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Abstract: We consider classical acoustic waves in a medium described by a position
dependent mass density ρ(x). We assume that ρ(x) is a random perturbation of a
periodic function ρo(*) and that the periodic acoustic operator Ao = - V ^ j V has
a gap in the spectrum We prove the existence of localized waves, i e., finite energy
solutions of the acoustic equations with the property that almost all of the wave's
energy remains in a fixed bounded region of space at all times, with probability one
Localization of acoustic waves is a consequence of Anderson localization for the
self-adjoint operators A = — V γ ^ V on L2(ΊR.d) We prove that, in the random
medium described by ρ(x), the random operator A exhibits Anderson localization
inside the gap in the spectrum of Ao This is shown even in situations when the gap
is totally filled by the spectrum of the random operator, we can prescribe random
environments that ensure localization in almost the whole gap.
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1. Introduction

Localization of classical waves, acoustic and electromagnetic, has received much at-
tention in recent years (eg., [An2, Jl, J2, DE, Sc, VP, M] and references therein)
This phenomenon arises from coherent multiple scattering and interference and
occurs when the scale of the coherent multiple scattering reduces to the wave-
length itself. Numerous potential applications ( e g , [DE, J2, VP]), for instance, the
optical transistor, and the fundamental significance of localization of classical waves
motivate the interest in this phenomenon

In spite of the clear similarities between localization of quantum-mechanical
electrons (studied by Anderson [Anl] for the tight binding model), and localization
of classical waves, there are some important differences In particular, classical waves
are harder to localize [J2]. A substantial difference is apparent when we multiply
the coefficient describing the medium (the position dependent density for acoustic
media, the dielectric constant for the dielectric media, the potential for electrons)
by a constant for classical waves the spectrum of the relevant operators will be
just rescaled, in contrast to the case of Schrόdinger operators. Another significant
difference is that a local change in a homogeneous medium cannot create localized
eigenfunctions for classical waves operators, but it can certainly create localized
states for Schrόdinger operators For classical waves the bottom of the spectrum is
always at 0 and clearly does not depend on the medium; for Schrόdinger operators
the bottom of the spectrum is movable so we may expect the rise of localized states
for appropriate potentials

Thus, in order for localization of classical waves to occur we have to play with
the space distribution of inhomogeneities S John [J2] writes Photon localization
arises here not as the by-product of high degree of uncontrolled disorder, but rather
as a result of a subtle interplay between order and disorder The true criterion for
localization, in fact, depends strongly on the underlying static structure factor of
the medium This suggests that the localization of classical waves can be achieved
only in appropriately prepared random environments

To create an environment which would favor localization one considers first a
perfectly periodic medium It is well known that the spectrum associated with a
periodic medium has band gap structure and that the most significant manifesta-
tion of coherent multiple scattering is the rise of a gap in the spectrum If such
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a periodic medium with a gap in the spectrum is slightly randomized, eigenvalues
with exponentially localized eigenfunctions should arise in the gap. If the disorder is
increased further within some limits the localized states can fill the gap completely.
This is exactly the medium in which we study acoustic and electromagnetic waves
Acoustic waves are treated in this paper, electromagnetic waves will be discussed
in a sequel [FK3] Localized classical waves created by local defects are studied
in [FK4] We assume that the underlying periodic medium has a gap in the spec-
trum The existence of periodic media exhibiting gaps in the spectrum is proved
for acoustic and 2D-periodic dielectric structures [FKul, FKu2] We will slightly
randomize such periodic media with a gap in the spectrum and show that, under
pretty reasonable hypotheses, Anderson localization occurs in a vicinity of the edges
of the gap.

We previously considered these questions and media in a lattice approximation,
both for classical waves [FK2] and for Schrόdinger operators [FKl] The strategy of
this paper is the same one we used in [FK2], the main differences are of technical
nature and due to working on the continuum instead of the lattice

1 I Acoustic waves and localization In an inhomogeneous medium the basic linear
acoustic equations are (e.g., [MI])

κ^!r = - V u, ρ-^ = -V/?, (1)
ot at

where p = p(x,t) is the pressure, u — u(x,t) is the velocity, K = κ(x) is the com-
pressibility, and Q = ρ(x) is the mass density, so the pressure satisfies the second
order partial differential equation

The energy density S°(x,t) and the (conserved) energy 6° are given by

δ(x,t) = ^[ρ(*)|κ(*,O|2 + κ(x)\p(x,t)\2l S = f£(x,t)dx (3)

It is convenient to introduce the momentum potential Ψ — Ψ(x,t) by ρu = — VΨ,
and rewrite (1) as

K^- = V -W, °-ϊ- = Vp. (4)
dt ρ dt r

It follows that Ψ obeys the same second order partial differential equation (2) as
the pressure p9 i.e ,

a2Ψ 1

K ^ = V -W, (5)

and the energy density can be rewritten as

S\x,t)= -
Q(x)\VΨ{x,t)

dΨ

Ύt <x,t) (6)

Motivated by (2),(4) and (5), we set A = - V ^V It follows from (4)

that Ψ = —A~]κψt, so we can recover the velocity u from the pressure p by
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u = ^VΛ~λKj-n so the energy density can also be written in terms of the pres-
sure as

1

ρ(x) όt
•κ(x)\p(x,t)\2

(7)

In this article we work with a position dependent mass density ρ(x) and constant
compressibility K (we set K = 1). We will define i as a nonnegative self-adjoint
operator on L2(lRί/) Finite energy solutions for Eqs (2) and (5) are given by (e g ,
[RS3, Sect IX 10])

φ(t) = cos(tAϊ)φ0+A~ϊ sm(tA^)φ0 , (8)

where the Cauchy data (φo?Φo) c a n r j e taken in L2(IRί/) x @(A~2) for the pressure

p, and in <2(Aτ) x L2(JR.d) for the potential Ψ
A localized acoustic wave should be a finite energy solution of (1) with the

property that almost all of the wave's energy remains in a fixed bounded region of
space at all times, e.g ,

lim inf λ- J S{x,t)dx= 1 (9)

Our strategy for proving the existence localized waves is the following' we
first prove that the operator A has pure point spectrum in some closed interval
I C (0, oo), with all the corresponding eigenfunctions being exponentially decay-
ing For this operator it will follow that the gradient of an exponentially decaying
eigenfunction has exponentially decaying local I?-norms, so the corresponding en-
ergy densities {given by either (6) or (7)) also have exponentially decaying local
L?-norms, uniformly in the time t If //(A) is the corresponding spectral projection,
then any solution of either (2) or (5) given by (8), with Cauchy data in the range
of γj(A), satisfies (9)

Localization of acoustic waves is thus a consequence of Anderson localization
for operators A = —V - γ}V on L2(lRd), i e., the existence of closed intervals where
these operators have pure point spectrum with exponentially decaying eigenfunc-
tions

Similarly, the localization of electromagnetic waves is a consequence of Anderson
localization for operators M = V x | V x on L2(IR3, C 3), where ε = ε(x) is the po-
sition dependent dielectric constant. Localization of electromagnetic waves will be
studied in a sequel to this article [FK3].

1 2 Statement of results We study acoustic waves which are described by the
following formally self-adjoint operator on L^IR^):

where we always assume that q(x) is a measurable real valued function satisfying

0 < ρ_ rg Q(X) ̂  Q^ < oo a e for some constants ρ_ and ρ+ ( H )

Such general conditions on ρ(x), particularly the lack of smoothness, are required
on physical grounds. In practice only a few materials are used in the fabrication
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of periodic and disordered media, in which case ρ(x) takes just a finite number of

values, so ρ(x) is piecewise constant, hence discontinuous. The abrupt changes in

the medium produce discontinuities in ρ(x), which favor and enhance multiscattering

and, hence, localization

A is rigorously defined as the unique nonnegative self-adjoint operator on L2(R£ /)

uniquely defined by the quadratic form given as the closure of the nonnegative

densely defined quadratic form

(vψ, ^ v Λ Σ (dfψ, - ^ 7 ι / Λ , with ψ e C]

0(Ί^d). (12)
\ Qκx) I /=i \ Qvx) I

In this article we consider acoustic waves in random media obtained by random

perturbations of a periodic medium. The properties of the medium are described

by the position dependent quantity g(x), which we will always take to satisfy the

following assumptions

Assumption 1 (The Random Media). gg(x) = ρg,oAχ) is a random function of the
form

QcjA*) = Qo(χ)ygAχ)> w i t h )\jAχ) = i + g Σ Wiix), (13)

ιeπd

where

(i) Qo(x) is a measurable real valued function which is q-periodic for some q G N,

i e , Qo(x) = Qo(x + qi) for all x E IR and ί EΈd', with

0 < ρ0,- ^ Qo(χ) ^ Qo,-i < oo for a e x G WLd (14)

for some constants ρo,_ and ρo.+
(ii) Uι(x) = u(x — /) for each i G 7Lύ', u being a nonnegative measurable real

valued function with compact support, say u(x) = 0 if ||x||oo ^ τu for some ru <

oo, such that

0 < £/_ ^ U(x) = Σ u,(x) ^ U+ < oo for ae x e ΊR.d , (15)

/br .v6>/77̂  constants U- and U+

(iϋ) co = {cϋ[, i G ̂ } /51 ^ family of independent, identically distributed ran-

dom variables taking vcdues in the interval [—1,1], whose common probability

distribution μ has a bounded density p > 0 a e in [— 1,1]

(iv) g, satisfying 0 ^ g < ^-, is the disorder parameter

For acoustic waves ρ ί Λ ω (x) is the random position dependent mass density of

the medium Notice that Assumption 1 implies that each ρgy0) satisfies (11) with

Q± •= Qg,± = 00,±0 ± ^ ^ + ) (16)

For later use we set

δ±(ϋ) = , U ±

u with 0 | j , < - ί - (17)

The periodic operator associated with the coefficient ρoOO is denoted by AQ, i e ,

^o = A(QQ) We will study the random acoustic operators (see Appendix A)

Ag =AgΛ0 =A(ρCMt)) (18)
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It follows from ergodicity (measurability follows from Theorem 38 below) that there
exists a nonrandom set Σg, such that σ(AgΛ0) = Σg with probability one, where σ(A)
denotes the spectrum of the operator A In addition, the decomposition of σ(A(JΛ0)
into pure point spectrum, absolutely continuous spectrum and singular continuous
spectrum is also independent of the choice of ω with probability one [KM1, PF]

In this article we are interested in the phenomenon of localization According to
the philosophy of Anderson localization we will assume that the operator AQ has at
least one gap in the spectrum

Assumption 2 (The gap in the spectrum). There is a gap in the spectrum of the

operator AQ More precisely, there exist 0^ά<a<b<b such that

σ(A0)Π [a,b] = [a,a] U [b,b] ,

so the interval (a,b) is a gap in σ(Ao)

The following theorem gives information on the location of Σg, the (nonrandom)
spectrum of the random acoustic operator Ag

Theorem 3 (Location of the Spectrum). Let the random operator Ag defined by
(18) satisfy Assumptions 1 and 2 There exists go, with

TJ

and strictly increasing, Lipschitz continuous real valued functions a(g) and —b(g)
on the interval [0, -Q-\ with α(0) = a, b(Q) = b and a(g) g b(g\ such that

(i)

Σg ΓΊ [a, b] = [a, a(g)] U [b(g\ b] . (20)

(ii) For g < go, we have a{g) < b(g) and (a(g),b(g)) is a gap in the spectrum
of the random operator Ag, located inside the gap (a,b) of the unperturbed periodic
operator Ao Moreover, we have

a S a(\+gU+)- S a(g) ^ χ * υ (21)

and

b{\ - gU+) g big) g ~ S b . (22)
(\+gU^)-

(iii) If go < jj-, we have a(g) — b(g) for all g £ [go^jp) > cind the random

operator Ag has no gap inside the gap (a,b) of the unperturbed periodic operator

Ao, i e , [a, b] C Σg

Definition 4 (Exponential localization). We say that the random operator Ag ex-
hibits localization in an interval I c Σg, if Ag has only pure point spectrum in I
with probability one We have exponential localization in I if we have localization
and, with probability one, all the eigenfunctions corresponding to eigenvalues in I
have exponential decay
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Remark 5 The gradients of exponentially decaying eigenfunctions of Ag always
have exponentially decaying local L2-norms (Corollary 40) Thus the corresponding
energy densities (given by either (6) or (7)) also have exponentially decaying local
L2-norms, uniformly in the time t

Our main results show that random perturbations create exponentially localized
eigenfunctions near the edges of the gap Our method requires low probability of
extremal values for the random variables, the following two theorems achieve this in
different ways The results are formulated for the left edge of the gap, with similar
results holding at the right edge

Theorem 6 (Localization at the edge). Let the random operator Ag defined by
(18) satisfy Assumptions 1 and 2, with

μ{(\ - y, 1]} ^ Kγη for 0 ^ y ^ 1 , (23)

where K < oo and η > d For any g < go there exists δ(g) > 0, depending only
on the constants d, g, q, £o,±? U±, ru, a, b, K, η, ||p||oo? such that the random op-
erator Ag exhibits exponential localization in the interval [a(g) — δ(g),a(g)]

Theorem 7 (Localization in a specified interval). Let the random operator Ag de-
fined by (18) satisfy Assumptions 1 and 2 For any g< go, given a<a\ < #2 < a(g\
with a(g) — a\ ^ b(g) — a(g\ there exists p\ > 0, depending only on the constants
d, g, q, ρo,±, ̂ ±» rw, a > an upper bound on ||p||oo and o n t n e given a\,a2, such
that if

"U7
where g\ is defined by a(g\) = a\, the random operator Ag exhibits exponential
localization in the interval [a2,a(g)]

Theorems 6 and 7 can be extended to the situation when the gap is totally
filled by the spectrum of the random operator, we then establish the existence of
an interval (inside the original gap) where the random acoustic operator exhibits
exponential localization. Notice that the extension of Theorem 7 tells us that we
can arrange for localization in as much of the gap as we want.

Theorem 8 (Localization at the meeting of the edges). Let the random operator
Ag defined by (18) satisfy Assumptions 1 and 2, with

μ{(\-y,\]}, μ{[-l,-[ +)')} S Kf for 0 ^ γ £ 1 , (25)

where K < oo and η > d Suppose go < JJ- (e g , if (^)2U~ < 2), so the random

operator Ag has no gap inside (a,b) for g G [#o,"^r) Then there exist 0 < ε <

-Q go and δ > 0, depending only on the constants d, q, ρo,±, U±, rw, a, b, K, η,

||/7Hoc, such that the random operator Ag exhibits exponential localization in the
interval [a(g0) - δ,a(g0) + δ] for all g0 k g < g0 + ε
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Theorem 9 (Localization in a specified interval in the closed gap). Let the ran-
dom operator Λg defined by (18) satisfy Assumptions 1 and 2 Suppose QQ < ~-

(e g , if (^) 2 Γ - < 2), so the random operator Ag has no gap inside (a,b) for

Q £ [go, -jj-) Let a < a\ < #2 < a(go) — Kθo) < 2̂ < b\ < b be given For any

Q £ [(Jo, JJ~) ^^<? e * ^ p\,p2 > 0, depending only on the constants d, g, q, Qo,±,

U±, rm a,b, an upper bound on \\p\\oc and on the given αi,α2,£>i,/?2, such that if

where g\ and gι are defined by a(g\) = a\ and b{g{) — b\ {notice
0 < g\,g2 < fJo = g\ the random operator Ag exhibits exponential localization
in the interval [#2^2]

Theorems 8 and 9 are proved exactly as Theorems 6 and 7, respectively, taking
into account both edges of the gap

Remark 10 The methods of this paper also apply to random Schrόdinger operators
on ΊKd They give a new proof of localization at the bottom of the spectrum, as in
[HM, CH, Kp] For random perturbations of a periodic Schrόdinger operator with a
gap in the spectrum, we obtain the analogues of Theorems 3,6,7,8 and 9, extending
our results on the lattice [FK1] to the continuum

Remark 11 Theorems 6 and 8 should be true without the extra hypotheses (23)
and (25) They are used in conjunction with a Combes-Thomas argument to obtain
the starting hypothesis for the multiscale analysis, in the proof of localization One
may expect estimates similar to Lifshitz tails (eg., [PF]) for the density of states
inside the gap, which would replace (23) and (25) in the proofs. This is how the
starting hypothesis is obtained for random Schrόdinger operators at the bottom of
the spectrum [HM]

Combes and Hislop have announced an improved Combes-Thomas argument
inside a gap, they obtain a decay rate proportional to the square root of the product
of the distances to the edges of the gap. With this result we would only need η > |
in Theorem 6, but we would still need to require η > d in Theorem 8

Theorem 3 is proved in Sect 4, the proof requires periodic operators and periodic
boundary conditions, studied in Sect. 3. A Combes-Thomas argument for acoustic
operators is given in Sect 2 Theorems 6 and 7 are proved in Sect 6 by multiscale
analyses The required Wegner-type estimate is in Sect 5 The starting hypothe-
ses are proved first for finite volume acoustic operators with periodic boundary
condition, using a Combes-Thomas argument for operators with periodic boundary
condition (Sect. 3) and Theorem 3. Appendix A contains a result on measurability
of random operators, from which follows the desired measurability for the acoustic
operators we study We collect some results on elliptic operators in Appendix B.

We adopt the following definitions and notations*

• For Λ = (Λ I,. ,xd) G Wίd we let \x\p = (xf + + x ^ ) ]
 P for 1 ^ p < 00,

and 1̂ 1̂  = m a x i ^ ^ |x;|. We set \x\ = \x\2 and ||x|| — ( x ^

• ΛL{x) = { j G IR/7, II7 — x\\ < §} is the (open) cube of side L centered at

x G ΊR.d, ΛL(x) is the closed cube, and λL(x) = {y G IRΛ - f ^ yι - x, < §, i =
1, ,d] the half-open/half-closed cube
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• /A is the characteristic function of the set A, we write χxχ = Z/i/(τ)

• A function / on IR^ is called ^-periodic for some q > 0 if f(x + qi) — f(x)
for all x G 1R'' and i G TLd

• A domain Ω is an open connected subset of JR.d, its boundary is denoted by
dΩ

• LP(Ω) is the space of measurable complex-valued functions u(x), x G Ω with

the norm H H ^ = \\u\\pΩ = [JΩ \u(x)\p dx]Vp We will often use the space L2(Ω)

and in this case we will write ||w||Ω for ||w||2 Ω If Ω = lR.d we may omit it from

the notation
• Cι(Ω) is the linear space of continuously dififerentiable functions on the do-

main Ω, CQ(Ω) is the subspace of functions with compact support
• W]-p(Ω) is the Sobolev space of complex-valued functions u(x), x G Ω with

the n o r m | | « | | . . Λ Q = [Il«ll^.β + l l | V « | | | ^ 0 ] 1 / p

• ^(PI\'^¥) is the Banach space of bounded operators from the normed space
υl to the normed space °7J\ :$(%) = $(βC,%\

• The domain, spectrum and adjoint of a linear operator A are denoted by
σ(A) and ^4*, respectively.

• The domain of a quadratic form j / is denoted by ί^(j/)
• For a complex number z its conjugate is denoted by z*.

2. A Combes-Thomas Argument

Let the operator A be given by (10) If z ^ σ(A), we write R(z) = (A — z)~ι

Lemma 12. Let the operator A be given by (10) with (11) Then jor any z ^ σ{A),
« G N and ί > 0 we have

\\χxyR(z)"χyJ\\ ί (j) e^We-<»λτ-v\ for all x,y e l&d , (27)

with
η

mz = (28)

where η — dist(z,σ(A))

Proof We start by defining the operators formally given by

Aa = ea'xAe-a'x, a G Rrf (29)

as the closed densely defined operators uniquely defined by the corresponding
quadratic forms More precisely, for each a G IR^ we define quadratic forms on
Cl(R") by

= /(V + a)φ, -j-(V - a)φ) (30)
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(31)

-\a\2(ψ,—-ψ) . (32)

(33)

and

) ^ \a\2-s^[φ] .
/

(34)

Thus, if \a\ S 1 we have

\la[ψ]\ for all φe C^Wί"). (35)

We now require \a\ < 1 and use [Ka; Theorem VI 3 9] to conclude that srfa is a
closable sectorial form and define Aa as the unique m-sectorial operator associated
with it. If in addition z (£ σ(A) and

Ω = 2\\(\a\(l-~\a\)ρZ]

we can conclude that z ^ σ(Aa) and

( 1 - Ω ) 2

where Λa(z) = (^a - z ) " 1

Since

Ω =

it suffices to take

l '

Γ1

•η)

to ensure Ω < 1 In fact, we get Ω :£ j for \a\ ̂  mz (given by (28)), so

(36)

(37)

(38)

(39)

(40)

(41)
( 1 - Ω ) 2 ,

Now let xo,yo G R r f, « G N, / > 0, and take α = τ^zrπ(xo ~ yo) We have

—/7?-hfo—voL,, „—a' (x—xo) n / . y ! J ' ( Ϊ — v o ) ^ / //IQΛ
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SO

llZro ίe~a x~x llocllZvo /ea'{x~Vo)\\OGe~m:lXo~v°ι . ( 4 4 )

Since

and clearly mz ^ ^, the theorem is proved. D

The next lemma gives an exponential estimate for the gradient of the resolvent

Lemma 13. Let the operator A be given by (10) with (11), and let z ^ σ(A) with
η, mz as in Lemma 12 Then VR(z):L2(ΊR.d) -> L2(JR.d,(Cd) is a bounded operator
with

||VΛ(z)|| S Θ. ( ^ ^ ^ + 1J ' (46)

where Θ\ = (9(ί/, ρ ± , l ) /.v ẑi?£?« //? (239) Furthermore, for each f > 0 we have

)-βv ' ;β -1 ' (47)

for all x,y e ΊRd with \x - y\ ^ If

Proof For any φ e L2(W.d) we have R(z)φ e Wh2 (R^), since 7?(z)v> G &(A) and
we have (11). The bound (46) is thus an immediate consequence of Proposition 41
and of the evident identity AR(z)φ = (I + zR{z)) The proof of (47) is based upon
Lemma 12 and Proposition 39 Let / > 0, x, y G R^ with \x — y\ ^ 2/. For any
φ G L 2(R ί /) we can use Proposition 39 to obtain

(48)

(49)

(50)

Thus

'β- w -- ' γ - v ' , (51)

n
where we used Lemma 12 D

3. Periodic Operators and Periodic Boundary Condition

As in the matrix case [FK1, FK2], the (non-random) spectrum of random acoustic
operators can be represented as the union of the spectra of finite volume acoustic
operators with periodic boundary condition
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In this section we study acoustic operators in periodic media. We say that the
acoustic operator A given by (10) with (11) is ^-periodic for some q > 0 if ρ(x)
is a ^-periodic function In this section A will always denote such an operator

3 1 Periodic boundary condition We start by defining the restriction of such A to
a cube with periodic boundary condition. Given a cube A — A{(x\ where x G IR^
and f > 0; we will _denote by A the torus we obtain by identifying the edges
of the closed cube A in the usual way. We introduce the usual distance in the
torus

\βf
d(x, y) = min x — y-\-m ^ for all x, y G A (52)

m^/:Έd " 2

We will identify functions on A with their /-periodic extensions to IR ,̂ for example,
C\A) will be identified with the space of continuously differentiable /-periodic
functions on Rd We define WU2(Λ) as the closure of CX(A) in Wh2(Λ)

We will always take ί G </N and define AΛ, the restriction of A to A with periodic
boundary condition, as the unique nonnegative self-adjoint operator on L2(A) —
L2(A), defined by the nonnegative densely defined closed quadratic form

djψ, -^zdjφ) , with φ G Wh2(A), (53)
Q{x) I\ Q\x) I /-I \ Q{x)

the inner product being in L2(A). It follows from (11) that JΛ = ~^~ ΔΛ, where
ΛΛ is the Laplacian with periodic boundary condition on A Since —AΛ has compact
resolvent, using the min-max principle (see [RS4, Theorem XIII.2]) we conclude that
AΛ has compact resolvent.

The shift operators Uv, y G R^ are defined by

Uvφ(x) = φ(x - y\ for all I E R ^ (54)

They are unitary operators in L2(IRί/), and if m G q7Ld we have UmAU~m —A (as
unbounded operators), since ρ(x) is a ^-periodic function Using the identification
of functions on the torus with periodic functions, it is easy to see that for each
y G lR.d we have that Uv is a unitary operator from L2{A/{x)) to L2(Aί(x + y)),
for any x G ΊR.d, and

UVAΛ,{X)U~V = AΛ,{X+V)I SO σ(i / i / ( γ ) ) = σ(AΛ,(X+γ)) (55)

3 2 Spectrum of periodic operators If k9 n G N, we say that k ̂  n if n G kN and
that k -< n if k ̂  n and

Theorem 14. Suppose the operator A given by (10) u'zϊ/z (11) is q-periodic Let

\£}u n — 0,1,2, } be a sequence in N ΛW/Z ίΛύr/ <?o = q and ίn •< / / ? f i /or eαcΛ

« = 0,1,2, . Then

σ(AΛ/n(0)) C σ(i/i^ l ( θ)) C σ(^) /or α// n = 0,1,2, . , (56)
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and

'- U (7(AΛ/ (0)) (57)

Notice that it follows from (56) that a gap in the spectrum of A is inside a gap
in the spectrum of AΛ,(X) for any x G IR^ and ί G #N

A proof of (57) for periodic Schrodinger operators can be found in [Ea], based
on Floquet theory This proof can be adapted to operators as in the theorem in
the case of smooth coefficients For the nonsmooth coefficients we are interested in
some aspects of the Floquet theory have to be revised We give an alternative proof
which does not use Floquet theory.

To prove the theorem we will relate the resolvent RA{Z) = (A A - zl)~\ a
bounded operator on L2(Λ), to the resolvent R(z) = (A — zl)~ , a bounded operator
on L2(IRί/) Let us fix a cube A = A/(x) for some x G IR^ and f G #N, the map

ψ e L2(WLd) ^φΛ = {(pΛ,m, rn G ί"Ed) G ί2{fΈd,L2(A)) , (58)

where

<PΛ.m = XΛ(U~mφ) = U-m(χΛ+mφ) for each m e f%d, (59)

establishes a unitary isomoφhism between the Hubert spaces L2(IR^) and
/2{ίΈd\L2(A)) Under this unitary map, bounded operators T on L2(W!) have the
following matrix representation on ί2(ίΈd,L2(A))

TΛ = {TAnun = χΛU-mTUnχ/U m,n e tΈ*} , (60)

where each TΛjlhU is a bounded operator on L2{A) If R is a bounded /-periodic
operator, i e , U~mRUm = T for all m G fTLd, we have

Rίjnji — Rλji-m Ξ XΛRU11 mχA , (61)

so R/[ is a Toeplitz matrix with operator valued entries R^n-m Notice that R is
uniquely determined by

RΛ = {Rλ.m, m G fTLd) (62)

We now introduce the Banach spaces

w i t h H φ l l y ^ = \\φ\\\,i(/rz<t,L2{Λ)) , (63)

and

HA = {φe Wι<2(JR.d), φ, \Vφ\ G &Λ\ ,

with I M I ^ H M I ^ + IIIVφlll2^, (64)
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and the normed space

mΛ = {R G iM{L2{W^1)) /-periodic, RΛ G f\fTLd,M(L2{Λ)))},

with l l / ? l l / ? = l l / ? / ( l l i / τ Γ651

We define the maps

φey>Λ^PΛφ= £ φΛ,m = χΛ Σ U-fnφeL2(Λ) (66)

and

R G :%Λ H-* < ^ W = Σ ^ , w = χΛR Σ / ^
/ ; ;Z^ e #(Z 2(Λ)) (67)

Lemma 15. Γ/7<? wtf/λv ^ . J ^ -^ L2(Λ) and ^Λ . - ^ -> -^(I2(/l)) ί/re Λ«^r
contractions, with PA being onto Moreover

(i)

- ^ C # ( ^ / i ) H7Y/7 \\RhAy{) ^ 11/elU, > r ί///Λ G JU , (68)

PΛRψ = &Λ(R)PAφ for all R G 'M^ φ G ̂  (69)

^ G -#/i flf/irf &Λ(RS) = - ^ ( Λ ) ^ ^ ) /or a//^,^ G - ^ (70)

( in)

= P/i Vφ for all φ e if Λ (72)

Proof We will prove (iii), the other statements in the lemma being straightforward
We start by showing that

(73)

and

VPΛφ = PΛyφ for all φ G C^(WLd) (74)

Let φ G Cl(Wι), since it has compact support we have that Σm^/Έd U~mφ is an
/-periodic function in C](Ώtd) (the sum is locally finite), so PAφ G C\A) and (74)
holds by the definition of PA. To see that we have equality in (73), it now suffices
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to notice that

C]

t(A)= lφeC\A\ sup{</(x,y), x,j>Gsupp φ} ^ ^ 1 cPA(Cl(Rd)), (75)

and any φ G Cι(A) can be written as a finite linear combination of functions in

Q'U)
Since PA ^A ~* L2(A) is a contraction, it follows from (73) and (74) that PA is

also a contraction from (^(R^), equipped with the norm of #Vί, to Cι(A), with the
norm of Wl2(A) As C]

0(Rd) and C\A) are dense in Y/ \ and WU2(A\ respectively,
we can conclude that PΛ is a contraction from Y/̂  to ^F1 '2(/i), with dense range
because of (73), and (72) holds To show the equality in (71), define W^2(A) as the
closure of CX

L(A) (they are not linear subspaces), notice that W}'2(A) C PA{βA)->
and that any φ G ^ '^(yl) can be written as a finite linear combination of functions
in Wc

l2(A) •

For each TV G N we define the operator

wN = Σ u~m (76)

L e m m a 1 6 . ( i ) WN e ^ ( I f Λ ) J o r e a c h / V G N a n d f o r a l l φ 9 φ e ^Λ w e h a v e

(ii) WN e M{14 A) jor each / V G N and JOY all ψ,φ e 1tΛ we have

lim s/{φ,WNφ) = JΛ{PΛφ,PΛφ) (78)
N—>oo

Proof (i) and the fact that ^v G ί^(#Si) follow easily from the definitions To
prove (78), let φ,φ e 1f\, we have

,v/(φ,WNφ)= (Vφ, VWNφ) =ί\7φ,WN Vφ ) , (79)

where we used the /-periodicity of ρ(x) Since Vφ, -4^Vφ G $£^ we can use first

(77) and then Lemma 15(iii) to get

/ 1 \
lim stf(φ,Wuψ) — (PA^Φ,PA Vφ )

) ΛΨ) • (80)
L2(Λ)
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Lemma 17. Suppose z ^ <J(A), their

(i) R(z)e:%A

(ii) z $ σ{Aλ) and
RΛ(Z) = &Λ(R(Z)) (81)

Proof Let us fix z ^ σ(>4), 7?(z) is then a bounded Aperiodic operator since
A is ^-periodic and /' G gN Using Lemmas 12 and 13 we get R{z) G ̂ Λ and

Now let φ G J ^ , ψ G iί Λ, then 7?(z)φ G #Vi and, by Lemma 15, PΛψ, PΛR(z)φ
= ^Λ(R(z))PΛφ G WX'2{A) Thus we can use Lemma 16 and the identity AR(z) =
zR{z) + / to obtain

(())Λφ) Λ(PΛφ,PΛR(z)φ)= lim s
N—ΪO

= lim ^/(φ,R(z)WNφ) = (φ,(zR(z)+I)WNφ)L2(ίΆ,l)
N—>oc

tl) = (PΛψ,PΛ(zR(z)+I)φ)L2(Λ)

(82)

Recalling that PΛ (S£A) = L2(Λ) and PΛ (ifA) = WU2(A) (see Lemma 15), we
can rewrite (82) as

for all φ G L2(Λ\ ψ G Wx\λ) (83)

We can now conclude that &A(R(z))φ G 2(AA) for all φ G L2(Λ), and

(iz! - zI)&A(R(z))φ = φ for all φ G I 2 (/l) . (84)

If z ^ (T(AΛ) we can immediately conclude that RA(z) = &A(R(z)). Thus if ImzφO,
we are done. If z ^ o(A) and z is real, notice that it follows from (77), (69) and
the f- periodicity of R(z) that ^A(R(z)) is a bounded self-adjoint operator Since

A A is self-adjoint, it follows from (84) by taking adjoints that we also have

&A(R(z)) (AΛ -zl)φ = φ for all φ G 3{AΛ) , (85)

hence z $ σ ^ ) and ^ ( z ) = .^(i?(z)) D

Proof of Theorem 14 We already proved that σ(AA,(X)) C σ(>4) in Lemma 17, for
all x G IR^ and ί >- q To complete the proof of (56), it suffices to notice that if
q -< f -< L, the theory developed in this section, up to and including Lemma 17,
can be applied with A — /l/(0) and with the torus ΛL(0) substituted for Rf/, with
the obvious modifications

Thus it only remains to show that

σ(A)cΣ= )Jσ(AΛ,H(0)) (86)
n>\
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We only have to worry about real E So let E be real, with E (JΞ Σ, and let
δ = d(E,Σ) > 0 We have

1 + zw)|| < - for all n=l,2, . and η G IR
" ~ δ

(87)

Now let φ be an arbitrary function in L2(IRί/) with compact support It follows

that for all sufficiently large n we have XA/U(0)<P = φ, so ψΛ,n{0),m — 0 for all

m G ίTLd, /πφO and φ/iΛ;(o).o = iΛ/n{0)ψ = ψ Thus it follows from (81) that

RΛ/ιλφ)φ = χΛ/ni0)R(z)φ + χΛ/η{0)R(z) UmχΛ,ni0)φ , (88)

for all z = E + iη, ηή=O and sufficiently large « Using Lemma 12 we can verify
that

U"'χΛ/J0} = 0 , (89)lim
n—>oo

so it follows from (87) and (88) that

\\R(z)φ\\ = ^ 1 1 / ^ ( 0 ) ^ ) ^ 1 1 ^ ^ | |φ | | for all z = E + /;/, ;?φθ (90)

Since functions with compact support are dense in L2(R^), we conclude that

\\R(z)\\ ̂  - for all z = E + iη, η + 0. (91)
d

Since A is self-adjoint, we have E ^ σ(yί) D

3 3 A Combes-Thomas argument for the torus

Lemma 18. Let the operator A given by (10) with (11) be q-periodic, and let
A = Λ/(x0) for some x0 G IRJ β«rf ^ G #N, / > 2r + 8, where r > 0 Then for
any z ^ G(AΛ)

\ V) for all x,y e A , (92)

with

where η — dist(z,G(AΛ))

4 ( τ ^ + l Ά\
(93)

Proof Let us fix x\,y\ G /I, changing the representation of the torus A by a shift

(see (55) and the discussion preceding it), we can assume x0 = ^(*i + Vi) and

x\,y\ G Λ/Ί2(XQ) In particular, d(x\,);\) — lχi ~ y\ I Let / > 2r + 8, we pick a real

valued function ξ e CQ(IR) with 0 ^ ς(ί) ̂  1 for all t e IR, such that ς(/) = 1 for

|/| ^ I + £, ς(0 - 0 for \t\^{- 1, and |ξ ; (0 | ^ (^ - ^ - 2)" 1 for all ί G R

We set Ξ(x) = Πf=iζ(χ/) f o r x ^ R ί / Notice suppΞ(x - x 0 ) C A
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We now proceed as in the proof of Lemma 12 with A substituted for IR^ and
definition (29) replaced by

(AΛ)a = e

Ξ{χ-χo)a'(lί-χo)AΛe~Ξ{x~Xo)am(x~Xo\ a G (94)

Notice that

fU-l)Vd \
7 [Ξ(x - xo)a (x - xo)]| ύ I _ L _ + 1 \a

2\fd

1 - 2/+8
1 \a\ for all x e A (95)

We can thus repeat the proof of Lemma 12, except that we must now require that

( ~ Ί 8 J + l)\a\ < 1, and we must substitute ( — ^ + l)\a\ for \a\ in (36) and in

the rest of the proof Thus if ( ]

2 y f 8 + l) |β| ^ mz, i e , \a\ Smz,fj, we have the

equivalent of (41) We thus choose

-λx\ - y\) ,. . (96)
— Ĵ i I

and complete the proof of as before (with x\,y\ substituted for x,y in (27)), as

A,X] /^X\ A, Vi A \'\

4. Location of the Spectrum of Random Operators

In this section we prove Theorem 3.

4 1 Approximation by periodic operators Let us fix a disorder parameter g In
order to investigate the samples of the random quantity Qg,ω(x) we set

.Tg = {τ τ = {τ,J e Έd},-g ^ τ, g g} ,

^ ( / 7 ) = {τ e,T - τι+nj = %i for all ij £Zd}, «

and
f(oo) _ I I ̂ r(/

ίy — U ^ίy

For τ G 3/~g we let

and

In addition, we set

ι£7Ld

A(τ)=A(ρτ)

s

g

n) = {ρτ-τe 3Γ^} and £g°o) = y s(n)

(97)

(98)

(99)

(100)

(101)

(102)
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To approximate acoustic operators by periodic operators, given T G . ^ , n G N
and x G IRΛ we specify τ i/;(λ) G ̂  by requiring (τ^^.)), = τ, for all ieλn(x) Π 2^,
and define

A U(x)(τ) = A(τinω) (103)

The following lemma shows that the (nonrandom) spectrum of the random acous-
tic operator Ag is determined by the spectra of the periodic acoustic operators A(τ),
τ G J7y

( o c ) The analogous result for random Schrόdinger operators was proven by
Kirsch and Martinelli [KM2, Theorem 4]

Lemma 19. Let the random operator Au defined by (18) satisfy Assumption 1,
and let

Σq= U σ(A(τ)) (104)

Then σ(Afl) = ΣfJ with probability one

Proof We start by showing that

σ(A(τ)) C Σ(J for all τ G -T{1 (105)

Let Λn — Λ/n(0), where {/„, n — 0,1,2, } is a sequence in N such that ί'^ — q and
/„ -< ί'n+\ for each n = 0,1,2, Let us pick τ G .^, and consider the associated
sequence of operators An(τ) = AΛ/ι(τ) We define bounded nonnegative measurable
functions

OfJx) = max <̂  ± ,0 > , (106)
I \Qτίn(x) Qτ{x)J J

and corresponding self-adjoint operators

<9±(τ) = - V 0r

±,,(x)V , (107)

defined by the corresponding quadratic forms as in (12) It is not hard to see that

0 ^ Θf{τ) ^ α ^ ( τ ) , (108)

with

0 ^ yr = 1 - — < 1, 0 ^ α+ = ^ - - 1 < oc , (109)

and
A(τ) - Θ~(τ) ^ Aπ(τ) ^ A(τ) + Θπ

f (τ) , (110)

as quadratic forms cJl = C^R^) is a core for yjA(τ), and for any ψ G Q: we have
(ψ, Θf(τ)ψ) = 0 for sufficiently large n, since (gτhi(x) — Qτ(x))Xo,Un-^u)(x) = ®
The last observation and (108)—(110) allow us to apply Lemma 45 and conclude
that (105) is true

To prove the opposite inclusion to (105), with probability one, we introduce the
countable set

Approximating any τ G Ty uniformly by a sequence τn G <Tg°° (Q), and using
Lemma 45 together with appropriate inequalities analogous to (108)—(110), one can
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show that

σ(A(τ)) C U σ(A(τ'))< (112)

which readily implies that

Σg= U σ(^(τ)) (113)

Thus, to finish the proof of Lemma (19) it suffices to show that, with probability
one, we have

σ(A(τ)) C σ(Ag) for any τ G ̂ ( o o ) ( Q ) (114)

Notice that Ag = A{jA>) — A(gco), with cjco — {gcύjj ζ Zd} e -3\j, since ω G Ω Ξ

f—1,1 ] z < Let {/„, n — 0,1,2, } be a sequence in N such that ί'^ — q and

^ ; ^ /,7-t-i for each n = 0, 1,2, For each /? and T G - ^ / (Q) for some g7 >z q,
we consider the event

Ωτjl = {ω G Ω, m a x |iyo;/ - τ , | ^ (Λ, + l ) " ( ί / + 1 )

for some mvλτjl G q'Ίίd} , (115)

notice P(ί2 τ / ;) = 1 We now take the countable intersection

Ω = n n π Ω τ w , ( i i 6 )

so we have 1P(Ω) = 1 We will show that (114) is true for any ω G Ω

So let ω eΩ,τe ^q'](^D for some q' h q, n G N , and let m(,κτjΊ be as

in (115) We set co(n) = {ω\n) = ω,-,,^^,, / G ί } , and notice that σ(ΛίM,j(,,)) =

σ(Afh(l)) Similarly to (106), we define bounded nonnegative measurable functions

0±τn(x) = max ± — - — ,0 , (117)
I \Qcj,<M*) Qτ(x)J J

and corresponding self-adjoint operators Θ^(ω, τ) defined as in (107), so we get
analogous inequalities to (108)—(110) We have l i m , ; ^ ^ ^ , Θf(ω, τ)φ) = 0 for
any φ G ̂ , since

As before, this last observation allows us to apply Lemma 45 and conclude that

σ(A(τ))<Z f)σ(Aφωv») = σ(AίJ.ω), (118)

which implies the validity of (114) D
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Given a real number /?, \h\ < ^ , let

A(h)=A(ρh) with ρh(x) = ρo(x)[l +hU(x)] (119)

If \h\ ^ g, and we define τ(h) G - ^ by τ(h), = A for all i E Z r /, we have ρ/, = ρτ(/7)

and Λ

Lemma 20. Let A(h), \h\ < -^-, be given by (119), with ρo and U given in

Assumption 1 Let A = Λ/(XQ) Λ>' «wme XQ £ IR^ ^ " ^ ^ h q The positive self-
o

adjoint operator (A(h)A has compact resolvent, so let 0 < μ\(h) S μi{h) S be

its eigenvalues, repeated according to their (finite) multiplicity Then each μ7(/z),

/ = 1,2, , is a Lipschitz continuous, strictly decreasing function oj h, with

( 1 2 0 )
/ = 1 , 2 \12 — n\

/ί;r α/?v /?i,//2 G (—g,g), 0 < g < j - , where δ±(g) are given in ( 1 7 )

Proof Let /7i,/?2 G (-g,g), 0 < # < • £ - , it follows that

1 1 (λ2-Ai)ρ o (*)£/( .r)
(121)

so

ρ/,2(x)

and

^ X * * - * ' ) , (,22)

- A , ) , 1 1 - ί _ ( ί / ) ( Λ 2 - A ι

From (122) we get

(1 + ί _ ( ί y ) ( Λ 2 - / ? i ) M ( / ? 2 λ i ^ ^ ( / i i ) i ^ ( 1 + ί ) + ( ί / ) ( / ? 2 - ^ i ) M ( / ? 2 ) i , ( 1 2 4 )

so it follows from the min-max principle that, for any j = 1,2, ,

(1 +δ-(Lj)(h2 -h\))μj(h2) ύ μ,(h\) ύ (1 + K(g)(h2 -/zi))/z 7(/z 2), (125)

i e ,

M ί 7 ) ( A 2 " A i ) ^ / ' / ( / ? l ) " / ? ( / ? 2 ) ^ M ί / ) ( A 2 - A i ) (126)

Similarly, using (123) we get

/ / / ( / ? 1 \ 7 ? ( / ? 2 ) -Ai) (127)

Equation (120) follows from (126) and (127) The properties of the functions μ,{h)

follows D

The following corollary follows immediately from Theorem 14, Lemmas 19 and

20, and the min-max principle
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Corollary 2 1 . Let the random operator Ag defined by ( 1 8 ) satisfy Assumption 1,

and let {/„, n = 0,1,2, ..} /?e <:/ sequence in N SMCΛ //W fo — q and ίn -< ίnΛ\

jor each n = 0,1,2, 77767?

,(0)) (128)

In particular, Σg is increasing in g

4 2 Inside the gap We now prove Theorem 3. As Σg is increasing in g, we expect
the gap to shrink as we increase g until it either disappears at some go, or it remains
open for all allowed g Thus we define

GO,—V Σgn(a,b)^(a,b)\ (129)

Let {/„, n = 0, 1,2. } be as in Corollary 21, h G [-g,g], and let 0 < μ("\h)

5 μ{

2\
n) = be the eigenvalues of A(ti) \n, Λn = Λ/,7(0), repeated according to

their (finite) multiplicity, notice l im / ^ o c μ^ (h) = oc By Lemma 20 each μ"\h) is
a strictly decreasing continuous function of h, hence it follows from Corollary 21 that

^ = U U σ(A(h)ΛJ=\J\J[μl!'\g),μ{;\-y)] (130)
π ^ l Λe[-ί/,ί/J π ^ l y=0

In particular, Σg is a countable union of disjoint closed intervals, none contained in
the original gap (a,b), so for g < g0 we can define a(g) and b(g) by (20) Since
Σg is increasing in g G [0, -^-) by Corollary 21, it follows that a(g) and —b{cj) are
increasing functions in [0,CJQ)

For each /7 let
y , =max{y\ /^?)(0) ^ αf , (131)

so using Assumption 2 and (56) in Theorem 14, we have

7 n + l = m i n { 7 , ^ '"(0) ^b\ (132)

If g < go, it follows from the definition of j n , Assumption 2 and (56)-(57) in
Theorem 14, that μIn(—g) and —μ/n+\(g) are both increasing in /?, and

tf(0) = lim μJn(-cj), (133)
/?—>oc

b(g) = lim μ/,,+i(0) (134)
/ 7 — * D C

Thus, given 0 ^ ί/i < gi < go, w ^ can conclude from (120) that

a^}l) ~ a^]]) , (135)

^ ι ) ~ b ^ 2 ) g δ+(g2)b{g2) (136)
02 - 01
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The Lipschitz continuity of a(g) and b(g) follows, as well as

Jδ.(h)dh ί log ^ log ^f\ < Jό+(h)dh , (137)
, a(gι) b(g2) g\

so we obtain (21) and (22), from which we get (19)

If cj0 < ^-, we must have limίyjί/0 a(g) = limίylί7() b(g) This follows from (130),

(133) and (134), since by (120) each μ{"\h) is a Lipschitz continuous function of

h G {~Xj~->jr)-> uniformly in n Thus, if g e [go, p-) it follows that [a, b] C Σg, we
set #(</) = b(g) = limίylίyo

Theorem 3 is proven

5. A Wegner-Type Estimate

Given an open cube A in IRΛ we will denote by Ag_A = AgΛ,h \ the restriction
of A{UV) to A with Dirichlet boundary condition (eg., [RS4]) Notice that each
Aψι0 i is a nonnegative self-adjoint operator on L2(A) with compact resolvent, and
measurability follows from Theorem 38 We can thus define ng \{E) = ngΛ,κ i(E)
as the number of eigenvalues of AgΛ,κ \ less than E, clearly ;?ίAf,Λ \(E) — 0 for
E ^ 0 Notice that ngoKj\{E) is the distribution function of the measure ng^0)/\(dE)
given by

fh(E)ng.ω, x{dE) = Tr(/7(Λy,,λ 0 ) (138)

for positive continuous functions h of a real variable
We will say that the random operator Ag defined by (18) satisfies Assumption lx,

if it satisfies all of Assumption 1 with the exception of the requirement that ρo(x)
be a ^-periodic function.

We have the following "a priori" estimate

Lemma 22. Let the random operator Ag defined by (18) satisfy Assumption V
There exists a constant C\ = C\{d,Qo+) < oc such that we have

ng(,hΛ(E) S C}\A\EΪ (139)

for all ω e [- 1, \f\ for all E ^ 0 and all cubes A in Έd

Proof Let A \ be the Laplacian on A with Dirichlet boundary condition We have

Λψι»Λ ^ n \ 7J ,ΛΛ ^ - - ί — z l 4 . ( H O )

Thus (139) follows from [RS4, p 267 (118)] D

Theorem 23 (Wegner-type estimate). Let the random operator A g defined by (18)
satisfy Assumption I7 There exists a constant Q < oc, depending only on the
dimension d and the constants ru and ρo.+? such that

for all E > 0, cubes Λ in IR'', and all η e [0,£]
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Proof Let us pick K G (1, JJJ~), say K = ^ ' [ ^ •> w e write

;<y.ω — i y l_^ *ιuι •> \ι^Δ)

where

7 = 1 - KCJ Σ «/ > ~ ^ ^ > 0 , (143)

and Si — ω, + /c G [/c — 1, /c + 1] for each z G Z^
Now let / be an arbitrary continuous function on the real line with compact

support As in [FK2, Lemma 7], we have

where A(h(,κ/ι(ξ) is defined in the same way as A{]Λ%\ but with ^— replaced by the

function ξ

Thus,

- Σ st~i ncjMhΛ(E)f{E)dE =Σ t i n c j M h Λ ( ) f { ) {q^A
£Z<1 CSI I \QfJ.OJ ίCjΛ

- Tr L^,. , f ^
I Qίj.(o 7<7,ω

But

7 + (/ Σ Sιllι

7 7 - 1 - KgU- ~ 2U+

and / ^ 0, so

. •

We conclude that
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For given j e TLd let ω{l) = {ω/5 / G Zd\{j}}, and denote the corresponding
expectation by E ( / ) We have

/κ+1

\
J

p(s, - κ)dSj

(145)

where we used (139), here 6JA = 0 if u, = 0 in A and (57</i = 1 otherwise Since
the function u has support in a cube of side 2ru, there exists a constant C2 < oc,
depending only on ru and the dimension d, such that

δLΛ ^ C2\Λ\ (146)

for all cubes A in Z^
Let ήg_i(dE) = Έ(ng^ωΛ(dE)) For functions /" as above, it now follows from

(144),(145) and (146) that

^ 2c,c2(κ-+

It follows that ιϊfl.Λ(dE) is absolutely continuous with
(147)

( 1 4 8 )

where

( 1 4 9 )

The estimate (141) now follows by a standard argument:

Ψ{dist(σ(Ag^Λ)9E) < η} ^ Ψ { j nψωA{dE) ^ 1
{[E-η.E + η]

^ f nψΛ(dE) ^ 2ϊCiEi-λη\Λ\2 ,
[E-η.E+η]

(150)

for all £ > 0 and 0 ^ η ^ E. •
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6. Localization

In this section we prove Theorems 6 and 7 To do so we develop a multiscale
analysis appropriate for random perturbations of periodic operators on IR/, based
on the von Dreifus-Klein [DK] multiscale analysis We will work with random
operators Ag of the form given in (18), but our method works also for random
Schrodinger operators

Let the operator A be as in (10) with (11) Given an open cube A in IRΛ

we will denote by A \ the restriction of A to A with Dirichlet boundary condition

(e g , [RS4]) Each A \ is a nonnegative self-adjoint operator on L2(A) with compact

resolvent R\{z) = (AΛ - z)~ι If A = ΛL(x), we will write Aλ%L = AΛι{x) and i?λ.z,(z)

= RΛ!(\)(Z) The norm in L2(AL(x)) and also the corresponding operator norm will

both be denoted by || ||v.^. If A\ c A2 are open cubes, J^2 L2(ΛX) -^ L2(A2) is

the canonical injection. If A; = /l/;(.Y/), / = 1,2, we write || H^'^ for the (operator)

norm in M{L2{A1Λ(XX )\L2(ALl(x2))) and J ^ = J^lv I f φ e LOC(Λl w e a l s o

denote the operator multiplication by φ on L2(A) by φ.

6 1 The basic technical tools The basic tool to relate resolvents in different scales
is a local resolvent identity (LRI), which was used in a similar context by Combes
and Hislop [CH].

Lemma 24 (LRI). Let A\ C /12 be open cubes in IR/, let /// be a self-adjoint
operator on L2(Aj), i = 1,2, with R,(z) = (H, - z)~\ and let φx e L^iΛx) Then,
for any z ^ σ(H\) U σ(//2) u'e have

; ^ £ Ay (151)

as quadratic forms on L2(A2) x L2(AX)

Proof We clearly have

R2{z)JΛ

χ

2

χφxφx =R2(z)J^φx(Hx - z)Rx(z)φx for all φx e L2(AX) , (152)

and

(\k,jl*φxRχ{z)ψλ)LHΛl) = ((H2 - z*)R2(z*)ψ2,Jl;φxRx(z)ψx)L2{Λ2) (153)

for all φx e L2(Ax\φ2 e L2(A2\ so (151) follows. D

For operators of the form given by (10), the LRI yields the smooth resolvent
identity (SRI)

Lemma 25 (SRI). Let the operator A be given by (10) with (11), let Ax c A2

be open cubes in Wι, and let φx e CQ(Λ\) Then, for any z ^σ(AΛ])U σ(AΛlJ we
have

+ RΛΛz)(~J'r-(Vφ]) V + V J/Nyφi)- )Λ4,(z) (154)

as quadratic forms on L (A2) x L (Ax)
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Proof Using (151), (10), and the definition of Dirichlet boundary condition we
get (154) D

The other basic tool for the multiseale analysis is a Simon-Lieb-type inequality
(SLI), which we need to adapt to the continuum It is used to obtain decay in a
larger scale from decay in a given scale

Since we are working in a background medium of period q G N {see Assump-
tion 1), we will work with boxes ΛL{x) with x G qTLd and L G 2gJN, so the back-
ground will be the same in all boxes in a given scale L For such boxes (with
L ^ Aq) we set

(155)
I z )

and

TL{x) = ΛL-q{x)\ΛL-iq{x\ TL{x) = ΛL_ψγ\ΛL^{x) (156)

We also set

Notice

A , A = Σ Zv ae (158)
veΓ/(v)

and

\TL{x)\ ^ d{L-2q+ l)d~ι (159)

In addition each ΛL{x) will be equipped with a function Φx L constructed in

the following way. we fix an even function ξ G CQ(IR) with 0 _̂  ξ{t) ^ 1 for all

t G IR, such that ξ(t) = 1 for \t\ g | , c(/) = 0 for \t\ ^ f, and |ς ' (0 | ^ | for all

/ G IR (Such a function always exists ) We define

t\ < L _Ά
'1 = 2 4

^ v r V2 2 )) ' " ' ' = V2 2

and set

d

φχjXy) = ΦfXy — x) for y G R^, with ΦL(V) = Y[CiX)'i) (161)

We have Φ^L G C^/l^x)), 0 ^ Φλ-L ^ 1,

and

α = V Φ u , |VΦλ,£| g — (163)
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Lemma 26 (SLI). Let the operator A be given by (10) with (11). Then for any
ί\L e 2qΊN with Aq ^ ί < L - 3q, x, y G qTLd with 2\y — JC|| ^ L - ί - 3q (so
Λ/(y) C /lL_3^(.γ)), and z ^ σ(AxL) U σ(Avj\ we have

\\Γx,LRx,L(z)χv\\x,L ^ y^cI-l\\ΓγjRvj(z)χ4vj\\ΓxSRx,L(z)χv,\\χ,L (164)

for some y' £ Tvy, U'zϊ/z

7. = — Θ j ( l + | z | ) , (165)

where Θi = Θ(d,ρ±,^) is the constant given in Proposition 39

Proof Using (162), (154) and Γ^LJ^Φλ%/ = 0 we obtain

V + V Jx'LΛVΦγί)- \Rγ/{z)χγ (166)
" U Q)

as quadratic forms on L2(ΛL(x)) x L2(Λ/(y))
We now use (163) and (11) to get

r I l L

V,/ρ v,/ v./ ^ v y

= A- L^T L(^)^V /J /-Γγ /(VΦV /) VΛV /(z)/v |Γ'/ (167)
1 ^ ρ • .. . i n /

^ ||^ryV7?vy(z)/,..||vy||Γr,z/?r,z(z)Γry||r)z; (168)

and
1 -. \\X'L

ρ vJ Z Xv v y

τ\,L Γ Ώ ,_\Λ. \\\\L= ||Γϊ,ΔΛϊ,/.(z)V (VΦv,/)fvyj;;vLΓv,/^,,/(z)χr||;;
L

/ (169)

^ ^-||Γι,yΛvy(z)Zv||,,/||Γr,iΛr,i(z)V (VΦ),y)f,,/||λ.z. (170)

3\Λϊ
| |Γ,,/Λ ι,/(z)Zv | |vy||fv,/VΛ ϊ, t(z*)Γ ϊ, i | |r. i (171)

Appealing to Proposition 39 we obtain

||f,,/VΛ1,y(z)jrv||v,/ g Θ'i [\\ΓvjRvΛz)χr\\γJ + \\ΓγjAYjRγj{z)χγ\\Yj}

g 6> ί(H-|z|) | |Γ ι, /Λ v y(z)χ v | | v y (172)
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and

\\fvyVRXiL(z*)Γx.L\U ^ Θ, [||ΓvyΛx.L(z*)Λ./J|γ,L + | |Γv.^X ϊ LΛγ,L(z*)Λ, I | |γ > A]

Λ γ,L(z*)Γ γ,L | | γ .L (173)

R^L(z)ΓγJ\\^L (174)

Thus,
\\Γλ_LR^L(z)χv\\^L = \\Γx,LRx,L(z)JlJχv\\xά

g 20,(1 + \z\)\\ΓλyRvAz)χv\\],/\\ΓxXRλJXz)Γ],/\U (175)

Hence (164) follows from (175), (158) and (159) D

The last tool in this subsection is the eigenfunction decay inequality (EDI), an
inequality that gives decay for generalized eigenfunctions (see Appendix B 2 ) from
decay of local resolvents

Lemma 27 (EDI). Let the operator A be given by (10) with (11), and let φ be a
generalized eigenfunction for a given z £ (Γ For any x G qTLά and ί £ 2</N with
ί ^ 4q, such that z ^σ{Axj\ we have

UM ^•Λ-/</-'t|Γλ,//?,/(z*)Zλ||λ./||Z,.1A|j (176)

for some y G T , / , with y_- as in (165)

Proof. Since (A - zl)ψ = 0 weakly (see (241)), we also have ΦX./{A - zl)ψ = 0

weakly, so Jx>'ΦxJ(A - zl)ψ = 0 weakly in L2(Λ/(x)), where JλJ = J^,u). Thus

-Γ 'lxΨ = χ^./(z)(AxJ -zl)JxJΦxyφ (177)

= χλRλj{z){AλJJ
uΦλJ -Jx/ΦλJA)φ (178)

( v . ) ( v / ) V O 7 9 )
Q s )

weakly in L2(Λ/(x))
Proceeding as in the proof of Lemma 26, we have

./ (180)

)fλ/ΓxJψ\\xJ (181)

A-./(VΦλy) VRλ.,(z*)zx\\xJ\\ΓxJιl/\\ (182)

(z*)χλ | |γy||Γλyi//|| , (183)
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and

J y A (184)

^ j (185)

Thus (176) follows D

6 2 The multiscale analysis Motivated by the SLI (164) and the EDI (176) we
make the following deterministic definition (see [CΉ] for a similar definition)

Definition 28. Let the operator A be as in (10) with (11) Given m > 0, E > 0,
Λ* G qTLd and L G 2</N, L ^ 4q, we sav that the cube ΛL(x) is (m,E)-regulai\ if
E $σ(AxJJ and

\\ΓλjRλJχE)χχ\\^L S e ^ (186)

We say that φ G L2(IRί/) decays exponentially fast with mass m > 0 if

H m s u p I ^ M ^ O T (187)

Motivated by the EDI, which is formulated for | | / γ ι / Ί | , we say that φ decays
{/-exponentially fast with mass m > 0 if

(188)

Notice that if φ is an eigenfunction for an operator A as in (10) with (11), then φ
decays exponentially fast with mass m > 0 if it decays q-exponentially fast with
mass m > 0 [Ag, Theorem 5 1] Moreover, Vφ also decays q-exponentially fast
with mass m > 0 (see Corollary 40)

We now adapt Theorem 2 1 in [DK] to our setting

Theorem 29. Let A be a random opeiator as in (18) satisfying Assumption 1.
Given E{) > 0, p > d and ΠIQ > 0, suppose

(PI) There exists Lo G 2q¥\ such that

JP{ΛLo(O) is (mo,Eo)-reguIar} ^ 1 - - ^ (189)

(P2) There exist s > 0, r > 4p + 6d and C < oo such that

ί 1 Ί C\E\^~]

ψUιst(σ(A0X),E) S —> S -Lj-I (190)

for all E > 0 and L G 2^N with j-s < E

Then, given m, 0 < m < mo, there exists

i,q,g±,ru,Eo, p,s,r,C,mo,m) < oc ,
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depending only on the indicated constants, nondecreasing in EQ, such that, if we
have LQ > .^, we can find S = δ(Eo,Lo,mo,m,s,C) > 0, so, with probability one,
A has only pure point spectum in {EQ — δ,Eo + δ), and the corresponding eigen-
functions decay q-exponentially fast with mass m > 0

Remark 30 A random operator Λg as in (18) satisfying Assumption 1 always sat-
isfies hypothesis (P2) for any s > Ap + 8d and r = s — 2d, with

c = Q^+^uJplU, Q = QV.eo.ί.r.) < oc (i9i)

This is just a special case of Theorem 23 Theorem 29 as stated is true with weaker
hypotheses on Ag, the proof requires only (P2), the SLI, the EDI, and Theorem 43

Remark 31 Hypothesis (PI) says that we have localization in a large, but finite,
volume, with high enough probability It is the starting hypothesis for the multiscale
analysis The proof of Theorem 7 from Theorem 29 will consist of verifying (PI),
using Assumption 2

Proof. Theorem 29 is proven as Theorem 2 1 in [DK], using the SLI and the EDI,
with the following modifications*

1 We always take boxes ΛL(x) with x G qTLd and L G 2gN
2 For two cubes ΛL\x\) and ΛLl(x2) to be non-overlapping we require that

||*i ~*2 | | > 5(^1 + L2 -h ru) In this case the random operators AXuLι and A-2,i2

 a r e

independent
3 The probabilistic statement in [DK, Theorems 2 2 and 2 3] (called R(L,m) in

[DK, p 290]),

IP {for any E G / either ΛL(x) or ΛL(y) is (m,£>regular} ^ 1 γ , (192)

is now stated for any x, y G qZd with ||x - ;>|| > L + y
4 The length scales L\ of [DK, Theorems 2 2 and 2.3] are now defined by

Lk + \ = [Ly

k]2q, k = 0, 1, , where [t]2q = sup{/? G 2^N, n S t} We also take L =
[Γ]2q in [DK, Lemmas 4 1 and 4 2]

5 The basic tool for the proof of [DK, Lemma 4.2] in our setting is the SLI
(164), it replaces inequality [DK, (4 1)].

6 We prove ^-exponential decay of eigenfunctions in the analogues of [DK,
Theorem 2 3 and Lemma 3 1] The basic tool in the proof of [DK, Lemma 3 1] is
now the EDI (176). The basic facts about generalized eigenfunctions are given in
Theorem 43, we use (244) with /' — q

1 The fact that M can be chosen nondecreasing in Eo follows from the fact that
EQ only appears in the proof when we use either (190), (164) or (176) D

Theorem 29 suffices to prove Theorem 7, but Theorem 6 requires a somewhat
different starting hypothesis, in which mo and LQ, are related

Theorem 32. Let A be a random operator as in (18) satisfying Assumption 1
Given EQ > 0 and p > d, suppose we have (P2) as in Theorem 29 and
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(Ql) There exists Lo G 2q¥\ such that

O(O) is -regular} ^ 1 - ^ (193)

for some λ > s + d - 1
Then, given c, 0 < ξ < 1, there exists

-,VU,EQ, p,s,r, C,/., ς) < oo ,

depending only on the indicated constants, nondecreasing in EQ, such that, if we
have LQ > {€, we can find δ — δ(EQ,LQ,s,C,λ,ξ) > 0, so, with probability one, A
has only pure point spectrum in (EQ — δ,Eo + δ), and the corresponding eigenjfunc-
tions decay q-exponentially fast with mass ς / °g Λ)

Proof This theorem is just Theorem 29 with m0 =
 Λ ]°g Li}, the same proof applies

We need λ > s + d — \ in (Ql) to control the contribution of a singular region
by the decay of a regular cube, using the SL1 (164) and (P2) (see [DK,
Lemma 4 2]) D

Remark 33 Notice that (193) is the same as

IP I | |Γo,ioiW£o)Zo||(Uo ^ — \ ^ 1 - Λ (194)
I LQ J L0

Theorem 32 suffices to prove Theorem 6 with the stronger hypothesis // > Id in
(23) To deal with the weaker hypothesis η > d we adapt an argument of Spencer
[Sp] to obtain the starting hypothesis (Ql) from a weaker (and easier to verify)
hypothesis

Definition 34. Let the operator A be as in (10) with (11) Given v > 0, E > 0,
x G qTLd and L G 2gN, L ^ 4q, we say that the cube ΛL(x) is (v,E)-suit able,
if E ^ σ(AλL) and

_sup \\ΓvLRxΛE)χv\U ^ - (195)

Theorem 35. Let A be a random operator as in (18) satisfying Assumption 1
Given EQ > 0 and v > 2(d — 1), suppose

( H I )
limsupIP{/lA(0) is (v,E0)-suitable} = 1 (196)

(H2) There exist s G (0, v - 2(d - 1)), r > Wd and C < oc such that

^ | ^ j 2 (197)

/or ί/// Λ G 2#N 1177/2 JJ < Eo

Then theie exists δ = δ(d, q, g±, ru,Eo, v,s,r, C) > 0, so, with probability one,
A has only pure point spectrum in (EQ — δ,Eo + δ), and the corresponding eigen-
functions decay q-exponentially fast
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Theorem 35 follows from Theorem 32 and from the following lemma

Lemma 36. Let A be a random operator as in (18) satisfying Assumption 1 Given
EQ > 0, v > d — 1 and p > d, suppose

(XI) There exists Lo G 2q¥l and δ0 G (0,1) such that

Ψ{ΛL(χθ) is (y,E0)-suitable} ^ 1 - δ0 (198)

(X2) There exist s G (0, v - 2(d - 1)), r > p and C < oc such that

IP jdist(σ(Λu,£o)) ^ ^ | ύ C ^ j 2 (199)

for all L G 2<?N with ^ < Eo

Then there exist JU = Ψ(d,q,ρ±,ru,Eo,\\s) < oc, depending only on the indi-
cated constants, nondecreasing in EQ, such that given α > W, α G N, u?e can find
$ = ^(d,q,ρ±,ru,Eo,v, p,r,s,(x) < oc, depending only on the indicated constants,
nondecreasing in EQ and in α, so ij we have LQ > ^ and δo < [2(2α)2ί/]~1 in
(XI), and we set L/<+\ = oίL/^ k = 1,2, , we have

Ψ{ΛLk(0) is (v,E0)-suitable} ^ 1 - — (200)

for all k ^ //, where Jί = Jί\^p) < oc

Proof The proof is by a multiscale analysis which combines ideas from [Sp,
Theorem 1] and [DK] We set

pL = Ψ{AL(0) is not (v,£Ό)-suitable} (201)

The multiscale analysis is based on an induction argument, let ί G 2gN, α G N and
L = α/ We set ΞLJ = ΛL(0) Π ~TLd c qZd, notice |Ξ/.y | ^ (2α)ί; The induction
step is similar to [DK, Lemma 4 1], it is based on the SLI, but only cubes in
cβLJ = {/l/(x), x G ΞLj} are allowed, notice that ΛL(0) C [jλeΞ/ Λ/_(x)

Let .¥ιj denote the event that either there are at least two non-overlapping

cubes in ((?Lj which are not (v,£0)-suitable, or dist(σ(^v.3/,£o)) ύ r^γ f°r s o m e

λ" G ΞLy, or dist(σ(^o./.ί^Ό)) = JJ As in [DK, Lemma 4 2], we will show that

{AL(0) is not (v,£Ό)-suitable} C J ^ v , (202)

so

tPL S PW..,> S (2=<):'V,! + ( 2 , ) ' * L + QMtl (203,

( 2 0 4 )

where we used (X2) to obtain the last two terms in (203)
To prove (202), we take ί > 2ru -f 2q, so if OJ φ J ^ y there exist ΛΊ G ΞLj, so

that /l/(-τ) is (v,£Ό)-suitable for any x G Ξu\Λy(x\) We control the "bad region'1
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Λi/(x\) as in [DK, Lemma 4 2], using the SLI (164) twice, we must require

d ] 7 E / d - 1 ] < r , (205)

which is true for v > s-\-2(d — 1) and / large (}!£0 is given in (165)) We then
have

I l l " 1 D / T~<\ II ^ ' βO Tί / Λ Λ ^ \

s u p | μ O . Λ ^ O . L ( ^ ) Z V | | O , L ^ \ ~ / v — ^ ' ( 2 0 6 )

vG4Zi(0)ni/Z i / L ^ J

where A" is the number of times we are allowed to use the SLI on (v,£Ό)-suitable
boxes (without using the result for the control of a "bad box"). We have

N ^ 2 7 / ~ 6

 = ?(α - 14), (207)

so for /t/_(0) to be (v,£Ό)-suitable we need

Λ , i v < ~ , (208)

which is true for α sufficiently large since v > d — 1 Thus (202) is proven
Let if be such that

2 ( 2 0 9 )

If we pick Lo > ^ , and set L^+i = ^ A , ^ = 1,2, , pk = pLk, and γ = (2α)2ί/, it
follows from (204) that

ypl + —\r- for* = 1 , 2 , . . . (210)
2 L / ί + l

Notice first that if pk < -k, then

A+i = y-2^ + 2 / / ; ^ ~Jvr~τΠ)—^ 2/^ - T1Γ~ i2^)

if we require ^ϊ" also to satisfy ^ ~ ^ l Now, suppose pk+\ ^ -p— for

k = 1,2, ,/? It follows from (210) that ypj = ^jr- for A: = 0,1,2, ,n - 1, so
"A 4 1

7?A + I = ' ^ f ° r ^ — 1>2,.. ,/7, so we have

^V ^ Λ+. ^ ΓtoΓ' (212)

Thus, if 2yp0 < 1, there must be X so /?A < X for all * = Jf Thus (200) is

proven D
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6 3 Boundary condition From periodic to Diriehlet The starting hypothesis (PI)

for the multiscale analysis is formulated for operators with Diriehlet boundary con-

dition But under the hypotheses of Theorems 6 and 7 the natural starting hypothesis

is the analogue of (PI) for periodic boundary condition. The following lemma will

enable us to go from periodic boundary condition to Diriehlet boundary condition

Let Ag be as in (18) satisfying Assumption 1 Given x £ qΈd and L £ 2</N, we

set (with the notation of (103))

Ay.< >,x,L = (A((gω)Λdx)))Λl(x) , (213)

which is a random operator by Theorem 38 We write Rfh ω, x, L(Z) for its resolvent

Lemma 37. Let AfJ be as in (18) satisfying Assumption 1 Let E > 0, x £ qΊLd

and L £ 2#N, L ^ Aq, set L = L + [2ru]2q + 2q If ω is such that E φ σ(AgA0ΛX U
σU\,ωΛj\ then

\\Γ^LRc,o^.L(E)χx\\xX g ί 1 + ^ ( 1 + 2 ( 1 +E)\\Rgt0)^L(E)\\XiL) )

x | |A-,L^ M , ,z(^)Zv| | r ,/ (214)

Proof From Lemma 24 and the definition of periodic and Diriehlet boundary con-

dition, plus the choice of L which ensures that

Q{cμo)Xι(λ)(y) = Qg.υiy) for all yeΛL(x), (215)

we get the following analogue to the SRI (154)

ί Φv, L = j ίφ,, LR(I. ,o. ,,L(E)

-JU—w,i) v + v y , )
Q

(216)

as quadratic forms on L2(Λχ ^) x L2{Λ^L)

Proceeding as in the proof of Lemma 26, we get (we omit g and ω from the

notation)

χL x.L

Θj(l +(1
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\,z.

3\Λ/
S - ^ — Θ i ( \ + E ) \ \ R X !(E)\\X L\\Γλ L L ω τ

Equation (214) now follows from (216),(217) and (218) D

(218)

6 4 Localization in a specified interval We now prove Theorem 7 from Theorem
29 Let the random operator Ag and a\,a2,cj\ be as in Theorem 7, let us fix an
upper bound β for HPHOC, and set

(P2) follows from Theorem 23 (see Remark 30) To prove Theorem 7, since $
in Theorem 29 is nondecreasing in EQ, we need only to verify (PI) uniformly on
E £ [aΊ,a(g)\ for some sufficiently large LQ and all sufficiently small p\, this will
be done using Assumption 2 It thus suffices to show that we can find mo > 0 and
p > d such that

limsup inf P{Λ/(0) is (mo,i:)-regular} > 1 -
,,/ >() £G.[«2. «( ί/) l
ίJ\ u

(220)

for some sufficiently large L G
We will prove more Let us fix p > d For a given L e 2gN, L ^ 4g, we set

L as in Lemma 37 and define the event

S'L = I ω, ^ — for all / e Ί!1 Π ΛL(0) (221

Since α(ί/i) — #i, we can conclude from Theorem 3, Lemma 19 and Theorem 14
that

(aub(g)) C J R \ σ ( i . fi) 0 f) for all ω E ̂ z. (222)

It now follows from Lemma 18 (with r — q), (158) and (159), that for ω G $L and
E G (fli,β(ί/)] we have

where mΔ- / is given in (93) and η = E — ct\ since α(ί/) — ci\ ^ £>(£/) — α(ί/), we

assume L > 2(2q + 8)
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If we now lake E G [a2,a(g)], so a2 - ci\ ^ η rg a(g) - a ^ cιδ+(g)g (we used

(21)), we have

Γ < mF a L < ~
4 ( 4 v ^ + 1 )[ρZ] + a + </<5+(0)0] " M ~ 4

M = a i Γ Cl] < mF a L < ~ , ( 2 2 4 )
4 ( 4 ^ + 1 )[Z] + + 5 ( ) ] " M ~ 4

so

\\ΓQ LR ~(E)χo\\ ~ < ( [ e

( <l*2)(l

e~
AIi (225)

ί M 'λ L ~ \a2 - ci\ )

At this point we introduce the events

( 2 2 6 )

and set ^ . ^ = &'L Π ̂ £,/ If £ G [c/2,β(p/)] and co G ̂ . A , we can apply Lemma
37, (21), (225) and (226) to obtain

+ 2 1 + —

(221)

Thus, if we take ΠΊQ = y , we can find

T\ = T\ (d, q, g, ρ±, ru, a,a\,a2, p) < oc ,

such that if ω G '#E.L> with E G [«2?^(i/)l? w e have that the cube /1/XO) is (mo,E)-
regular for any L > T\ To conclude the proof of Theorem 7, notice that from
(221),(219),(226) and (191) we get, for z ^ 7 < E ^ a(g\

( 2 2 8 )

with (229) valid for L > T2, where

T2 = T2(d,q,g,ρo±iU±,rιι,a,p,p) < oc (230)

We can conclude that

inf IP{/l/(0) is (mo,£)-regular} ^ inf JP(&E L) > 1 (231)

for all L > max{Γ],72} and p\ < JΓFTTI^ SO (220) follows
Theorem 7 is proven



476 A Figotin, A Klein

6 5 Localization at the edge We now prove Theorem 6 from either Theorem 32
or Theorem 35 Let the random operator Ag be as in Theorem 6 Since we have
(P2) and (H2) in the form given in Remark 30, to prove Theorem 6 it suffices to
establish either (Ql) or (HI) for Eo = a(g)

So let us fix p > d, λ > 4p + 9d - 1, and let a\,g\, p\,L,£L, if E.L/^EX be as

in Subsect 6 4 Notice that (23) can be written as

(232)

For ω G ̂ a(cj).L we have (227) with a2 = a(g) and M as in (224) If we choose
a\ = a(g) — κ~^, with K ̂  1 and L such that a < ci\ and a{g) — ci\ S b(g) —
a(g\ we get

II i o, I^ίi, (0,0, L \^\y ) )/ 0 ||0, L ^ \^\J^ι ^ ẑ  - , ^ZJJ j

where the constants C\ and c can be read from (227) and (224), the last inequality
in (233) is valid for K > c~](λ -f- 4p + 6<i) and L sufficiently large

If L > T2 (with T2 given in (230)), it follows from (229) and (232) that

^ - ^ 7 (234)

^ - ^ > ( 2 3 5 )^ 1 ^
\gd-(g)a

where we used (135) to get (235)
If // > Id, it follows immediately from (233) and (235) that the starting hypoth-

esis (Ql) holds for all L sufficiently large, so Theorem 6 follows from Theorem 32
If we only have // > d we prove (HI) Let r > 10ί/, s — r -\-2d and v > s +

2(d — 1). For ω G ̂ a{g\L (we take p — r in (226)), we have

sup ||Γo,^fy,wo,L(^))Zv||o,L ^ CιL-τ+2P+3d ^ L-γ , (236)
vG 1 /

where (236) is derived in the same way as (233), with the same constants C\ and
c\ with the last inequality valid for K > 4c~](v + 2/? -f 3ί/) and L sufficiently large
Since we have (235) and η > d, the starting hypothesis (HI) follows, so Theorem 6
follows from Theorem 35

Theorem 6 is proven

A. Measurability of Operator Valued Functions

In this appendix we will prove the desired measurability properties for our random
operators A similar result, with somewhat different technical assumptions appropri-
ate to random Schrδdinger operators, was proved by Kirsch and Martinelli [KM1,
Proposition 6]

We say that a mapping ω >—> Aω from a probability space Ω to nonnegative
self-adjoint operators on a separable Hubert space Jti* is measurable if the mappings
ω G Ω H^ f\Aω) G J^(^) are weakly (and hence strongly) measurable for all boun-
ded measurable functions f on IR In this case Ao) is called a random operator
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Theorem 38. Let o ι—> Aω be a mapping from a probability space Ω to nonnegatiυe
self-adjoint operators on a separable Hubert space Jf, such that

S ^ Λv) S cS with probability one , (237)

for some nonnegative self-adjoint operator S and constant c < oc Let ,v/(0 and
•cf be the corresponding quadratic forms, & = cd\tf) being the common domain
Suppose ω H-> -p/(l)(ψ) is measurable for all ψ G 9/, then Ao) is a random operator

Proof Let Rω = (Aω +1)~\ it suffices to prove that the mapping ω H i?((J is
weakly measurable ( e g , the argument in [PF, p 40]) We proceed as in [KM1,
Proof of Proposition 6] Using (237), we have that (with probability one)

Γ1 = (S + IΓH(S + IΓHAω - S)(S + I)-^- +/)" 1(^ + /)-^ , (238)

where (S + I)~ϊ(Av) — S)(S -f I)^~- is a bounded nonnegative operator and the
map (0 G Ω ι-> (S + I)-?(AV) -S)(S + I)~± e M(3f) is clearly weakly measurable,
hence measurable by [KM1, Lemma after Proposition 6] D

B. Some Results on Elliptic Operators

Divergence operators of the form (18) can have nonsmooth coefficient ρ(x) that
implies, in particular, that the standard functional space C^ cannot be used even as
a subset of the domains of such operators. In this appendix we provide some tools
to treat these operators

B 1 An interio) estimate

Proposi t ion 3 9 QGT, Prob lem 8.2]). Let A be an operator of the form ( 1 0 ) sat-
isfying the bounds (11) For any δ > 0 there exists a constant Θs = Θ(d,ρ±, 0)
< oe, depending only on the indicated pen ametei s, such that for any open subset
Ω of IRΛ if u G W]'2(Ω) is a weak solution for the equation Au = / in Ώ, with
f G L2(Ω), we have

| | V I / | | 2 . Ω ' ^ Θ d [ | | w | | 2 , Ω + | | / Ί | 2 . ί 2 ] ( 2 3 9 )

for any Ω' C Ω with άist(Ω\cΩ) ^ δ

We have the following immediate corollary

Corollary 40. Let A be an operator of the form (10) satisfying the bounds (11),
and let φ be an eigenfunction for A Suppose φ has exponentially decaying local
L2-norms, i e , ||χλy(/?||2 decays exponentially as \\x\\ —> oc for some f > 0 Then
Vφ also has exponentially decaying local L2-norms

Proposition 39 has the following obvious extension to Wι

Proposition 41. Let A be an operator of the form (10) satisfying the bounds (11)
// u G Wxl(Wι) is a weak solution for the equation An — f in JRf/, with f G
L2(Rd), we have

| |Vz/| | 2 S Θ o c L I H b + H / y , ( 2 4 0 )

with (9oc = inff)>o Θ(d, ρ±,δ)
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B2 Generalized eigenfunetions Let A be an operator of the form (10) satisfying
the bounds (11) Given z £ (Γ, a measurable function φ on IR/ will be called a
generalized eigenfunction for z if / β φ £ ^ 1 > 2 ( Ώ ) for all bounded domains Ώ in
IR/ and φ is a weak solution for the equation Axjj — zψ on R ί 7, i.e ,

(Vψ, -Vφ) = z(ψ, φ) for all φ e Cl(WLd) (241)

To obtain properties of generalized eigenfunetions we use the following estimates
on the Green's functions of divergence operators with nonsmooth uniformly bounded
coefficients [D, Corollary 3 2 8 and Lemma 3 4 2]

Proposition 42. Let A be an operator of the jonn (10) satisfying the bounds (11),
let ί > d/2 and μ > 0 Then the operator R/ = (/// + Λ)~V has a kernel R'(x,y)
satisfying the following a priori estimate

0 S R'(x,y) S c < r / y | χ - v | for all x,y G IR/7 , (242)

wheie the constant c depends only on d, ρ±, ί and μ, and β = y-jj-

Theorem 43. Let A be an operator of the form (10) satisfying the bounds (11),
ρ(dλ) its the spectral measure Let \v(x) = (\x\(}' -f I ) " 1 , d' > d Then for p(dλ)-
almost all λ A has a generalized eίcjenfunction φλ satisfying

J \φ,{x)\2w(x)dx < o c , (243)

so for any ί G N we have

\Yh./φ, II ύ C,{\xf + 1) for all x e fld , (244)

for some constant C/ < oc depending only on ί\ d, ρ± and the LHS of (243)
Moreover, for such φ/ we also have

|φ y(x) | 2 S C(\xf + 1) for all x e ^d , (245)

for some constant C < oc depending only on d, ρ± and the LHS of (243)

Proof Notice that in view of Proposition 42 R/ = (A + μ / ) ~ / for / > d/2 is a
Carleman operator such that

/ / \R\x, v)\2w(x)dxdy < oc (246)

This and [B, Theorem V4 1] imply (243), from which (244) follows The estimate
(245) follows from (244) and [Ag, Theorem 5 1] D
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C. Lemmas on Convergence of Operators

Lemma 44. Let S^~,S~,Kn,n ^ 1 be sequences of self-adjoint bounded operators
in a Hubert space ./f such that for some constant C < oo we have

0 ^ S± ^ CI for all n ^ 1 , (247)

and
lim (φ.S^φ) = 0 for all φ G Jf (248)

Then
lim S^φ = 0 for all φ G Jf (249)

If in addition we have
- S,; g Kn g 5",+ , (250)

lim ^ / ? φ = 0 for all φ G Jft (251)

Proof Notice that if Sn stands for either S~ or S^ then it follows from (247) that

ι$π

 = \/ oπon \/ oπ :S γ ύ ; , C γ o ; ) = Co/? .

This together with (248) implies that | | ^ φ | | 2 ^ C(φ,Snφ) —> 0 as « —> oc, so (249)
is true.

Observe now that in view of (247) and (248) the operators Gπ = AΓ/? + S~ satisfy

0 ^ Gn ^ S~ + 5 ; ^ 2C/

and
lim (φ, Gnφ) = 0 , φ G Jf

//—>oc

Hence, using (249), we obtain

lim Gnφ = 0, φ G Jf . (252)

Recalling now that ΛΓ/? = Gπ - Sπ and using (249) and (252) we obtain (251). D

Given a nonnegative operator B the associated quadratic form will be denoted by

B[φ,φ] = (\/Bφ, \/~Bφ), , φ, φ G 2{\/B)

We will write 5 [</)] = B [φ, φ]

Lemma 45. Let S and Sn,s^(n ^ 1) be self-adjoint operators in a Hilbert space
Jf such that

(//77(? sums of possibly unbounded operators being understood in the quadratic form
sense),

0 ^ s^ ^ α±5 ϊ /or /̂7Zέ» 0 ^ α~ < 1, 0 ^ α+ < oc , (254)

and
lim ^f [φ] = 0 for all φ G 9 , (255)
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where ζ£ C Q(\/S) is a core for the operator \/S Then

lim (I +Sn)-]ψ = (/ + Sy]ψ for all ψ G -# , (256)

ΛΌ S/; converge to S in the strong resolvent sense and we have

U σ(S,,)Dσ(S) (257)

Proof We set /?„ = (/ + Sn)~], R = (I + S)~\ and notice that -r,7 <, Rn - R ^
r^, where

r,| = p+ - (/ + s ) - 1 ^ o, A ; = (/ + 5 - ί - ) - 1 ,

/•„- = (/ + 5 ) - ' - 0,7 ^ 0, p- =(I + S + slΓ] (258)

Clearly

\\Rnl\\R\l\\rtl\\PΪW ^ 1, (259)
and, in view of (253) and (254),

v (260)

Rφ^pfφ G ^ ( V Ϊ ) , φ G Jf

In addition, (255) together with sf g α .̂S imply

lim s^ [φ] = 0 for all φ e &(\/S) (261)

In view of Lemma 44, to prove (256) it is sufficient to verify that

lim (ftφ,ψ) = 0 for all ψ G Jf (262)
n—>oc

Let us consider r+ Observe that from (258), (259) and (260) we have

= (/ + S)[pϊψ,Rψ] -(I + S- s-)[p^

= s-[p+ψ,Rφ] = < V^ΓP,TΆ, \ / ^ Γ ^ ) , ιA e Jf (263)

The norms of the vectors \A;/ p+ψ and y ^ 7?ι// can be estimated as follows. Since
s~ ^ y.~S, we have

s- ^^—(S-s-). (264)

Notice that for any nonnegative operator K we have

K S (I +Kf

Combining (264) with the last inequality for K = S — s~, we obtain
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which readily implies

p>-p+ :g Γ ^ _ / and W^ptf ^ γ ^ z (265)

It now follows from (263) and (265) that for φ £ ft we have

2 ^ 2 ^ f T 2 2 ύ y ^ s ; [Rχjj]\

The last inequality together with (260) and (261) imply (262) for r+ The proof of

this statement for r~ is analogous, using s+ ^ -~—(S-\-s+).
To prove (257) it is sufficient to prove the similar inclusion for the resolvents

Rn and R, namely

U σ(Rn) D σ(R) (266)

Suppose that λ £ σ(R) Then for any positive y there exists a vector φ £ Jf" such
that 117?̂  - ΛI//|| ^ 7, | |^ | | = 1. In view of the strong convergence of Rn to R this
implies that for sufficiently large n we have \\Rnφ - /^ | | ^ 2y Since 7 is an
arbitrary number the last inequality implies (266) and, hence, the desired inclusion
(257) D
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