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Abstract: We consider classical acoustic waves in a medium described by a position
dependent mass density o(x). We assume that g(x) is a random perturbation of a
periodic function go(x) and that the periodic acoustic operator 49 = —V - G )V has
a gap in the spectrum We prove the existence of localized waves, ie., ﬁmte energy
solutions of the acoustic equations with the property that almost all of the wave’s
energy remains in a fixed bounded region of space at all times, with probability one
Localization of acoustic waves is a consequence of Anderson localization for the
sclf-adjoint operators 4 = —V - )(Y)V on L*(RY) We prove that, in the random
medium described by o(x), the random operator 4 exhibits Anderson localization
inside the gap in the spectrum of 4y This is shown even in situations when the gap
is totally filled by the spectrum of the random operator, we can prescribe random
environments that ensure localization in almost the whole gap.
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1. Introduction

Localization of classical waves, acoustic and electromagnetic, has received much at-
tention in recent years (e g., [An2, J1, J2, DE, Sc, VP, M] and references therein)
This phenomenon arises from coherent multiple scattering and interference and
occurs when the scale of the coherent multiple scattering reduces to the wave-
length itsclf. Numerous potential applications (e g, [DE, J2, VP]), for instance, the
optical transistor, and the fundamental significance of localization of classical waves
motivate the interest in this phenomenon

In spite of the clear similarities between localization of quantum-mechanical
clectrons (studied by Anderson [Anl] for the tight binding model), and localization
of classical waves, there are some important differences In particular, classical waves
are harder to localize [J2]. A substantial difference is apparent when we multiply
the coeflicient describing the medium (the position dependent density for acoustic
media, the dielectric constant for the dielectric media, the potential for electrons)
by a constant for classical waves the spectrum of the relevant operators will be
just rescaled, in contrast to the case of Schrodinger operators. Another significant
difference is that a local change in a homogeneous medium cannot create localized
eigenfunctions for classical waves operators, but it can certainly create localized
states for Schrodinger operators For classical waves the bottom of the spectrum is
always at 0 and clearly does not depend on the medium; for Schrodinger operators
the bottom of the spectrum is movable so we may expect the rise of localized states
for appropriate potentials

Thus, in order for localization of classical waves to occur we have to play with
the space distribution of inhomogeneities S John [J2] writes Photon localization
arises here not as the by-product of high degree of uncontrolled disorder, but rather
as a result of a subtle interplay between order and disorder The true criterion for
localization, in fact, depends strongly on the underlying static structure factor of
the medium This suggests that the localization of classical waves can be achieved
only in appropriately prepared random environments

To create an environment which would favor localization one considers first a
perfectly periodic medium It is well known that the spectrum associated with a
periodic medium has band gap structure and that the most significant manifesta-
tion of coherent multiple scattering is the rise of a gap in the spectrum If such
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a periodic medium with a gap in the spectrum is slightly randomized, eigenvalues
with exponentially localized eigenfunctions should arise in the gap. If the disorder is
increased further within some limits the localized states can fill the gap completely.
This is exactly the medium in which we study acoustic and electromagnetic waves
Acoustic waves are treated in this paper, electromagnetic waves will be discussed
in a scquel [FK3] Localized classical waves created by local defects arc studicd
in [FK4] We assume that the underlying periodic medium has a gap in the spec-
trum The existence of periodic media exhibiting gaps in the spectrum is proved
for acoustic and 2D-periodic diclectric structures [FKul, FKu2] We will slightly
randomize such periodic media with a gap in the spectrum and show that, under
pretty reasonable hypotheses, Anderson localization occurs in a vicinity of the edges
of the gap.

We previously considered these questions and media in a lattice approximation,
both for classical waves [FK2] and for Schrodinger operators [FK1] The strategy of
this paper is the same one we used in [FK2], the main differences are of technical
nature and due to working on the continuum instead of the lattice

11 Acoustic waves and localization In an inhomogeneous medium the basic linear
acoustic equations are (e.g., [MI])
ap Ju

Kk— =-V -u, 0— =—Vp, 1

o Cor P )
where p = p(x,t) is the pressure, u = u(x,¢) is the velocity, x = x(x) is the com-
pressibility, and ¢ = g(x) is the mass density, so the pressure satisfies the second
order partial differential equation

0 1
L =V--Vp 2
ot 0

The energy density &(x,¢) and the (conserved) energy & are given by

1
(x.0) = SleMluCr, OF + k@) p(0PL & = [ 0)dx 3)
It is convenient to introduce the momentum potential ¥ = ¥(x,t) by gu = -V VY,
and rewrite (1) as
op 1 oY
(—— — . — Y/ —_— = . 4
Ko QV ; 5 = VP (4)

It follows that ¥ obeys the same second order partial differential equation (2) as
the pressure p, i.e,

Y 1

— =V .-VV¥, 5

2
} . (6)

Motivated by (2),(4) and (5), we set 4=V -1V It follows from (4)

_ —1,.0p .
that ¥ = —A4" k7, so we can recover the velocity u from the pressure p by

K

and the energy density can be rewritten as

oY

1
E(x 1) = 5 0(0)| VWP (x,0)]> + r(x) E(x,z)
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u= 1VA /\—, so the energy density can also be written in terms of the pres-

sureas R
1P
o=l (e

In this article we work with a position dependent mass density o(x) and constant
compressibility x (we set kK = 1). We will define 4 as a nonnegative sclf-adjoint
operator on L?(IRY) Finite energy solutions for Eqs (2) and (5) are given by (e g,
[RS3, Sect I1X 10])

+ lc(x)lp(x,t)|2} . (7)

@(t) = cos(1 A7 )pg + A2 sin(tA? ), (8)

where the Cauchy data (o, ¢,) can be taken in L*(IRY) x Z(A~2) for the pressure
p, and in Z(4?) x L*(RY) for the potential ¥

A localized acoustic wave should be a finite energy solution of (1) with the
property that almost all of the wave’s energy remains in a fixed bounded region of
space at all times, e.g,

lim mff | Ext)dx =1 9)

R—oo ||<R

Our strategy for proving the existence localized waves is the following: we
first prove that the operator A has pure point spectrum in some closed interval
I C (0,00), with all the corresponding eigenfunctions being exponentially decay-
ing For this operator it will follow that the gradient of an exponentially decaying
eigenfunction has exponentially decaying local L*-norms, so the corresponding en-
ergy densities (given by either (6) or (7)) also have exponentially decaying local
L?-norms, uniformly in the time t If y;(A) is the corresponding spectral projection,
then any solution of either (2) or (5) given by (8), with Cauchy data in the range
of y1(A4), satisfies (9)

Localization of acoustic waves is thus a consequence of Anderson localization
for operators A = =V - %V on L>(RY), i e., the existence of closed intervals where
these operators have pw;e point spectrum with exponentially decaying eigenfunc-
tions

Similarly, the localization of electlomagnetic waves 1s a consequence of Anderson
localization for operators M =V x Vx on L>(IR3, %), where ¢ = &(x) is the po-
sition dependent diclectric constant. "Localization of electromagnetic waves will be
studied in a sequel to this article [FK3].

12 Statement of results We study acoustic waves which arc described by the
following formally self-adjoint operator on Z>(IR¢):

) (10)

where we always assume that o(x) is a measurable real valued function satisfying
0 <o Zox) 29, <oo ae for some constants 9 and o, (11)

Such general conditions on g(x), particularly the lack of smoothness, are required
on physical grounds. In practice only a few materials are used in the fabrication
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of periodic and disordered media, in which case g(x) takes just a finite number of
values, so g¢(x) is piecewise constant, hence discontinuous. The abrupt changes in
the medium produce discontinuities in g(x), which favor and enhance multiscattering
and, hence, localization

A is rigorously defined as the unique nonnegative self-adjoint operator on L2(IR9)
uniquely defined by the quadratic form given as the closure of the nonnegative
densely defined quadratic form

1 d 1
AY) = <V¢/, ———pr> = <641//, —0 w>, with € CJ(RY) . (12)
o(x) ; o) °
In this article we consider acoustic waves in random media obtained by random
perturbations of a periodic medium. The properties of the medium arc described
by the position dependent quantity o(x), which we will always take to satisfy the
following assumptions

Assumption 1 (The Random Media). 9,(x) = 9,..,(x) is a random function of the
form
Qy.(u(x) = \QO(X)Vg,u)(x)7 with 7’;},(0()“) =1 + d Z Cl),'ll,‘(X) s (13)
1€z4

where

(1) go(x) is « measurable real valued function which is g-periodic for some ¢ € N,
ie, 00(x) = go(x + gi) for all x € R and i €Z¢, with

0 < g <) =0, <oc foraexcR? (14)

for some constants o and Qg
(ii) w,(x) = u(x — i) for each i € Z9, u being a nonnegative measurable real

valued function with compact support, say u(x) =0 if x|l < r, for some r, <
oo, such that

0<U. 2UxX)= S ux)SU, <o forae xR, (15)
iez!
for some constants U_ and U,

(iii) © = {w,, i € Z} is a family of independent, identically distributed ran-
dom variables taking values in the interval [—1,1], whose common probability
distribution p has a bounded density p > 0 ue in [—1,1]

(iv) g, satisfving 0 < g < Ui is the disorder parameter

For acoustic waves ¢4 ,(x) is the random position dependent mass density of
the medium Notice that Assumption 1 implies that each g, ., satisfies (1]1) with

0+ = 0y + = 00, +(1 £gUy). (16)
For later usc we set
0+(g) = Y with 0 < ¢ < L (17)
139U, Uy

The periodic operator associated with the cocflicient gg(x) is denoted by A4y, ie,
Ay = A(00) We will study the random acoustic operators (see Appendix A)

Ag/ - Ag}m} - A(Q_(/.m) (18)
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It follows from ergodicity (measurability follows from Theorem 38 below) that there
exists a nonrandom set 2, such that o(4, ) = X, with probability one, where a(4)
denotes the spectrum of the operator 4 In addition, the decomposition of ¢(4.,)
into pure point spectrum, absolutely continuous spectrum and singular continuous
spectrum is also independent of the choice of @ with probability one [KM1, PF]

In this article we are interested in the phenomenon of localization According to
the philosophy of Anderson localization we will assume that the operator 4, has at
least one gap in the spectrum

Assumption 2 (The gap in the spectrum). There is a gap in the spectrum of the
operator Ay More precisely, there exist 0 < a < a < b < b such that

o(d0) N[d,b] = [d.a] U [b.],
so the interval (a,b) is a gap in o(Ay)
The following theorem gives information on the location of X, the (nonrandom)
spectrum of the random acoustic operator 4,

Theorem 3 (Location of the Spectrum). Let the random operator A, defined by
(18) satisfy Assumptions 1 and 2 There exists go, with

(o
1 avs 1 b\ =
— 1_(7- <go < —min{lL,|{= -1 , 19
U+( b))_go_mmm (a) (19)

and strictly increasing, Lipschitz continuous real valued functions a(g) and —b(g)
on the interval [0, UL) with a(0) = a, b(0) = b and a(y) < b(g), such that

(i)
X, Nld,b] = [a,a(g)] U[b(g),b] . (20)

(ii) For gy < gq, we have a(g) < b(g) and (a(g),b(y)) is a gap in the spectrum
of the random operator Ay, located inside the gap (a,b) of the unperturbed periodic
operator Ay Moreover, we have

L
@ <a(l+9U)T £alg) £ —— (21)
1 —-gUy

and
b(1—gUy) = b(g) =
(I+9Uy)
(i) If go < U% we have a(g) = b(g) for all g € [go,U%), and the random
operator A, has no gap inside the gap (a,b) of the unperturbed periodic operator
Ao, ie, [a,b] C Z,

<b. (22)

T
[

Definition 4 (Exponential localization). We say that the random operator A, ex-
hibits localization in an interval 1 C X, if A, has only pure point spectrum in [
with probability one We have exponential localization in I if we have localization
and, with probability one, all the eigenfunctions corresponding to eigenvalues in 1
have exponential decay
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Remark 5 The gradients of exponentially decaying eigenfunctions of 4, always
have exponentially decaying local Z?>-norms (Corollary 40) Thus the corresponding
energy densities (given by either (6) or (7)) also have exponentially decaying local
L*-norms, uniformly in the time ¢

Our main results show that random perturbations create exponentially localized
eigenfunctions near the edges of the gap Our method requires low probability of
extremal values for the random variables, the following two theorems achieve this in
different ways The results are formulated for the left edge of the gap, with similar
results holding at the right edge

Theorem 6 (Localization at the edge). Let the random operator A, defined by
(18) satisfy Assumptions 1 and 2, with

(-1 S K for0<y <1, (23)

where K < oo and 5y > d For any g < gg there exists 6(y) > 0, depending only
on the constants d, g, q, 0o+, Ux, Iy, a, b, K, 11, |[pllc, sSuch that the random op-
erator A, exhibits exponential localization in the interval [a(g) — d(g),a(g)]

Theorem 7 (Localization in a specified interval). Let the random operator A, de-
fined by (18) satisfy Assumptions 1 and 2 For any g< gg, given a<a; < a; < a(g),
with a(g) — a; £ b(g) — aly), there exists py > 0, depending only on the constants
d, ¢, q, 0.+, Ux, ru, a, an upper bound on ||p|ls and on the given ay,as, such

that if
‘u <(g_1’ 1:|> = pl ’ (24)
g

where gy is defined by a(g1) = a1, the random operator A, exhibits exponentiual
localization in the interval [ay,a(g)]

Theorems 6 and 7 can be extended to the situation when the gap is totally
filled by the spectrum of the random operator, we then establish the existence of
an interval (inside the original gap) where the random acoustic operator exhibits
exponential localization. Notice that the extension of Theorem 7 tells us that we
can arrange for localization in as much of the gap as we want.

Theorem 8 (Localization at the meeting of the edges). Ler the random operator
Ay defined by (18) satisfy Assumptions 1 and 2, with

(= 10) p{[=L -1+ = KT for 0=y =1, (25)

L.
where K < oo and n > d Suppose gy < i (eyg, if (S)T < 2), so the random
operator A, has no gap inside (a,b) for ¢ € [go, U%) Then there exist 0 < ¢ <
U% —¢o and & > 0, depending only on the constants d, q, 0o+, Ux, 1y, a, b, K, 1,
llplloc, such that the random operator A, exhibits exponential localization in the
interval [a(go) — 0,a(go) + 0] for all gy < g < go+¢
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Theorem 9 (Localization in a specified interval in the closed gap). Let the ran-
dom operator A, defined by (18) satisfy Assumptions 1 and 2 Suppose gy < —Jj

.
(eg, if (g)ﬁ < 2), so the random operator A, has no gap inside (a,b) for
g € [(Jo,i) Let a < ay < ay < a(go) =b(go) < by < by < b be given For any
g <€ [9o, i) there exist py, po > 0, depending only on the constants d, g, q, 0o+,
Uy, ry, a.b, an upper bound on ||pll~ and on the given a\,az, by, bs, such that if

() <m wl[e5) <m e

where g1 and g, are defined by a(g))=a; and b(gy)=by (notice
0 < g1,92 < go = g), the random operator A, exhibits exponential localization
in the interval [ay, bs)

Theorems 8 and 9 are proved exactly as Theorems 6 and 7, respectively, taking
into account both edges of the gap

Remark 10 The methods of this paper also apply to random Schrodinger operators
on RY They give a new proof of localization at the bottom of the spectrum, as in
[HM, CH, Kp] For random perturbations of a periodic Schrodinger operator with a
gap in the spectrum, we obtain the analogues of Theorems 3,6,7,8 and 9, extending
our results on the lattice [FK1] to the continuum

Remark 11 Theorems 6 and 8 should be true without the extra hypotheses (23)
and (25) They are used in conjunction with a Combes—Thomas argument to obtain
the starting hypothesis for the multiscale analysis, in the proof of localization One
may expect estimates similar to Lifshitz tails (e g., [PF]) for the density of states
inside the gap, which would replace (23) and (25) in the proofs. This is how the
starting hypothesis is obtained for random Schrodinger operators at the bottom of
the spectrum [HM]

Combes and Hislop have announced an improved Combes—Thomas argument
inside a gap, they obtain a decay rate proportional to the square root of the product
of the distances to the edges of the gap. With this result we would only need 1 > %
in Theorem 6, but we would still need to require 7 > d in Theorem 8§

Theorem 3 is proved in Sect 4, the proof requires periodic operators and periodic
boundary conditions, studied in Sect. 3. A Combes—Thomas argument for acoustic
operators is given in Sect 2 Theorems 6 and 7 are proved in Sect 6 by multiscale
analyses The required Wegner-type estimate is in Sect 5 The starting hypothe-
ses are proved first for finite volume acoustic operators with periodic boundary
condition, using a Combes—Thomas argument for operators with periodic boundary
condition (Sect. 3) and Theorem 3. Appendix A contains a result on measurability
of random operators, from which follows the desired measurability for the acoustic
operators we study We collect some results on elliptic operators in Appendix B.

We adopt the following definitions and notations-

e For x =(x),. ,x;) € R? we let x|, =@+ +x))'7forl £ p <o,
and |x| = max;<;<q|x,]. We set |x| = |x|, and ||x]| = |x|

o A (x)={yeRY |ly—x|[| <%} is the (open) cube of side L centered at
x € RY, A (x) is the closed cube, and A (x) = {yeRY, —L <y, —x < L i=
1, .d} the half-open/half-closed cube
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e 7, is the characteristic function of the set A, we write 11 = 74, (v)-

e A function f on R? is called g-periodic for some ¢ > 0 if f(x + gi) = f(x)
for all x € RY and i € Z¢

e A domain Q is an open connected subset of RY, its boundary is denoted by
oQ

e L7(Q) is the space of measurable complex-valued functions u(x), x € Q with
the norm [[u|, = [[ul , o = [ [, lu(x)]” dx]]/p We will often use the space L*(Q)
and in this case we will write |[ul|, for [[ull, , If @ =R? we may omit it from
the notation

e C'(Q) is the linear space of continuously differentiable functions on the do-
main Q, C}(£) is the subspace of functions with compact support

e W'P(Q) is the Sobolev space of complex-valued functions u(x), x € Q with
the norm [[ull, , o = [llull}, o + [IVull[} 01"

o A(¥,%) is the Banach space of bounded opcrators from the normed space
Z to the normed space #; B(X ) = B(X, X).

e The domain, spectrum and adjoint of a linear operator A are denoted by %(A4),
a(A4) and A4, respectively.

e The domain of a quadratic form .o/ is denoted by Z(.</)

e For a complex number z its conjugate is denoted by z*.

2. A Combes-Thomas Argument
Let the operator 4 be given by (10) If z ¢ o(4), we write R(z) = (4 —z)"!

Lemma 12. Let the operator A be given by (10) with (11) Then for any z & a(4),
n€ N and / > 0 we have

9\" ‘
e R2) 7]l < <ﬁ) V1 13) g = for all x,y € R, (27)
with
_ n
m, = ————t— (28)

Ao~ +lzl+ 0
where n = dist(z, a(4))
Proof We start by defining the operators formally given by
Ay =A™, ae RY (29)

as the closed densely defined operators uniquely defined by the corresponding
quadratic forms More precisely, for each a € RY we define quadratic forms on
Co(IRY) by

ey 1 —arx _ L _
Ao Y] = <Ve M@Ve l//> = <(V +a)y, Q(x)(V a)lﬁ> (30)
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and

2, [lyﬂ = o, [‘//] — [lﬁ] (31)

_ ! LN e 1
- <¢ o W> < W’g(x)‘”> d <‘”’g(x> > - %)
Notice that

1 1
(a7 =2 {0 ) (o e 7)) o9

<a . w,J—a . w> < |a|*[Y]. (34)
o(x)

and

Thus, if |¢| < 1 we have
12, [W1] < |alo/ Y]+ |al(1 — la)o= [y|* for all y € Co(RY).  (35)

We now require |a| < 1 and use [Ka; Theorem VI3 9] to conclude that <7, is a
closable sectorial form and define A4, as the unique m-sectorial operator associated
with it. If in addition z ¢ g(4) and

Q =2||(lal(1 ~ lae=" + lalDRE)| < 1. (36)
we can conclude that z ¢ ¢(4,) and

40

RG) - R < g

IR(z)|| . (37)
where R,(z) = (4, —z)~!
Since

Q =2[((la|(1 — |a})o=" + lalz)R(z) + |a] (38)
< 2lal((1 = lae=" +zDn~" + 1) < 2fal(Ce=" + [zhn " + 1), (39)

it suffices to take "
la| < ————— (40)

2007 + lz[ +m)

to ensure Q < 1 In fact, we get Q < % for |a| < m, (given by (28)), so

4Q
R = (14 25 ) IR =

Now let xo, 70 € R4, n € N, / > 0, and take a = ——(xo — yo) We have
[¥o— ol

9
z 41
p (41)

Lot R Yvor = dxore” T RA(z)'€ s (42)

— e—r;l;hg—l’()]yY —as*(y— \'D)R (Z)” as(x— \0)/‘ p (43)
@ 0~ 0,7 >
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SO
9\ Cae(r— C— el vo— v
HZ\'Q./R(Z)”X\'O»/H = <E> HZ"OA/e ar(x “])HOCHXW),/ea o ‘O)HOCe [0 = vol . (44)

Since
Vs

e Flal = m- (45)

v, €T o <

the theorem is proved. O

I
and clearly m. < g,

The next lemma gives an exponential estimate for the gradient of the resolvent

Lemma 13. Let the operator A be given by (10) with (11), and let z ¢ a(A4) with
i, m- as in Lemma 12 Then VR(z):L>(R?) — L*(RY,C¢) is a bounded operator
with

1+
IVRG)] < O <(—”@ + 1) , (46)
where @ = O(d, 04,1) is given in (239) Furthermore, for each / > 0 we have
9 -
i VRE) 70|l £ ©1(1 + \z\);e“m Bl (47)

for all x,y € RY with |x — y| = 2/

Proof For any y € L>(R?) we have R(z)y € W' (IR"), since R(z)¥ € Z(A) and
we have (11). The bound (46) is thus an immediate consequence of Proposition 41
and of the evident identity AR(z)Yy = (I +zR(z)) The proof of (47) is based upon
Lemma 12 and Proposition 39 Let / > 0, x,y € R? with |x — y| = 2/. For any
W € L>(RY) we can use Proposition 39 to obtain

17/ VRE@) V|l = O {{[703/RE) 1 W+ [ 76.30ARE) 70 0| } (48)

[IA

O {(1 + |zD) |13 R@)ye || + axse 2ol (49)

O1(1 + |z]) lxe3/ Rz, || (50)
Thus

10/ VRl £ 010 + 2D [|7e3/R(@)1vs | = O1(1 + |2]) 113/ R(2) 703/
9 , .
< @1(1+lz‘)_e(3\/§/‘4)e—m:\\—1[ , (51)
n
where we used Lemma 12 [

3. Periodic Operators and Periodic Boundary Condition

As in the matrix case [FK1, FK2], the (non-random) spectrum of random acoustic
operators can be represented as the union of the spectra of finite volume acoustic
operators with periodic boundary condition
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In this section we study acoustic operators in periodic media. We say that the
acoustic operator A4 given by (10) with (11) is g-periodic for some ¢ > 0 if o(x)
is a g-periodic function In this scction 4 will always denote such an operator

3 [ Periodic boundary condition We start by defining the restriction of such 4 to
a cube with periodic boundary condition. Given a cube A = A,(x), where x € IRY
and / > 0; we will denote by A the torus we obtain by identifying the edges
of the closed cube A in the usual way. We introduce the usual distance in the
torus

o dl/ -
dx,y)= min |x — y+m| < Q forallx,y e A (52)
melZ! 2

We will identify functions on A with their /-periodic extensions to IR?, for example,
C'( A) will be identified with the space of continuously differentiable /-periodic
functions on RY We define W'-2(A) as the closure of C'(A) in W'-2(A)

We will always take / € ¢gIN and define 4, the restriction of 4 to A with periodic
boundary condition, as the unique nonnegative self-adjoint operator on L*( f) =
L?(A), defined by the nonnegative densely defined closed quadratic form

/() = 1 s~ Low Lo ~ 12
Aa(P) = <V¢,Q(X)V¢> =X <6/¢,Q(X)0/¢>’ with € W2(A), (53)

j=1

the inner product being in L*(A). It follows from (11) that 44 = —-1 4, where
A4 is the Laplacian with periodic boundary condition on A Since — A, has compact
resolvent, using the min-max principle (see [RS4, Theorem XIII1.2]) we conclude that
A1 has compact resolvent.

The shift operators U", y € R? are defined by

U'p(x) = (x — y), for allx € RY (54)

They are unitary operators in L>(RY), and if m € gZ¢ we have U"AU ™ = A (as
unbounded operators), since ¢(x) is a g-periodic function Using the identification
of functions on the torus with periodic functions, it is easy to see that for each
vy € RY we have that U" is a unitary operator from L*( A,(x)) to L>( A/(x + »)),
for any x € RY, and

U'Ar,y U™ = Aaevy 50 0(Aa0) = 0(Aa, i 1) (55)

32 Spectrum of periodic operators If k,n € N, we say that k < n if n € kIN and
that k < n if kK <n and k*$n.

Theorem 14. Suppose the operator A given by (10) with (11) is g-periodic Let
{/uw, n=0,1,2, } be a sequence in N such that £y =g and ¢, < {,, for each
n=20,1,2, . Then

a(An, ) C (A4, ) Ca(d) foralln=012 . (56)
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and
o) = U a(da,0) (57)
|

nz

Notice that it follows from (56) that a gap in the spectrum of 4 is inside a gap
in the spectrum of 4 4,(,) for any x € RY and / € ¢N

A proof of (57) for periodic Schrodinger operators can be found in [Ea], based
on Floquet theory This proof can be adapted to operators as in the theorem in
the case of smooth cocflicients For the nonsmooth coefficients we are interested in
some aspects of the Floquet theory have to be revised We give an alternative proof
which does not use Floquet theory.

To prove the theorem we will relate the resolvent R4(z) = (A4 —2zI)"', a
bounded operator on L?(A), to the resolvent R(z) = (4 — zI)"", a bounded operator
on L2(RY) Let us fix a cube A4 = A,(x) for some x € R? and / € ¢N, the map

@€ LXRY) = @q = {@am me '}y A0z, L} A)), (58)

where
Pam = 14U " @) = U "(14ymp) for eachm € /79, (59)

establishes a unitary isomorphism between the Hilbert spaces L>(IRY) and
/2(/Z¢,17(A)) Under this unitary map, bounded operators 7 on L?>(IR?) have the
following matrix representation on />(/Z9,L*(A))

Ty ={Tppn=74U"TU" 14, mne (T}, (60)

where cach Tm,,,_,, is a bounded operator on L*(A) If R is a bounded /-periodic
operator, ic, U "RU" =T for all m € /77, we have

ki/n.n - i\e/t.nfm = Z/]RU”i/”ZA B (61)

SO k1 is a Toeplitz matrix with operator valued cntries ﬁ/].,,_,,, Notice that R is
uniquely determined by

2\?./1 = {ﬁA.m» me /Zd} (62)

We now introduce the Banach spaces
Ly = {p e LX(RY), ¢4/ (/2 L2 (A))},
with [[oll«, = @ 1l[1ze1201)) - (63)

and
1///1 _ {(/)6 Wl'z(IR“’), (p’lv(p‘ c y)/l}’

with (o}, = llol%, + IIVell%, . (64)
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and the normed space
A, = {Re BULXRY) /-periodic, Ry € /1 (72, BLH(A)))}.
with [[R]| 4, = ||1A?A||/'(/Zd, HIA(A))) (65)

We define the maps

PELi—=Pio= > Qam=7ys > U "pel*A) (66)
melzZd merad
and
RE By P4(R)= 5 Riw=14R Y Ups € BL(N)) (67)
mel 1! mel7d

Lemma 15. The maps P, . %Ly — LX(A) and Py . B, — B(L>(A)) are linear
contractions, with P, being onto Moreover

(1)
By C AL ) with HR L) < ||R||%aI fOI' allR e By, (68)
and
PiRop = 24(R)Prop  for allR € B 4,0 € Ly (69)
(ii)
RSc %4 and P4RS) = 24(R)P«(S) for allR,S € %, (70)
(iii)
Py ) =WH(A) (71)
and
VPip=PNo forall ¢ € ¥ 4 (72)

Proof We will prove (iii), the other statements in the lemma being straightforward
We start by showing that

PA(Cy(RY)) = C'(A), (73)

and
VPip =PV forall p € CJ(RY) (74)

Let ¢ € CJ(RY), since it has compact support we have that Y omerze U@ 1s an
/-periodic function in C'(IRY) (the sum is locally finite), so P,p € C'(A) and (74)
holds by the definition of P,. To see that we have equality in (73), it now suffices
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to notice that
. . o 4
C(’(A) = {(p cC'(A), sup{d(x,y), x,y € supp ¢} < 5} C PA(C(;(]R‘/)) , (75)

and any ¢ € C'(A) can be written as a finite linear combination of functions in
clA)

Since Py %4 — L*(A) is a contraction, it follows from (73) and (74) that P, is
also a contracnon from CO(IR") equipped with the norm of #, to C'(A), with the
norm of W'2(A) As CJ(RY) and C'(A) are dense in % 4 and W'2(A), respectively,
we can conclude that Py is a contraction from # 4 to W'2(A), with dense range
because of (73) and (72) holds To show the equality in (71), define W,2(A) as the
closure of C'(A) (they are not linear subspaces), notice that W 2(/1) C Py(W)),
and that any @ € W"2(A) can be written as a finite linear combmatlon of functions
in w24 O

For each N € N we define the operator

W’\’ — Z U*m (76)

merZ!, m| <N

Lemma 16. (i) Wy € A(%y) for each N € N and for all , ¢ € L4 we have

im (. Wy @) 2 rey = (Pal Pa) 12 1) (77)

N =00
(i1) Wy € B(H 4) for each N € N and for all \y, ¢ € # 4 we have
Jim A W) = o (Pah. P10) (78)

Proof (i) and the fact that Wy € #(#,) follow easily from the definitions To
prove (78), let ¥, € #7, we have

AW, Wyep) = < v, VWV(/)> <Vlﬁ Wy — V(p> , (79)
L2(RY) o(x) L2(IRY)

where we used the /-periodicity of g(x) Since Vi, ==V € ¥4, we can usc first

(77) and then Lemma 15(iii) to get

0(\)

Nli—rm:x: J’/(lp, WNQD) = <P4Vlﬁ P/] (X)V(,D>

:<

12(4)

1 o
"o(x) >L:(/1) = o/aFa.Fag) - (80)
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Lemma 17. Suppose z & a(A), then

(i) R(z) € BANHB(Ln, W 1)
(i) z € o(41) and
Ra(z) = 24(R(2)) (81)

Proof Let us fix z ¢ o(4), R(z) is then a bounded /-periodic operator since
A is g-periodic and / € ¢gIN Using Lemmas 12 and 13 we get R(z) € 4, and
R(z) € B( Ly, W 1)

Now let ¢ € Ly, W € H 4, then R(z)p € # 4 and, by Lemma 15, Py, P4R(z)¢
= 24(R(z))Pip € W'2(A) Thus we can use Lemma 16 and the identity AR(z) =
zR(z) + 1 to obtain

SAPNPARENPAQ) = o/ (P PARG)@) = [im o/ (, Wy R(2)0)
= lim /(U REWy9) = (U, (RE) + Do),

= (W Wyn(zR(z) + 1)@) 12 (rey = (Pa . PA(zR(z) + 1)) 1201
= (Pay, (z24(R(2)) + DP1@) 1201y (82)

Recalling that Py (%4) = L*(A) and Py (# 1) = W'>(A) (sec Lemma 15), we
can rewrite (82) as

A1 24(R@))@) = (, @24(R(2)) + 1)) 121,
for all ¢ € LX(A), y € W"(A) (83)
We can now conclude that 2(R(z))¢p € %(A4) for all ¢ € L*(A), and
(Ag—zD)P4(R(z2))p = ¢ for all ¢ € L>(A). (84)

If z ¢ 6(4,4) we can immediately conclude that Ru(z) = 24(R(z)). Thus if Imz =0,
we are done. If z ¢ o(4) and z is real, notice that it follows from (77), (69) and
the /- periodicity of R(z) that 2,(R(z)) is a bounded self-adjoint operator Since
A 1 is self-adjoint, it follows from (84) by taking adjoints that we also have

Py(R(z))(Aa—zl)p=¢ forall g€ Z(d,), (85)

hence z & 6(A44) and Ru(z) = 24(R(z)) [

Proof of Theorem 14 We already proved that o(4 4,.)) C 6(4) in Lemma 17, for
all x € RY and / = ¢ To complete the proof of (56), it suffices to notice that if
q </ < L, the theory developed in this section, up to and including Lemma 17,
can be applied with A4 = 4,(0) and with the torus A;(0) substituted for IRY, with
the obvious modifications

Thus it only remains to show that

od)Cc = UIG(AOA,,,(O)) (86)

nz
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We only have to worry about real £ So let £ be real, with £ ¢ X, and let
d0=d(E 2) >0 We have

. 1
IR A, ) (E +in)]| = 5 foralln=1,2, . and ne R (87)
Now let ¢ be an arbitrary function in L*(IR?) with compact support It follows

that for all sufficiently large » we have 74,0 = @, SO 5/1//,(0)"" =0 for all
me (79 m=+0 and <7>A,”(0)_0 = 74,09 = ¢ Thus it follows from (81) that

R, /(@)@ = 74, 0RE@)0 + 714, 0RZ) X U400 (88)
mel 24, m=+0

for all z = E +in, n+0 and sufficiently large n Using Lemma 12 we can verify
that

lim |74, 0Rz) > Uz, =0, (89)
n—oeo mel 24 m=+0
so it follows from (87) and (88) that
. 1 .
IRE] = Jim 20,080l < Slol forall = E g, 420 (90)

Since functions with compact support are dense in L2(IR?), we conclude that
1
IR(=)|| < 5 for all z = E +in, n+0. (91)
Since 4 is sclf-adjoint, we have E ¢ a(4) O

33 A CombesThomas argument for the torus

Lemma 18. Let the operator A given by (10) with (11) be g-periodic, and let
A= A,(xy) for some xo € RY and ¢ € gN, / > 2r + 8, where r > 0 Then for
any z ¢ o(A44) and n € N we have

o
n

Vi n- g

A3 9 ! - —1?1 y ’ °
||Z\JR/1(Z)"X\'JH < <5> P e -od(V, V) fOI‘ allx,yGA, (92)

with

o n
m;, /= 5 (93)
4(13@ + 1) [~ + Iz + 1]

where n = dist(z,0(44))

Proof Let us fix x1, y; € A, changing the representation of the torus 4 by a shift
(see (55) and the discussion preceding it), we can assume xy = %(x] + y1) and
X1, y1 € As2(xp) In particular, [i(xl,yl) = |x; — y1| Let/ > 2r+ 8, we pick a real
valued function ¢ € CJ(IR) with 0 < &(¢) < 1 for all ¢ € R, such that &(1) = 1 for
i) < 4 +5, &uy=0for [f] =45~ 1,and [E() < (§—45—2)"" forall 1€ R
We set Z(x) =[], &(x,) for x € RY. Notice supp Z(x — x) C 4
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We now proceed as in the proof of Lemma 12 with A substituted for RY and
definition (29) replaced by

(Ao/l)(( — 65(\‘7\‘(1)(1'(\ﬂ\'(;)/4’/1675(\‘7\‘1))(1‘(\‘7\‘())’ ac Rd (94)

(; 1)\/_ )JI
f—5-2

(%
1

Notice that

IV[E(x = x0)a - (x —xo)]|

[IA

21 +8

+1> la| for all x € A (95)
7

We can thus repeat the proof of Lemma 12, exccpt that we must now require that
(]i\(\ + 1)la| <1, and we must substitute (; 2vd 7, e+ 1)a| for |a| in (36) and in

the rest of the proof Thus if (,%“\/____x + Dlal < m., ie, |a §/;)z:‘,./, we have the
equivalent of (41) We thus choose

o }%:J./
a=—""—(x —y1), (96)
i — il

and complete the proof of as before (with xi, y; substituted for x,y in (27)), as
Z\‘Ie*E(\'*\‘U)U'(/\'*\'n) — Z\_]e"(”(\'*\'o) and Z‘.Ie—:(\'~ Yo)a*(v—xo) — X\‘leu‘(\'~\0) 0
4. Location of the Spectrum of Random Operators

In this section we prove Theorem 3.

41 Approximation by periodic operators Let us fix a disorder parameter g In
order to investigate the samples of the random quantity g, ,(x) we set

Ty={t t={t,icZ'),—g <1 =g}, (97)
T\ ={1€ T 1y =n1 foral i,jeZ'}, neN, (98)

and
T =y 7 (99)

nrq
For 7 € 7, we let
0:(x) = go(x) |1+ > tu(x —1) (100)
=y/Al

and

A(t) = A(0:) (1om)

In addition, we set

gilll) _ {Qr = ‘9—;/(”)} and gi}x) _ U éagn) (102)

nrq



Localization of Classical Waves [: Acoustic Waves 457

To approximate acoustic operators by periodic operators, given t € .7, n € N
and x € RY, we specify 71,y € .7,") by requiring (7 4,(v)), =1, for all i € A,(x) N Z¢,
and define

A1,00(1) = A(T1,01)) (103)

The following lemma shows that the (nonrandom) spectrum of the random acous-

tic operator 4, is determined by the spectra of the periodic acoustic operators A(7),

(S /7_‘,(36) The analogous result for random Schrodinger operators was proven by
Kirsch and Martinelli [KM2, Theorem 4]

Lemma 19. Let the random operator A, defined by (18) satisfy Assumption 1,
and let

2y = Q o (A(1)) (104)

€7,
Then a(Ay) = 2, with probability one
Proof We start by showing that
a(A(r)yC 2, forall t€ 7, (105)

Let A, = A4,,(0), where {/,,, n =0,1,2, } is a sequence in N such that /y = ¢ and
!y =< (e for each n =0,1,2, Let us pick t € .7, and consider the associated
sequence of operators A4,(t) = A4,(t) We define bounded nonnegative measurable

functions
0F (x) = max < + BN 0 (106)
RN 0, (X) o)) S

and corresponding sclf-adjoint operators

07 (1) =~V - 05,(x)V, (107)

defined by the corresponding quadratic forms as in (12) It is not hard to see that

0= 0, (1) < ab4(r). (108)
with ; 0
0<s =1-2= <1, 0<o" == 1 <o, (109)
Qg+ Qq.—
and
A1) = 0,7 (1) = 4,(7) = A7) + O, (1), (110)

as quadratic forms ¥ = C&(Rd) is a corce for \/A(1), and for any ¥ € & we have
(y,0F (1)) = 0 for sufficiently large n, since (0, (x) = 0:C N0/, —4r)(x) =0
The last observation and (108)—(110) allow us to apply Lemma 45 and conclude
that (105) is true
To prove the opposite inclusion to (105), with probability one, we introduce the
countable set }
TUNQ) =7 Q" . (111)

Approximating any 1 € .Z,(OC) uniformly by a sequence 7, € CZ,(OO)((D), and using
Lemma 45 together with appropriate incqualitics analogous to (108)—(110), one can
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show that

aA(tyc U aAT). (112)

which readily implies that

2, = U o4(r) (113)

c Z(X)(Q)

Thus, to finish the proof of Lemma (19) it suffices to show that, with probability
one, we have

a(A(1)) C a(dy) for any T € 7, °N(Q) (114)
Notice that A, = A, = A(yw), with go = {gw,i € Z} € 7,, since m € Q=
[—1, I]ZJ Let {/,, n=0,1,2, } be a sequence in N such that /p =¢ and

/y =< /ny for each n=0,1,2, For each n and 7 € 7 ”“’ )((D) for some ¢’ = ¢,

we consider the event

Qi = {weQ, max \qw,» —7) S (/y+ 1) D
i€, (mg, - ,)NZe

for some m,, ., € ¢ 2} , (115)
notice IP(Q,,,) =1 We now take the countable intersection

o=NN N o (116)

— 7
n=0¢'>q = 7(/ Q)

so we have ]P(f)) =1 We will show that (114) is true for any » & Q
So let w € .?2 T€E. ”'((’ ’((D) for some ¢ > ¢, n € N, and let m, ., be as

in (115) We set o) = {w, = ,_p, . i €Z}, and notice that (A, )=
a(Ay.,) Similarly to (106), we define bounded nonnegative measurable functions

0F

1 1
() = max {i <—Q§,_(,,m(\”) - —QT(X)> ,O} s (117)

and corresponding self-adjoint operators @7 (w,t) defined as in (107), so we get
analogous inequalities to (108)—(110) We have lim,_.. (¢, O, (w,7)y) =0 for
any \ € ¥, since

—(d+1 . "
Qg om(X) = e 70,07, a1,y () = (70 + 1) Voo LUy 7000, —41,)(%)

As before, this last observation allows us to apply Lemma 45 and conclude that

G(A(D) € N o(Ayon) = 0(Ag0) | (118)

n=0

which implies the validity of (114) [
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1

> let

Given a real number h, |h| <
A(h) = A(0p)  with g4(x) = go(x)[1 4+ AU(x)] (119)

If |h| < ¢, and we define ©(h) € 7, by t(h), = h for all i € Z¢, we have 9, = 0.
and A(h) = A(z(h))

Lemma 20. Let A(h). |h| < LL be given by (119), with gy and U given in
Assumption 1 Let A= A,(xo) for some xo € RY and /= q The positive self-

o
adjoint operator (A(h)y has compact resolvent, so let 0 < 1 (h) £ wo(h) < be
its eigenvalues, repeated according to their (finite) multiplicity  Then each p,(h),
j= 1,2, . is a Lipschitz continuous, strictly decreasing function of h, with

— h
ot} < MO < gy min ) (120)
=1.2 2 —m =12

for any hi hy € (—g,¢), 0 < ¢y < LL where d+(y) are given in (17)

1

Proof Let hi,h € (—g,¢), 0 < ¢y < it follows that

b_"
oo U= h)ee()U(Y) (121)
On(x)  on(x) 01, (X) 04, (X)
SO ~ ~
I +0 (g)hy —hy) < | < 1+ 0,(g)hy —hy) 7 (122)
Q/lz (X) Q/u (Y) 0/73 (X)
and . )
I —0,(g)ha —hy) N O (g)hy — hy) (123)

on (x) T oon(v) T on (x)
From (122) we get
(140 (g — M NA(2) 4 = Al ) = (1+00(g)h = m))A(h) 1, (124)
so it follows from the min-max principle that, for any j = 1.2,
(16 (9)h — D) < (b)) < (1 + 0. (g0 — b)), (125)

ie,
() — wi(hy)

0 (g)hy = hy) = < 0.(g)hy — ) (126)
wi(ha)
Similarly, using (123) we get
) — 1,
o (s —hyy = PV 5y, <) (127)

wi(hy)

Equation (120) follows from (126) and (127) The properties of the functions (/)
follows [

The following corollary follows immediately from Theorem 14, Lemmas 19 and
20, and the min-max principle
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Corollary 21. Let the random operator A, defined by (18) satisfy Assumption 1,
and let {/,, n=0,1,2, ..} be a sequence in N such that /o =g and /, </,
for each n=0,1,2, Then

5= U oty = U UdAh), o) (128)

he[—=g.9] h€l—g.gln=1

In particular, Xy is increasing in g

42 Inside the gap We now prove Theorem 3. As X, is increasing in ¢, we expect
the gap to shrink as we increase ¢ until it either disappears at some g, or it remains
open for all allowed g Thus we define

1
Jo = sup {gé {07> , Zg,ﬂ(a,b)#(a,b)} (129)

Let {/,, n=0,1,2. } be as in Corollary 21, /i € [~¢,g], and let 0 < u{" (k)

[e]
<" be the eigenvalues of A(h)1,, A, = As,(0), repeated according to
their (finite) multiplicity, notice lim, . ,u(/")(h) = oc By Lemma 20 each ,ui”)(h) is
a strictly decreasing continuous function of /, hence it follows from Corollary 21 that

ok
Yy=U U a(d,) = U Uk @6 (=9 (130)
nz1hel[—g.g] n=1;=0
In particular, 2, is a countable union of disjoint closed intervals, none contained in
the original gap (a,b), so for ¢ < gy we can define a(g) and b(y) by (20) Since
2, is increasing in ¢ € [0, L]T) by Corollary 21, it follows that a(y) and —b(y) are
increasing functions in [0, ¢o)
For each n let
Jn = max{j, ("'(0) < a}, (131)

so using Assumption 2 and (56) in Theorem 14, we have
ju+1=min{;, 1!"(0) = b} (132)

If g < g, it follows from the definition of j,, Assumption 2 and (56)-(57) in
Theorem 14, that y, (—¢) and —u,, .1(g) are both increasing in n, and

alg) = lim w,(—g), (133)
n—oc
blg) = lim p;,.1(g) (134)

Thus, given 0 < ¢ < g2 < ¢o, we can conclude from (120) that
a(g2) — a(y)
g2 — 4

b(y1) — b(y2)
g2 — g1

[IA

0 (g2)a(ygz) < d.(92)alyr) . (135)

0_(y2)b(g1) < 0.(92)b(92) (136)

IIA
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The Lipschitz continuity of a(g) and h(y) follows, as well as

¥ b 92
[d_(h)dh < log atg2) 1o P9 Y5 nyan, (137)
o a(gr) blg2) —

so we obtain (21) and (22), from which we get (19)

If gy < % we must have limy;,, a(g) = lim,, b(g) This follows from (130),

(133) and (134), since by (120) each ;t(/”)(h) is a Lipschitz continuous function of

he (—%, %) uniformly in n Thus, if ¢ € [go, (#) it follows that [a, /;] C 2, we

set a(g) = b(y) = limyyy, alg)
Theorem 3 is proven

5. A Wegner-Type Estimate

Given an open cube A in RY, we will denote by Ay.1 = Ay, 1 the restriction
of 4,. to A with Dirichlet boundary condition (¢ g., [RS4]) Notice that each
Ay 1 18 a nonnegative self-adjoint operator on L*(A) with compact resolvent, and
measurability follows from Theorem 38 We can thus define n, (£) = ny ., 1(E)
as the number of cigenvalues of A, { less than £, clearly n, . 1(E£)=0 for
E < 0 Notice that n,, ((£) is the distribution function of the measure 1, ., ((dE)
given by

f II(E)’Q/A'). (dE) = TI'(/T(A.(“,,. 1)) (138)

for positive continuous functions / of a real variable

We will say that the random operator 4, defined by (18) satisfies Assumption 1/,
if it satisfies all of Assumption 1 with the exception of the requirement that gy(x)
be a g-periodic function.

We have the following “a priori” estimate

Lemma 22. Let the random operator A, defined by (18) satisfy Assumption 1’
There exists a constant Cy = Ci(d.o¢ ) < oc such that we have

1y o (E) < CiA|ES (139)

for all o€ [-1, 1]7‘/, for all E = 0 and all cubes A in Z¢
Proof Let A4 be the Laplacian on A with Dirichlet boundary condition We have
1 1
Ay = 54y
00 +(1+9Uy) 290 -
Thus (139) follows from [RS4, p 267 (118)] [T

(140)

/1_11‘ .1 g

Theorem 23 (Wegner-type estimate). Let the random operator A, defined by (18)
satisfy Assumption 1" There exists a constant Q < o, depending only on the
dimension d and the constants r, and g ., such that
U- +2U.;
gU (1 —gU U

P {dist(o(Ay.0 1) E) < 5} < O ol |ElT plA? (141)

for all E > 0, cubes A in RY, and all i € [0,E]
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. 1 /. .
Proof Let us pick r € (1, q%), say K = %, we write

Yoo = f +49 Z Siu;, (142)
iez?
where
1 —gU,
Sl > — I S0, (143)
1€7d 2

and s; = w, + x € [x — 1,k + 1] for each i z?
Now let f be an arbitrary continuous function on the real line with compact
support As in [FK2, Lemma 7], we have

i

f%/m/.{,,J(E)f(E)dE Tr{(—fs 4) f(Al,“])}

— TI' {A‘(IAU).A < (lul ) f(Al/ . 4)}
\Q_t/ u)qu

where A, ., 1(¢) is defined in the same way as A4, ., 1+ but with OL replaced by the
N N 9y 0

function ¢
Thus,

1 ”z.u)‘?
- Z Si 5 As f”(/ . 4(E)f(E)dE Tr {A_(/.m, 1 (‘i{__> f(Ag‘mA/l)}

) \
czd CS Y90 g

1 =
= TI' {A!IW’ 1}((A$I<")- ])} - TI' {A!/-"k { < ) f(At/ [OX /1)}

9g.00 Vg

But
+9> su
Yoo Iezzw S (v —1gU_ - (1 —=gU)U_
5 4 - 1 —wgU_ — 2U, ’

and / = 0, so

[ (1 — gUHU-
r< A " A(() § +— T At() g.o
Tl{ g/.(41<0(l()“/()> f( j 1)} < U ) r{ g 1f ] l)}

We conclude that

Tr {A;/mL 1 /(A!/.('). A )}

20U,
é <l Jr m) < IEZZ:/ 51(«'1 [”zj() 1(E)f(E)dE> (144)



Localization of Classical Waves I: Acoustic Waves 463

For given j € Z¢ let w')) = {w, i € Z/\{j}}, and denote the corresponding
expectation by [E(/) We have

E (—% I n;,_(,,,,i(mf(E)dE)

K+l

=E < I [*éf n_c,‘mAAE)f(E)dE} p(s; — rc)ds,-)
i ]

1

IIA

HpH'x]E(/) (f ”7!]4(0;‘",m,:—])_/l(E) - n_t/.(m‘/)Am/»-—I)A/l(E)lf(E)dE)

[IA

S,1llpllse2Ci AL [ E f(EME (145)

where we used (139), here 0, 4 =0 if u, =0 in 4 and J, 4 = 1 otherwise Since
the function u has support in a cube of side 2r,, there exists a constant C; < o,
depending only on r, and the dimension d, such that

S 0ia £ GojA] (146)

iEZ‘/

for all cubes A in Z¢

Let Ay ((dE) = E(ny . 4(dE)) For functions f as above, it now follows from
(144),(145) and (146) that

2U. 2 4
Ef(Ei, (dE) < 2CCy(k + 1 1+ — | A" EZ f(EYdE
Ef N, ) = 20,C04 1) (14 g ) el AP E )
(147)

It follows that 7, 4(dE) is absolutely continuous with

1, A(dE ‘

%E—) < GJAPET " for E =0, (148)
where

U_+2U.
C3 e 4C1C2 ”p“oc . (149)

gU (1 —gU)U-

The estimate (141) now follows by a standard argument:

P{dist(a(4y.0. 1), E) < n} = IP{ | ngoaldE) = 1}
[£—n.En]

IA

< [ g a(dE) < 25CETT AR, (150)
[E—=n.E+n]

forall E>0and 0 <y < E. O
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6. Localization

In this section we prove Theorems 6 and 7 To do so we develop a multiscale
analysis appropriate for random perturbations of periodic operators on RR?, based
on the von Dreifus—Klein [DK] multiscale analysis We will work with random
operators A, of the form given in (18), but our mecthod works also for random
Schrodinger operators

Let the operator 4 be as in (10) with (11) Given an open cube A in RY,
we will denote by 4 the restriction of 4 to A with Dirichlet boundary condition
(e g, [RS4]) Each 4, is a nonnegative self-adjoint operator on L?(A) with compact
resolvent R 4(z) = (4,1 — z)~ ' If A = A;(x), we will write 4., = Ay vy and R, ;(2)
= R,,\)(z) The norm in L*(A,(x)) and also the corresponding operator norm will
both be denoted by | [[w.. If Ay C A, are open cubes, J,* LA(Ay) — LX(Ay) s
the canonical injection. If A, = A, (x;), i = 1,2, we write || H:,i, for the (operator)
norm in AL (AL, (x1)), L2(A1,(x2))) and J>) = J/;'I’j(‘\.‘j)’_ If ¢ € L>(A), we also

denote the operator multiplication by ¢ on L*(A) by o.

6 1 The basic technical tools The basic tool to relate resolvents in different scales
is a local resolvent identity (LRI), which was used in a similar context by Combes
and Hislop [CH].

Lemma 24 (LRI). Let Ay C Ay be open cubes in RY, let H; be a self-adjoint
operator on L*(A;), i = 1,2, with R(z) = (H, —z)~', and let ¢, € L*(A,) Then,
for any z & a(H,) U a(Hy) we have

Ro(2)J 01 = T2 iRy(2) + Ra(2)(J 21 Hy — Had 2 01)R (2) (151)
as quadratic forms on L*(A3) x L*(A})
Proof We clearly have
Ra(2)J P = Ra(2) (I — 2Ry for all Wy € L2(A)),  (152)
and
(Yoo 2R WA ) 2010 = ((Ha — 2Rz W P R oy (153)
for all Yy € L>(A)). ) € L*(A,), so (151) follows. [

For operators of the form given by (10), the LRI yields the smooth resolvent
identity (SRI)

Lemma 25 (SRI). Let the operator A be given by (10) with (11), let A, C A
be open cubes in RY, and let ¢y € Cl(Ay) Then, for anv z € a(A4,) U a(A4,) we
have

R/IZ(Z)J,]I‘I(/)I = Jlff(/)lRA.(Z)

I B I
+ Ry(z2) <_J;14‘z5(v<pl).v+v.J11!.(v<p])5> Ri(z) (154)

as quadratic forms on L*(Ay) x L*(A))
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Proof Using (151), (10), and the definition of Dirichlet boundary condition we
get (154) O

The other basic tool for the multiscale analysis is a Simon—Lieb-type inequality
(SLI), which we need to adapt to the continuum It is used to obtain decay in a
larger scale from decay in a given scale

Since we are working in a background medium of period ¢ € N (see Assump-
tion 1), we will work with boxes A (x) with x € gZ¢ and L € 2¢N, so the back-
ground will be the same in all boxes in a given scale L For such boxes (with
L = 4q) we set

L
Ti(x) = {.,v €qz’, ||y—x|| = 7~ q} (155)
and
T = AN 5. To) = 4,y VA5 () (156)
We also set
= g and r\L:Zf,(\)v r\AL:Zj”/(\») (157)
Notice
r\‘.L = Z Jy ac (158)
ve Tr(x)
and
70| £ d(L—2g+ 1) (159)

In addition each A;(x) will be equipped with a function @, ; constructed in

the following way. we fix an even function ¢ € CJ(IR) with 0 < &(¢) < 1 for all
t € R, such that &(r) =1 for [¢| < 4, &(r) =0 for || = 3, and [&(1)] < 3 for all

t € R (Such a function always exists ) We define

L if [l <5 -3
a(t)y=1< N . N (160)
S(-(4-%)). iz (4-%)
and set
d
@ ()= P (y—x) for ye R with &.(p) = [[& () (161)
=1
We have @, ; € C)(Ap(x)), 0 £ @, < 1,
/\%_y‘p\:L:/\L_%/, Z\-AL;_-‘%@\‘J‘:@\.L) (162)

and

. 3vd
r\‘.Lv(p\.l_ = v(b\.ln }v(p\Ll é L_ (163)
q
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Lemma 26 (SLI). Let the operator A be given by (10) with (11). Then for any
/,L €2gN with 4q </ < L —3q, x,v € gZ? with 2|y — x| £ L -/ —3q (s0
A(y) C Ap_sy(x)), and z d 6(A, ) U a(A,.,), we have

||r\'.LR\‘.L(Z)Z\'H\‘,L < 7:/#;]Hr\:/R\t/(Z)Z\'”\'./HF\'.LR\:L(Z)Z\"”\:L (164)

for some V' € T\, with
3

6d?

T go_

<

. @§(1+|z|), (165)
where @% =0(d, 04+, %) is the constant given in Proposition 39

Proof Using (162),(154) and I', ;J" @, , = 0 we obtain

1‘\.I,R\‘.L(Z)J\\-‘:/LZ\' = r\.LR\'.L(Z)J‘\::fq)\'./Zr
v . 1
=TI\ R.1(2) (%J\.jfg(vq’r./) VA4V J‘.;f<v<1>r_/);> R, /(2)7. (166)

as quadratic forms on L*(A,(x)) x L*(A,(»))
We now use (163) and (11) to get

1 .
HF\.I.R\-./.(z)J:.;f'g(wv./) VR, ()55

! a A
= PRI =L /() VR @S (167)

3Vd

(-

[IA

”f\x/VRtx/(Z)Zl‘Hlz/Hr\'.LR\:/.(Z)I‘I:/”r,[, (168)

and l
IT LRV =T/ (V) Re

N ) 1 '
= IRV (VONT TR @70 (169)
1 - A
< IRzl TRV - (VOO e (170)
3Vd R
= qo HF\A'/R‘.‘/(Z)Z"H"'/Hr“-/VR\l’«(Z' )r\'.L”\:L (171)

Appealing to Proposition 39 we obtain
Hﬁ\x/vRv./(Z)Z\'H\'./ = 9% [Hr\*./R\‘./(Z)Z\'H\'./ + ”rr./A\'A/R\:/(Z)Z\'“\:/]

é @i—{(l + \ZD”F\'./R\:/(Z)Z\‘”\‘./ (]72)
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and

Hf‘\‘,/VR\'.L(Z*)F\ALH\‘.L g 9‘:{ mrr./R\.L(Z*)F\AI,H\’,L + ”r\'./A\.LR\:L(Z*)r\.L“\'.L]

[IA

Ou(1 + 2D /R () s |ler (173)
= @%(1 + lz‘)HF\:LR\AL(Z)F\'./||\,L (174)

Thus, L
”r\ LR\ L(Z)/ H\ L= HF\ LR\ L(Z)J\ //‘ H :./

§ 2@%(1 + ;Z!)Hrl,/Rr,/(Z)Zl‘Hr./”r\:LR\.L(z)F\x/HhL (175)

Hence (164) follows from (175),(158) and (159) [J

The last tool in this subsection is the cigenfunction decay inequality (EDI), an
inequality that gives decay for generalized eigenfunctions (see Appendix B 2 ) from
decay of local resolvents

Lemma 27 (EDI). Let the operator A be given by (10) with (11), and let  be a

generalized cigenfunction for a given z € € For any x € qZ¢ and / € 2gN with
/= 4q, such that z € o(A, ), we have

2l < 5N RGED 2] (176)
for some v &€ T, with . as in (165)

Proof. Since (A4 —zI W = 0 weakly (see (241)), we also have @, (4 —zI)y =0
weakly, 80 J "/ @, /(4 —zI ) = 0 weakly in L*(4,(x)), where J*/ = Ju/ "), Thus

J\:/Z\'l// - Z\R\A/(Z)(A\:/ - Z])J\"/QS\,_/kp (177)

= LR A D =T D AW (178)

i

1 1
7R /(2) <—v -J‘“;(vax_/)+J‘“(v<15\-./>- EV) Yo (179)

weakly in L*(A,(x))
Proceeding as in the proof of Lemma 26, we have

|1z\-R\-A/(z>V-J‘“é(vam)wl\-./ (180)
= [[7. R (2)V ~J"/é(v¢\/)f\ s (181)
< AT VRG] (182)
- 3f

L0+ DI R AT ()
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and
1 - 1
l|/\R\/(Z)J‘/(Vd)\/) EVI//H\/ = H/\R\ /(Z)r\/J\/r\/(v(p\/) ngH\/ (184)

3Vd B} )
< ;\)/L_O%(l -+ |Z|)Hr\./R\./(2 )/\H\/H] N /lﬂ” (185)

o—

Thus (176) follows [

62 The multiscale analysis Motivated by the SLI (164) and the EDI (176) we
make the following deterministic definition (see [CH] for a similar definition)

Definition 28. Ler the operator A be as in (10) with (11) Given m > 0, E > 0,
x € gZ! and L € 2¢N, L = 4q, we sav that the cube Ay(x) is (m,E)-reqular, if
E &a(A.) and
L
[F R (E) 7l = e (186)

We say that i € L*(IRY) decays exponentially fast with mass m > 0 if

lim sup w < —m (187)

Ry HX“ -

Motivated by the EDI, which is formulated for |7y, we say that s decays

¢-exponentially fast with mass m > 0 if

log [|7.
lim supﬁH/‘—w—H < —-m (188)

= [l ]| B

Notice that if \ is an cigenfunction for an operator A as in (10) with (11), then
decays exponentially fast with mass m > 0 if it decays g-exponentially fast with
mass m > 0 [Ag, Theorem 5 1] Moreover, Vi also decays g-exponentially fast
with mass m > 0 (see Corollary 40)

We now adapt Theorem 2 | in [DK] to our setting

Theorem 29. Let A be a random opeiator as in (18) satisfying Assumption 1.
Given Ey > 0, p > d and my > 0, suppose

(P1) There exists Ly € 2gN such that

1
IP{A,,(0) is (mg, Eg)-reqular} = 1 — 7 (189)
0
(P2) There exist s > 0, r > 4p + 6d and C < oc such that
. I ClE|s™!
IP{dISt(U(Ao.L),E) = F} = —ILL,* (190)

Jor all E > 0 and L € 2¢IN 1with [l < E

Then, given m, 0 < m < myg, there exists

A= HB(d,q,0+,7. Eo, p,s, 1, Comp,m) < o,
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depending only on the indicated constants, nondecreasing in Ey, such that, if we
have Ly > 4, we can find 6 = o(Eg, Lo, mg,m,s,C) > 0, so, with probability one,
A has only pure point spectum in (Ey — 90,Ep + 9), and the corresponding cigen-
functions decay g-exponentially fast with mass m > 0

Remark 30 A random operator 4, as in (18) satisfying Assumption | always sat-
isfies hypothesis (P2) for any s > 4p + 84 and rr = s — 2d, with

U_ +2U;
C=0—————|Pllx> =0(d,00.~,1) <« 191
‘(/U}.(l _.f/U_Q )U_ ”/)H 2 Q L( 00_ ,l) oc ( )
This is just a special case of Theorem 23 Theorem 29 as stated is true with weaker
hypotheses on 4, the proof requires only (P2), the SLI, the EDI, and Theorem 43

Remark 31 Hypothesis (P1) says that we have localization in a large, but finite,
volume, with high enough probability It is the starting hypothesis for the multiscale
analysis The proof of Theorem 7 from Theorem 29 will consist of verifying (P1),
using Assumption 2

Proof. Theorem 29 is proven as Theorem 2 1 in [DK], using the SLI and the EDI,
with the following modifications:

I We always take boxes A;(x) with x € ¢Z¢ and L € 2¢N

2 For two cubes Az, (x;) and A;,(x3) to be non-overlapping we require that
[|xy = xaf| > %(L| + Ly + 1) In this case the random operators A, ;, and Ay, ;, arc
independent

3 The probabilistic statement in [DK, Theorems 2 2 and 2 3] (called R(L,m) in
[DK, p 290]),

1

IP {for any E € [ either A (x) or A.(y) is (m, E)-regular} = | — 7%

(192)

is now stated for any x, v € gZ¢ with |lx — y| > L+ 4

4 The length scales L} of [DK, Theorems 22 and 2.3] are now defined by
Liyy = [L])ag, k = 0,1, , where [t]5, = sup{n € 2¢N, n < 1} We also take L =
[/7]54 in [DK, Lemmas 4 1 and 4 2]

5 The basic tool for the proof of [DK, Lemma 4.2] in our setting is the SLI
(164), it replaces inequality [DK, (4 1)].

6 We prove g-exponential decay of eigenfunctions in the analogues of [DK,
Theorem 2 3 and Lemma 3 1] The basic tool in the proof of [DK, Lemma 3 1] is
now the EDI (176). The basic facts about generalized cigenfunctions are given in
Theorem 43, we use (244) with / = ¢

7 The fact that £ can be chosen nondecreasing in £y follows from the fact that
Ey only appears in the proof when we use either (190), (164) or (176) O

Theorem 29 suffices to prove Theorem 7, but Theorem 6 requires a somewhat
different starting hypothesis, in which mq and Ly are related

Theorem 32. Let A be a random operator as in (18) satisfying Assumption 1
Given Ey > 0 and p > d, suppose we have (P2) as in Theorem 29 and
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(Q1) There exists Ly € 2gIN such that

]P{AL(,(O) is (%,E())—regu/ur} >1- (193)

TP
Ly
for some s> s+d — 1

Then, given &, 0 < & < 1, there evists

C =%(d,q,0+.14. Eo, p.5,7,.C.2,C) < 20,

depending only on the indicated constants, nondecreasing in Ey, such that, if we
have Ly > €, we can find 0 = 0(Fy, Lo, s,C,72,) > 0, so, with probability one, A
has only pure point spectrum in (Eg — 0, Eq + 0), and the corresponding eigenfunc-
tions decay g-exponentially fast with mass _Lf{gﬂ

Proof This theorem is just Theorem 29 with my = ’](Z%L“, the same proof applies
We need 2 > s+d — 1 in (Ql) to control the contribution of a singular region
by the decay of a regular cube, using the SLI (164) and (P2) (see [DK,

Lemma 42]) O

Remark 33 Notice that (193) is the same as

1 1
P {HFO,LURO.LU(EO)ZOHO.L(\ = —} = 1- 7 (194)
L; “0
Theorem 32 suffices to prove Theorem 6 with the stronger hypothesis 7 > 2d in
(23) To deal with the weaker hypothesis 1 > d we adapt an argument of Spencer
[Sp] to obtain the starting hypothesis (Q1) from a weaker (and ecasier to verify)
hypothesis

Definition 34. Let the operator A be as in (10) with (11) Given v > 0, E > 0,
x €qZ¢ and L € 2gN, L = 4q. we say that the cube Ay(x) is (v,E)-suitable,
if Eda(d, ) and

sup “r\ LR\’.L(E)ZY”\.L é
ve /_I[?(\‘)ﬁ(/Z"

1
— 195
Iz (195)
Theorem 35. Let A be a random operator as in (18) satisfying Assumption 1
Given Ey > 0 and v > 2(d — 1), suppose

(H1)
limsup P{A,(0) is (v, Ep)-suitable} =1 (196)

L—oc

(H2) There exist s € (0,v —2(d — 1)), r > 10d and C < o such that

. | ClE,|5~!
IP{dlst(ﬂ(/io.z‘),Eo) < E} < —’LO,L* (197)

for all L € 2¢N with Li < Ey

Then there exists 0 = o(d,q, 04,74 Eo,v,8,7,C) > 0, so, with probability one,
A has only pure point spectrum in (Eg — 0,Eg + 0), and the corresponding eigen-
functions decay g-exponentially fast
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Theorem 35 follows from Theorem 32 and from the following lemma

Lemma 36. Let A be a random operator as in (18) satisfying Assumption 1 Given
Ey > 0,v>d—1and p > d, suppose

(X1) There exists Ly € 2gN and 6y € (0,1) such that
P{A,,(0) is (v,Eg)-suitable} = 1 — dg (198)

(X2) There exist s € (0,v—2(d — 1)), r > p and C < oc such that

| g1
n){dist(o(Ao.L,Eo» < ;} < % (199)

for all L € 2qIN with /l < Ey

Then there exist % = W(d,q, 0+, ry, Eg, v,5) < 20, depending only on the indi-
cated constants, nondecreasing in Ey, such that given o > %, x € N, we can find
4 =7(d, q,0-. 1, Eg, v, por,s, %) < o0, depending only on the indicated constants,
nondecreasing in Ey and in o, so if we have Ly > 2 and 0y < [2 (295)2[[]_l in
(X1), and we set Ly, = aly, k=1,2, , we have

1

P{A,,(0) is (v, Ep)-suitable} > 1 — I (200)

for all k = x, where # = A (%, p) <

Proof The proof is by a multiscale analysis which combines ideas from [Sp,
Theorem 1] and [DK] We set

pi. = P{A,(0) is not (v, Ep)-suitable } (201)

The multiscale analysis is based on an induction argument, let / € 2¢IN, « € N and
L=o/ We set 5, = A,(0)N 529 C qZ¢, notice |Z,,| < (22)! The induction
step is similar to [DK, Lemma 4 1], it is based on the SLI, but only cubes in
61, ={A/(x), x € Z,,} are allowed, notice that A,(0) C U\ez, ) /_1%()()

Let 7, , denote the event that either there are at least two non-overlapping
cubes in 6, , which are not (v, Ey)-suitable, or dist(a(4,.3/,FEp)) < (3]7) for some

xe &, ordist(a(4g ., Ey)) < Li As in [DK, Lemma 4 2], we will show that

{A4.(0) is not (v, Eg)-suitable} C 7, , (202)

) . .
ClEy|: ClEy|

S P(7,) < Qu)p+ 2n)!
pr = P(F.,) = Qa)y p; + (22) (/) iz (203)
) CE() %—I 2([1d+r
< Qo) pr + 'L} <1+ 3 . (204)

where we used (X2) to obtain the last two terms in (203)
To prove (202), we take / > 2r, + 2q, so if w & 7, , there exist x; € =/, so
that A,(x) is (v, Ey)-suitable for any x € Z; ,\A43,(x;) We control the “bad region”
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As/(xy) as in [DK, Lemma 4 2], using the SLI (164) twice, we must require
(6B GO e/ ™1 < 17 (205)

which is true for v > s+ 2(d — 1) and / large (7z, is given in (165)) We then
have

sup 1Fo..Ro..(E)7 oL
Ve /T/?_(O)ﬁql"

I\

E/d 17N
{—/—] L, (206)

where N is the number of times we are allowed to use the SLI on (v, £y )-suitable
boxes (without using the result for the control of a “bad box). We have

Lg—o
3/
7

N

I\

2
=S 14), (207)
so for A;(0) to be (v, £y)-suitable we need
o d—17 5014
{L} L < i , (208)

which is true for z sufficiently large since v > d — 1 Thus (202) is proven

Let Z be such that
—1 2(/a(/+) 1
— |1 = = 20

32‘”~p < + 3(/ > =2 ( 9)

If we pick Ly > 7, and set Ly =L, k= 1,2, , py = p;,, and y = (20)%, it
follows from (204) that

o S PRt fork=1,2,... 210
P+l = pA 2L/{+l C ( )
Notice first that if p; < L,) then
1 1 2o ] 1 1
il S P+ < + < 211
P = L 2Ly T Ly 2LfL 2LP TOLY e

. . P . !
if we require 7 also to satisfy 21—’, = 1. Now, suppose pii1 = 77 for

k=1,2, ,n It follows from (210) that ypi = 21,} for k=0,1,2, ,n—1, so

pre1 = ppt for k=1,2,.. .n, so we have

1

I .
S Pt £ —(2ypo) (212)
”A+1L0 " 2y

Thus, if 27py < 1, there must be 4" so p; < LL, for all £k < . Thus (200) is
3
proven [J]
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6 3 Boundary condition From periodic to Dirichlet The starting hypothesis (P1)
for the multiscale analysis is formulated for operators with Dirichlet boundary con-
dition But under the hypotheses of Theorems 6 and 7 the natural starting hypothesis
is the analogue of (P1) for periodic boundary condition. The following lemma will
enable us to go from periodic boundary condition to Dirichlet boundary condition

Let 4, be as in (18) satisfying Assumption 1 Given x € ¢gZ¢ and L € 2¢gN, we
set (with the notation of (103))

Ag o1 = (AGO) 4,00 40001 » (213)
which is a random operator by Theorem 38 We write 103_1,\ o.v..(z) for its resolvent

Lemma 37. Let A, be as in (18) satisfying Assumption 1 Let E > 0, x € gZ¢
and L € 2gN, L = 4q, set L =L + [2ry)og + 2q If @ is such that E & 6(Ay .1 U
a(4 011. s then

3Vd
Hr\,LRg/. (r)‘\.L(E)Z\‘”\.L § (1 + (]T\/' (1 + 2(1 +E)HR(/()\L(E)||\L)>

99—

XHF"~ LRO;/.('J, \L(E)/‘H\L (214)

Proof ~ From Lemma 24 and the definition of periodic and Dirichlet boundary con-
dition, plus the choice of L which ensures that

Q(!/WJ 1L(\;(y) - Q(Lm(y) for all Y S AL(X) 5 (215)
we get the following analogue to the SRI (154)
I%g/. .\, [(E)J\\E(D\ L= J\‘[%@\ LR_(/A , Y, L(E)

. 1 » 1
+R.‘I.<')A\‘.LA(E) <_J~(\[%0—(vq)\L) -V + V. J\[f(v¢\L)’O—_> R;}. o, \AL(E)

Yg,0 Yg.00

(216)

as quadratic forms on L*(A, ;) x L*(A, 1)
Proceeding as in the proof of Lemma 26, we get (we omit g and » from the
notation)

W)

. il
LoR (VL (Vs 1) - VR (B v
= Y.L

3Vd | - .
qQ_HF\:LVR\A L(E)r\:LH\:LHZ \R\,[(E)r\~,L]]\»,£

3Vd )
;:,L@%(l (U +E)R B T Ry, o 1Bzl p (217)

IIA

lIA
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and

WL
. i I
HZ\'RM[(E)V ‘ J\-:1{l(v(p\: L)gR\.I.(E)r\.[.

L

3Vd

= 70 10 R (EVC [T L VR, f(EDy
3Vd a
§ qo @%(l +E)HR\[(E)||\/|IF\IR(I“ \I(E)/ \H\[ (2]8)

Equation (214) now follows from (216),(217) and (218) O

64 Localization in a specified interval We now prove Theorem 7 from Theorem
29 Let the random operator 4, and a;,az,¢; be as in Theorem 7, let us fix an
upper bound p for ||p[/~, and set

P ;4<<"L‘,1D (219)
g

(P2) follows from Theorem 23 (see Remark 30) To prove Theorem 7, since 4
in Theorem 29 is nondecreasing in £y, we need only to verify (P1) uniformly on
E € [ar,a(y)] for some sufficiently large Lo and all sufficiently small pj, this will
be done using Assumption 2 It thus suffices to show that we can find my > 0 and
p > d such that

(220)

limsup inf )][P{A,(O) is (mg, E)-regular} > 1 — 7

/’; .0 Lelaraly

for some sufficiently large L € 2¢IN
We will prove more Let us fix p > d For a given L € 2¢gN, L = 4¢q, we sct

L as in Lemma 37 and define the cvent

&) = {w, < (f—/’ for all i€ Zf’m’lL-(O)} (221)

Since a(y,) = a;, we can conclude from Theorem 3, Lemma 19 and Theorem 14
that
(a1,6(9)) C R\a(A,, ;) forall meé, (222)

It now follows from Lemma 18 (with = ¢), (158) and (159), that for w € &, and
E € (a,.a(y)] we have

9dL(/—l ﬁqml_q i ° ; }
e e My ilidl

HFOJ'RE!/A . 0. I(E)/O ”0 L = < n
gde—l Vi, B o
< i > e oS (223)

where l;qu‘,: is given in (93) and n = FE — a; since a(y) —a, < b(g) — a(y), we
assume L > 2(2g + 8)
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If we now take £ € [ay,a(g)], so ax —a; = n = a(y) —a < ad.(¢)g (we used
(21)), we have

a, — dy . 1
M = = - =mg,; =~ 224)
H4Vd + Do " +a+ad(9)g) kgL 4 (
SO
. ) 9dL!~! WAy gL
| Fo.tR, 0/ (EDollg p = p— e F e 2 (225)
At this point we introduce the events
. . 1
W, = dist(a(Ag . E)) > W N (226)

and set 9. =6, NN py. It E€laz,a(y)] and w € G, we can apply Lemma
37, (21), (225) and (226) to obtain

IT0.0Ry o 0..(E)0]l0.1

9[/Ldvl (v’ 2)q 3 D) gL
_ ( > <1 R (1 . <1 . _> L)
U —a qo— 1 —gU.

(227)

Thus, if we take mg = ‘7’ we can find

I =T(d,q,¢,04.1y.a,a1,a2, p) < >C,

such that if @ € 9., with E € [as.a(g)], we have that the cube A,(0) is (myg, E)-
regular for any L > 7} To conclude the ploof of Theorem 7, notice that from

(221),(219),(226) and (191) we get, for L,} e < E = aly),
41
P(%r) = 1— piL' - LQ, (TTZE) (228)
=it L (229)
2L°
with (229) valid for L > T, where
o =Tx(d.q4.9,00 =, Us.ry,a,p, p) < (230)
We can conclude that
inf ]P{AL(O) is (mg, £)-regular} = inf  P(9,;) > 1— (231)

Eclar.a(g)] Lefar.a(g)] LP

for all L > max{7),7>} and p| <
Theorem 7 is proven

so (220) follows

'JL/ 3 pids
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65 Localization at the edge We now prove Theorem 6 from either Theorem 32
or Theorem 35 Let the random operator 4, be as in Theorem 6 Since we have
(P2) and (H2) in the form given in Remark 30, to prove Theorem 6 it suffices to
establish either (Q1) or (H1) for £y = a(yg)

So letus fix p>d, 2> 4p+9d — 1, and let a],gl,p/],LA,(f,_, Hp . %L be as
in Subsect 64 Notice that (23) can be written as

PN
= K(u) (232)

g
For w € @, we have (227) with a> = a(y) and M as in (224) If we choose

(9)
ay =a(y) — K'”}%", with kx = 1 and L such that ¢ < a; and a(y) —a; < b(g) —
a(y), we get

0.0 Ry o0 (@(gNiollos < CL™ 1253 <=5 (233)

where the constants C; and ¢ can be read from (227) and (224), the last inequality
in (233) is valid for k¥ > ¢~ '(/ +4p + 6d) and L sufficiently large
If L > T, (with 75 given in (230)), it follows from (229) and (232) that

n
g—gi\" a1
<« > — v v _
ﬂ)(»/u(y)Al‘) = 1 K( g > L Y (234)
N "/og L\ ]
> -k —! O8N (235)
go_(¢)a L 2LP

where we used (135) to get (235)
If n > 2d, it follows immediately from (233) and (235) that the starting hypoth-
esis (Q1) holds for all L sufficiently large, so Theorem 6 follows from Theorem 32
If we only have n > d we prove (H1) Let r > 10d, s =r 4+ 2d and v > 5 +
2(d —1). For w € Gy (we take p = in (226)), we have

sup Fo.LRy.c0..(alyg))zvlo = CLrsd <= (236)
ve 1, (0)Ngzd

where (236) is derived in the same way as (233), with the same constants C| and
¢, with the last incquality valid for x > 4c¢~'(v+ 2p + 3d) and L sufliciently large
Since we have (235) and 1 > d, the starting hypothesis (H1) follows, so Theorem 6
follows from Theorem 35

Theorem 6 is proven

A. Measurability of Operator Valued Functions

In this appendix we will prove the desired measurability properties for our random
operators A similar result, with somewhat different technical assumptions appropri-
ate to random Schrodinger operators, was proved by Kirsch and Martinelli [KM1,
Proposition 6]

We say that a mapping o — 4., from a probability space 2 to nonnegative
self-adjoint operators on a separable Hilbert space # is measurable if the mappings
w € Q— f(A,) € A(H) are weakly (and hence strongly) measurable for all boun-
ded measurable functions /" on IR In this case 4, is called a random operator
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Theorem 38. Let o — A, be a mapping from a probability space Q to nonnegative
self-adjoint operators on a separable Hilbert space #°, such that

S £ A, £ ¢S with probability one (237)

for some nonnegative self-adjoint operator S and constant ¢ < > Let o/, and
S be the corresponding quadratic forms, & = (YY) being the conumon domain
Suppose w v o/ () is measurable for all y € &, then A, is a random operator

Proof Let R, = (A, +1)"", it suffices to prove that the mapping w — R, is
weakly measurable (e g, the argument in [PF, p 40]) We proceed as in [KMI,
Proof of Proposition 6] Using (237), we have that (with probability one)

Ao+ 1) =S+ 1) 3(S+H1) Ay =SS+ 1) T+ 1) (S+1)"F, (238)

where (S + ])’%(A(,, —S)S + I)’lz is a bounded nonnegative operator and the
map m € Q — (S + 1)_%(14(,) —S)S + 1)_% € AB(A) is clearly weakly measurable,
hence measurable by [KM1, Lemma after Proposition 6] [J

B. Some Results on Elliptic Operators

Divergence operators of the form (18) can have nonsmooth coefficient g(x) that
implies, in particular, that the standard functional space Cj cannot be used even as
a subset of the domains of such operators. In this appendix we provide some tools
to treat these operators

B 1 An interior estimate

Proposition 39 (|GT, Problem 8.2]). Let A be an operator of the form (10) sat-
isfving the bounds (11) For any ¢ > 0 there exists a constunt ©5 = O(d, 9+, )
< =, depending only on the indicated parameters, such that for any open subset
Q of RY, if uc WhA(Q) is a weak solution for the equation Au = [ in Q, with
/€ LX(Q), we have

[Vullror = Oslllullae + [ /120 (239)

for any Q' C Q with dist(Q',¢Q) = 0
We have the following immediate corollary

Corollary 40. Let A be an operator of the form (10) satisfying the bounds (11),
and let ¢ be an eigenfunction for A Suppose ¢ has exponentially decaying local
L*-norms, i ¢, ||7..,¢l2 decays exponentially as ||x|| — oo for some / > 0 Then
Yo also has exponentially decaying local L>-norms

Proposition 39 has the following obvious extension to IRY

Proposition 41. Let A be an operator of the form (10) satisfving the bounds (11)
If ue W'2(RYY is a weak solution for the equation Au = f in RY, with f €
L*(RYY, we have

[Vull = Oxclllull + /121, (240)

with O, = infy-0O(d, 0+,9)
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B2 Generalized eigenfunctions Let A be an operator of the form (10) satisfying
the bounds (11) Given z € €, a measurable function ¢ on RY will be called a
generalized eigenfunction for z if yop € W'2(Q) for all bounded domains Q in
R“ and ¢ is a weak solution for the equation A = 2y on RY, i.c,

(V, %V(/)) =z(f, ) for all Y € CH(RY) (241)

To obtain properties of gencralized eigenfunctions we use the following estimates
on the Green’s functions of divergence operators with nonsmooth uniformly bounded
coefficients [D, Corollary 32 8 and Lemma 3 4 2]

Proposition 42. Let A be an operator of the form (10) satisfying the bounds (11),
let / > d/2 and 1 > 0 Then the operator R" = (ul +A)~" has a kernel R (x, y)
satisfying the following a priori estimate

0 <R (x,y) < ce ™™ for all x, yeRY, (242)

.

where the constant ¢ depends only on d, 9+, / and p, and f} = |/ =

Theorem 43. Let A be an operator of the form (10) satisfyving the bounds (11),
p(d7) its the spectral measure Let w(x) = (lxl‘// + 1)~ d" >d Then for p(d/)-
almost all 7. A has a generalized cigenfunction ¢, satisfying

/ [, (X)Pw(x)dx < >, (243)
R¢

so for any / € N e have
7ol = Cx" + 1) forall x e /27, (244)

for some constant C, < oc depending only on /, d, o+ and the LHS of (243)
Morcover, for such ¢, we also have

\(p;(x)\z < C(\.\‘\‘// +1) forall x e RY, (245)

for some constant C < oc depending only on d, o4+ and the LHS of (243)

Proof Notice that in view of Proposition 42 R’ = (4 + ul)~/ for / > d/2 is a
Carleman operator such that

[ IR (x, v)[Pw(x) dxdy < ~x (246)
R RY

This and [B, Theorem V 4 1] imply (243), from which (244) follows The estimate
(245) follows from (244) and [Ag, Theorem 5 1] [
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C. Lemmas on Convergence of Operators

Lemma 44. Ler SF,.S7 . K,.,n = | be sequences of self-adjoint bounded operators

no~n oo

in a Hilbert space # such that for some constant C < o we have

0<SE<Cl foralln=1, (247)
and
lim (@,ST@) =0 for all p € H (248)
n—oc
Then
Hli}ngc SEp =0 forallpc # (249)

If in addition we have
- S

n

[IA

Ky =8

no

(250)
then

lim K, =0 for all p € # (251)
n—0oc

Proof Notice that if S, stands for either S, or S, then it follows from (247) that

SI? = \/STHSII\/SvH é Srz(j\/ST - CSH .

This together with (248) implies that |[S, @[> < C{@,S,@) — 0 as n — oc, so (249)
Is true.
Observe now that in view of (247) and (248) the operators G, = K,, + S, satisfy

0<G, =8, +5 <2l
and

lim (p,G,p) =0, @& A

=0

Hence, using (249), we obtain

lim Gy =0, @€ A . (252)
H—0C

Recalling now that K, = G, — S, and using (249) and (252) we obtain (251). [

Given a nonnegative operator B the associated quadratic form will be denoted by
Blo. W)= (VBo.VBY). . ¢. Y € Z(VB)
We will write B[¢] = B, ¢]

Lemma 45. Let S and S,,st(n = 1) be self-adjoint operators in a Hilbert space
A such that
S—s5, <85, <S+s, (253)

(the sums of possibly unbounded operators being understood in the quadratic form
sense),
0<sF<o"S forsome0<ua <1, 0=a" <oc, (254)

and
lim s (@]l =0 forallp e, (255)
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where & C €f7(\/§ ) is a core for the operator V'S Then
lim (I +S) "W=U+S8)"y foral e, (256)
=00

so S, converge to S in the strong resolvent sense and we have

U a(Sy) D a(s) (257)

nzl

Proof WesetR,=(+ S)~", R= (I +S)', and notice that —r;, SR, —R=
T, where

rt=pl (I +8) =0, oy = +S—s,)",

=0+ —p; =0, oy =U+S+s7)! (258)

Clearly
[RAIRI o = 1 (259)

and, in view of (253) and (254),
G(VS) = (VS +si)=7(V5), (260)
Ro.pre € Y(VS), ¢ €A

In addition, (255) together with s,j,[ < 7S imply
”liHrrqlcs,,i [p] =0 forall ¢ € Z(VS) (261)

In view of Lemma 44, to prove (256) it is sufficient to verify that

lim (75, ) =0 for all € # (262)

Iz

Let us consider 77 Observe that from (258),(259) and (260) we have

() = (o (I + SIRY) — (U + S =5, ). RY)
= (I + )P . RY) — (I +5 = 5;)p, V. RY)
= s, [ RV = (Vs ol Vs RY), e A (263)

The norms of the vectors \/s; p, Y and /s, R can be estimated as follows, Since
s < 278, we have

v

o

s, = (S—-s,). (264)
1 —o—
Notice that for any nonnegative operator K we have
K<(+K)?.
Combining (264) with the last inequality for K =S —s,, we obtain
o _ . _
S = (1 +S =5 )2 - (/)/;r) : ’

| — o~ I — o~
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which readily implies

o o — . o~
:()1; Sy prz g 1 — 7\1 and H Sn pn HZ g 1 — o (265)

It now follows from (263) and (265) that for € # we have

() < Vs ROV s 0y IPIWIP = s, (R0 )

The last inequality together with (260) and (261) imply (262) for ;7 The proof of
this statement for », is analogous, using s, =< li;,,(S +57).
To prove (257) it is sufficient to prove the similar inclusion for the resolvents

R, and R, namely

U a(R,) D a(R) (266)
nzl
Suppose that 2 € a(R) Then for any positive 7 there exists a vector iy € # such
that ||[Ry — 2y]| < 7, [[¥|| = 1. In view of the strong convergence of R, to R this
implies that for sufficiently large n we have [|[R, — 2] < 27 Since 7 is an
arbitrary number the last inequality implies (266) and, hence, the desired inclusion
(257) O
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