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Abstract: We consider graph invariants of Vassiliev type extended by the quantum
group link invariants. When they are expanded by x where q = e*, the expansion
coefficients are known as the Vassiliev invariants of finite type. In the present
paper, we define tangle operators of graphs given by a functor from a category of
colored and oriented graphs embedded into a 3-space to a category of representa-
tions of the quasi-triangular ribbon Hopf algebra extended by U, (sl(2, C)), which
are subject to a quantum group analog of the spinor identity. In terms of them, we
obtain the graph invariants of Vassiliev type expressed to be identified with
Chern—Simons vacuum expectation values of Wilson loops including intersection
points. We also consider the 4d canonical quantum gravity of Ashtekar. It is
verified that the graph invariants of Vassiliev type satisfy constraints of the
quantum gravity in the loop space representation of Rovelli and Smolin.

1. Introduction

The concept of Vassiliev invariants was introduced in the theory of knot spaces
[30]. Let .# be a space of all smooth maps S* — S* running through a base point
with a fixed tangent vector. The knot space is given by .#\ 2, where X is called the
discriminant, i.e., a set of all singular maps which have multiple points or vanishing
tangent vectors. Equivalence classes of knot embeddings by the ambient isotopy of
§* are in one-to-one correspondence with connected components of .#\X. Each
connected component of the knot space is separated by walls which constitute the
discriminant X.

Vassiliev introduced a system of subgroups of H°(.#\ X) based on the Alexan-
der duality theorem applied to a space of polynomial maps which approximates .-
A°(M\%) > - o F;> F;—y © --- o F; =0. Elements in a quotient group F/
F;_, are called the Vassiliev invariants of order j. Every element in F;/F;_,
vanishes whenever there are more than j transverse double points. The Vassiliev

TThis is not the author’s present address.
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invariants take into account topological information about a space of
embedded graphs. After his pioneering work, Birman and Lin [6] calculated
the Vassiliev invariants in a combinatorial way based on a set of axioms and initial
data. Elements in F;/F;_; are given by functionals defined over a space
of all configurations of [ pairs of 2/ points on S' connected by ! cords for
1 £j. Kontsevich provided integral expressions of the functionals of Birman and
Lin [18].

A relation of the Vassiliev invariants to the quantum group link invariants such
as the HOMFLY polynomials and the Kauffman polynomials was investigated by
Birman, Lin [6, 19, 20] and Puinikhin [23, 24]. It was verified that the Vassiliev
invariants of finite type appear as expansion coefficients of the quantum group link
invariants expanded by x, where g = ¢*. It implies an intimate relation of the
Vassiliev invariants to the CS (Chern—Simons) perturbative expansions. Works of
Axelrod, Singer [3, 4] and Bar-Natan [5] revealed it. The Vassiliev invariants can
be given by the Feynman integrals in the CS quantum field theory which physicists
are familiar with.

Kauffman considered the Vassiliev invariants from a little different point of
view. They are perceived as expansion coefficients of a special case of graph
invariants of the rigid vertex isotopy extended by the quantum group link
invariants [13, 14]. They are called the graph invariants of Vassiliev type.
In the perturbative CS analysis, taking the lowest order in the inverse of the
CS coupling constant, he showed that the graph invariant of Vassiliev type is given
by a CS vacuum expectation value of Wilson loops including intersection points
[15]. Such a point of view is expected to provide a neat perspective on the
work of Bar-Natan [5] in regard to the local integrability condition. It is a
consistency condition for the Vassiliev invariants given by transverse triple points
to exist.

In the present paper, we find a non-perturbative generalization of Kauffman’s
formula in an axiomatic way and consider the local integrability condition in terms
of it. We also show that the non-perturbative formula plays a crucial role in
investigation of non-perturbative aspects of the 4d quantum gravity of Ashtekar
[1]. It is shown that the graph invariants of Vassiliev type provide physical
wave-functions of the quantum gravity. At the transverse triple points in graphs,
Riemann metrics are non-degenerate.

This paper is organized as follows. Section 2 contains a brief review on
Kauffman’s graph invariants [13, 14, 16]. The graph invariants of Vassiliev type
[15] are introduced as a special case. In Sect.3, we introduce CS vacuum
expectation values of Wilson loops including intersection points and the spinor
identity which they are subject to. In Sect. 4, we consider the g-analog (quantum
group analog) of the spinor identity in the context of the quasi-triangular
ribbon Hopf algebras extended by U,(sl(2, C)). It leads us to tangle operators
of graphs naturally identified with the CS vacuum expectation values of
Wilson loops including intersection points. The graph invariants of Vassiliev
type can be expressed in terms of them. It is consistent with Kauffman’s
formula. The last section is devoted to a physical application to the 4d
quantum gravity of Ashtekar. We apply the canonical quantization and employ
the loop space representation [12, 28]. We verify that wave-functions in
the loop space representation given by the graph invariants of Vassiliev type
satisfy all constraints of the quantum gravity with vanishing cosmological
constant.
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2. The Rigid Vertex Isotopy and Graph Invariants of Vassiliev Type

This section is devoted to a brief review on Kauffman’s graph invariants which are
extended by link invariants. The graph G that we consider is closed and composed
of rigid vertices, edges and loops. The rigid vertex is a 2-disk from which more than
two strings emanate. In addition, the following concept is necessary for the
definition of graph invariants.

Definition 2.1. The rigid vertex embedding is an embedding ¢: G — M> by which the
image of a neighborhood of each vertex v in G is contained in a proper 2-disk in a ball
neighborhood of ¢(v). An isotopy h,: M> — M? between two rigid vertex embeddings
¢o and ¢ is called the “rigid vertex isotopy” if it carries through the ball-disk pair for
each vertex of G.

For simplicity, in the present section, we deal with only oriented graphs whose
constituents are 4-valent rigid vertices, edges and loops [13, 14]. The 4-valent rigid
vertex is a 2-disk with four strings emanating from it, two of which are outgoing
and the others are incoming. The graph G is a disconnected sum of a finite number
of components, ie., G = LI;G;.

The rigid vertex isotopy is generated by extended Reidemeister moves as in
Fig. 1. The former three moves R1, R2 and R3 are taken into account in the theory
of links. The link invariants are defined to be invariant under R1, R2 and R3. The
latter two moves R4 and R5 are additional ones which appear in the theory of
graphs composed of the rigid vertices. Graph invariants of the rigid vertex isotopy
are defined to be invariant under the extended Reidemeister moves.

1 > )=>O
e O =)~ Q
8 XX X
e XX XX
XS

Fig. 1. Extended Reidemeister moves generating the rigid vertex isotopy
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Let us introduce Kauffman’s construction of the graph invariants [13, 14].
Suppose that we are given the link invariants denoted by P(L) . They can always be
extended to the graph invariants of the rigid vertex isotopy. To be concrete, they
are given by resolutions of any one of the rigid vertices:

P(L9y) = aP(LY™V,) + bP(LY™V ) + CP(L(j—l)X) , 2.1

where LY represents a graph G composed of j 4-valent rigid vertices. According to
(2.1), it is obvious that P(G) =), _ a?®b"Dc“® P(L), where S represents a set of
all links obtained after all the rigid vertices in G are resolved. p(L), n(L) and u(L)
stand for a number of positive crossing resolutions, that of negative crossing
resolutions and that of unfolding resolutions respectively. We can summarize as
follows.

Theorem 2.1 (Kauffman [13, 14]). Let G be a graph composed of 4-valent
rigid vertices. Then P(G) given by (2.1) is invariant under the extended Reidemeister
moves.

We are ready to define graph invariants of V assiliev type [15]. They are given by
puttinga=1,b= —1,and ¢ =0, ie, P(LYx) = P(LY™V ) — P(LY~ V). They
are perceived as a special case of Kauffman’s graph invariants.

3. CS Vacuum Expectation Values of Wilson Loops Including Intersection Points

Let us introduce Wilson loops given by a singular link. The Wilson loop is a trace
of a holonomy along any one of the singular link components L] of the singular
link L* = II;L;, which is not necessarily a disconnected sum. We denote it by
W(A:L)) = Tr(g’exp(i§yiA)). 2 represents a path-ordered product along a closed
path y;(t) (0 =<t =< 1) which describes L. Wexp(i%iA) is the holonomy along
L given by a connection 1-form of a SU(2) -principle bundle over M>. For later
convenience, we denote a holonomy along a line segment from y;(s) to y;(¢) by
Ui(s, ©). It is given by Pexp(if: duyt (u) 4,).

For simplicity, we assume that the singular link is composed of N closed paths
and includes only one transverse double point. Then let us introduce two types of
CS vacuum expectation values of Wilson loops. One type is given by

N
Z(LWy) = [DATr(U;(s, ) Uj(t, )+ [ W (A:L§)e™=* , (3.1
i+j
in a case in which the j™ singular link component transversely self-intersects at
a point where y;(s) = (1) 0 =s <t =1), and

N
Z(LWy) = [DATr(U (s, 5)- Tr(Us(t, 1))- [] W(A:L§e™S=, (3.2)
i+jk
in a case in which the j® and k™ singular link components transversely inter-
sect each other. y;(s) and y,(t) describe Lj and Lj respectively and satisfy
y;(s) = y.(t) at the intersection point. The CS action is given by S.(4)=
2= Tr(AndA +3A N AN A
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The other type is given by

dim SU(2) N .
ZILYy) =[DA Y, Tr(Ujs, 0T Uit 5) Ta)- [] W(A:L)e™ A, (3.3)
a=1 i+j

in the former case, and

dim SU (2)

ZILDyg)=[DA Y Tr(Us )T Tr(T,Ui(t, 1)

N
- [1 w(A4:L)eS=? | (34
i+ j,k
in the latter case. We shall call the operator Z:’:lsu(z)(Ta)ij(Ta)k, the Casimir-like
operator.

A generalization to more complicated cases in which there exist more than one
transverse double point is trivial. In such cases, it is convenient to introduce the
following notation. Let Z(L*/~¥) (0 < k < j) be a CS vacuum expectation value of
Wilson loops including only j transverse double points. j — k Casimir-like oper-
ators are inserted at j — k transverse double points one by one. In the notation,
Z(L®9) is given by a link, and Z(L"*?) and Z (L) correspond to Z(L* x) and
Z(LV y) respectively. In general, Casimir-like operators inserted at intersection
points can be eliminated by the Fierz identity satisfied by the CS vacuum expecta-
tion values:

; 1 . 1 .
ZLWIN gg) = SZLSIH D) L ZME I (39

It is derived from the Fierz identity given by Y (T.)ij(Tou = 300 — 28 6ii0u»
where N = 2 for SU(2).

Let us introduce the spinor identity satisfied by CS vacuum expectation values
Z(LY ) (j=1). Let U(x) and U(B) be elements in SU(2) , i.e., invertible 2 x 2
matrices, which represent holonomies along closed paths o and 5. From the spinor
identity given by e,,e = 5508 — 826%, it follows that the Wilson loops are subject to
Mandelstam’s identity [10] for SU(2):

Tr(U@)Tr(U(B) = Tr(U(@) U() + Tr(U@UB) ™)
= Tr(U(aop) + Tr(U(x° ™), (3.6)

where a°f and oo ™! are composite and closed paths. Thus the spinor identity
satisfied by the CS vacuum expectation values takes the following form:

Z@Up)=Z(@op) + Z(@pY). 3.7)

On the left-hand side, Z(xu g) is given by Tr(U(«)) Tr(U(B)). On the right-
hand side, Z(x°B) and Z(xoBp~ ') are given by Tr(U(x°B)) and Tr(U(acf 1)
respectively.

The spinor identity (3.7) plays a role of resolving transverse double points. It is
enough to consider two classes, i.c., the 1st and 2nd classes. A transverse double
point of the 1st class is a self-intersection point of a closed and composite path oo f3,
as in Fig. 2-G;. On the other hand, a transverse double point of the 2nd class is an
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Fig. 2. In G,(G,), a transverse double point of the 1st class (the 2nd class) is illustrated. They are
also identified with graphs composed of the 4-valent rigid vertices.

intersection point of two closed paths « and f, as in Fig. 2-G,. The spinor identity
takes the following form:

A )., ><f ., | o9

a _
\—v-' \— ‘—Jﬁ
aofl ozu wof”!

when applied to resolve a transverse double point of the 1st class. On the other
hand, it takes

o ﬂ“

Z x =7 < +7Z s (3.9)
B oc
aUf ‘x°ﬂ a(oﬂ_l

when applied to resolve a transverse double point of the 2nd class.

The g-analog of the spinor identity corresponding to (3.7) is our main theme.
Before proceeding to the part based on the Hopf algebras, we consider Kauffman’s
extension theorem (Theorem 2.1) from the point of view of the perturbative
CS quantum field theory [11]. It is crucial to notice that a transverse double
point of the 1st class and that of the 2nd class can be identified with 4-valent rigid
vertices.

Let us take the lowest order in 1/k (the inverse of the CS coupling constant). We
can show that a CS vacuum expectation value of Wilson loops including only
j transverse double points, where no Casimir-like operators are inserted, is ex-
pressed by a sum of two ones after one of the transverse double points is resolved in
two possible ways. To see it, we need to use a manipulation, attaching a small loop
to the intersection point to be resolved. In one way, we resolve it to be a positive
crossing. In the other way, we resolve it to be a negative crossing. Contributions of
the small loop can be evaluated by the following three facts. The first is that the
holonomy can be expanded by an area tensor ¢"* given by the small loop y as
U(y) = Id. + F(A),,0"" + 0(c?). The second is that the curvature tensor satisfies
F(A),, = €,,10S./0A}. The third is that it is possible to carry out integration
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by parts in the CS path-integral. (We should say that the last one is an as-
sumption rather than a fact) After all, one can get Z(LY%9,)=
HZWI=19 ) + Z(LY~1-9y)) taking the lowest order in 1/k. More general cases
in which Casimir-like operators are inserted at intersection points can be con-
sidered in the same way by eliminating them by the Fierz identity (3.5). Contribu-
tions of higher orders remain to be investigated as a future problem.

4. Reshetikhin-Turaev Construction of Graph Invariants and Correspondence
with the CS Vacuum Expectation Values of Wilson Loops

The present section is devoted to the g-analog of the spinor identity and construc-
tion of graph invariants with a natural correspondence with the CS vacuum
expectation values of Wilson loops including intersection points. The considera-
tion is based on the quasi-traingular ribbon Hopf algebra extended by U ,(s!(2, C))
[17, 25, 26, 29]. We should comment that the g-analog of the spinor identity leads
us to the g-analog of Penrose’s spin-network [21, 22]. We mean by Penrose’s
spin-network a planar graph colored by SU(2) representations and further speci-
fied by the spinor identity.

4.1. The Q-Analog of the Spinor Identity and Tangle Operators of Graphs. It is
known that the Jones polynomial P(L) given by a link L defers by a phase factor
from a tangle operator F(L) of L (which is also called Kauffman’s bracket of L).
Suppose that M> = S* and all link components of L are in the 2-dimensional
representation of U (sl(2, C)). Then it follows that P(L) = «~ “®F(L)". The tangle
operator F(L) is given by a functor F from a category of colored and framed links
to a category of representations of the quasi-triangular Hopf algebra. The tangle
operators of links can be extended to those of graphs composed of the rigid vertices
by possible resolutions based on Kauffman’s extension theorem. Tangle operators
of graphs are related to the graph invariants via P(G) = a~ *©F(G)>.

Let us begin with defining tangle operators of graphs composed of 4-valent
rigid vertices which can be identified with certain objects in the CS quantum field
theory such as Z(L%7/~¥),

Definition 4.1. Let L*/~% (j = 1,0 < k < j) be a graph composed of j 4-valent rigid
vertices. j-k vertices are marked by ©. The rest of the k vertices have no marks.
A tangle operator given by L*J™®  which is denoted by F(L%*/~"), is given by
resolutions of the two kinds of 4-valent rigid vertices®. We define it to satisfy

. 1 ; j
F(L%™) = (FLE 2970, 4 FLE1790) 0 @)

3 +e(—12)

! According to Kauffman’s convention [15], e(x) = exp(5%x) and « = e(2)

2w(G) =Y ,er&(p)- T'(G) represents a set of all positive and negative crossings and rigid
vertices in G. The signature for the positive crossing, the negative crossing and the rigid vertex
takes 1, — 1 and O respectively.

3 All link and graph diagrams have the blackboard framings.
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when any one of the rigid vertices with no marks is resolved, and

. 1 . .
F(L&i—hb = F(L%Ji~ k=1 Xy F(L*Ji"k=1) , (4.2
L4 gg) = gy <) = F( X)), @2)
when any one of the rigid vertices marked by © is resolved. In addition, we formally

define
F(L®i70, ) = F(L%i~0 ) (4.3)

F(L&I™0 ) = F(L%I7P ) (44)

Since any pair of corners on a 2-disk contacting at a single point can also be
regarded as a 4-valent rigid vertex, Kauffman’s extension theorem (Theorem 2.1)
was applied to the definitions of (4.3) and (4.4). We also notice from (3.5) that (4.3)
leads us to the g-analog of the Fierz identity. Equation (4.2) was defined in
accordance with it. It can be easily checked that every tangle operator F(LY )
(j = 1) behaves as Z (LY %) under simultaneous orientation reverses of any singular
link components and mirror reflections of the whole graph diagram.

We are ready to describe the g-analog of the spinor identity. Let us remember
that in the CS field theory, there are two classes of transverse double points of
Wilson loops as in Fig. 2. The spinor identity (3.7) is of different forms depending
on how it is applied to resolve a transverse double point of either the 1st or 2nd
class. Since every 4-valent rigid vertex can be identified with either a transverse
double point of the 1st class or a transverse double point of the 2nd class, it is
necessary to take account of the two classes of rigid vertices to describe the
g-analog of the spinor identity. It is described as follows.

Theorem 4.1. Suppose that we are given tangle operators F(LY ) (j = 1) by Defini-
tion 4.1. They satisfy the q-analog of the spinor identity:

F(LY) = F(LY™105 = FLI™0y) @5)
when a rigid vertex of the 1st class is resolved, and
F(LY2x) = F(LI™5 + F(LI™0), @6)

when a rigid vertex of the 2nd class is resolved.
Before proving Theorem 4.1, we prove the following lemma.

Lemma 4.1. Let all link components of links be in the 2-dimensional representation
V? and k € Z be larger than 2 or equal to 2. Then the tangle operator of links satisfy*

- () )w). @
and
F(X) = ;G(— 1) F(X) — e<1>F(x.)> . 4.8)
e(l) —e(— 1) 2 2

*For simplicity, we employ the notation in which F(L,) is denoted by F(D). D represents an
elementary subdiagram of L.
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Proof. Let us introduce a coupon D [17], where D is an isomorphism: V** — V2
provided that k = 2. V?* is dual to V2. Let G, represent a colored framed graph
obtained by inserting the coupon D and its inverse D! on a link component K of
a link L so that p extrema on K are separated. Then there is the following fact that

F(G)=(—1PF(L). 4.9

Equation (4.7) is proved as follows. From the nature of the quantum group
R matrix, tangle operators of elementary subdiagrams satisfy the skein relation:

1 1
0ol e { ).
When rotated by 90 degrees, it looks like
F(X) = e‘(ﬁ:‘lm( ( 1)F(\) - e(— ~)F(/>) @.11)

We can find that according to (4.11), the tangle operators of links satisfy

ol 8 (D)
m)‘-le—(_T)( <1>F(->§) —e<_ —)F(.A)). @12

Thus we arrived at (4.7).
Equation (4.8) is proved as follows. We can find that the tangle operators of
links satisfy

F(X) = —F()

-1
e(l)—e(—l) ;\ZL *e KE’(:L
1
=‘e<1)—e'<—‘1><< )F‘/‘) <)F<f\>> (4.13)

The first equality follows from (4.9). The second equality follows from the skein
relation (4.11). The last equality also follows from (4.9), because there exists an even
number of extrema between the two coupons D and D~ ! in both the diagrams in
the second line. Thus we accomplished the proof of the lemma. []

II

We are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let us prove the theorem when j = 1 first. We use (4.3), (4.4)
and (4.3) rotated by 90 degrees on the right-hand sides of (4.5) and (4.6) and
substitute (4.7), (4.8) and (4.10). We arrive at the definition (4.1) for j = k = 1.
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In the following, let us assume that j = 2. It is enough to prove (4.5), because we
can prove (4.6) in the same way. Suppose that all rigid vertices in LY ® except the
depicted one as a subdiagram are resolved on the left-hand side of (4.5). According
to the definition (4.1), we get

1 S (1,0)
= — F(L$" . 4.14
C@re—py 5 TETH 9

On the other hand, we can resolve all the j — 1 rigid vertices on the right-hand

side of (4.5). It follows that

F(L9%y)

. . 1
F LU_I‘O) —F L(J—I,O) — —
L = FET ) = o=y
20t

x 3, F(L ) — (L") . (4.15)
s=1

It is enough to show that for every s,
F(LE® ) = FL®50 — FL® ) (4.16)

The diagrams L, L9, and L9 for each s are identical outside the
subdiagrams depicted, if the orientation of the diagrams is ignored. Proof of (4.16)
is accomplished by repeating the proof when j= 1. Thus Theorem 4.1 was
proved. [

We have shown that the tangle operators of graphs given by Definition 4.1
satisfy the g-analog of the spinor identity. But we wonder if there exist other
definitions with the same properties as the tangle operators of graphs given by
Definition 4.1. In regard to it, it can be verified that Definition 4.1 is unique except
for a normalization factor.

Proposition 4.1. Let F(LY"?) (j = 1) be a tangle operator of a graph composed of
j 4-valent rigid vertices which behave as Z(LY'?). We further suppose that
F(LYY ) = aF(LY™19 ) + BF(LY~ 19 ), where a and B are complex numbers.
Then it follows that « = e R, and F(LY? y) satisfies the g-analog of the spinor
identity, i.e., (4.5) and (4.6), if and only if

F(LU™19y) = oc< (%) + e<— %))F(L"'“"”x) : (4.17)

ey a( ) o Drwrena.

One can easily prove it using Lemma 4.1 and the skein relation. The reason why
o = B e R is that every tangle operator F(LY ) must have the same properties as
a CS vacuum expectation value of Wilson loops including only j transverse double
points under simultaneous orientation reverses of any singular link components
and mirror reflections of the whole graph diagram. o plays a role of a normal-
ization factor. For instance, let « be a parameter such that F ( Q) =
(e(1) + e( — 1) — 1) F(m). Then « is determined to be a = (e(3) + e( — %)~ 1. It was
used in Definition 4.1.

and
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4.2. The Graph Invariants of Vassiliev type in Chern—Simons Representation. It is
time to introduce a new representation of the graph invariants of Vassiliev type
P(Lx) = P(Lx) — P(L), in which they can be identified with the CS vacuum
expectation values of Wilson loops including intersection points. We shall call it
the CS (Chern—Simons) representation. One can notice that the graph invariants of
Vassiliev type are composed of tangle operators of another kind of 4-valent rigid
vertices. They are given by

F(:@g) = o 'F(X) — aF (X)
=(e()) +e(—1)—1)(e(1) —e(—1)
le()+e(—1)+1
X <2F(3@:) T2e()te(—1)— 1F(x)) ; (4.19)
where F(BZ:):) and F() are tangle operators of the two kinds of 4-valent rigid

vertices. They are given by Definition 4.1:

1

FX) = op ooy F) + FR). (4.20)
1 . )
) = 2ed —o(— T ) — F(X). (4.21)

It is crucial that F(m) is a linear combination of F()’_&Z) and F(X).

The former (latter) elementary subdiagram corresponds to a (no) Casimir-like
operator insertion at the transverse double point.

The graph invariant of Vassiliev type in the CS representation is given as
follows. Suppose that we are given a graph composed of j 4-valent rigid vertices.
Then it is expressed by

P(LY L) = o~ “C) F(LYo : F! , 4.22
(LOx) = L9 ® F()e) (4.22)

where F(L) represents a tangle operator of the complement L° obtained by cutting
neighborhoods of the j rigid vertices out of LY. F ‘(:@:) represents a tangle
operator of the 1" rigid vertex.

It is interesting to compare our formula with Kauffman’s based on the pertur-
bative CS quantum field theory [15]. Taking the lowest order in 1/k, one can find
that (4.19) becomes

F(m) = %(F(.X.) - 21«"(3@2)) . (4.23)

This coincides with Kauffman’s formula expressed by the CS vacuum expectation
values of Wilson loops. From this fact, (4.22) can be regarded as a non-perturbative
generalization.
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It should be mentioned that Kauffman’s formula can exist for any Lie algebra.
A generalization of our argument restricted to U,(sl(2, C)) to other quasi-traingular
Hopf algebras remains to be investigated.

4.3. Invariants of Graphs Including Transverse Triple Points and the Local Integrabil-
ity Condition. In the theory of Vassiliev invariants [30], they are defined to be
subject to the local integrability condition (that is also called the 4-term relation)
[6, 19], which is a consistency condition for the Vassiliev invariants given by
transverse triple points to exist. Let us recall that the Vassiliev invariants are
expansion coefficients of the graph invariants of Vassiliev type expanded by x. The
local integrability condition satisfied by the graph invariants of Vassiliev type is of
the following form:®

A Ao (A A o

The invariants of graphs including transverse triple points are defined by

(A -
)

In the present section, we clarify how the local integrability condition is satisfied in
the CS representation.

It can be shown that the invariants of graphs including transverse double and
triple points are given by tangle operators of 4-valent and 6-valent rigid vertices.
The 6-valent vertex is a 2-disk from which six strings emanate. Using (4.20), (4.21)
and (4.22), one can find that from the definition (4.25),

P( l :) = qu*OF .E x|+ ha-*O@OF .& x
v \.‘, P \.-'

—co*OF

5 All graph diagrams coincide outside the elementary subdiagrams
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and from the definition (4.26),
P ( 7%4) = au~*OF 2 |+ ba-oOF
Dy ‘\_ g

—do -G F

_ C(X_w(G)F

(4.28)

In each diagram on the right-hand sides of (4.27) and (4.28), the vertical axis was
deformed to form a 6-valent rigid vertex. One can find the coefficients a, b, ¢ and
d by rewriting (4.20) and (4.21).

Kauffman’s extension theorem (Theorem 2.1) for graphs composed of 4-valent
rigid vertices is trivially extended to that for graphs including 6-valent rigid
vertices. It means that one can construct invariants of graphs including 6-valent
rigid vertices in terms of the link invariants. Then there are tangle operators of
various kinds of 6-valent rigid vertices specified by different resolutions. As we did
in Sect. 4.1, we can characterize them in accordance with all the properties that the
CS vacuum expectation values of Wilson loops have under orientation reverses of
Wilson loops and the spinor identity (3.7) applied to resolve a planar triple point
identified with a 6-valent rigid vertex. For instance, as a result, the tangle operator
of a special kind of 6-valent rigid vertices identified with a planar triple point of
Wilson loops with no Casimir-like operators inserted in it is given by

P(K)=e{F(K) + () + F(&)+r (24) + F(K) + F(X)}

(4.29)

where C is a real normalization factor fixed by a certain diagram. Other tangle
operators of 6-valent rigid vertices corresponding to planar triple points where
Casimir-like operators are inserted are also defined with the help of the spinor and
Fierz identities.

In such a direction, the CS representation can shed light on the local integrabil-
ity condition. We can get the following expression from (4.27):
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On the other hand, from (4.28), we can get

P =Q+ Qa9 F

. (431)

The convention F (l@g) =F (x) was employed. It is easy, but tedious to

find the explicit expressions of @; and Q, where Q; + Q,. Q represents common
terms not including the Lie commutation relations. We can see, from the coinci-
dence of (4.30) and (4.31), how the local integrability condition is satisfied by the Lie
commutation relations in the CS representation. It was shown that our approach
provides a non-perturbative perspective on the local integrability condition not
based on the perturbative CS quantum field theory.

5. Application to the 4D Quantum Gravity

We considered the CS representation of the graph invariants of Vassiliev type. It is
important from mathematical and physical points of view. From the former, it
gives a correspondence between the quantum group graph invariants and the CS
path-integrals. It also shed new light on the local integrability condition that the
graph invariants of Vassiliev type are subject to. On the other hand, from the latter,
it enables us to investigate non-perturbative aspects of the 4d quantum gravity of
Ashtekar based on the canonical quantization.

This section is devoted to the latter. We employ the loop space representation
[12, 28], in which wave-functions are defined over a space of multiple loops in
a 3-space. We aim at verifying that the graph invariants of Vassiliev type in the CS
representation are just physical wave-functions in the loop space representation.
Let us begin with a brief review on the canonical quantization of Ashtekar’s gravity
and the loop space representation.

5.1. Physical Wave-Functions in the Loop Space Representation. Let M* be a (real
analytic) 4-manifold with a co-dimension one foliation, and 23(¢) a leaf. ¢ is the
parameter of time, which is given by t = 7(Z>) in terms of a smooth map 7: £*> — R.
Suppose that we are given complex-valued functionals y(4: Z3(t)) defined over an
affine space .o/ of su(2)-valued connection 1-forms® over Z3(t) . They are sections of

°In Ashtekar’s gravity, the self-dual connections A* (4* = 4,dt + A,dx) and the tetrads
E defined over M* are dynamical variables. In the (3 + 1)- decompos1t10n and in A, = 0 gauge,
A = Adx'is a coordinate of the configuration space on which wave-functions are deﬁned in the
canonical quantization.
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a line bundle over &/ specified by a set of constraints. In the canonical quantization,
the constraints of Ashtekar’s gravity with vanishing cosmological constant are
given by’

GLeTY(A:Z) = [dBxei ()G (4:2)

=i[d*xe(x) D,

J AT = (5:1)

MINTY(A:Z) = [ d3XN,(x) AP (4:5)

—lfd3xN,,(x) Fi,p(4:2)=0, (5.2)

0
SAL(x)
SINIY(A:2) = [ dxN(x) A (4:X)

P

0
SAL(x) 6AL(x)

where ¢'(x), the shift functions N,(x) and the lapse function N(x) are analytic
functions over M*. The first constraint is called the Gauss law constraint which
generates the gauge transformations, the second the momentum constraint which
generates difftomorphisms of X, the last one the Hamiltonian constraint (that is
also called the Wheeler-DeWitt equation) which generates diffecomorphisms in the
time direction.

Let us introduce the loop space representation. Wave-functions in the loop
space representation are given by the Wilson loops W(A:L;) (1 £i < N), which are
gauge invariant objects. L* = II\_, L; represents a singular link including not only
transverse intersection points but also corners. Each L{ represents a closed path.
We allow a finite number of corners to contact one another at a single point. If
Casimir-like operators are inserted at the transverse intersection points or at points
where a finite number of corners are contacting one another, they can be eliminated
by the Fierz identity. Let us denote a wave-function given by L® by y/(L*:2). It is
given by the functional integral:

Fhy(4:2)=0. (5.3)

= [d*xN(x)e*
P

N
W(L*:Z) = [ DA ] W(A:L)Y(A4:3). (5.4)

g i=1

Constraints in the loop space representation are induced by the constraints (5.1),
(5.2) and (5.3). For differential operators O = 4 .4, 5, the constraints are given by

N
Oy (L*:2)= [ DA ] W(A:L§)(Oy(A:X))

A i=1

j DA<@7 il W(A:Lf))l//(A:Z) oy (55
A i=1

7 For brevity, 23(¢) is denoted by X.
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We used integration by parts to obtain the second equality. O represents the
adjoint operator. The Gauss law constraint is trivial provided that y(A4:2) is
gauge-invariant.

The graph invariants of Vassiliev type play a crucial role in the canonical
quantization of Ashtekar’s gravity. They are regarded as physical wave-functions in
the loop space representation. It is obvious by definition that the graph invariants
of Vassiliev type are subject to the momentum constraint, because the momentum
operator ./, generates the rigid vertex isotopy of the 3-space X. On the other hand,
it is less obvious that they satisfy the Hamiltonian constraint. The following
theorem is significant.

Theorem 5.1. Let P(G:X)® be a graph invariant of Vassiliev type in the CS repre-
sentation. G represents a singular link including only transverse double and triple
points. Then it satisfies.

HLP(G:X) =0. (5.6)

Proof. It suffices to prove #;P(L:Z) =0, because P(G:X) is given by the link
invariants P(L: X). It follows from a fact that the action of the Hamiltonian is trivial
when acting on functionals of links. [

Non-trivial cases appear only when the Hamiltonian acts on functionals of
singular links including transverse triple points or points, at each of which a finite
number of corners are contacting one another with tangent vectors spanning
a 3-dimensional vicinity [7, 8].

5.2. The Graph Invariants of Vassiliev Type and the Half-Flat Geometry. We showed
that the graph invariants of Vassiliev type are physical wave-functions in a sense
that they satisfy all the constraints of the quantum gravity of Ashtekar. Let us
consider the physical implication. We recall that the graph invariants of Vassiliev
type in the CS representation can be identified with the CS vacuum expectation
values of Wilson loops including intersection points. According to the perturbative
CS quantum field theory, contributions of flat connections over ¥ dominate in the
classical limit. In the quantum gravity of Ashtekar, it corresponds to vanishing of
the self-dual curvature F(A) in the 3 + 1 formulation, where 4 represents Ash-
tekar’s connection. Then the 4-geometry is half-flat [2]. In addition to the half-
flatness, suppose that we are given three complex structures I, J and K subject to
the quaternionic relations, i.e., I* = J> = K> = — 1 and IJ = — JI = K. Then we
say that the 4-geometry is hyperkahler [27].

Let us consider complex structures on spaces of multiple loops in the 3-space 2.
In a case in which all loops have no intersection points, a complex structure on
a space of multiple loops (i.e., a space of links) is defined as follows. Let N be
a section of the normal bundle over a loop, then another vector B is given by
B =T x N = J,N atp. T is the unit tangent vector, and J, represents the conformal
structure on the normal plane. The three vectors T, N and B constitute the Frenet
Jframe as indicated in Fig. 3. The complex structure on the space of links is induced

8 We do not have to require that X should be restricted to S3, because invariants of graphs in
X are obtained from those of graphs in S* via the Dehn surgery.
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Fig. 3. The Frénet frames.

by J, over XZ. A generalization to singular links including intersection points is also
possible [9].

Singular links including transverse triple points are physically significant. At
each transverse triple point, it seems that we can introduce three almost-complex
structures because there exist three normal planes given by three independent
tangent vectors along loops. However, the three almost-complex structures can not
be independent. Let I,, J, and K, be the three almost-complex structures at p,
a transverse triple pomt Wlthout lack of generality, we can put B = I,T, N = J,B
and T = K,N as illustrated in Fig. 3. One can easily check that the three almost-
complex structures must satisfy a set of compatibility conditions that is just a set of
the quaternionic relations. Thus we can get the almost-hyperkahler structure [27]
on the space of singular links including transverse triple points. After all, we can
summarize as follows.

Remark 5.1. In the canonical quantization of Ashtekar’s gravity with vanishing
cosmological constant, physical wave-functions in the loop space representation
given by the graph invariants of Vassiliev type are solutions to the Hamiltonian
constraint. Furthermore, when the graphs are including transverse triple points,
the graph invariants of Vassiliev type are characterized by the half-flat geometry
with the almost-hyperkahler structure in the classical limit.

We end this section with a few comments. The physical wave-functions given by
the graph invariants of Vassiliev type can not describe the physically realistic
universe. The reason is that non-degenerate metrics evaluated in terms of them can
be given only at the transverse triple points, which are discretely located. An idea to
construct wave-functions of the realistic universe must be to consider the inductive
limit of the Vassiliev invariants, i.e., lim, F;. Finally, it should be mentioned that we
aim at constructing the Hilbert space of the quantum gravity. The loop space
representation seems most hopeful.
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