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Abstract: We derive a quantum deformation of the Ψ°N algebra and its quantum
Miura transformation, whose singular vectors realize the Macdonald polynomials.

1. Introduction

The excited states of the Calogero-Sutherland model [14] and its relativistic model
(the trigonometric limit of the Ruijsenaars model) [11] are described by the Jack
polynomials [13] and their ^-analog (the Macdonald polynomials) [6], respectively.
Since the Jack polynomials coincide with certain correlation functions of the iV^
algebra [8, 1], it is natural to expect that the Macdonald polynomials are also
realized by those of a deformation of W^ algebra.

In a previous paper [12], we derived a quantum Virasoro algebra whose singu-
lar vectors are some special kinds of Macdonald polynomials. On the other hand,
E. Frenkel and N. Reshetikhin succeeded in constructing the Poisson Ψ~N algebra
and its quantum Miura transformation in the analysis of the Uq(slN) algebra at
the critical level [4]. Like the classical case [3], these two works, #-Virasoro and
g-Miura transformation, are essential to find and study a quantum iV^ algebra. In
this article, we present a q-O^ algebra1 whose singular vectors realize the general
Macdonald polynomials.

This paper is arranged as follows: In Sect. 2, we define a quantum deforma-
tion of ΨM algebras and its quantum Miura transformation. The screening currents
and a vertex operator are derived in Sects. 3 and 4. A relation with the Macdonald
polynomials is obtained in Sect. 5. Section 6 is devoted to conclusion and discus-
sion. Finally we recapitulate the #-Virasoro algebra and the integral formula for the
Macdonald polynomials in the appendices.

* JSPS fellow.
1 After finishing of this work, we received the preprint "Quantum if-algebras and elliptic

algebras" by B Feigin and E Frenkel (q-alg/9508009) They discuss similar things as Sects 2 1,
2 3, 3 1 and Eq (8) of ours Although the algebra of screening currents is considered there, the
normal ordering of q-Ψ" generators and the relation with the Macdonald polynomial are not given
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2. Quantum Deformation of Ufa Algebra

We start with defining a new quantum deformation of the iίfa algebra by a quantum
Miura transformation.

2.1. Quantum Miura Transformation. First we define fundamental bosons h\ and
Q\ for i = 1,2,...,7V and n e Z such that2

( l )

with q, t = qβ G C and p = q/t. Here Θ(P) Ξ 1 or 0 if the proposition P is true or
false, respectively. These bosons correspond to the weights of the vector represen-
tation hi whose inner-product is (hi hj) = (SyN — l)/N.

Let us define fundamental vertices Λi(z) and q-iV^ generators Wι(z) for
/ = 1,2,..., Λf as follows:

Λi(z) = : exp < Σ Kz~n f : q^^p~1~~ι ,
UΦO J
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and ^Γ°(z) = 1. Here : * : stands for the usual bosonic normal ordering such that
the bosons h\ with non-negative mode n ^ 0 are in the right. Note that

WN(zphτί) = : Λx{z)Λ2(zp-λ) ΛN(zpι-N): = 1 . (3)

If we take the limit t —> 1 with q fixed, the above generators reduce to those of
Ref. [4]. These generators are obtained by the following quantum Miura trans-
formation:

- Λ2(zp-ι)) . (pD* - AN(zpx~N)):

i=0

with Dz=zγ. We remark that p°z is the /7-shift operator such that p°zf(z) —

f(pz).

2.2. Relations of q-Ψk Generators. Next we give the algebra of the above q-Ψk
generators. Let W\z} = Σ w E Z ^ z ~ w . Let us define a new normal ordering ° * °

2 We found this commutation relation by comparing the Poisson bracket in Frenkel-Reshetikhin's
work [4] and the commutator in ours [12]. The oscillator an used in [12] is given by an =
-nh\p-n^j{\ - tn) and a-n = nhx_np

n<\\ + /?")/(! - t~n) for n > 0.
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for the q-Ψlι generators as follows:

-rw/zJ \zJ v 7 v 7 l-z/rw v ' κ /J \w

m

/ s / •* / J J\ L —m n-\-f?ΐ ' n—m—1 τn-\-\ J ' V /

with
i 1 γdn i n{N—j)n .•_.-

(i^j), (6)

and fj(x) = Σ^otfx1. Here (1 - x ) " 1 stands for Σ ^ o * " - W e remark that this
normal ordering ° * ° is a generalization of the following usual one (*) used in
conformal field theory:

(AB)(w) = §^-.^
2πι z — w

The relation of the q-Wk generators should be written in this normal ordering.
Here we present some examples of them. The relation of Wι(z) and WJ(z) for
j ^ 1 is

flJ ( ^ ) W\z)Wj{w)-Wj(w)W\z)fjl ( ^ )

(8)

with <5(JC) = E « G Z ^ ; a n d t h a t o f ^ 2 ( z ) a n d ^ y ( z ) f o r 7 ^ 2 is

f2J (-) W2(z)Wj(w) - Wj(w)W2(z)fjl (-
\z J \w

\-p (i

) J2 - δ
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7) (τ^WJ

with W'(z) = 0 for i > N. The main terms of

fj ί™\ w\z)Wj(w) - Wj(w)Wi(z)fji (-

To obtain the above relations, the fundamental formula is

/ " (-) Λ,(z)Λ,(w) - ΛiMΛiiz)/11 (-) = 0 ,

for / < 7; here we use3

exp ( Σ - 0 " ^Xl - ^ K l - exp ( Σ "(1 " ^"W)(l -

To calculate the general relations, the following formulae are useful:

>o

exp ( Σ -(1

( i i )

with r=j=O; for r = 1 or p±ι

9 the right-hand side of (11) should be understood as

the limit r -> 1 or p±ι, respectively; and fiJ(x) = Π U i fXj(plJ^~kχ) f o r ι =J-

3 In these kinds of formulae we use exp{-E«>o^"/«} = 1 — * = -xexp{-Σ«>o* "/w}
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2.3. Example of q-Ψl. N = 2 case is Ψ"irqyt studied in Ref. [12] (see Appendix A).
Here we give an example when N = 3. The generators are

W\z) = Λ,(z) + Λ2(z) + Λ3(z),
(12)

W2(z) = Λ^zphΛ2(zp-h + Λ1(zphΛ3(zp~b hb
The relation of these generators is

fn (j) W\z)W\w)-W\w)W\z)fu (ί-

!ϋ\ w\z)W2(w)- W2{w)W\z)f2λ (-
Z/ \W

\-p

with

fu(x) = exp

fl2(x) — exp

Note that there is no difference between Wx and W2 in algebraically.

2.4. Highest Weight Module of q-Ψ^ Algebra. Here we refer to the representation
of the q-ψy algebra. Let \λ) be the highest weight vector of the q-Ψk algebra which
satisfies W^λ) = 0 for n> 0 and / = 1,2,... ,7V - 1 and W^\λ) = λι\λ) with X G C.
Let Mχ be the Verma module over the q-Ψk algebra generated by \λ). The dual
module Afλ* is generated by (λ\ such that {λ\Wι

n = 0 for n < 0 and (λ\W^ = λι{λ\.
The bilinear form Ml ® M i ^ C is uniquely defined by (λ\λ) = 1.

A singular vector \χ) G Mχ is defined by ^ | χ ) = 0 for n > 0 and 7F(j|χ) =
f1" G C.

3. Screening Currents and Singular Vectors

Next we turn to the screening currents, a commutant of the q-Ψjγ algebra, which
construct the singular vectors.

3.1. Screening Currents. Let us introduce root bosons aι

n =hι

n — hι+ι and Q\ =

Qh ~ Qh+l for / = 1,2, . . . , # - 1. Then they satisfy
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[α',<] = -1(1 - g"Xl - Γ") {(1 + p-")δu - δi+ιj - p-'δ,-^} δn+m,0 ,

-δt-lJ, (13)

and

[/*',<] = 1(1 - q-"){\ - Γ") {<fδU} - t"δiJ+ι}δn+m,0 ,

[hi Qi] = δuj - δu+i, K, Q(] = δuj - δMJ. (14)

Note that % + pnK+ι,a!m] = 0.
By using these root bosons, we define screening currents as follows:

Ξ : exp

= : exp ( - Σ ^ - " ) : eTβ V ^ a » . (15)

Then we have

Proposition. The screening currents satisfy

X

with

= : exp {
UΦO

= : exp(-Σ ^;~y
t »Φ0 1 — tn

Here ^ / ( w ) = (f(w) - f(ξw))/((l - ξ)w).

Proof First, we have

+ (r1 - l ) ^ + 1

(q~ι - l)δijδ (^) : Λj(z)SL(w):

+ (q - l)δiJ+ιδ i^t) : ΛJ+ι(z)SL(w): . (16)
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Here we use the following formula:

9*« exp (± Σ "(1 - qnv] ~ exp (± Σ -(1 " ?"")*""

(17)

The operator parts are

: Λj(wq)Si(w): = AJ

+(wq)p, : Ay+1 ( * $ . ( * ) : = AJ

+(w),

: Λj(w)Sj_{w): = ΛJ_(w), : Λj+ι(wt)Sj_{w) • = Aj_{wt)p~λ . (18)

Next,

[Λt(z) + Λ +1(z),5i(w)] = _(1 _ ? ±>χi _ ̂ ' ) ^

f: Λ ̂ M i + i ^ - 1 ) :,Si(w)] = 0 . (19)

Hence,

( 2 0 )

This gives us the proposition. D

Therefore, the screening currents Sι±(z) commute with any q-i^N generators up
to total difference. Thus we obtain

Theorem. Screening charges § dzSι±(z) commute with any q-1Vχ generators.

3.2. Singular Vectors. Let J ^ be the boson Fock space generated by the highest

weight state |α) such that α£|0) = 0 for n ̂  0 and |α> = e x p { ^ 7 ! αzβ^}|0) with

Q\ = ̂ . = l Q
J

h. Note that α^α) = αI-|α). And this state |α> is also the highest weight

state of the q-iV^ algebra.

We denote the negative mode part of S\(z) as (5+(z))_ = e x p { ^ n < 0 -^rnz~n}.

Then we have

P r o p o s i t i o n . F o r a s e t of n o n - n e g a t i v e i n t e g e r s s a a n d ra ^ra+\ ^ 0 , ( a — I , . . . ,
N - I ) , l e t

V r β - r f l _ l ) - 4 = ( l + ^ ô = 0 ,
VP

ra+ra+l)-^=(l+sa), rN = 0 . (21)
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Then the singular vectors |χ+) £ J^+ are realized by the screening currents as

follows:

\χr,s) = §NΠ Yldx] • si(χ\) -.si(4ι).--s^-\4-ι)---s^-\χ^Nz\)\^s)
α=l y=l

W-l ra dxa N-l ra

= f Π Π τ ' Π Π(x^pxa+ι)A(xa)C(xa)Y[(xjrSa(Sa

+(x]))- |αΓιJ>
a=\ j=\ Xj a=l y=l

(22)
^ = 0, x = l/x and

n i

= Π exP { Σ ̂  ( f - /'"I) } Π ̂ I-2W (23)
i [ o ni—q \X x J J / 1

Proof The operator product expansion of the screening currents is

Sa

+(x)Sa

+(y) = exp {- Σ ^ ^ — ~ n V + P")ζ\x2β • Sa

+(x)Sa

+(y)
I «>o n i — q x )

Sa

+(x)Sf\y) = exp { Σ "7—
U>o n i —

Since

ι=i

= A(x)C(x) Π xίr~l)β : Π Sa

+(Xi):, (25)
/=1 i=\

and

: "Π ft K(xO • \«r.s) = Nfί ft (xί r-ra+ra+i)β~0+Sa)(Sa

+(xi))- • Ks) , (26)
a=\ i=\ a=\ i=l

we obtain the proposition. D

Note that C(x) is a pseudo-constant under the ^-shiflt, i.e., qDχiC(x) = C(x). The
expression in (21) is the same as that of q — 1 case [1].

We remark that the singular vectors are also realized by using the other screening

currents S*_(x) by replacing t with q~ι and yfβ with —l/^/β in (22), that is to
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say:

N—\ ra

a=\ j=\ J Vl rN~X

N-\ ra dx? N-\

a—\ j ~ \ %j a—\

x ft (x?rSa(Sa_(xf))- |αr-> , (27)
7 = 1

where oί~s, oc~s, 77_, A- and C_ are obtained from those without — suffix by
replacing t with q and y/β with —l/y/β. And ( ^ ( z ) ) _ is the negative mode part
o f ^ ( z ) .

4. Vertex Operator of Fundamental Representation

Now we introduce a vertex operator. Let V(z) be the vertex operator defined as

V{z) =: exp|-Σ J^—p-iz'Λ: e-^Qhz~^ho. (28)

When q — I, this V(z) coincides with the vertex operator of fundamental represen-
tation. Note that the fundamental vertex Λ\(z) can be realized by V(z) as

Λx{zpX2)=:V(zq-λ)V-\z); p ^ . (29)

Hence, this vertex operator V(z) can be considered as one of the building blocks
of the q-Ψχ generators. We have

Proposition. The vertex operator V(w) enjoys the following Mίura-like relation:

-V(W): (pP- - Λιiz)gR ( I ) )

x : V(wq l)(pDz — Λ2(zp 1 ))

and

(30)
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Proof. The fundamental relation is

gL ( j ) Λt(z)V(w) - V{w)Λi(z)gR (^) = p^iΓ1 - l)δiΛδ ( ^ 2 ) V(wq~x),

(31)
i.e.,

V(w) = V(w) ( ( ) )

( ^ 2 ) V{wq-χ) , (32)

I TV—1

here we use :Λι(wpi)V(w): = V(wq~ )p 2 . By using this relation (32) and
V(w)Λi(z)gR(z/w) = : V(w)Λi(z):, we obtain the proposition. D

For example, when N = 3, the relation between the vertex operator V(w) and
the q-1Vχ generators is

gL (^) W\z)V(w) - V(w)W\z)gR (^) = p{Γx - l)δ {^pή V(wq~ι) ,

gL ( ^ gL (-ZP) w2(zp~hv(w) - v(w)w\zp~hgR Q gR ( V 1 )

l): ) . (33)

5. Macdonald Polynomials

Finally we present a relation with the Macdonald polynomials. The excited states
of the trigonometric Ruijsenaars model are called Macdonald symmetric functions
Pχ{z) and they are defined as follows:

H = ΣU ^ ^ <Λ, sλ = Σ^-y<, (34)
/=iy4=/ zi — zj i=\

where the λ = (λ\ ^ λ2 ^ λM ^ 0) is a partition.
The Macdonald polynomials with general Young diagram λ are realized as some

kind of correlation functions of the screening currents and vertex operators of the
q-iVw algebra as follows:

Theorem. The Macdonald polynomial Pχ{z) with the Young diagram λ = Σf=Γι

l(sr

i

i),
Yi ^ r ί +i is written as

( hι M Ί
..,z M ) oc (κr,s\exp\-Σ — ^ Σ^ΐ \ \Xr,s) . (35)

Here \χr,s) is a singular vector in (22).



Quantum # # Algebras and Macdonald Polynomials 411

Note that the operator part of the above equation is the positive mode part of
the product of the vertex operators (28). The Young diagram is as follows:

S2 SN-2

λ =

Proof. First we have

Γ hι M Ί
e x P i - Σ) — 5 — Σ z " ^ Sl(w) = Π(z,pxι)δa>ιSl(

{ n>θl-qni=l J

By (22), the right-hand side of the equation of this theorem is

M

(36)

§Nfί Π ̂ r Π(z,px])Nγϊπ(^,pxa+ι)A(xa)C(xa) ft (*/Γίo (37)
l yi */ \ lfl=l y=i a=\

If we replace xα with (paxa) 1 in (37), then the integrand coincides with that of
the integral formula for Macdonald polynomials in Ref. [2] except for the C(x)
parts. For the integral representation of the Macdonald polynomial, we need only
the property with respect to a g-shift. Since this C(x) is a pseudo-constant under it,
i.e., qDχιC(x) = C(JC), they are integral representations of the Macdonald polynomial
(see Appendix B). D

Remark that the Macdonald polynomials with the dual Young diagram
λ' — (r\λ,rS2,...,rSχZl) are realized by using the other screening currents Sl_{x)
with \χ~s) in (27) as

Γ hι M Ί
Pλ, (-z) oc (oςΓ,! exp - Σ ^ ~ n Σ^i \Xns) (38)

I n>0 v — <1 /=1 J

6. Conclusion and Discussion

We have derived a quantum # # algebra for which some kind of correlation func-
tions are the Macdonald polynomials.

Jack polynomials are realized in the following two ways (see also [5]): one

is some kind of correlation function of Wk algebra [8,1], the other is suitable

combinations of correlation functions of SIN algebra [7]. The relations between

Macdonald polynomials, the q-Ψif algebra and the Uq(slN) algebra are interesting.
In the classical limit % —> 0 with q = en, the g-Miura transformation (4) reduces

to the classical one. Since the right-hand side of it is order hN

9 the left-hand side
must be the same order. To do so, the ft expansion of the q-ΊV^ generators must be
nontrivial. Moreover, the classical generators are obtained as a linear combination
of the q-ΨN generators.
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Appendix A: Quantum Vίrasoro Algebra

In this appendix, we give an example when N = 2, i.e., Virqit in [12]. The funda-
mental bosons h\ and Q\ satisfy

(39)

The root bosons are OL\ = (1 + p~n)h\ and Q\ = 2Q\.

The g-Virasoro generator Wι(z), the screening currents S±(z) and the vertex

operator V(z) are now4

W\z) = : expί Σ ti^"} : q^*ίp\+ : expί-
UΦO J I

= : exp{± Σ V ^ ^ - 4 : e^φQ\z±2^βh^ r+ = ?> r_ = ^
ί «ΦO l " r ά J

= : expί- Σ T^-nP~i

I « Φ O 1 — ̂ w
] (40)
J

The relations of them are

fu (-) W\z)W\w)-W\w)W\z)fn {^j

)}

[W](z),Sι

±(w)] = _(
ι_ W

= : expί E
[»Φ0

( 4 2 )

The same operator with £]_(z) was considered in [10].
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For non-negative integers s and r ^ 0, the singular vectors \χrs) G ̂ r s are

r

\Xr,s) = § YldXj ί

= / Π — Δ{x)C{x) Π (xy)-5(^+(xy))_ K,) , (43)
y=i xy y=i

with α^ = v/^(l + r) ^=(1 + s). Δ(x) and C(x) are the same as (23).

Appendix B: Integral Formula for the Macdonald Polynomials

Finally, we recapitulate the integral representation of the Macdonald polynomials
[2] ([9,1] in the q = 1 case). Let us denote the Macdonald polynomial defined by
(34) asPλ(z;q,t) or Pλ(zu. ..,zM;q,t).

Proposition. The Macdonald polynomials with the Young diagram λ = Σ^ =7 (s?)
or with its dual λf = (r\ι ,rs

2

2,..., r^zl) are realized as follows:

N-l ra dxf N-l

Pλ(z;q,t)

N a dx

PAz;t,q) o c / Π Π -ϊ
l i ^

Π{x\x^)Δ{xa)C(xa)
a=\

Π
y = l

arbitrary pseudo-constant C(x) such that qDχiC(x) = C(x). /ί^r^ 77(x, y) =
β r ^ ^ ( 2 3 )

Proof. This proposition is proved by using two transformations in the following
lemmas iteratively. The first transformation adds a rectangle to the Young diagram
and the second one increases the number of variables. D

Lemma 1. Galilean transformation. (Eq. (VIA 17) in [6])

r

Pλ+(sr}(χU. . . ,Xr) = Pλ(xU. . .,Xr) Π * f (44)
i=\

This transformation adds a rectangle Young diagram to the original one:

Lemma 2. The particle number changing transformation:

M dyL
Pλ{xx,...,xN;q,t)<x§X[ -^Π(X,y)A(y)C(y)Pλ(yu...,yM;q,t) ,

y=i yj

M dy~
PAxu.• • ,XN ,t,q) oc § Π —Π(x,y)Δ(y)C(y)Pλ(yu...,yM;q,t),

i yj



414 H. Awata, H. Kubo, S. Odake, J. Shiraishi

here C(y) is an arbitrary pseudo-constant qDyίC(y) = C{y) and λf is a dual Young
diagram of λ.

Proof. Let us define scalar products (*, *) and another one (*,*)# as follows:

(f,g)'N = ^ff[ ^Λ(x)f(x)g(x), (45)

for the symmetric functions / and g with Pn = Σi=\x?> ~Pn = njz^j- and

Tj = 1/xj. Here we must treat the power-sums pn as formally independent vari-

ables, i.e., -$fnPm = Km for all n,m > 0. Then (Eq. (VIA 13) and (VI.5.4) in [6])

Π(χ,y) =

(46)

Since the Macdonald operator is self-adjoint for another scalar product (*, *)'N, that
is to say (H f,g)'N = {f,Hg)'N (Eq. (VI.9.4) in [6]), the Macdonald polynomials
are orthogonal for this product (Pχ,CPμ)'N oc δχiμ with an arbitrary pseudo-constant
C. The proposition follows from the completeness (46) and the orthogonality
of PA'S. •

Remark that the above Lemma 2 is also proved directly by using the power-sum
representation of the Macdonald operator [1]. Since that is also important to analyze
the algebraic properties of the Macdonald polynomials, we review it here.

Proposition. The Macdonald operator H{x\,. . . , * # ) ore written by the power sums

Pn = Yϋ=\xl as follows:

t - l ζ [n>0 J ^ > 0 pn )
(47)

Proof Since q0**pn = ((qn - I K + Pn)qDχι, we have

>o vPn) 2πιζn^Q ln>0 όpn

(48)

here : * : stands for the normal ordering such that the differential operators y- are

in the right. It follows from Eq. (ΠI.2.9) and (IΠ.2.10) in [6] that

i f—n ^ i

2 P
U>0

This gives us the proposition. D
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LetHN(xu...,xN) = ΓN((t-l)H(xu...,xN)+l\ then

HN(xu...,xN)Π(x,y) = HM(yu...,yM)Π(x,y). (50)

With the self-adjointness of H for the another scalar product, we obtain Lemma 2
again.
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