22')1 U (X' )2
= So80ac 11 (x22')18040 0 1k (zyx' ),

= 0o400m dondac 1 (xzz' )1 1t (22'x' )2 .
Therefore we obtain:
[ dh(u(xy))dh(u(yz'))dh(u(zy))dhu(yx'))doadosdocdom X  (xyz' )1 t (zyx')a
= O 11 (x22' ) 1 (22X )z,

where P denotes the plaquette A UBU B’ U C.
After the use of the decomposition rules of gauge field elements we obtain:

P q 1
6[x’xzz’]u[xzz/]u[zz’x’](vpvq )?

cc c c c p p q q
= Z [dc]ter (/-‘u[x'x]u[xz] Ulzz 1 U[z'x'] )(u[xz]u[zz’] )(u[zz'] Uqu[z’x’])
c

cc c p pc/' c p q 1f1 qfl c q
= Z [dc]vqtrVc(:uu[x’x]u[xz]u[xz] R Ulzz' U [zz" 1 U[z2"] R™'R u[z/x’]u[z’x’])
¢
-1

pc bq
cc b v a I
= ;; [dc]vqter(ﬂu[x’x]qsgpu[xz]‘//bpc R d)?p(b‘l;qu[zz']waqb R l/’bpc
cbab’

PPy g
XR™R ¢cqu[z’x’]lpb/ Pey)

cc b a /b “
> [deltry, (g O2 e Pogtipzz ¥ Pugzrntfy R')

¢, bab’
b i
«RH | ¢ a (vavb’ )2 ,
rq b v

which establishes the result previously announced (in order to improve the check of
this proof we have deliberately omitted multiplicities). O

Let 4;, ;, = fijl 4; for 1 £ ji £ jo» £ p, we can write 04, ;, = Cj, UR;, j; U
C,, UL}, ,, where as usual R, ; and Lj, ; denote the right vertical part and left
vertical part of the boundary of 4, ;. It will be convenient to choose for each () €
Irr(4)*", 70, yn € Irr(4) a particular basis, denoted {y),, p € I¥)(y,,79)} of the spaces

mo (B . 8 )
Homy(¥ ® V,V), recursively defined by: {ys (5"’ @ id),0 € IP(9p,70), s €
%

Irr(4),m = 1,...,N” .} is the basis {{, p € IP+1> B)(y,11,70)}

Ynt1Bnt1
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We will also define a basis {¢,,p € O(ﬂ)(yo,y”)}), of the spaces HomA(iI},
wo () N
V& V) recursively defined by: {(¢", ®idy)ps 0 € OP(9,,90), 7, € Trr(A4),
4

Tn1 Prst
m=1, N .} is the basis {¢,p € Ot F0(y,11,90)}

7
If  is an element of Homy(V @V V) and ¢ is an element of
wo (B) o
Homy(V ® V, V) we have

w o (f) = a‘/f»(t’idﬁ 5 (88)

where ay ¢ € C. We will use the notation (/, ¢) to denote the number ay 4.
The previous choices of basis assure that (,, ¢,) € {0,1} if p € I¥)(y,,70) and
g€ O<ﬂ)(})0, Vn)-

7

wo (B)
We will now associate to each domain 4 an element of A ® Hom(V @ V',

V.,) defined by:

J2:J1s

" 1 :/
fAjz,,l(P) = ‘Z’p'u(x:url -~ xgxo)o [T u(x, - xoX0)n—itt » (89)

=n

n B
and an element of A ® Hom(V.,,V ® V') defined by

n B In
Oy, (0)=TTulxi  x0)u(xyp X1 X0)odo - (90)

i=1

With these elements we can build a generalisation of the element 7 introduced
in Lemma (5) by:

P’ :
T4, <?n ”/0) = tr};(h Os,,(P)T4,, (), 1)
P

where (f),(ff') are elements of Irr(4)*”", yo,7, are elements of Irr(4) and p €
O (9o, 7,) and p’ € I (p,,7¢) according to the picture below:

. s s
B, an Bn-l v B' .
D ) ——A A——t *o

Xn+l xn xnl X
Y, Yo

xn+l xn xn-l X
I'r,Y F——=t ry rg v - %

Bn ! Bn-l ! BI

Fig. 7.

These elements are satisfying remarkable properties which are collected in the
next three lemmas:
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Lemma 6. Let jy, o, j3 be integers such that 1 < j; < jp £ ji3 < r the following
relation holds:

O.II p/
[74,, (vi, / yé) T4, (vn m) [T dh(u))

o p leyﬁqz

"
1 o
= ———[d ]5y0,7657n,}’,',%j3,,«1 ('Vn VO) (lﬁp/,d)a/) , (92)

Pn )
where (B),(B'),(B") are elements of Irr(4)*", yo,7n, 70,7, are elements of Irr(4)
and p € OB (yo,10), 0" € I®)(y,,70). 0’ € OF )7}, 7,) and 6" € i 7).

Lemma 7. Consider the strip A; and let us denote (B) = (Bi,,...,Bi,) the incoming
representations.
The formula of Lemma 5 can be extended to the case of a strip A;,

/

n ik ~ v
ST anw@B; = Y  [d,,]7 4 <7n VO) (Y Ri9p) - (93)
k=1 Y05¥n EIrr(A)
P €1®(n10)

p€0® (30,1
Lemma 8 (Closure of the braid).

p

/

p
Ba =\
I1 dh(u; )t (# B, 194 (Vn )’o) Bo) =Waop (Yo, dp) - (94)

1€(ZL\oD)N(4oUd,41) 14 p
The proofs of these lemmas are not very difficult and are left to the reader. They
imply the following proposition:

Proposition 6 (Reshetikhin—-Turaev invariant). Let L be a link in D x [0,1], the

element Wy can be written

WL =wp [] o » (95)
feF

where w;, = RT(L).

Proof. From Lemmas (6,7) we obtain:

1 . P’ 1,
[ du)]lBi= > Ia (Vn 3’0> <'//p',HRj¢p> -
le(A\ong j=r 70;7n €Trr(4) P i=r
2" €1P (yap0)
p€0P(30,9,) (96)

Using Lemma (8) we get:

B 2 =
I1 dh(“l)“(g)”‘(# II Bj)

1e(D\D)NZ j=r+1

Yo 1,
= Z [dvn] Wap <‘//p’a¢p> <‘/’p” H Rj¢p> . 97)
V0,7 Elrr(4) Jj=r
P €1P(pnipo)
PE0P (30,3)
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From the relation:

. . B
[d',‘,,]<l//p’ > d)p) ¢p(1d‘m ®A4 )‘pp’ = [d','o]ldfotrui)( uAy, (98)
€l (A4) 4 v
o' €1C0)
p€0Po.m)

(0]
which holds for every 4 € End( V') (this relation is a consequence of relations
(13,14) on the Clebsh—Gordan maps (see Proposition 14 of [10])) we obtain:

®» L = i) B~
[ 11 dh(u/)tr(l,j)tr<,u 1 B,) = (Z[d,o] W5D> mﬁ)(ﬂ_HRj), (99)
Yo Jj=

le(D¢D)NY J=r+1

which is the last step in the proof [

5. Conclusion

In this work we continued the analysis of combinatorial quantization of hamiltonian
Chern—Simons theory We have defined elements of the observable algebra Acg
which are associated to any link in X x R These clements are expected to be the
precise definition of the Wilson loop elements in E Witten’s formalism. This is
supported by the fact that they are ribbon invariants and that their expectation value
when ¥ = §? is precisely the Reshetikhin-Turaev invariant of the link. In the next
work [8] we have studied this combinatorial approach when the 3-manifold M is
arbitrary It will be much more convenient to work with a Heegaard splitting of M
rather than using a surgery presentation. If X, and f € Mod(2,) is any Heegaard
splitting of M we can associate an element a; of Acs(Z,) which expectation value
gives an invariant of M, which can be shown to be the Reshetikhin—Turaev invariant
of M This invariant can be expressed as the partition function of a non-commutative
lattice gauge theory associated to a cellular decomposition of M One important
technical point which we will have to develop is the truncation of the spectrum
when ¢ is a root of unity.

The expression of the observables associated to any link that we have found
is derived from a few principles: gauge invariance, independence under the choice
of departure points. We expect that similar arguments will lead to the construction
of observables associated to links with arbitrary self crossings. This could shed
light on the construction of states in the canonical quantization program of pure
gravity [7].
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