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Abstract: We consider the effect of real spectral singularities on the long time
behavior of the solutions of the focusing Nonlinear Schroedinger equation We find
that for each spectral singularity // e IR, such an effect is limited to the region
of the (x,t)-plane in which /! is close to the point of stationary phase λo = ^
(the phase here being defined in a standard way by, say, the evolution of the Jost
functions) In that region, the solution performs decaying oscillations of the same
form as in the other regions, but with different parameters The order of decay
is O ( ( ^ ) 1 2 )

We prove our result by using the Riemann-Hilbert factorization formulation
of the inverse scattering problem We recover our asymptotics by transforming
our problem to one which is equivalent for large time, and which can be inter-
preted as the one corresponding to the genus 0 algebro-geometric solution of the
equation

1. Introduction

We consider the nonlinear Schroedinger equation (focusing case)

ίqt + q^ + 2q\q\2 = 0 (11)

under initial data

(12)

belonging in the Schwartz class
As is well known (see [NMPZ], [FT]), the problem (1 1)-(1 2) can be integrated

through the method of inverse scattering. We will present here some of the results
we will need without proof

The associated linear system is

iλ iq(x)\
.., Λ . Ά , (1.3)
ιq(x) -u. )
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where the bar denotes conjugation Jost functions φ\,φ2,φuφ2

 a r e defined on the
real line as (column vector) solutions of (1 3) satisfying the asymptotic conditions

2(x, λ) ~ ( e_ι)a ) , as x -> +oo ,

as x —> — oc ,

-iλ\ ) •> a s x - > — oo . ( 1 4 )

Furthermore, φ\ and φ2 can be meromoφhically extended to the upper half-plane,
while φ2 and φ\ can be meromoφhically extended to the lower half-plane Indeed,
one has

( φx (x, λ)e-"Λ φ2{x, λ)ei)Λ ) -> /, as λ -» oo, Im λ ^ 0 ,

( φλ{x,λ)e~i}Λ φ2(x,λ)euj: ) -> /, as Λ -> oo, Im/. < 0 (1.5)

/ is here the identity matrix
We point out the symmetry

φ(x,λ)= (°ι

 lΛψ(x,λ), ( 1 6 )

where φ = (φ\ φ2), the same symmetry is satisfied by φ = (φ\ φ2)
On the real line, φ and φ are solutions of system ( 1 3 ) Hence there exist

"scattering coefficients" a(λ), b(λ) such that

φ2(x, λ) = a(λ)φ2(x, λ) + b(λ)φ\ (x, λ),

ΦI(.V,Λ) = ά{λ)φx{x,λ)-b{λ)φ2{x,λ) (1 7)

Although a and ^ are a priori independent of a and 6, one can see from the
symmetries above that they are after all their conjugates Furthermore one can show

\a(λ)\2 + \b(λ)\2 = 1 . (18)

The time evolution of the scattering coefficients is given by

a(λ,t) = a(λ,0),

b(λ,t) = b(λ,0)e4ί/?t (19)

It turns out that a(λ) can be analytically extended to the upper half-plane, while

ίi(λ) can be analytically extended to a function α*(/.) — ά(λ) in the lower half-plane
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In general, this is not also true for b. Genetically, a has only a finite number of
zeros in the upper half-plane and no zero at all on the real line (cf [BC]) However,
there are cases where this is not true One can have, for example, an infinity of
non-real zeros with a limit point on the real line (see fZ] for an example)

It is well-known that in the generic case, non-real zeros of a correspond to
solitons for long times (see [FT] for example) Our goal is to study the effect of
real zeros of a We will only consider the case of finitely many zeros (real or not)
This is indeed the case if we restrict ourselves to initial data such that

oc

/ e]M\uQ(x)\dx < oc, for some η > 0 , (1 10)
— co

(cf. [F] for a proof) For simplicity we will state and prove our results in the case
where no non-real zeros of a are present and only one real simple zero exists
However, it should eventually become clear that this is only a superficial constraint,
and indeed we will indicate at the end of this work what happens in the more
general case (of finitely many zeros)

An example of initial data producing exactly one real spectral singularity is the
following ([CK]). Let X > 0 and

uo(x) = — , 0 < x < X,

= 0, otherwise

Then a(λ) has exactly one (simple) zero at λ — 0 and α'(0) = -2iX

We define the 2 x 2-matrix-valued function Ψ as follows Let

Ψ = ( \\jλe~us ^ ~ ) , for Im/ > 0,

^ for Im λ < 0 (111)

Letting Ψ + and Ψ'_ denote the limits of Ψ on the real line from above and below
respectively, we have (after a few calculations)

v.λ+4//2/ \

Im/ = 0, (1 12)

where r(λ) — ^773^- Note that the jump matrix has determinant 1

Finally, one can prove that a(λ) — 1 -f (9(1//) as / —> oc, Im/ §: 0 Hence

»P(/ = oc)=7 (1 13)

We thus end up with a Riemann-Hilbert factorization problem. Ψ is a matrix func-
tion, analytic in the complement of the real line, satisfying the jump condition (1.12)
and the asymptotic condition (1 13).

Note that in the generic case of finitely many zeros off the real line and no
real zero, Ψ is meromorphic and neither Ψ+ or Ψ_ nor the jump matrix have
any singularities In the case we are interested in, however, both ψ± and the jump
matrix have singularities exactly at the zeros of a(λ).
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Conversely, the solution of the Riemann-Hilbert problem enables us to recover
q(xj) Indeed (see eg [NMPZ])

q(x,t) = -2 lim λΨn (1.14)
λ-->oc

Thus, the initial value problem (1 1)-(1 2) is reduced to the above Riemann-
Hilbert on which we focus from now on

The interest of the problem treated in this paper is twofold On the first hand,
as we will see later, the physical effect of the spectral singularity is a "coUisionless
shock" type phenomenon; we thus have an interesting connection with the theory
of "dispersive shocks" for nonlinear wave equations (cf. also [DVZ], [AS]) On the
other hand, ours is a first step towards the completion of the solution of the problem
of long-time asymptotics of integrable equations in the case of Schwartz data, in
the following sense although the related direct and inverse scattering problems
are now completely solved (see [Z], [DZ2]) for the most general cases of Lax
operators and even in the non-generic exceptional cases of data for which there
are either infinitely many spectral singularities off the associated Riemann-Hilbert
contour or (possibly infinitely many) spectral singularities on the contour, the long-
time asymptotics problem is still far from having a complete solution, even in cases
as simple as the NLS equation In fact, the present paper is the second of a series,
in a recent article (see [K]) we treat the infinite-soliton case, while a treatment
of the case of infinitely many real (i e on the Riemann-Hilbert contour) spectral
singularities for the NLS equation will appear soon

We now state our main result, to be proved in Sect 3.

Theorem 1.1. Let q be the solution of (I 1) with initial data in the Schwartz class,
and such that a {simple) spectral singularity exists at λ = 0 and nowhere else Let
AQ = ^JΓ, τ = tλl and K,M be given positive constants Then the leading order
asymptotics of q, as t —> oc, is as follows

In region I x < 0, λo < —M, q is given by formulae (2.5) and (2 6)
In region II x < 0, λo —> 0, τ —> oc, q is given by formula (3 18)
In region III λo —> 0, τ < M, q is given by (3.19)
In legion IV x > 0,λo —+ 0,τ —>• oc, q is given by (3 18)
In region V x > 0,ΛO > M, q is given by (25)-(26)

The plan of the rest of the paper is as follows. In Sect. 2, we solve the
Riemann-Hilbert factorization problem in the case where the zeroes of α, are away
from the stationary point λo = ^ of the phase Θ = λx-\-2/?t Indeed, we show
that no spectral singularity has any effect at all in the long time behavior of q(x, t)
In Sect 3, we consider the more interesting case where λo — λ' —± 0 with time, for
some real singularity /! In Sect 4, we discuss a generalization of our results

The problem of a real spectral singularity was first considered by Ablowitz and
Segur In [AS] they study the coUisionless shock phenomenon for the KdV equation
with decaying initial data and they dedicate a small section to the focusing nonlinear
Schroedinger equation, where they address the problem of a real spectral singularity
by considering non-real ones, say κo, and taking the limit as Im/co—>0 Their
treatment is heuristic and non-rigorous It is satisfactory however that their estimate
for the decay of the solution on the "shock" front agrees with ours. On the other
hand there are two discrepancies, concerning the phase and the coefficient of the
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decay term For the sake of the reader, we present the result of Ablowitz and Segur
below

Result of [AS] In the shock front region (corresponding to our regions II and IV),
the solution of (1 1)-(1 2) has the following asymptotic expression

where

1 x2 log/ Ί /x\ ( 1
0 + 2 f ί)+θ(7 Γ + 2 f ί)+θ(

At2 t \t) \t

f2(-4k) - —(log/ - log log/ - 21ogwz), where k = /! +m ( —
An \ t J

(1.15)
In particular (cf (4 10) of [AS])

ι*ι~
m 2π' ' 2

Note that this formula agrees only partially with (3 18). Indeed, as we show, the co-
efficient has to depend on the initial data through af(0) Furthermore, (115) implies
that the second term of the phase is of order log /, while we find that it has to be
log/

The method of this paper follows the spirit of the work of Deift and Zhou (see
[DZ], [DVZ]), who invented a new (and for the first time rigorous) method for
recovering long-time asymptotics of integrable "soliton" equations, by using the fact
that the inverse scattering problem for such equations can be stated as a Riemann-
Hilbert factorization problem. We also make use of results of Deift, Its and Zhou for
the defocusing nonlinear Schroedinger equation ([DIZ]). We note that the present
work is the first in this spirit that deals with problems for which the jump matrix
blows up at a point

2. Away From a Singularity

As mentioned in the introduction, Deift, Its and Zhou have analyzed the long
time behavior of the defocusing nonlinear Schroedinger equation In that case, the
Riemann-Hilbert problem agrees (modulo a minus sign) with (1 12)-(1 13) except
that no spectral singularities exist at all (real or non-real) The question is how is the
analysis of the problem affected when Ψ and the jump matrix in (1 12) have a sin-
gularity In this section, we show that when for all singularities //, λo — )! ~ 0(1),
they have no effect at all We will only restrict ourselves to the case λo > //, since
obviously the case Λ0 < /' is similar (and easier)
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1 We begin by considering an auxiliary scalar factorization problem. Let ί/ be a
function analytic in C\( —oo, Λo] such that

d+(λ) = d-(λ)(\ + |r(A)|2) for - oo < / < λ0 ,

d+(λ) — d-(λ) for λ > λo

ί i ^ l a s/^oo (2 1)

Proposition 2.1. Problem (2 1) has a unique solution which has no zeros and whose
only singularities are at zeros of a More precisely, near a zero oj a,d+(λ)a(λ%
d(λ)a(λ\ ^ j y and ^ are bounded above and below

Proof First note that

1 + r(λ)\2 = ! ΓΓ = , for λ e IR

Also recall that a is analytic in the upper half-plane, α* is analytic in the lower
half-plane and a(λ) = 1 + 0 ( i ) as Λ —> oc, Im/ ^ 0

Consider the contour depicted in Fig 2 1 (the choice of lines lι and I3 are
irrelevant provided α,α* have no zeros in regions ^2,^3 or on lines I2J3) and
define

δ(λ)=d(λl λeΛi,

δ(λ) = d(λ)a(λ), λeA2,

δ(λ) = d{λ)(a*(λ))-\ λeA3.

δ satisfies the following scalar problem, it is analytic in (£\(h U/3) and,

δ+ — δ-a, on I2 ,

(5+ = δ-(a*)~\ on /3

As a has neither zeros nor poles on 12 U/3 we see that this scalar factorization
problem has a unique solution with neither zeros nor poles, even though a has
a discontinuity at λo, 6 is bounded near λo (see e.g [G], p 448) The result
follows

IR

Fig. 2.1.
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2 We will next provide an appropriate contour deformation (following [DIZ]) which
will be guided by an analysis of the signature of the phase Θ = /JC + 2λ2t appearing
in the exponents of (1 12) (see Fig. 2 2)

Re(/θ)>0

Re(/θ)<0

λ0

Re(zθ)<0

Re(zθ)>0

IR

Fig. 2.2.

A fundamental fact is that the jump matrix of (1.12) admits the following fac-
torizations (hence justifies our construction of d)

0 \ (d~λ rd'xe2ιΘ

Irde -2/0
f θ r

and

uΓ_]e2'Θ

i+H2

dZι

rd,.
for λ <

1 + |/1 2

We deform our contour as follows (see Fig 2 3)

IR

Fig. 2.3.
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Guided by the above factorizations, we define

(d -rd~]e2'

Vo d~]

-A, λ€D3

(2 2)

Remark For such a deformation we need to assume that b,b can be analytically
extended, at least in a small strip containing the real line (note that the actual choice
of the curves // is not important as long as they are in the right quadrant) This
would be indeed true under more restrictive data ((1 10) for example). However,
such an assumption is not necessary. As shown in [DZ] (see also [DIZ]) b can
be harmlessly approximated by a rational function whose poles do not affect the
analysis

A straightforward calculation shows that there is no jump across the real line
We have

Ψ\oo) = l (2 3)

The jump relation is

Ψ\ = Ψlu[t,
where

~2e2lΘ

on I]

on l2

o n / 3 ,
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3 The important observation is that this is a Riemann-Hilbert factorization problem
without singularities at all. Indeed, the jump matrices have no poles as a has no
zeros on l\ U I2 U I3 U U Also, Ψ\ has no poles even at the points where a(λ) = 0
This follows easily from the scattering relations (17), the definition of Ψ (1 11),
and Proposition 2 1, which gives the behavior of d± near the zeros of a.

In other words, we end up with exactly the same problem as the one corre-
sponding to initial data that produce no real spectral singularities at all Hence, the
analysis of Deift, Its and Zhou goes through completely unaltered Note also that
the solution of ( l . l ) - ( l 2) is still recovered in the same way (see (1 14)) since the
modifications above have no effect on Ψ up to order j

We will not provide the analysis of Deift, Its and Zhou in detail We refer the
reader to [DIZ] instead We will only recall that as the jumps (2 4) are exponentially
small away from the stationary phase point λo the problem is reduced to one on a
small cross near λo The new problem can be solved explicitly (after some rescaling)
in terms of parabolic functions For the reader's convenience we provide the leading
order asymptotics for q

Theorem 2.1. Let M > \,K > 0 be fixed and assume that for any real zero of a,
say //, we have λ — /! ^ K We have

q(x,t) = t~ι 2α(Λ 0)βL^"~' v ( / ϋ ) l o g ( 8 / ) +E(x,t), (2 5)

where, as t —> oc,

E(x,ί) = O(Γ] log/), for \λo\ ^ M, (2.6)

and for any j \

E(x,t) = 6>(|xΓ7 + C / ( Λ 0 ) X ~ 1 log|.τ|), for \λo\ ^ M " 1 ,

where

v(λp)

2 '

argα(Λo) = argΓ(zv(Λ0)) - argr(/.o) + 7 + - / log(/.0 - λ)d(log(l + | r (A) | 2 ) .
4 π _ ^

3. Near a Singularity

In this section we consider the effect of a real spectral singularity which is close
enough to the stationary phase point λo For simplicity, we will assume that there
are no non-real singularities and that there is only one real simple singularity, i.e. a
has a simple zero, say at zero (but see Sect 4 about these assumptions) We write
a(λ) = λ a(λ), with ά(λ)φθ

In this case, the analysis of [DIZ] breaks down, so the method of Sect 2 is no
longer useful The behavior of d (the solution of problem (2 1)) is more complicated
near ΛQ, it is no longer bounded there, and the relevant resolvent operators are also
unbounded, so the standard method of [DIZ] cannot be applied directly. We will
instead study this case by deforming the original problem in a different way
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1 Let

τ =
x

Yet = uϊ

We consider the region defined by

λ0
0, oo , as / —> oo

(3.1)

(3 2)

Our first step will be to rescale appropriately so that the distance between the
spectral singularity and the stationary phase point is 0(1). We next introduce a
contour deformation (different from Sect. 2) which is still guided by the signature
of the phase Θ It now turns out that, in the region we are interested in, the
factorization problem takes a very special shape After a final conjugation involving
an appropriate multi-valued function we end up with a problem on a vertical band,
that can be solved in terms of the genus-0 algebro-geometric solution of Eq. (1.1)

Remark A comprehensive reference for scalar problems with singular jumps (like
(2 1)) is the book by Gakhov ([G])

2 Let Ψ{])(λ)= Ψ(λoλ) Condition (1 13) becomes

iτ{2λ2-4λ)σ3

r(λoλ) r(/.oΛ)|2

The rescaled phase is
Φ = τ(λ2 - 2λ)

(3.3)

(3 4)

The singularity of the problem is now at λ = 0 while the stationary phase point is
at λ = 1

3 Let d be the solution of the scalar problem (2 1) We introduce a new contour Σ
as shown in Fig. 3 1. We denote the vertical band joining points 1 + iA and 1 — iA
by IB A is a real positive parameter depending on ΛQ and τ, to be specified later
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Let

£> -RD-λelιΦ

O

Ψ(2) - Ψ (
\RDe-2>φ

Here R{λ) = r(λoλ) and D(Λ) = d(λoλ)
A straightforward calculation shows that there is no jump across the real line

We also have

Ψ{2\oc) = I (3 6)

The jump conditions for Ψ^2) are

17/(2) _ H/(2) (2)
1 -v τ — ux,τ '

where

/ 1 -RD-2e2ίφ \

( o i ) ' o n / ' '
1

0

1-

1

0

-RD

1
j2e-2,Φ

~T+\R

1

1

-2e2iΦ

1

°\
>j

f\
) •

0\

, oal'3,

j&e-v I ' ° n / 4 '
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/ 1 ~RD-2e2ιΦ

RD~e'

1
\ + \R\2

on the top half of
\ + \R\2

-RD-2e2lφ \

on the bottom half of IB (3.7)
\RD2e-2ιΦ

Once more this is a Riemann-Hilbert factorization problem without singularities
at all The proof of this is the same as in Sect. 2

4 We observe that, as in Sect 2, because of the structure sign of Φ the jumps
across Σ \ IB are exponentially close to / as τ —» +oo We thus end up with a
Riemann-Hilbert factorization problem across IB.

Theorem 3.1. Let Ψ(3) be analytic in C\B, such that

where

( 1 -RD~2e2ιΦ\
u[3J = RD2e-2,Φ ι , on the top half of IB,

/ _J -RD-2e2ιΦ \

- f H | 7 ? | 2 ] + ]R]2 , on the bottom half of IB . (3.8)
\RD2e-2iΦ 1 J

and
)) = /. (39)

Then Ψ^2) — Ψ<y3) = O(τ~ι), for any positive /, as τ -^ oc, uniformly in x, in com-
pact subsets of the λ—Riemann-sphere

Proof The details of the proof are omitted (see [DZ]) The important observation

here is that RD~2 and {^?R,2 are actually under control on the top half of B while

7+N?i2 a n d RD2 are under control on the bottom half For example (again see [G],

p 448) D behaves like λ^l/2(λ - \)~xl and RD'2 is bounded Note here that it is
crucial to chose the segment IB at right angles with the real line; the behavior of D
depends essentially on the direction in which we approach λ = 1.

5 We introduce the multi-valued function

Ω = 2(λ- 1)((/,- 1 ) 2 - M 2 ) 1 / 2 -v42 - 2 . (3 10)

We consider this as a function on (C, chosing the branch consistently with the
condition

Ω = 2λ2 - 4 / . + O ( TT I , as Λ - > oo (3.11)
V A2 J
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Naturally, Ω has a jump across IB Also,

β + + ί2_ - -2(Λ2 + 2),

ί(Ω+ - Ω_) < 0, on the top half of IB ,

i(Ω+ - Ω-) > 0, on the bottom half of IB (3 12)

Defining

ψ(4) = ψ(3)eι(2Φ-τΩ) ? ^ ^)

we end up with the following Riemann-Hilbert problem.

U/(4) lτ/(4)7,(4)
Γ -f — \',τ '

where

\ + \R\2 \ + \R\2e

-RD
-2,π(Ω,+Ω_)

1 + | / ? | 2 , on the bottom half of IB ,

) - / (3 14)

Remark The choice of Ώ is inspired by the theory of algebro-geometric solutions
of the NLS equation (cf [BBEIM]) We are seeking a generalized differential τdΩ
on a Riemann surface, whose integral behaves like the phase 2Φ as λ —* oo The
actual Riemann surface (of genus 0 in our case) is dictated by the Riemann-Hilbert
contour B in (3 8)

6 As it stands, (3 14) does not look like an improvement over the original Riemann-
Hilbert problem. However, we shall now show that near the "shock" region, it can
be much simplified. In this subsection, we consider the "shock front," i e the region
II of Theorem 1.1

We choose A such that \/,Q\ = e~τA", i Q

( 3 1 5 )

A and τ depend on x and t and should be thought of as a "slow" and a "fast"
variable, respectively
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Because of (3 15), the diagonal terms of u{4] tend rapidly to 0, as τ —> oo As in
Subsect. 4, we end up with

17/(5) _ (7/(5) (5)
Ύ + — Ύ — uχ?τ •>

where

lί/ ( 5 )(oo) = / , (3 16)

where

c = ~^φ)exp\^i f log(-^)^iog(|«ωi2)j (3.17)

Note that there is no discontinuity at λ = 1. Here one uses the fact that when
a(λ) = 0, \b(λ)\ = 1 (sec (1 8)), hence 6(0) = ^ .

Problem (3 16) can be solved explicitly It can be interpreted as a form of the
Riemann-Hilbert problem for the genus-0 algebro-geometrie solution of (1 1) (see
eg. [MA], [LM], [BBEIM, ch 4]. We analyze and solve (3 16) in the appendix

Keeping track of the different transformations of Ψ and recalling (1 14),
we have*

Theorem 3.2. The effect of a real spectral singularity at ) ' is only felt in the
region λ' — λ$ —» 0 In the case, say, λ' = 0 we have, as λo —> 0 and τ —> oo,

q(x,t) (~ff }

-iargfl'(O) - γπ J log(-ί)ύflog|α(ί)| 2), (3.18)

where λ0 = =*•, a, b are the scattering coefficients defined in (1.7) and ά(s) = Cjψ

In particular, in the region ^ ~ (-^ί)1/2 the amplitude of the solution decays

iike oaψy2).
7 The region τ —>• oc, /.o —> 0 corresponds to the "front" of the region in which
the effect of the real singularity is felt We conclude this section by considering the
region where τ is bounded and λo —> 0, t —> oo

We now use a different rescaling, i e / —>• /S0^] . The phase becomes

Θ = 2λ2\ogt+^JΊ(\ogt)l'2λ.

The function Ω (see (3.10)) should now be

We still define A by (3.15) and we still end up with a Riemann-Hilbert problem
on a vertical band. Following the steps outlined in Sect. 6, we end up with the
following asymptotics for q'
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Theorem 3.3. In region III, with λo —> 0, τ bounded, as t —> oo, the asymptotics for

the solution of (I 1),(1.2) is

q(x,t)~CΓιu υ " U|exp(-2/(^ + 2) log/+^( log0 l z ) ? (3 19)

where λo,τ,A are as above, and C is defined by (3 17)

4. Higher Order Zeros and Finitely Many Singularities

It should be clear by the discussion of Sects 2 and 3 that there is nothing special
about a singularity at zero In the general case of finitely many singularities the
following is true, for each real singularity λl9 there is a region where λ\ — λo —>• 0,
as t —> oo, in which the solution decays with leading asymptotics similar to (3 18)
and (3.19) Non-real singularities correspond to solitons as usual (see eg [FT], [K]
for the infinite case).

On the other hand, it is clear from Sect. 3 that the order of the zero of a is not
important, the order of the solution remains the same but there is a minor change
in the phase We leave the details to the reader

As mentioned in Sect 1, a study of the interesting generalization of our result
in the case of infinitely many real singularities is under way (for examples of such
initial data see [Z]).

Appendix. The Riemann-Hilbert Problem for the Genus-0 Solution

In this appendix we solve the Riemann-Hilbert problem (3 16) We do this by
diagonalizing the jump matrix and thus reducing the problem to a scalar one which
can then be solved explicitly.

Let G = Cexp(-/τ(2Λ2 + 4)) and

The eigenvalues of S are i and —/, we have

°i Gn)=s(ir) : ; | Γ ' . (A2)
G V J VU l

Define
1 4

(A3)
λ- 1 - iA

Then A solves the scalar problem

Aγ = A-i9 on IB ,

Λ ( o o ) = l (A 4)
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Let the matrix μ be defined by

(A 5)

Then

μ+ = μ- ( _ i n ) , on IB,
V G U /

μ(oc)=I (A 6)

Thus // is the solution of (3.16) Furthermore, near infinity,

GA(/-\-iA)
( A 7 )

In particular lim;,_,oo(2/,^i2) = —G^ The asymptotics of # is now immediately
recovered through (1 14).

Remark One can interpret problem (3.16) as the Riemann-Hilbert problem for
the genus-0 solution of the NLS equation Although the use of the term "algebro-
geometric solution" may sound pretentious in the very simple special case of genus
0, it is worth pointing out the fact that what we encounter here is an instance
of a very general phenomenon, where the long-time behavior of the solution of
a soliton equation in a particular region is related to a different type of solu-
tion, which is indeed connected with Riemann surfaces, and the associated the-
ory of theta functions connected with the Abel map For a discussion of that
theory in the context of the nonlinear Schroedinger equation (focusing and defo-
cusing) see [MA], [LM] and [BBEIM, ch 4]
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