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Abstract: Using explicit expressions for a class of singular vectors of the N = 2
(untwisted) algebra and following the approach of Malikov-Feigin-Fuchs and Kent,
we show that the analytically extended Verma modules contain two linearly indepen-
dent neutral singular vectors at the same grade. We construct this two dimensional
space and we identify the singular vectors of the original Verma modules. We show
that in some Verma modules these expressions lead to two linearly independent
singular vectors which are at the same grade and have the same charge.

1. Introduction

The highest weight representations of the Virasoro algebra play a crucial role in
analysing conformal field theories. In most cases these representations contain sin-
gular vectors which lead to differential equations for the correlation functions and
hence describe the dynamics of the system. Benoit and Saint-Aubin [3] gave ex-
plicit expressions for a class of the Virasoro singular vectors (the BSA Virasoro
singular vectors). Using these results, Bauer, Di Francesco, Itzykson and Zuber de-
veloped a recursive method to compute all the Virasoro singular vectors [1, 2], the
so called fusion method. This method can be used to give explicit formulae for the
Virasoro singular vectors [15]. A completely different approach to this problem is the
analytic continuation method which was developed by Malikov, Feigin and Fuchs
for Kac-Moody algebras [13] and was extended to the Virasoro algebra by Kent
[11]. Recently, Ganchev and Petkova developed a third method which transforms
Kac-Moody singular vectors into Virasoro ones [10].

In a recent paper [6] we used the fusion method of Bauer et al. to find the
analogues of the BSA Virasoro singular vectors for the N = 2 (untwisted) alge-
bra. In theory the same method can be applied to obtain all uncharged singular
vectors, but this turns out to be even more complicated than in the Virasoro case.
It is however possible and of independent interest to use the analytic continua-
tion method to find product formulae for all singular vectors, as we show in this
paper.
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The paper is organised in the following way: after a brief review of the N = 2
BSA analogue singular vectors in Sect. 2 we analytically continue the N = 2 algebra
in Sect. 3. Section 4 extends the notion of singular vectors to this generalised N = 2
algebra which will lead in Sect. 5 to product expressions for all singular vectors of
the N = 2 (untwisted) algebra. In Sect. 6 we show that these product expressions
follow similar relations as in the Virasoro case. We then find in Sect. 7 and Sect. 8
that there can be two linearly independent singular vectors at the same grade having
the same U{ 1 )-charge.

2. Definitions and Conventions

Letx sc(2) be the N = 2 (untwisted) superconformal algebra in the Neveu-Schwarz
(or antiperiodic) moding, which is given by the Virasoro algebra, the Heisenberg
algebra plus two anticommuting subalgebras with the (anti-Commutation relations:

C 3

[Lm,Ln ] = (m - n)Lm+n + ~rΛyn — m)δm+n,o ,

Y^m-, J-n J = ~~nlm+n •>

[Tm,Tn ] — -Cmδm+nto ,

{Gr

+, G;} = 2Lr+s + (r - s)Tr+s + | ίr2 - ^ δr+s,0 ,

[Lm,C] = [Γ W ,C] = [GΓ

±,C] = O,

{G?,Gf} = {G-9G-} = 09 m,neZ, r,seZι_. (2.1)

We can write sc(2) in its triangular decomposition: sc(2) = sc(2)_ 0 Jf 2 θ sc(2)+,
where 3^2 = span{L0, To, C} is the Cartan subalgebra, and2

sc(2)± = span{Z±w, T±n, G^n G±r : « e N , r e N i } .

A simultaneous eigenvector \h9q9c) of 2^2 with LQ9 TQ and C eigenvalues h, q and
c respectively and vanishing sc(2) + action sc(2)+ \h9q9c) — 0, is called a high-
est weight vector. The Verma module 'fh^c is defined as the sc(2) left module
£/(sc(2)) ®3e2®sc(2)+\Kq,c)> where £/(sc(2)) denotes the universal enveloping al-
gebra of sc(2). This means Ϋi^c is the representation of sc(2) with the basis

~11 ~n ~ κ ~ ι -Jj+ -Jΐ -j~_ ~h

> > > 1 •+ •+ > i - - > I

kK ^ ^ k\ ^

1 There has not been any standard notation in the literature for superconformal algebras
2 We write N for {1,2,3, }, N o for {0,1,2, }, N i for {3, §» f, } and Έi for

{ .-HI }
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Finally, we call a vector singular in 'fl^c, if it is not proportional to the highest
weight vector but still satisfies the highest weight vector conditions3: Ψnp e YΉ qyC is
called singular if LoΨn,p = (h + n)Ψ»tP, ToΨn,P = (q + p)Ψn,P and sc(2)+ Ψn[p = 0
for some « G N and p e Έ. If a vector is an eigenvector of Lo we call its eigen-
value h its conformal weight and similarly its eigenvalue of 7o is called its U(\)-
charge4.

The determinant formula given by Boucher, Friedan and Kent [4] makes it
apparent that the Verma module Yhr,s(t,q),q,c(t) has for positive, integral r and posi-
tive, even s an uncharged singular vector at grade5 y which we want to call Ψrs.
We use the parametrisation:

c(t) = 3 - 3 / ,

We can find ±1 charged singular vectors ψf in the Verma module "Γh±,t , c ( ί ) at

grade k for k G N i . The conformal weight λĵ  is:i

(2.3)

In an earlier paper [6] we gave explicit expressions for Ψ^ and for Ψr>2 by using
the fusion method. In each case we can freely choose the fusion point. For instance
in the case of Ψr^ we considered the three-point function (0\ Φhr2(t,q),q,c(t)(Zf)
Φhr,o{t,q),q,c{t)(zι) φ/*i,2αo),o,c(θ(z2)|0), where we have the freedom of choosing the
relative position of the points Z\, Zι and Zy. Therefore we introduced in ref. [6]
the fusion point parameter η: Zf = Z-χ + η(Z\ — Z2). For η = 1 we can write these
singular vectors in the following form:

Ψr,2 = (1,0,0,0) £ Σ E' άr)Tn^+h(r-nj)E φ λ + . . . + n j _ 2 ) . . .
j=2 «!+ +nj=, 2

(2.4)

3

4 For a singular vector Ψn,p € ^Λ,^,C

 W ^ may simply say its charge /? and its grade n rather than

G fΛ)9,c automatically satisfies CT = cΨ

,p

U( 1 )-charge q + p and conformal weight h + n
5 Among physicists the term "level" is also used instead of grade
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where Ek(n), Ef

k(n) and Tk(s) are four-by-four matrices (k e N) :

Ef

k(n) = (-If

Tk(s) = ( -

—n(n —)

0

0

-T-k

0

0

0

1

~G-k ι

0

-nt(n - r)<5jfc,i

0

nt(n — r)

0

,i 0

-T-k

0

0

-nt(n-r)δkλ )

(2.5)

(2.6)

0

0

(2.7)

Using the same parameter η, the odd singular vectors ψf can be written as follows:

2k

1
0

«1+ +nj =

(2.8)

(2.9)



Singular Vectors of the N = 2 Superconformal Algebra

where the four-by-four matrices Ef(n\ Tp(s) and T^\s) are {j G N):

199

\
n[(2k-n)t±2(q±l)]

(2k-n)t±2(q±\)

0

n[(2k-n)t±2(q±\)] n[(2k-n)t±2(q±l)] n[(2k-n)t±2(q±\)]

{2q±\)T-j (2q±l)G+_J+ι/2 (2q±l)GZj+ι/2

(2k-n)t±2(q±l) (2k-n)t±2(q±\)

-δjΛ 0

0 0 -<5/i

(2k-n)t±2(q±\)

0

(2.10)

/ ~

0

"" (k-s)t+2q

(ks)t

0

(k-s)t

(k-s)t-2q

T±\s) =

0

0

0

0

-Ai

0

0

( J f c - *

0

0

(k-s)t+2q

0

0

0

0

)tτHs).

0

0

0

2(*+l )T-j
(k-s)t

0

0

0

(k-s)t-2q

(2.11)

(2.12)

(2.13)

In the following sections we will use these vectors to obtain product formulae for
the singular vectors Ψr^s in terms of analytically continued expressions for Ψr2

and Ψf.

3. The Analytically Extended sc(2) Algebra

In the manner of Malikov, Feigin, Fuchs [13] and Kent [4] we extend the algebra
sc(2) to include operators of the form6 La_x for a G <C. This extension corresponds
to an underlying pseudodiίferential structure [4] for the even sector but not for the
odd sector. We define sc(2) to be the vector space7 which contains the generators
{Ln,G^,G~,Tn,L

a_ι,C;n eZ,r e TL\_,a G C} and on which the supercommutator is

6 Instead of introducing operators of the form La_} we could have equally well chosen T°_ χ However

La_λ turns out to be more appropriate as we shall see later on
7 The supercommutator_of two elements of sc(2) can not always be written as a linear combination

of generators, therefore sc(2) does not define a superalgebra The term "non-linear" algebra is sometimes
used by physicists
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defined and satisfies the (anti-Commutation relations (2.1) and in addition8:

[Lm,La_x] = Σ ( " J (m + \yirϊLm-i9 rn^O, rneZ,

[La_x,Lm] = g ( - i y f a A ( m + \YLm-iiri9 m<0, m

[Tm,La_x] = Σ ( ; ) { m Y L a - j T m - U m ^ O , m e Z ,

/ \
ί ) 1 Γ W _ ^ _ - ^ , m<0, meZ,

oo . /

ί

ga_x] = g ( J ) ( ' + 0 W ^ ; , r > 0, r G Zx ,

= 0 ,

La_λL
b_x = La+λ\ a,be<C. (3.1)

We point out that these commutation relations are not completely arbitrarily chosen.
For integral a they have to coincide with Eqs. (2.1) and for a G C we use 9

\B] = g

(3.2)
/ = 1

to obtain Eqs. (3.1).
It is easy to see that La_x has the conformal weight a and the ί/(l)-charge 0 for

ύίGC with respect to the adjoint representation.

The triangular decomposition of sc(2) is sc(2) = sc(2)_ 0 3^2 θ sc(2)+, where

sc(2)_ is sc(2)_ extended by the additional operators La_x. Exactly as above

we define vectors \h,q,c) which are simultaneously LQ, 7Q and C eigenvectors

with eigenvalues h, q and c respectively and sc(2) + \h,q,c) = 0. Despite the

fact that LZ\ lowers the weight10 we still want to call these vectors highest

weight vectors. It is straightforward to define the extended Verma module i^iι,q,c as

n^c = ί/(sΐ(2)) 0^2 θsc(2)+ \h9q9c).

8 The falling product (x)- is defined as x(x — 1) (x — n + 1)
9[A,B]i = [A,[A,B]i-i\ , [A,B]0=B and i[A,B] = [^[AJIB] ,0[A,B]=A

1 0 There is the usual historical confusion: what physicists call highest weight vector is actually a vector
of lowest weight in the Verma module
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The vectors in i^h,q,c a r e formal power series in L-\ for which we can give a
basis:

*A,*C = {L-u "L-hT-kκ T-klG+ G+GZ G- La_x \h,q,c) : ,
j + j\ j j

// ^ ^ ii ^ 2 , j } + > - - > Jt ^ -, 7 7 _ > > JT ^ - ,

For vectors with a = 0 the set of basis elements ^ ^ ° c decomposes in integer and

half-integer Lo grade spaces. Their operators shall be denoted by <£n\

fe ^ ... ^kx ^ l,

// + ••• + zi + # + + ••• +y'Γ +77- + + y f + fe + + kx = w} .

We can define products of such series using the usual Cauchy product of
series. However, without a norm, we cannot define the convergence of series
to zero. Instead we define a slightly generalised notion of singular vectors

in i^h,q,c

A general element at grade a in i^h^c is of the form:

£Ψa = W - i \h,q,c) + £ Σ λχkXkLaSik \h,q,c) . (3.3)

We say Ψb is of order b — N and we write !F^ = Θ(b — TV) if the leading term of

the series contains LbSx

N'.

oo

Σ Σ^ ^ A i ^ f \h,q,c) . (3.4)

Finally, we define the sequence of cut off vectors Ψ^f corresponding to Ψa:

M
M = λ0L

a_x \h9q9c) + Σ Σ ^ λXkXkL
a_~k \h9q9c), M e N . (3.5)

/tGNuN,
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Using this notation, we say the vector Ψap G i^h^c is singular11 if

L0Ψa,P = (h + a)Ψa,p, fleC,

sc(2)+!P^p = Θ(a-M) V M G N . (3.6)

This is a generalisation of the definition we gave for singular vectors in ^ ^ , c , as
the following two theorems show.

Theorem 3.A. If Ψnp G i^h,q,c is singular in i^h^c at grade n with charge p then

it is also singular in 'Ϋl^c

Proof Obviously L0Ψn,P = (A -f /O^VP and T b ? ^ = (q + p)ΨΆjP. Let us write

ίF^p in the basis @h,q,c''

n

M

%p = λ0L
n_λ I A, q, c) + Σ Σ « ^ _ ? I A, ̂ , c).

ΛGN 0 UN i

Let X be taken from sc(2)+. Since Ψ%p - ψnp = β?(n - Af - 1) we find:

χ ψ ^ = X ^ ( « - M - l) = ©(w-M). D

Theorem 3.B. If Ψap G ^,^,C W singular and finite then sc(2)+*Fα?/? Ξ 0.

Proof Ψa,P finite =^ 3me¥l:Ψap = Ψn \fn>m^ VXGs^(2)+, n G N, Λ > m:
XΨ^p = X ^ ^ = ^(fl -n)=ϊ XΨa,P = 0. D

For our further discussions we need to determine the coefficients12 λr+ r-
U-1/2^-1/2

and λτ_ι of Ψr,2- We use the notation:

Λ2(r,2) = λG+_ι/2GZι/2 > ( 3 7>

Λ3(r,2) = λτ_λ . (3.8)

Theorem 3.C. For Ψr2 we normalise λo = 1, then the coefficients A are:

(3.9)

i43(r,2)= ^ i ^ r . (3.10)

1 1 Again, Ψ G f ^ c implies C F - cΨ
1 2 Note that we normalised λo, the coefficient of L°_v to 1
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Proof. Only the longest partition of the expression (2.4) will contribute towards
Λ2(r,2) and Λ3(r,2):

(1,0,0,0)^(^)7! (r - 0 Eλ(r - 1) -^( l )^ Q ) (l,0,0,0)Γ .

If we replace L_i by \{Gtλβ

G-\i2 + ^-1/2^-1/2) a n d u s e ( G ί i / 2 ) 2 = : ( ) > t h e n

Λ2(r,2) is very easily verified by multiplying the components (1,1) of the prod-
uct E\(n)T\(n — \). Also, those matrix components are the only ones contributing
towards Λ3(r,2). D

To identify later the correct singular vector Ψrs we need its coefficient A2(r9s).
Equation (3.9), calculations for Ψ\s and computer calculations at higher grades lead
to the conjecture:

x — n
(3.11)

4. Singular Vectors in i^h,q,c

The determinant formula [4] tells us about the singular vectors in irh,q,c I n this

section we investigate the generalised modules i^h^c Using results of the following

section we find that at all grades the modules i^h,q,c contain two linearly independent

neutral singular vectors as well as one +1 and one —1 charged singular vector. We

can show that there are no singular vectors of charge greater than 1 or smaller than

— 1. In particular the module irhrtS{t1q\qic{t) contains two linearly independent neutral

singular vectors at grade j and ^ ± ( ί q) q c ( ί ) contains one ±1 charged singular vector

at grade k.

4.1. Uniqueness of singular vectors We take the most general uncharged vector in

fl^c sit grade a G C:

00

Ψϊ^λoLUlKq^ + Σ Σ λXkXkL
a-λ

k \Kq,c) , (4.1)

[T0,Xk]=0

and the most general ±1 charged vectors also at grade a G C:

* ί = Σ Σ λ±Xkirik\h,q,c) . (4.2)
k=i χk^

k

For convenience we want to use the following notation:
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Definition 4.A. Let I,J and K^1 denote the ordered sequences

I = (z ' l i / iμ i i/ i i . ! , . . . , / ! ) , /||/|| ^ ^ h ^ 2, zn G N , / I = 1 , . . . , | | / II ,

^ - ^ j \ ^ h j n GΊti 9n = 19...,\\J \\ ,

V^r '
(4.3)

w e d e n o t e t h e l e n g t h of t h e s e s e q u e n c e s b y \\I \\ , \\J \\ a n d \\ K ^ 1 \\ a n d

the sum by \I\ = Σ^J , im, \J\ = γ}^}χjm and \K±\ = Σ l = ΐ " ^ Γfe ^te o/fl//
these sequences shall be called J, f and J f ± respectively. Furthermore we denote
products of sc(2) operators by

*-J = *-J\\j\\*-j\\j\\-ι

T-K± = G-k+
\\κ±\\ ||tf±||-i

Finally, we take the sequences together:

ΛΛΓ+ / j j Ίf-\- ΊS— γ\^ J T1 C^ (~* —

with r, r^ G {0,1} .

Here length, sum, grade 5£ and charge <€ are defined as

(4.4)

La_x ,

^ I G Z ,

. .

(4.5)

M± || = || /

\M\ = |/|H

K~ II +r,

\M\+a,

|Λf±| + α + 1 ,

|| K + II - II K - II + r +

\\K+\\-\\K-\\ψr.

- r
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Using these definitions, we can rewrite the basis &h,q,c as

&h,g,c = {(I,J,K+,K~,r+,r-)a\h,q,c);

I G / , ; G / ^ G X ± , r ± G {0, l},α G <C} .

In fact, it seems rather unnatural to prefer the order G~^ι,2GZιn to ^-1/2^1/2- ^J1(^
in the following it will turn out that we should preferably choose a more symmetric
basis involving M±:

«k,g,c = {(I,J,K+,K-,r)+-\h,q,c},(I,J,K-,K+,r)-+\h,q,c);

I eJ,J e /.K* G 3ir±,r € {0, l},β € €} .

The subset of ^h,q,c containing the vectors at fixed grade a is denoted by ^%qc-
This basis naturally decomposes into two parts:

Klc = {(i,J,κ+,κ-,r)+-\h,q,c);ieJ,Je/,κ±ejr±,re{o,ι},ae<C},

and hence the Verma module decomposes as follows:

In this basis the vectors Ψ° and V* can be written:
a

Σ

CXD

+ Σ Σ λ*-Λ/-|λ,?,c), (4.6)
A:=0 M- =(i,j,κ-,κ+,r)~+

a-\M-\-\

OO

= ΣΣ Σ
I,J,K+,K-,

\M+\=k,V(M+)=±\

=\ M+=(I,J,K+,K-,r)+

2 J

a-\M+\-l

+ Σ Σ λ±-M-\h,q,c) . (4.7)
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W e c a n eas i ly w o r k o u t t h e c o m m u t a t i o n r e l a t i o n s o f G^, for Γ G N I , w i t h

G+

ιG~ιL
a_ι a n d G " , G + , Z/L,:

2 2 2 2

-_hG
+_,G-_hL

a~;-h \h,q,c), (4.8)

X ^ I ^ : I ^ ! I ^ - T ~ ' M>c> (4 9)

These commutation relations imply the following theorem:

Theorem 4.B.

Gt^ce n:̂ > σ r^, : c e ̂ - , r e N Γ (4.IO)

This enables us to give the main theorem of this subsection:

Theorem 4.C. Lέtf ^ ΛAirf Ψf be singular in:Vhqc at grade a e C. Λ r ^ w

) + ^ = ^(0,0,0,0,0)α~_+! = 0 ^> ^ ° Ξ 0 . ( 4 . H )

) + - = 0 = • « ? + = 0 , (4.12)

r* = 0=>y-=0. (4.13)

Theorem 4.C tells us that at given grade a there can be at most two linearly
independent neutral singular vectors, one +1 and one —1 charged singular vector.

In order to prepare the proof of this theorem we will introduce a partial ordering
on the basis ^h,q,c This is analogous to the Virasoro case [11] but turns out to be
far more complicated. We first define the difference of two sequences to be the
componentwise difference: δ(IuI2) = (i^minφiUhW) ~ ^minαi/,!!,!^!!),-.. A i ~ *2,i)
Similarly we construct the action of δ on the sequences J and K±.

Definition 4.D. We say I\ < h if the first non-trivial element of (S(/i,/2), read
from the right to the left, is negative. If δ(I\J2) is trivial we define I\ < I2 if
|| /i || > || I2 ||. The same shall be defined for the sequences J and K^.

We also define the ordering indicator function on the partitions /, J and K±:
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Definition 4.E. The function ε is defined as

h >h

Ii=h, (4.14)

h <h

and similarly for J and K±. For the numbers r we define:

( +1 rx < r2

s(rur2)= I 0 n=r2 (4.15)
{ - 1 n > r2.

For the following two definitions we keep a G C fixed.

Definition 4.F. For the basis elements M+ we introduce a total ordering: Mλ

+ <
M+ if \M+\ < |M+|. In the case |M+1 = |M2

+| we say M+ < M+ if the first non-
trivial element in the sequence (5(M1

+,M2

+) = (ε(Jx,J2),ε(Ix ,I2),ε(Kγ

+,K^),ε(Kλ~,
^2~),e(ri,r2)), read from the right to the left, is negative13. The basis elements
M~ can be ordered in exactly the same way, where we always have to exchange
the role of + and —

In other words, Defintion 4.F first orders M^ and M£ according to their sums
|M+| and |M+|. If |M+| = |M2

+| we say M+ < M2

+ if rx > r2, unless rx = r2. Then
we define M+ < M2

+ if Kx~ < K^. If even this does not come to a decision due
to K~ = K~, we do the same with K+: M+ < M+ if Kx

+ < K+. For K+ = K+
we take M+ < M2

+ if Ix < I2. And finally, if Ix = I2: M+ < M+ if Jx < J2.
On the set of basis elements M of the form

we extend the ordering 4.F by:

Definition 4.G. We define Mx < M2 ίf\Mx\ < \M2\. Again, in the case that \M\\ =
\M2\ we say Mx < M2 if the first non-trivial element in the sequence δ(Mx,M2) =
(ε(Jx,J2), ε(Ix,I2), ε(Kx,K2), ε(rx,r2)), read from the right to the left, is negative.
If this has not given a decision yet, we define Mx < M2 if Mx is of the form M+

and M2 is of the form M~.

The ordering 4.G is consistent with 4.F, so that taking the transitive closure of
the two orderings, we obtain a partial ordering on c^a

hqc with two totally ordered
chains consisting of elements of the form M + and M~. We can now start the proof
of Theorem 4.C:

Proof We first consider the uncharged case. The vector Ψ° has to have a smallest
element in each of the two totally ordered chains: let M^ be the smallest element
with non-trivial coefficient in the chain of terms of the form M + and

1 3 A crucial point for our later proof is that the operators Tn are ordered last
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accordingly Mo~ in the chain of terms of the form M~:

M o — \h >Jo >Ao >Ao ' Γ )a~\M+\-\ '

M = (A Λ ^ ' ^ ' Γ )

We consider first Mo

+. If KQ'~ Φ0 we take the smallest element in Kp~, k*'~,
and act with G\_ on the cut off vector Ψ%m, where m is sufficiently big. We

kχ ' - 1

generate a term (7^, 7Q+, KQΛ', ̂ '~\{A:1

+'~}, ro)*I\M+\ This term cannot be created
by any term which is according to ordering 4.F bigger. Furthermore, due to Theo-
rem 4.B, terms of the form M~ which cannot be compared with Mo

+ using the
partial ordering, cannot create such a term either. Hence Kp~ = 0, or otherwise we
would have a contradiction to the non-triviality of the coefficient of M^ . In exactly
the same way, we can show that for Mo~ the sequence K^+ has to be trivial. Thus,
the smallest elements with non-trivial coefficients in the chains of M+ and M~
terms have to have the form:

Mo~ = (I-,J-,K0-,<D,r-);:iM-^.

We now continue in the same manner using the ordering 4.G. We first assume

that MQ is the smaller term of M$ and Mo~. If KQ Φ 0 then it contains exactly

one element k+ and r+ = 1. We act with G^+_x on Ψ°m. This creates the term

(7+, J + ,0,0, l)+~, +.. In order to create a term of this type, terms of the form M+

a \MQ i

have to create another L-\ which is not possible for a term bigger than M^ . A term

of the form M~ contributing towards (7+,«/+,0,0, l ) + ~ + l , has to have K~ = 0 and
a \MQ i

hence r = 0. Such a term would have a sum strictly smaller than |MQ~|, hence it is
smaller than Λfo~ which contradicts the minimality assumptions. Hence, K+ = 0 and
because Ψ° is neutral we find in addition14 r + = 0. Let us assume now /Q~ φ 0. In
this case we look at the smallest element if of the sequence IQ. We act now with
/,,.+_! on Ψ°a

m. Again we create a term (7o

+\{/+},/o

+,0,0,O)+J |M+| by generating
an additional L-\. As before we see that any other term contributing towards this
term would violate the minimality of either MQ or Mo~. This implies that 7̂ " = 0.
Finally, we assume JQ Φ0. Again, we take the smallest element in this sequence:
jf. However, since the operators Tm cannot create L_i terms, we have to alter the
method slightly. We act with TJ+ on Ψ°a

m. This creates a term, where the Γ_yi has

been annihilated: (0,Jo

+\{y'Jh}, 0,0,0)^"^+,^. Since T_j+ is the only operator of

the form Tm which does not commute with Tj+ we find again that the only terms

which could contribute would violate the minimality conditions.15 Hence: J§ = 0.

If we had assumed that Mo~ was the smaller term, we could have gone through

1 4 In the charged case we obtain values for r+ according to the charge
1 5 Note that this works as well for jf = 1 which is a strong argument for choosing analytic continuation

of L_i rather than T-\
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similar implications for Mo~. This result can be summarised:

Mo

+ < M- => Mo

+ = (0,0,0,0,0)+^ ,

M- > Mo

+ =*• M- = (0,0,0,0,0)^+ . (4.16)

If we take the assumptions of Theorem 4.C, then Eqs. (4.16) lead to a contradiction,
since Mo

+ and Mo~ are totally ordered.
A similar argument applies for ψf9 where we have to take into account that

due to the charge of the vectors, (/o,./o>0>0>O+~ does n o t e χ i s t f°r Ψa and neither
does (7o,/o?0?0?^)~+ for Ψ~. This completes the proof of Theorem 4.C. D

4.2. Existence of singular vectors. If we act with sc(2)+ on the cut off vectors
Ψ°M, ΨfM and require the result to be of order a — M then we obtain linear homo-
geneous systems which we denote by 6^^(a,h,q,c) and 6^^(a,h,q,c) respectively.
Obviously the system ^(a,h,q,c) is a subsystem of 6^^+ι(a9h9q9c) and likewise
6^^(a,h,q,c) is a subsystem of 6^^+ι(a,h,q,c). We use the parametrisation (2.2)
for ^{a,h,q,c) and (2.3) for 5^(α,/z,#,c), where r,s and k are chosen to be in
C We expect to find singular vectors at grade a — j for the neutral case and a = k
for the charged cases, hence we replace a accordingly. The systems Sf^i(r9s9q9i)
and £^^(k,q,t) can be written such that all the entries are polynomials in their
variables.

A matrix has exactly rank j if all subdeterminants of size > j vanish and there
exists at least one subdeterminant of size j which is non-trivial. Let 1V°M and Ψ"^
denote the set of unknowns of the systems ^(r9s9q9t) and Sf^{k9q9i) respec-
tively. The system 6^^(r9s,q,t) has according to Theorem 3.A non-trivial solutions
for all pairs (r9s)9 where r , 5 e N and s is even. Hence all the subdeterminants of
^^(r,s,q,t) of size greater or equal to the number of elements in 1V°M have to
vanish for (r,s) G N x 2N and since these subdeterminants are polynomials they
are trivial for all r,s G C We find that ^^{r,s,q,t) has a non-trivial solution space
Π°M{r,s,qJ). The same arguments apply for ^(k,q,t); we call the non-trivial so-
lution space Π^(k,q9t). Let P^ be the projection operators into 1V*°M. We obviously
have P%pM+n = P% for n G N o . Since ^(r,s,q,t) C 5?°M+n(r,s,q9t) for n G N o it
is easy to see that P^{Π°M+n{r,s,q,t)) G Π°M(r,s,qJ). Moreover, we can show that
Pπ(Πo

M+n(r,^<l,t)) is non-trivial: assume Pπ(Π°M+n(r,s,q,t)) = {0}, then Ψ* G
Π°M+n(r9s,q,t\ Ψ» + 0 would have P%(Ψe) = 0 and hence ^ = 0( f -M - 1).
The action of sc(2)+ on Ψπ. has to be of order j — M — n. However the proof of
Theorem 4.C can be applied here in exactly the same way and we obtain Ψΐi — 0.
Hence we find the following inclusion chain:

Π^(r ,5,^0 2 / ^ ( Π ^ + K r , 5 , ^ 0 ) 2 i ^ ( ^ + 2 ( ^ ^ g , 0 ) 3 0. (4.17)

Therefore the limit of the sequence P^{Π°MJrn(r,s,q,ty) for n tending to infin-
ity exists for each M G N o . We denote this non-trivial set by XimΠ^r.s.q.t).
Since the dimensions of the spaces Pn(Π°M+n(r,s,q,t)) are integers this sequence
has to be constant for sufficiently big n. We say the sequence stabilises. This
allows us to prove that the projection operator P^ is in fact continuous: choos-
ing n sufficiently big in P%PM+m(Πo

M+n(r,s,q,t)) = P^(Π°M+n(r,SiqJ)) we obtain
PM(\\mΠ°M+m(r,s9q9t)) = lim77^(^5,^,0 f o r m £ ^ o Hence the sequence limT7^
defines the cut off sequence of a space of singular vectors which we shall denote
by 77°s. We can obtain the same important result for ^(k,q,t):
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Theorem 4.H. The sequences of homogeneous linear systems 9^(r,s,q,t) and
define non-trivial solution spaces Π^r.s^q.t) and Π^(k,q,t) respec-

tively. These spaces converge to non-trivial spaces of singular vectors. According
to Theorem 4.C the dimensions of the limit spaces Π° s and Π^ are bounded by
2 for Π°rs and by 1 for Πf.

In particular we have found that Sf^{k9q9i) defines at grade k uniquely the

charged singular vectors <F+ G ̂ { U q U Λ t ) and ψς G ̂ h-{UqχqΛt) for k e €. These

vectors coincide for ^ G N ] with the known singular vectors in i^h±,t qΛ q c,t\ and

for k G C they are analytic continuations of them.
Computer calculations solving Sf^ and 9^ show that already for small M the

unknowns at low grades become stable.

4.3. Theorems about singular vectors in i^h,q,c An immediate consequence of The-
orem 4.C is:

Theorem 4.1. Assume that Ψι and Ψ2 are two neutral singular vectors both at

grade a in i^h,q,c If

and

λι - λ2

(0,0,0,0,0)+^ "" (0,0,0,0,0)+^

1 - 1 2

(0,0,0,0,O)7_+, Λ(0,0,0,0,O)a~_+

1

then Ψλ = Ψ2.

Proof We look at the vector ΨΔ — Ψι — Ψ2. This vector is singular and

= ^ 0 0 0 0 O ) - + = 0. Theorem 4.C implies that ΨΔ = 0. D
^ 0 0 0 Q)+_

This enables us to identify the elements in Π°s using the two coefficients
~ and ̂ ( 0 0 0 0 O ) - + We shall therefore give the following definition.0 0 0θ) ( 0 0 0 0 O )

Definition 4.J. A vector Ψ G Π° s is denoted by giving the two coefficients

ί a n d λ(0,0,0,0,o)-+1

 in i h e station

ψ =

This automatically implies the following theorem.

Theorem 4.K. A neutral singular vector Ψo which satisfies Ψo = A(^9 \) at grade

0 in "Vhufi is identical to the highest weight vector: ΨQ = %q,c)..

Proof Using the standard parametrisation (2.2) we can find 5 G C such that

ho,s = h9 Ψoe no,s,q,c and hence Ψo G Π^s. Since H G ί i ' G I i } L - i = ι w e find

for Δ(j, \) at grade 0 that A{\, | ) = \h9q,c). Application of Theorem 4.1 completes
the proof. D
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The vectors in 77^ are uniquely defined up to scalar multiples. The notation

ψf shall indicate the normalisation λί(h« « * n - + = 1 for Ψf and ΛΊΛIΛ<ΛIΛM+- = 1
ft yyj,\p,v,VJ11) T Λ ^vy,vy,V!/,iU5 i) ^

for <P".
We have not yet shown that Π°s is indeed always two dimensional. However

we will in the following section explicitly construct a basis for this two dimensional
space. Beyond the purpose of this paper but of independent interest would be the
question whether we have found herewith all singular vectors in the modules 'fl^c
We can in fact say that due to the two parameters r and s for the uncharged case
not only q and t are free parameters but so is also the grade a. We can hence
for each /z, q and t guarantee to find a solution space at each grade a which is
non-trivial but at most two dimensional. Therefore we may denote 77°5 by giving
the grade a — j only1 6: 77°. Similar thoughts solve in the Virasoro case the related
problem completely as discussed by Fuchs [9], although the charged singular vectors
in the sc(2) case only depend on one parameter which complicates the problem.
Furthermore, we have not yet looked at higher charged singular vectors which may
appear in the generalised module. At the end of the following section we will be
able to give a solution to both problems.

4.4. Products of singular vector operators. In this subsection we define products
of singular vector operators. We start off giving their definition:

Definition 4.L. A singular vector Ψap e 1rh,q,c at grade a with charge p defines

uniquely an operator Θap e sc(2)_ such that Ψap — Θa,p\h9q,c). We call this

operator a singular vector operator with weight vector ω = (h,q,c)τ and grade

vector ξ = (a,p,Q)τ.

Theorem 4.M. Let us take two singular vector operators Θ\ and Θ2 with corre-
sponding weight vectors ω ; = (hi,q^cγ at grade ξj = (a^p^0)Γ, (i = 1,2). If

(4.19)

then the formal Cauchy product Θ^θγ is a singular vector operator with weight
(h\,q\,c)τ at grade (a\ + a2,p\ + Pi,0)τ. Hence, Θ2Θ\\hι,q\,c} is a singular
vector.

Proof We take the cut off vectors (Θ2Θ\)M\h\,q\,c). The definition of the Cauchy
product implies:

(Θ2Θi)
M\huquc) = <9f+ 26>f+%'<7i,c) + &{ax + a2 - M - 1) .

Let us take l 7X G sc(2)+. Since Θ\\h\,q\,c) is singular, there exists a module homo-

morphism φ from ^ 2 ,^ 2 , c into Ϋl^quc s u c n t n a t φ(\h2,q2,c)) = Θ\\h\,q\,c). Hence

1 6 The spaces Π certainly depend on h, q and t, however we shall omit this dependence in the notation
in the same way as for the singular vectors

1 7 X acting on &(a - N) may create an additional L-\, thus XΘ{a - N) = Θ(a - N + 1)
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we have θγ+ι\huql9c) = <K\h29q2,c)) + Φ(aι -M - 2):

X(Θ2Θι)
M\huquc) =

+a2-M).

The statement about the grade of the vector is trivial. D

In the following section, Theorem 4.M which is on products of singular vector
operators will be fundamental to construct singular vectors as product expressions of
known singular vectors. The key question will be to find out when we are allowed
to take the product, i.e. when the relation (4.19) is true. For this purpose we want
to introduce a relation on the weight space:

Definition 4.N. Let Ω denote the set of complex weights: Ω — C x C x C, and let
Ξ be the space of grades: Ξ = C x Zx{0}. The set T is defined to be the set of
pairs (ω,ξ) £ Ω x Ξ for which there exists a singular vector operator with weight
ω at grade ξ. We say (ω\,ξ\) e T is related to (ω2,ξ2) £ Ύ if

ω\ + ξ\ = ω2 .

In symbols we write: (ω\9ξ\) ~ (ω2,ξ2) .

This relation is neither an equivalence nor an ordering relation. It does not even
satisfy any of the standard axioms. Nevertheless, it relates those weights for which
we can take products of singular vector operators to obtain another singular vector
operator. We find the following multiplicative structure:

Theorem 4.O. Let θi(ai9bi) be the singular vector operator of the singular vector
Ai(ai,bi) with weight ωz and grade ξj9 where i £ {1,2}. θ^ denotes the charged
singular vector operator of Ψ^ with weight ω^ = ( ^ , ^ ± , c ) at grade ξ±. If
(ωuξι)~(ω2,ξ2) then:

Similarly, we find:

(ω£,£+)~(ω-_,£-_) => 0-_β+ =0(0,1) ,

(ω-_,ς-_)~(ω+,£+) => θ + θ " _ =0(1,0) .

Finally we can write the vector Ψr s for (r9 s) G N x 2N in the new notation. From
Eq. (3.9) and after normalising suitably18 we derive

^ ( ) ( ) )

Similarly we identify the more general vectors Ψrs using the conjecture (3.11):

M C H ^ H )
1 8 Note that we have changed the normalisation of Ψns From now on we always use this normalisation

unless stated otherwise
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5. Product Expressions for Singular Vectors

We use the operators Θ^ which are the singular vector operators of Ψ^. It is trivial
to verify the relations:

hr,s(U<l) = h+s-rt Λ*>q), (5-1)
Ί Γ 7

It ' t

(5.2)
t ' t

This implies that 6>+^_2(^)|/^(^),tf,c(0) and Θ'^ Jt,q)\hr,s(t,q),q,c(t))
It ^J It "•"t

are singular vectors in i^hr,s(t,q),q,c(t) Furthermore, we can verify weight relations

linking Θ+(t,q) and Θ~(t,q):

ht(t9q) + k = h-^(t,q+l), (5.3)

h-(t,q) + k = h^^q- 1) , (5.4)

According to the product theorem 4.M we find the neutral singular vectors:

2t t

(t,q - 1 ) 9 : ^ f (ί,?) |M'.?).?.c(O) ( 5 6 )Θ^_ 2(t,q - 1 ) 9 : ^ f (

We can now multiply these vectors again alternating with operators of the form Θ+

and Θ~9 where we have to choose the correct grade for the operators according
t o 1 9 Eqs.(5.3) and (5.4):

u-\

) \hr,s(t9q),q9c(t)) , (5.7)

m=0
(t,q - \)Θ~_ 2jR(t,q)\ \hr9S{t9q)9q9c{t)) . (5.8)

t it T t^ t J

These singular vectors are at grade —^-j1 + ̂ -. For u = | they turn out to be
at grade y. This allows us to construct for all ί ^ G C two linearly independent
vectors in the space Π°r\s which proves that Π°s is always two dimensional:

Theorem 5.A. For the space Π°s of uncharged singular vectors in Ϋl, s(t,q),q,φ) at
grade y we can give the two basis vectors (r, s £ (C)

,^c) , (5.9)

T3T I Γ β ^ * . 2^0,? " 1 ) © : ^ , ,, fett^lAr^^c) . (5.10)
2 / w 0 2 ί ' ' 2/ "*"/"•"/

1 9 Since the order in the product is significant, we define J^[>/(w) = f(b)f(b — 1) f(a + l)f(a)
m=0
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We can now very easily identify the singular vector Ψrs G i^hr s(t,q\q,c(t) where
(r, s) G N x 2N. We construct the linear combination of the vectors (5.9) and (5.10)
which leads us to the coefficient (4.21):

, / Ά f s r t q 1 \ ( s-rt q 1

s-rt q \ \ S. ( s-rt

xΛΓ,5(0,l) . (5.11)

The uncharged vector (5.11) is singular in 1^hr,s{t,q),q,c(t) at grade y and it is the
only one, up to scalar multiples, with the required coefficient Λiir^s) [Eq. (3.11)].
Hence, for r G N and s G 2N it has to be the singular vector Ψrs G Ϋhr,s(t><i)><iΛt)>
based on our conjecture (3.11).

The methods used to obtain the product expression (5.11) were quite different
from the methods used in the Virasoro case [11]. This was mainly due to the
coefficients of Ψr2 not being polynomials in the grade r. We could not tell if the
analytic continuation exists and if it does, in terms of what functions it does exist.
The expression (5.11) can now give us an answer to this problem. The singular
vector Ψr s is a linear combination of two infinite vectors, both having polynomial
coefficients. The linear combination coefficients are products which we can continue
analytically using Γ-functions. This proves as well that we can continue Ψr2 in

the usual sense, by writing it in terms of the basis ^hr,2(t,q),q,c(t)' The coefficients
will be linear functions of the products in (5.11). The analytic continuation of

- ^ + Ό is given by %Sl%\ a n d f o r ΠUί^f 1 + ΐ " Ό w e find

This enables us to define the analytic continuation of Ψr^ using the

vectors (5.9) and (5.10) and choosing a suitable normalisation:

Definition 5.B. For r G C we define

Θr2 is defined to be the singular vector operator of Ψr2 For r G N, Ψr,i is
proportional to Ψrs.

Similarly to the Virasoro case we will now derive a product expression for Ψns

using operators of the form Θr2 only. We find hrs(t,q) = h_s_zrL.2 M,q), and hence

Θ_sz-li+i 2\hr^s(t,q),q,c(t)) is a singular vector. We verify the relation hr2(t,q)-\-

r — hr+4 2(t,q) It allows us to construct products of the operators Θr2- If we apply

this relation successively, we obtain a neutral singular vector at grade y:

G Π°rs . (5.12)
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To identify the vector (5.12) for r G N and s £ 2N in Π°s we have to know as
usual the first two coefficients. We use Definition 5.B and the multiplication rules20

of Theorem 4.0:

/ ΓΎ £ _j_ s+rt I 1 \ p( £ _ι_ s—rt ι 1 \ \

~ 2 ^ ^ Γ r ^ 5 - r r • i y Γ ^ J + ^ , 1 x 1 - ( 5 1 3 )
\ i W 2 ί " t " 2 > ' i W 2/ f 2 V

Thus, this identifies the vector (5.12) to be Ψrs for r G N and s G 2N. As a matter
of fact we just grouped the linear combination of products in the expression (5.11)
in a product of linear combinations. This was easily done due to the antisymmetric
character of Θ^r:

• θ_,^ + ϊt2Θ_sΞjrL + if2\hr9S(t9q),q,c(t)) . (5.14)

By extending the algebra sc(2) to sc(2) we have introduced inverse operators
of L_i. Does the extended algebra contain in addition other inverse operators of
elements in sc(2)? We will find that sc(2) does contain inverse operators for <9r?2
As the weight relation hr^{Uq) + r = h-r^{t,q) suggests, β-r,2®r,2|Ar,2(^^),^c(0)
is singular at grade 0. Again, we need to classify this singular vector in 77Q:

r ± \ \ r ( 2 = ± - r-=±Λ V 2 ' 2

Provided Θr2 does not vanish identically21, we can apply Theorem 4.K which leads
us to:

For the uncharged operators Θf we will be less successful. We find relations

K&V) + * = * !*(*»#+ 0 a n ^ K&Q) + ^ = htk(t,q - 1) which imply that the

two operators ®Z^(^^+ l ) ® ί ( ^ ^ ) a n d Θ^_k{t,q — l)Θ^(t,q) are singular vector

2 0 Let us recall that θr,s(a,b) is the singular vector operator of Ar,s(a,b)
2 1 The roots of Θr,2 will be considered in a later section



216 M Dόrrzapf

operators at grade 0. However, identifying them in ΠQ gives:

ΘZk(t,q+l)Θ+(t,q) = 0o(O,l),

t,q) = 0O(1,O).

These equations cannot be inverted. Nevertheless, we can construct a combination
of them which is according to Theorem 4.K equal to the identity:

In fact having no inverse operators for the charged singular vectors is not surprising
at all. The reason for this is that we extended the algebra by uncharged operators
only. In order to include inverse operators for the charged singular vectors we would
have had to extend the algebra further, introducing charged extended operators.

The result of this section enables us to name all singular vectors in the gener-
alised module i^h,q,t- As mentioned earlier for the uncharged vectors we can use
the two parameters of hr,s to fix h and the grade α = f independently for suit-
ably chosen r, s G (C. Hence the space Π^s defines a two dimensional space of

uncharged singular vectors in ^h,q,t at grade a. Let us then assume that Ψ G i^h,q,t

is singular at grade k with charge different from 0 or ± 1 . The proof of Theo-

rem 4.C can be applied in exactly the same way except that in this case the small-

est terms (0,0,0,0,r)+~ and (0,0,0,0,r)"+ both cannot exist due to the charge

of the vector. Hence there are no singular vectors in i^h,q,t with charge different

from 0 or ± 1 . Finally in the module i^h,q,t we find a +1 charged singular vector

ψ++ = <9++ \h, q, c) at grade k+ = - f + ~ ^t2 + Sth + 4q2 and a - 1 charged sin-

gular vector Ψ~_ = Θ^_ \h9q,c) at grade k~ = ^ + γt y/t2 + 8th + 4q2 since in both

cases k^ was chosen such that h = h^±. For given grade k we look at the mod-

ule i^h+k+,q+\,t and take its uncharged singular vector operator Θ^_k+(l,0) at grade

k — k+. Then the vector θ^_k+(l,0)Θ^+ \h,q,c) is singular in f^h,q,t with charge +1

at the given grade k. It is important to note that we could not have taken the oper-
ator 0£_k+(0,1) since θ^_k+(0, l)Θ^+ \h9q9c) = 0. Similarly we can construct a —1

charged singular vector at grade k. This gives us all singular vectors in the Verma

module i^h,q,t

Theorem 5.C. In the Verma module i^h,q,t we find at each grade a e C exactly a
two dimensional space 77° of uncharged singular vectors, a one dimensional space
77+ of + \ charged singular vectors and a one dimensional space Π~ of — I charged
singular vectors. This is a complete list of all singular vectors in i^h,q,t

6. Relations Among the Uncharged Singular Vector Operators

So far, we considered one class of BSA analogue operators only. These were the
operators Θr2 for which we can give the rather simple expressions (2.4) for r G N.
We extended these operators analytically in the previous section. Using the fusion
procedure described in our earlier paper [6] we can also find expressions for the
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second class of BSA singular vectors Ψ\tS. But since we have to start the procedure
using a grade 2 singular vector, the vectors Ψ\s turn out to be more complicated.
The explicit formulae for Ψ\s are given in App. A for the fusion parameter η = 0.
We now want to repeat briefly the results to continue Θ\s analytically. Analogously
to Eqs. (3.9) and (3.10) we find if λo is normalised to 1:

( 6 υ

Λ3(l,s) = i ± i - | . (6.2)

This identifies Ψ\tS uniquely in Π°iS and we obtain after rescaling:

^jίqψ) (6.3)

Thus, the analytic continuation turns out to be rather simple. We define for s e C :

Ψι,s = ̂ y - ^ U l . O ) + ί^lAu(0,1), (6.4)

and we let Θ\s denote the singular vector operator of Ψ\}S. We proceed exactly as
for Ψr2 The key points are the weight relations

(6.5)

* I , J ( * > # ) + 2
 = hhs+2t(t,q). (6.6)

Hence, the neutral vector

Θ\,s+t(r-l)Θ\,s+t(r-l)-2t " ' * ®\,s-t(r-\)-\-2t®l,s-t(r-l) |̂ r,s(^ #)? #? <?(0) (6.7)

is singular at grade y. Again, by comparing the two first coefficients with (4.21),
for r e N and s G 2N, we can identify (6.7) to be Ψry.

1
Ψr,s = ^ZΓ®l,J+ί(r-l)®l,ί+ί(r-l)-2ί * ' ' βl,5-ί(r-l)+2ί01,j-ί(r-l) \hr,s,q,c) . (6.8)

Finally, we construct the inverse operator of Θ\s based on the weight relation:
h\,s(t,q) + f — hx^sfaq). We obtain:

t ' ί

•*^ = ?7Γϊ # 1 -- ( 6 9 )

In the following we investigate relations among the two types of BSA analogue
operators Θr2 and Θ\s. The key observations are the following identities among



218

the conformal weights, which can be checked easily:

M Dδrrzapf

(6.10)

(6.11)

(6.12)

(6.13)

In the usual manner, Eqs. (6.10)—(6.13) lead us to an identity among the operators

Θr2 and Θ\s. For r, s G C we have:

(6.14)

(6.15)

(6.16)

(6.17)

This relation is equivalent to:

Θ7L s+t+2 2(^q) — Θ-s-t+2 2(^q)Θλ_s(t,q) .

We can summarise these equations using a diagram which visualises the commuting

products of the operators Θr2 and Θ\s\

F i g . 1. C o m m u t i n g p r o d u c t s o f o p e r a t o r s o f t h e f o r m Θr2 a n d Θ\s

As we will see in the next section, the operators Θr2 and Θ\s may vanish for
certain points (h,q,c). Besides Fig. i suggests for the uncharged singular vectors a
structure similar to the Virasoro case [11].

2 2 Note that this diagram contains operators of the type Θr2 and Θ\s only but does not consider the

remaining vectors in Π ° 2 and 77° s
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Exactly as for Θr2 and Θ\s we can find inverse operators for the analytic
continuation of Θrs. We define the analytic continuation of (5.11):

* V It + ί + 2 j ^ ( 2ί + ί "^ 2 j

As usual, we denote the singular vector operator of Ψrs by Θrs. In order to find
the inverse operator of Θrs we need to multiply it by an operator Θrιs> such that
hr,s(t,q)+ f = K',s'(t,q), and in addition y + r-f- — 0. These weight conditions
have four solutions for (r',sf): (—r, s), (r, — s), (~r —rt) and (—j,r£). These solutions
do not define four different inverse operators, in fact the operators corresponding to
these solutions are mutually proportional. Again, the inverse operator exists only at
the points where Ψr,s does not vanish identically. Identifying the vectors in ΠQ as
usual leads to:

Θ~] = \θ^s. (6.19)

7. Roots of the Product Expression for Ψr,s

From now on we consider again r G N and s G 2 N . We obtained for Ψrs the
product expression (5.11):

If we follow a curve in the (t,q) plane on which ε^s(t,q) = 0 we find that z! r^(l,0)
is singular in 1rh,,s(t,q),q,c(t) Similarly for £^s(t,q) = 0, Ar^(0,1) is a singular vector
in i^hrs{t,q),q,c{t)- The linear system which determines the coefficients of a singular
vector can be written with polynomial entries, hence, at an intersection point of the
curves ε+s(t,q) = 0 and ε~s(t,q) = 0 w e observe that both, Ar,s(l,0) and Ars(0,1)
are singular vectors in i^hr,s(t,q),q,c(t) at the same grade y. At these intersection
points the product expression (5.II) vanishes identically and we have Ans(l,0) and
^r,s(0>l) spanning its tangent space. In this section we investigate further to find
out, where these intersection points are. In the following section we look closer at
the tangent space at an intersection point and we give an explicit example.

Definition 7.A. We define:

$,{t,q) = JΠ ( ± ^ + 7 T \ ± «) (7.1)

If we assume ε+s(t,q) — 0, this implies that there exists a k G Nj., \ ^ k ^

r — \, such that s-^f + ^ — \ — —(k -f \). A simple calculation shows that we then

obtain hrίS(t,q) = h^(t,q). Similar considerations for ε~s{t,q) lead to:

2 3 Note that by definition Ψr,2 and Ψt2 are proportional only and not identical
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Theorem 7.B.

ε+s(t9q) = 0 ^ 3 ί G N ί , \ ^ k ^ r - \ \ hrtS(t9q) = h+(t,q) ,

^ 0 > 4 ) = 0 ^ 3 ί G N i , \ ύ k ^ r - \ \ hTiS(t9q) = h~(t,q) .

The curves with vanishing functions ε+s(t,q) or ε~s(t,q) turn out to be the
representations, where in addition to the uncharged singular vector in i^h^siuq^φ)
we have at least one charged singular vector. To investigate these representations
further, we parametrise the conformal weight h by aj and q. Feigin and Fuchs
treated the Virasoro case in exactly the same way [8]:

2 _ 2 _ f-
h= -z , a,t9qe(C. (7.2)

Here t is the rescaled t: t= | . If we assume h = hrfS we find that the point (r,s) is
an integer pair solution of the linear equation s = tr — a, where s = | . Also, h = h^
has two roots: k+ = -f~ + f- and k~ = ^ + fr We assume that k+ = — ^~ -f ^ is
in N i . These are exactly the representations we want to look at, if only k+ is in
the range \ ^ k+ ^ r - \\ then ε+s(t,q) = 0. Hence, besides the neutral singular
vector Ψrs at grade τ\s there is a positive-charged singular vector ψ£+ at grade A:+.
Starting from the vector ψ£+ as highest weight vector embedded in i^h,ίS(t,q),q,c(t) we
find that its weight is parametrised by a' — a + 1 and q' = q -\- I. Hence we obtain
a neutral singular vector Ψr>,s' in this embedded module, by solving the equation
for integer r' and s'\

s1 -s = t(rr -r)- 1 . (7.3)

Equation (7.3) has at least one solution: r'o = r and SQ= s— 1. Only for ? G Q
we can find more solutions. In this case with t= ξ and u,v coprime, we find the
additional solutions: r'n=r'Q + nv and s'n = s'Q + nu, where n e TL. If r'ns'n > 0 then
we call the corresponding singular vector ^ , ^ Again, we take Ψr'n,s'n

 a s o u r n e w

highest weight vector, embedded in the original module. The embedded module
has the parameters a" = a + 2sf

n + 1 and q" = q -\- \. We try to find out if this
embedded module contains a negative-charged singular vector. For this purpose we

construct the combination k~ = ^- + a+ 2ΐ+ ^ o r (rθ'^o) w e find ô~ = ~ ^ + "̂  r ?

which is even valid for t φ Q, and if ? G Q we obtain the additional solutions:
k~ = -k+ + r + ΛU. If A:+ £ N i and ^ ^ A:+ ^ r - ^ we have £~ e N j . If we
were dealing with the Virasoro case, we would believe that the product of the three
operators Θ~, Θr'0,s£ a n ( l ®t+ le a (^ s to a neutral singular vector in Ί^hrs(t,q\q,c(ty

Θ~Θr^Θ^+ \hriS(t,q),q,c(t)) which is at grade k+ + k^ + r'0SQ = rs. However, as

a consequence of Theorem (7.B), the operator Θr> §> is of the form ^/^'(0,1)

since \ ^ k+ ^ rf

0 - \ except for the case that both conditions of Theorem (7.B)

hold. Therefore in the case .SQ^O w e m a Y ^n^ ®r's'®t+ \hr,s(t,q),q9c(t)) = 0 and

otherwise we obtain Ψr,s In Fig- ϋ we shall indicate this by dotted lines meaning

that the shown connexions may be trivial. And conversely, if we assume we have

the singular vector Ψrs and Ψk+ and we want to write Ψrs as a product of singular

2 4 For s0' = 0 we only take Θ~_ <9++
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vector operators in i^hrs(t,q),q,c(t)- We want this product from the left to the right to
consist of a negative-charged operator, an optional product of uncharged operators
and a positive-charged operator Θ^+. For t (|Ξ Q there is no other possibility than
the one described above and hence necessarily \ ^ k+ ^ r — \. If t e Q, we can
in addition find Θr'niS'n or a product ^r'n',s'n'^r'mn,s

/

mn where r^n = r'o + (m + «)t> and
s'mn~ ~$o + (w — «)w. An analysis of both cases shows that we find necessarily
\ ^ k+ ^ r — \. However, in the same way as before Theorem 7.B implies that
the product may vanish. The same arguments can be applied for ε~s(t,q). We can
summarise this important result in the following theorem:

Theorem 7.C. The representations with εfs(t,q) — 0 or ε~s(t,q) — 0 are exactly
the ones which can be summarised in the diagrams:

r- o

s = 2

Fig. 2. Representations with s^s(t, q) = 0.

Similarly for the case £r>s(t,q) — 0.

At the intersection points of the curves ε+s(t,q) = 0 and ε~s(t,q) = 0 we have
representations containing the uncharged singular vector and both one +1 charged
and one — 1 charged singular vector. In the embedding diagram starting at the highest
weight vector and following either of the fermionic lines, we may for both fermionic
singular vectors reach the grade y. However these two vectors are not the same
according to the expression (5.11) for Ψrs. We want to call the representations at
the intersection points of ε^s(t,q) = 0 and ε~s{t,q) = 0 degenerate representations
and the intersection points themselves shall be called points of degeneration. We
have herewith classified all representations for which (5.11) identically vanishes
and produces two linearly independent singular vectors. The feature of having two
linearly independent neutral singular vectors at the same grade is so far unique
in the case of conformal algebras considered in the literature. The implications
that the degenerate representations are exactly the ones given in Fig. 2 rely on the
conjecture of the coefficient Λ2(r,s) [Eq. (3.11)]. This conjecture is based on the
proven expressions for Ψr2 and Ψ\iS9 on computer evidence for different values of
r and s and as well on consistency calculations of the product expressions for Ψrs

using known singular vectors. Hence we can find plenty of cases for which ^ ( r , s)
and the degeneration is proven. Among them we will give one explicit example
in the following section. As this example shows, the N = 2 embedding diagrams
conjectured independently by Kiritsis [12], Dobrev [5] and Matsuo [14] are wrong.
Moreover, it is an immediate consequence of the results of this paper to find out
which products of embedding homomorphisms are trivial. We discuss the embedding
diagrams for the sc(2) algebra in a forthcoming paper [7].
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8. Degenerate Singular Vectors

In the previous section we have found that for some particular cases both vectors
in 77° s happen to be finite and we obtain two linearly independent neutral singular
vectors in i^ht s(t,q\q,c(t) at the same grade y. On the other hand, we gave in ref. [6]
explicit expressions for Ψr2. Using the tangent space of Ψr>2 and without using the
knowledge of the previous section, we can understand the fact that Ψr2 is a linear
combination of two generalised singular vectors which both happen to be finite at
a point of degeneration. We may assume that the expression of Ψrs is given with
polynomial coefficients. If it vanishes identically for a particular pair (t,q), we then
divide the singular vector components, which are polynomials in t and q, by the
common root. It is easy to see that we obtain at most two linearly independent
vectors at such a point.

Let us consider a polynomial vector field Ψ(t,q) over a two dimensional dif-
ferentiable manifold parametrised by (t,q). Suppose there exists a point (to,qo) at
which the vector field vanishes. Following an arbitrary linear path through this point,
at + βq = at0 + βqo, we find that we can factorise this root from the vector field
in order to obtain the derivative v^β(to,qo)'> *̂ α,/? — (ut + βq — onto — βqo)v<χ,β It
corresponds to the partial derivative ttjt + βγ\

( α | + β^) Ψ,,β{Uq)\ ^ = ((α2 + β2) + {at + βq - atQ - βqo)

Here (α2 + β2) does not vanish. The tangent space is two dimensional and hence
v<χ,β(to,qo) lies in a two dimensional vector space.

Consequently in the case where the polynomial expression for Ψrs vanishes, it
can describe at most two linearly independent singular vectors at the same grade
with exactly the same charge. We now give an explicit example for this new feature
which does not appear in the Virasoro case or the N = 1 superconformal case, where
the underlying manifold is just one dimensional.

As an example we choose Ψ^2 as given by Eq. (Bl) in App. B using the standard
basis. We calculate the singular vectors at the point2 6 (to,qo) = (1,0) where (Bl)
obviously vanishes.

)\h^2(t,q\q,c(t)} , (8.1)

3̂,2(1,0) = Θ\+^{t,q-\)Θl_^{t,q)\hχ2{Uq\q,c{t)) . (8.2)

2 5 In the case where the root ato + βqo is contained more than once the same argument can be applied
successively

2 6 Let us remark that this point belongs to the unitary series; in fact it is the trivial one-dimensional
representation
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These expressions make it clear that the vectors /d3?2(l,0) and ̂ 3,2(0,1) are products
of the operators θf and Θf on the lines q — t -+- 1 = 0 and q + t — 1 = 0,

2 2

t- 1
,ί-1,3-30 ,

=,_( = θ\(t,-t)θ-[(t,\-t)
t- 1

(8.3)

, l - ί , 3 - 3 ί > . (8.4)

We use Eqs. (B2)-(B5) given in ref. [6] to determine ^3,2(0,1) |^=ί_i and
^3,2(1,0) \q=\-t' After normalising suitably we find:

2 ~~ 2

1 1
2 2

- 4(2ί

- ϊ - 5

"2 ~ 2

t- 1

^ * G = i

, ί- l ,3-3θ ,

(8.5)

"2 ~ 2 "2 ~ 2

:_!G+ 3 ^:i -2(/+l)L_2G+1G"1
2 2 2 2

t + 5)Tl2G+1GZι
2 2

t- 1

Γ _ i G , σ ,
2 2

" 2 ~ 2 '
- , l - ί , 3 - 3 M . (8.6)

If w e evaluate ( B 1 ) on the two lines q — t + 1 = 0 and q + t — 1 = 0 we verify the
proportional i ty:

q=t-ι (8.7)

(8.8)

Finally, considering the point (to,qo) = (1,0) at which Ψ32 vanishes leads us to two
linearly independent singular vectors. Following the line q — t + 1 = 0 into (1,0) we
find as singular vector A3^(0,1) \t== i;̂ =o which corresponds to the partial derivative
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of Ψχ2(Uq) with α = 1 and β = - 1 in (1,0):

^3,2(0,1) | , = u = 0 = {4^3_! + l2L2_λT-χ -2L2_xG
+_{_G-_λ_ - SL-2L-i + 8Z_17^1

-6L-χT-λG\GZι -28L_iΓ_2-8L_2Γ_i
2 2

3 +8Γ_ 2 G +

1 G" 1 + 40Γ_3} 10,0,0) .
2 ~2 ~2

(8.9)

Similarly, we can follow the line q-\-1 — 1 = 0 into (1,0) for which we end up
with the singular vector J3 >2(l,0) \t=\tq=o, corresponding to the partial derivative of
Ύxi&q) with α = 1 and β = 1 in (1*0):

^3,2(1,0) | , = u = 0 = {2L2_ιG
+

ιG~ι - 6 L _ 1 Γ _ 1 G +

1 G ~ 1 - 4 L _ 2 G + 1 G - 1 + 4 7 ^
2 ~ 2 2 2 2 ~2

x G\GZx +4Γ_iG+ 3G !: 1 +87Ti2G+1G21}|0,0,0) .
2 2 2 2 2 2

(8.10)

These two vectors are linearly independent and span the whole tangent space of
^3,2 a t (t = 1, # = 0). Following any other direction does not give any further in-
formation but linear combinations of these two singular vectors.

9. Conclusions

We defined analytic extensions of the N = 2 (untwisted) Verma modules for which
we showed that they contain at each grade two linearly independent uncharged
singular vectors and one +1 and one —1 charged singular vector. We constructed
these singular vectors explicitly using analytic continuations of the BSA analogue
vectors and the charged singular vectors known from ref. [6]. This extended structure
which is apparently shared at least by superconformal algebras and Kac-Moody
algebras has in our opinion not obtained enough attention by the literature and should
be studied in more detail. Our conjecture of the coefficient A2(r,s) for the singular
vectors Ψns allowed us to give product expressions for all singular vectors of the
algebra sc(2). This leads generically to a Virasoro like structure for the uncharged
singular vectors. However there are points at which the whole two dimensional
uncharged space of singular vectors of the generalised module lies in the original
Verma module and leads to two linearly independent uncharged singular vectors at
the same grade. For this important implication of the conjecture we gave an explicit
example for confirmation. This disproves the existing literature about the N = 2
embedding diagrams [12, 5, 14] and shows a feature of superconformal algebras
which had not been discovered so far. We made clear where we disagree with the
existing literature about N — 2 superconformal embedding diagrams which we will
clarify in a forthcoming publication [7].
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Appendix

A. The Singular Vectors ΨίfS

We can also write the vectors Ψ\s for s G 2N (̂  + 2) as a sum over partitions using
the fusion method with η = 0:

ψu = (2t,(t - 2k,0,0) ± Σ KM © V.+i ( I " "

«2

/ It \

\ υ

The four-by-four matrices Ek(n), Tk(r) and E'k(ή) are given by:

pk (nΛ pk (nΛ pk (nΛ pk (nΛ \
^\\\n) ^\2\n) ^13vA'/ V\4\n) \

4M) e2l(n) e2?>(n) e2A^f

0 0 y(n)δkλ 0

\ 0 0 0 y{n)δ

Ef

k(n) = 0 , k ^ 3 ,

0 0 0 \

Tk{r) =

0 0

ί*2(r)

7*(r) = 0 , A: ̂  3 ,

= (2q±2rtψst±s±t)(2q±2rt±sτt) ,

e\{(n) = — - 2)s + 2ί + 4]q - (t3 + At1 + 12/ - 16> - (V2 - 8ί + 4)s

- 4ί 2 - 8* -

2t2- 2)s -Aq-t1 +At+ I2]n2t2 + 4(st -s-t + 2)(s -t-2)q
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+ 2(st -2s + t2 + 4)0 + 2)q2 + (t2 + 4)0 + 2)rf

- (t - 2)s3t - $n3t3 - 8q3t - Ss3t]L_{

+ q[(t2 + 6ί + 4)0 - 2> - (ί - 2)s3t + 4ί 2 + 16*

+ 16 - [(ί2 + 4)0 - 2> + 2ί3 + 12ί2 + St + 16]n + 2(ί2 + 4)«2ί

+ 2(/2 - 4)^2]]Γ_! - 4ί[[(ί - 2)s + 2t + 4]nt

+ (st-s-t + 2)(s -t-2)- 2n2t2 - 2^ 2 ί]G + , G", } ,
2 2

e}2(π) = -{[(t - 2)s + ί2 + At + 4 - 4wί

, : i

e\3(n) = —

2s + 2t + 4)(2q + t - l)nt + 2(2q + t - \)n2t2

{t + 2)(ί - l)rf - (ί - l)^ 2ί + 4g 3]G+ x ,

e\4(n) = -

+ (4^ _ tf + 2s - 2ί - 4)(2^ - ί + \)nt

— (ί + 2 ) ( ί — l)st + (t- \)s2t + 4q3]G

- 2) - ί2 + 12] - 4^2 - s2 + 4. + t2 - 4}n2t
2 + 4. + t2 4}n2t2

- t - 2)st - 2{t + 2)q2](st - 2s + t2

3 + 425 - 8^2ί - %q2 - 4qs2t + Aqs2 +

s3 - 6s2 - st2 + 12s + 2ί 2 - 8)(V - 2)nt

X

- 2)s + (3ί - 4)0 - 2)s2 + 2(ί - 2 ) V -

8/ + 32]n2t - 8[2(f - 2)s + t2 + %\n3t2 - (2q2s(t - I)2

- A(st - s - t + 2)(s - t - 2)<V - 2)^ 2 + S(t - 2)q4t - 32n3qt3]L-

- 4q2t2(t + 3) - 16#2 + s3t2 - 2s31 + ^ 2 ί 3 - 4vS2ί(ί - 1) + 12rf2 -f

- 4ί3 - 16ί(ί + l)](ί - 2 ) φ 2 ί ( f - 2) - ^ 2 0 + 4) + Ss(t + 1)

- 40 + 2) 2]0 - 2)^ 2 - 20 -f 2)0 - 2 ) V + lβn4t3]T^

- \ί(4q2s - Sq2t - Sq2 + s3 - 6s2 - st2 + 12s + 2t2 - 8)
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x (/ - 2)nt - 2(4q2 + s2 - 4s - t2 + 4)n2t2

- 2(st -s-t + 2)(s - t - 2){t - 2)q2 + 4(t - 2)q4t]G+iG+L ,

! , . \[2n2t2 + nt(2-s)(t-2)-2q2(t-2)][4nt + 4q-st + 2s-(t- 2)2]}e22(n)= [ j £_,

-sV + st2+4s-2t2-8(t+l)](t-2)n-2(t2+4)n2t+2(t2-4)q2

nt

w 1 w 1 ?
«/ ~2 ~2

^ („) = A[2{2[3(7 - 2> - ί2 + It + 8]# + (3t2 - 13/ + 2> + (t + 1>2

«/2

- 4(7 - 3)#2 - 2/2 + 16/ - 8}«2/2 - 2(f + 2 - 5)(ί - 1)(/ - 2)#sί

+ [16^3 + 4^ 2 J(^ - 3 ) + \6q2(t + 1) - 2^2(/ - 2)

+ 2<?^2 - 8^5(ί - 1) + 4qt(t + 4) - ,s(ί + 1) - 52/(ί - 9)

+ 4 φ - 1 ) - 18jί + 4ί(ί + 2)](ί-2)/ι/-8(2^ + / - 1)«3/3

+ 2[s2(/ - 1) - 3st(t - 1) + 2s - 2t(t + 2)](t - 2)q2

- 4(st -2s + 3t + 2)(t - 2)q3 - 8(f - 2)qΛ]G+_x_ ,

^ 4 ( Λ ) = A[2{2[3(ί - 2)s -t2 + 2t + &]q - (3t2 - I3t + 2)s - (t + 1 > 2

+ 4(/ - 3)#2 + 2/2 - \6t + 8}« V - 2(t + 2 - *)(* - 1)(/ - 2)^ί

+ [16^3 - 4^2,s(/ - 3) - I6q2(t + 1) - 2^ 2(ί - 2) + 2^/2

- 8#s (V - 1) + 4qt(t + 4) + s(t + 1) H- Λ(V - 9) - 4 φ - 1)

+ ISst - 4ί(ί + 2)](t - 2)nt - S(2q - t + 1> 3 / 3

- 2[s2(t - 1) - 3ίί(ί - 1) + 2s - 2t(t + 2)](ί - 2)g2

- 4(jί - 2,s + 3/ + 2)0 - 2)#3 + 8(7 - 2)^4]G~! ,
2

Λ , , 2« 2 / 2 — nst2 + 2w5 ί — 2«ί 2 — 4«ί + 2ύf2/ + 4g 2 — s2t

2 2

4t2L2_x + 2/3L_2 + (t2 - 4)Γ£j + 4/(Z

1 3 3 , ) 1 1 1
22 22 2 ~ 2

/3Z1)Γ_2 +4t2Li{ + 8/I-1 Γ_, - 2/3Z,_2],
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2
e2

3(n) = — [2n2t2 - 4nqt - nst2 + 2/iΛ ί - 2«ί2 - Ant + 2# 2ί -f 4# 2 + #sf

- 2#s + qt2 + 4 ^ + 4q - s2t -f ^ 2 + 2s/]

2
— [2n2t2 + 4 « ^ - nst2 + 2/wf - 2nt2 - 4nt + 2^2ί + 4# 2 - qst

+ 2#s - ^ί 2 - 4^ί -4q- s2t + 5ί2 + 2st]

- 4 )

x{4t[(t- l)(G+2_GZi -G+

iGZ^) + 2T_ιG
+

ιGZi -tL2_λ

2L_!Γ_!] + 2ί 3Z_ 2 + (ί 2 - 4)T2_X

G , - G ^ G : 3 )
2 2 2

i G : i -tL2_x -2L_ 1 Γ_ 1

OO = A t 8 ^ ^ 3 ~ l6n V 2 - 6/22^2(ί - 2) - 2fl V(V2 + 12)

- 8«^2/2 + \6nq2t + 8 « ^ 2 - \6nqst - Snqt3 + 32w ί̂ + ns2t3

- 4ns2t2 + 4«Λ + «^4 + 4«^2 - \6nst - 2«ί3(ί + 2) + 8«ί(7 + 2)

+ 4^3(/2 - 4) + 2^2^(/ - 4) + 8 ^ + 2q2t2(t + 2) - 8^2(ί + 2)

- 2^2/(ί - 2) + 2qst(t2

<?24θ) = — [ 8 r c V + lβn2qt2 - βn2st2(t - 2) - 2n2t2(t2 + 12) - Snq2t2

- Snqst2 + \6nqst + 8 ^ 3 - ?>2nqt + «^2ί3 - 4«,s2ί2

r nst4 + 4^5'ί2 — \6nst — 2nt3(t + 2) + 8«ί(ί + 2) — 4g3(V2 — 4)

• - 4) + 8 r̂2^ + 2q2t2(t + 2) - Sq2(t + 2)

- 2) - 2#rt(f2 - -
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2[(t-2)s-4rt-t2+4]q+(4q2-s2)(t-l)-(t2-5t + 2)s+4(t+iyt6t}^_

Jσ-i

at2 -4q + 4rt-st + 2s-2t(t+ 1)
2 Fw

4]q-(4q2-s2)(t-l)+(t2-5t + 2)s-4(f+ l)rt + 6t] .

• t 2

^ί 4^ 4rί + ^ 2 J + 2t(t
_ 2 — —

y+(r)

{t2 -

y+(r)

- (t2 - 4)Γ2_! - 4(ί
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B. The Singular Vector ¥"3,2

Ψ^2 given in the standard basis can be obtained from ref. [6]:

Ψ3t2 = 26(q + t)(q - /)((? + t ~ 1)

x{(q -t-\){q- 1)[/3I3_, + t\t - 1)I_3 + 3ί2(<? + 1)I2_,Γ_,

-2t\q+\)L-2T-ι

+ 4/ + 3)I_iΓ_2 - 2

-λT
2_λ -t2(2qt

t\qt 2)(t + 1)Γ_3 -

6qt + 6q-t3-t2+4t + 3JΓ-2T-ι] + [t2(3q2 - 2qt2 - 3qt
3 +t2 - t - l )Z_iG +

1 G- 3 + t(3q3-2q2t2-3q2

2 ~2

2 i n+J I xγ/2 Oz-ί* Ί/~t / 4 I c * 2+ 3q2 + qt3+qt2-2qt- 3q- tA+ 5t2+ t-

+ t(q -t2-2t+\)(q-t2 + \)(q - \Z

+ (q-t+ l){-; 2qt2

-t(3q3+ 2q2t2 + 3q2t- 3q2 +qt3+qt2- 2qt- 3q+ t4

(Bl)

+ (q - t + l)(q + t - l){-t(2q2 - t4 - t3 + 2t2 -

t+\){q-t-\){q+\){q-\)Tiλ}

ι + t3(3q2 - t2 + \)L2_XG
+ .G',

2 ~ 2

- 2 ί 2 ( ί -

+ί(3^4 -

-ί 2 ^(2^

-!)(' +

-6^24-

2/ + 3^

•1X?+1X9

ί4-4ί2 + :

2 + t3 βt-

2 2

- 1 ) L _ 2 G + , G - |
2 ~2

υ^.G^GZ,

-3)Γ_2G
+

1G"Λ
3 ^r- 1

2 2/

In the same way we can give the operators into which Ψ^ 2(1,0) factorises as shown
in Sec. 8:

(B2)

(B3)

2 2

07(t,q) = tq(q-l)GZL ,

26t5q5(, q) = 26t5q5(2q + t + 2){2q + t){q + t + \)(q + t){q + 1 )5

x (2(2q2 + Ίqt + 6t2 - l)G+5 -G+

}G
+

ιG~ι

\ 2 2 2 ~2

-2(2? + 3t - l)L_iG+3 +4{2q
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+2L2_XG\ -6L_iΓ_iG+i +4T2_λG
+_x

2 2 2

-2(? + 2f+l)L_2G+ i+(3i + 6i + 5)r_2G+i) , (B4)

ΘJ(t,q) = 2V<?

5(2<? - ί - 2)(2q - /)( ? - t - \){q - t)(q - I ) 5

x (2{2q - It){q - 2t)G~, - G+, G~3 G~,
V 2 2 2 2

+2(2? -

(3? - 6/ - 4)Γ_ 2CT,) . (B5)
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