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Abstract: We prove that for any one-dimensional Schrδdinger operator with poten-
tial V(x) satisfying decay condition |F(JC)| ^ Cx~3//4~ε, the absolutely continuous
spectrum fills the whole positive semi-axis. The description of the set in R + on
which the singular part of the spectral measure might be supported is also given.
Analogous results hold for Jacobi matrices.

Introduction

Let Hy = — ĵ 2 + V(χ) be the one-dimensional Schrόdinger operator acting on
Z2(0,oo). We assume V(x) is a real-valued locally integrable function which goes
to zero at infinity. It is a well-known fact that if we fix some self-adjoint boundary
condition at zero, the expression Hv has unique self-adjoint realization in L2(0, oo).
The essential spectrum of the operator Hv, σess(Hv), coincides with the positive
semi-axis since the potential vanishing at infinity constitutes a relatively compact
perturbation of the free Hamiltonian.

In this paper, we explore the problem of dependence of the spectral properties
of Hγ for positive energies on the rate of decay of the potential V. In particular,
the interesting question is to determine the critical rate of decay which can lead
to the complete or partial destruction of the absolutely continuous spectrum on the
positive half-axis, and, correspondingly, to find out which classes of potentials are
not strong enough to seriously affect the absolutely continuous spectrum inherent
for the free Hamiltonian. As is generally known, if V(x) belongs to L^0,00) then
the spectrum on the positive semi-axis is purely absolutely continuous (see, e.g.,
[29]). The situation is not so clear for decreasing potentials which are not absolutely
integrable. There are many results on the absolute continuity of the spectrum on the
positive semi-axis (except perhaps for a finite number of resonances in some cases)
for certain classes of decaying potentials, such as potentials of bounded variation
[29] or specific oscillating potentials (see, e.g., [1,11,30,16] for further references).
But no general relations between the rate of decay and spectral properties, apart from
the absolutely integrable class, seem to be known.
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The results concerning the spectral properties of Schrόdinger operators with
random potentials, however, suggest that there may be a general relation between
the rate of decay of the potential and the preservation of the absolutely contin-
uous spectrum on R + =(0,oo). Namely, Kotani-Ushiroya [15] show that when
q(x) = a(x)F(Yx(ω)), where a(x) is a smooth power decaying non-random factor,
Yx(ω) is a Brownian motion on a compact Riemannian manifold M with the volume
element μ and F : M —> R is a non-flattening C°° function satisfying JM Fdμ = 0,
then the question of whether the rate of decay of a(x) is faster or slower than x~1/2

is crucial for the spectral properties of the corresponding random Schrόdinger oper-
ator. When a(x) = (1 + | * | ) ~ α with 0 < α < \, the spectrum on R + is pure point
with probability one; when α > ^, then the spectrum on the positive semi-axis is
a.e. purely absolutely continuous.

The methods of [15] are probabilistic in nature and cannot provide information
on what happens in general for potentials satisfying \V(x)\ ^ C(l + |x|)~α, α > \.
Although the set of potentials leading to purely absolutely continuous spectrum is
"big" in a certain sense [15], examples with eigenvalues on R + show there may be
exceptions. Moreover, if one could find at least one potential satisfying |F(JC)| ^
C(l + |x|)~α, for certain α > \ and C, which gives rise to purely singular spectrum
on the positive semi-axis, then by general principles of the genericity of singular
continuous spectrum [24], there would exist another "big" (in a topological sense)
set of potentials obeying the same decay condition and yielding purely singular
continuous spectrum on R + . Namely, this set would be a dense G$ in the space of
all potentials satisfying the power decay estimate | K(ΛΓ)| ^ C(l + |jc|)α, equipped
with the L°° norm. An analogous situation is exactly the case for α < \, when the
spectrum on the positive semi-axis is dense pure point with probability one by [15],
but, at the same time, by the recent result of Simon [24], there exists a dense G$
set of potentials leading to purely singular continuous spectrum on the R+.

To further illustrate the difficulty of the passage from random to deterministic
results, we note that [15] implies that there exist "many" potentials with power decay
(slower than x"1/2) yielding dense pure point spectrum on R + . But, nevertheless,
there are no deterministic examples of potentials with power decay even leading to
just purely singular spectrum (to construct an explicit example of a potential having
dense pure point spectrum should be much harder, since an arbitrarily small change
in the boundary condition may change the spectrum to purely singular continuous
[4,9]). In fact, the only known explicit examples of decaying potentials yielding
purely singular spectrum on R + are due to Pearson [20] and these potentials exhibit
slower than power-rate decay.

The main result we prove in this paper says that all potentials decaying faster
than Cx~3/4~ε, with no additional conditions, preserve absolutely continuous spec-
trum on the positive semi-axis, although of course embedded singular spectrum may
appear. This result provides a new general class of decaying potentials preserving
absolutely continuous spectrum of the free Hamiltonian. It also shows that there is
indeed a deterministic analog of the random potential results, at least in the range
of power decay α E ( | , 1]. The main new idea we use in the proof is a combination
of a certain ODE asymptotic technique, which has been commonly used for the
treatment of oscillating potentials, with some results from harmonic analysis related
to the almost everywhere convergence of Fourier integrals.

Another interesting aspect of the spectral behaviour of Schrόdinger operators
with decreasing potentials is a phenomena of positive eigenvalues. Eastham-Kalf
[6] show that if V(x) = o(l/x) as x —• oo, then Hv does not have eigenvalues
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above zero. If V(x) = 0(1 /x)9 there are no eigenvalues above a certain constant.
On the other hand, Eastham-Leod [7], with further developments by Thurlow [28],
show how to construct potentials V(x) of the type V(x) = ^—, with C(x) con-
verging to infinity as x tends to infinity, such that a prescribed countable set of
isolated points represents embedded positive eigenvalues of Hγ. These authors use
the GeΓfand-Levitan approach. Later, Naboko [18] described a construction which
allows for an arbitrary countable set T of rationally independent numbers in (0, oo)
(and so possibly a dense set) to find a potential V(x) satisfying \V(x)\ ^ ^ψ-

with C(x)x^¥oo monotonously at an arbitrarily slow given rate, such that the
corresponding Schrόdinger operator has the set T among its eigenvalues. Recently,
Simon [25] has found a different construction that does away with the rational
independence assumption. The constructions of Naboko and Simon do not give
information about other kinds of spectrum on R + in such a situation. In partic-
ular, it was not clear whether there is any other spectrum but pure point in the
case when the set T of prescribed eigenvalues is dense in R + . The present paper
settles the questions arising from Naboko's and Simon's constructions. Moreover,
together with these works, it provides explicit examples of potentials yielding an ar-
bitrary dense (countable) set of eigenvalues embedded in the absolutely continuous
spectrum.

We should also mention that the results for random decaying potentials for the
discrete Schrόdinger operators (Jacobi matrices) [5] raise parallel questions in the
discrete case. There is also a discrete analog to the continuous case of Naboko's
construction by Naboko and Yakovlev [19] which allows one to find a potential
decaying arbitrarily slower than ^ such that the corresponding discrete Schrόdinger
operator has eigenvalues dense in the essential spectrum [—2,2].

The paper is organized as follows. In the first section we prove our main result
for power decaying potentials. In the second section we consider an application
of our method to certain more general classes of potentials, including some po-
tentials of the bump type. In the third section we show similar results for Jacobi
matrices.

1. Main Results for Power Decaying Potentials

Let us first set up some notation we will need. Suppose the function f(x) belongs
to Z2(0, oo). Then we denote by Φ(f)(k) the Fourier transform of the function / ,

Φ(f)(k) = L2- lim / e x p ( ί * 0 / ( 0 Λ .
N-^oo _N

We also use the notation M+(g) for the following function corresponding to the
function g £ LP(R), 1 ^ p ^ oo:

M+(g)(x) = sup \ f \g(x + 0 + g(x - 01 dt

h>0 n 0

and notation Jί+(g) for the set

Jί+(g) = {x I M+(g)(x) < oo} .
The function M+(g) is "almost" a maximal function of the function g; in particular,
M+(g) is finite whenever the maximal function of g is finite. By well-known
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properties of the maximal function (see, e.g. [23]) we have then that M+(g) is
finite a.e. and therefore the complement of the set J^+(g) has measure zero.

The main result of this section is the following theorem:

Theorem 1.1. Suppose that the potential V(x) satisfies \V(x)\ ^ Cx~3^4~ε for
xe(a,oo) with some positive constants ε,a,C. Then the absolutely continuous
spectrum of the operator Hγ fills the whole positive semi-axis, in the sense that the
absolutely continuous component pac of the spectral measure p satisfies pac(T) > 0
for any measurable set T C (0,oo) with \T\ > 0 (where | | = Lebesgue measure).
The singular spectrum on (0, oo) may be located only on the complement of the
set

S = i(^+(Φ(K(*)*1 / 4)))2

(i.e., quarters of squares of the points from Jί+(Φ(V(x)x1^4))), so that pSmg(S) = 0.
Moreover, for every energy λ + 0 from the set S we have two linearly independent
solutions φx, φλ (—complex conjugation of φχ) of the equation Hvφ — λφ = 0
with the following asymptotics as x goes to infinity:

φλ(x) = exp (iVλx ~ ^ = / V(s)ds>j (1 + O(χ-εlog x)) (1)

(which is exactly the WKB formula).

The main idea behind the proof is a combination of the following three
ingredients:

(i) The recent studies on the connection between asymptotic behavior of so-
lutions of the Schrόdinger equation and spectral properties, which allow one to
conclude the absolute continuity of the spectrum on a certain set from the bound-
edness of all solutions corresponding to the energies from this set;

(ii) The methods of studying the asymptotics of solutions, namely the "/ + Q"
transformation technique introduced by Harris and Lutz [10] and later used by many
authors for treating Schrodinger operators with oscillating potentials;

(iii) The results from the theory of Fourier integrals; in particular, the question of

a.e. convergence of the partial integral f_Nexp(ikt)f(t)dt to the Fourier transform

of / under certain conditions and an estimation of the rate of convergence.

As a preparation for the proof, we need several lemmas. The first lemma allows
us to reduce the proof of Theorem 1.1 to the study of generalized eigenfunction
asymptotics.

Lemma 1.2. Suppose that for every λ from the set B, all solutions of the
equation Hγφ — λφ = 0 are bounded. Then on the set B, the spectral mea-
sure p of the operator Hv is purely absolutely continuous in the following
sense:

(i) pac(A) > 0 for any A C B with \A\ > 0,

(ϋ) PsingW = 0.

Proof. For a large class of potentials, including those we consider here, this lemma
follows from the Gilbert and Pearson subordinacy theory [8], as shown by Stolz
[27]. Also, in a recent paper, Jitomirskaya and Last [12] obtained a rather transparent



Absolutely Continuous Spectrum of 1-D Schrodinger Operators 381

proof of more general results. For a direct simple proof of the lemma we refer to
a paper of Simon [26]. D

The complement of the set S in the statement of Theorem 1.1 has Lebesgue
measure zero (which of course follows from the fact that the complement of
the set Jί+{Φ{xχlA V(x))) has measure zero). Therefore, we see that (assuming
Lemma 1.2) for the proof of Theorem 1.1, it suffices to prove the stated asymp-
totics of generalized eigenfunctions for the energies from the set S.

The second lemma we need deals with certain properties of the Fourier integral.

Lemma 1.3. Consider the function f(x) e Z2(R). Then for every ko G Jί+(Φ(f)),
we have

f f(x)exp(ik0x)dx = O(\ogN).
-N

Before giving the proof, let us point out the relation between the question we
study and one of the subtle problems of harmonic analysis. The Fourier trans-
form of the square integrable function f(x) is usually defined as a limit in L2-
norm as N —> oo of the functions / _ # / ( * ) exp(—ikx)dx. The question of whether
these integrals converge to the Fourier transform of / in an ordinary sense for
almost all values of k is, roughly speaking, equivalent to Lusin's hypothesis that
the Fourier series of square integrable function converge almost everywhere, re-
solved positively by Carleson [2] in 1966. All that our simple lemma says is
that we have an estimate from above on the speed of divergence of partial in-
tegrals, but for a rather explicitly described set of values of the parameter k of
full measure. In the next section, which treats certain non-power decaying po-
tentials, we will need more refined results on the a.e. convergence of Fourier
integral.

Proof of Lemma 1.3. The proof uses the Parseval equality:

f(x)cxp(ikox)dx = - / Φ(f)(k)SinN(kθ7k) dk
π R Ko — K

1 °° sin Nk
/ (Φ(/)(* *) + Φ(f)(ko + k))dk ./

π o Λ

We split the last integral into three parts and estimate them separately:

and so this part is bounded when N —> oo;

I sin Nk
/ (Φ(f)(k0 -k) + Φ(f)(k0 + k))dk
0 K

l/N

^N / \Φ(f)(k0 +k) + Φ(f)(k0 - k)\ dk
0

I I \Φ(f)(h +k) + Φ(f)(ko - k)\ dk.
Ϊ/N K
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In the last expression the first summand is bounded by M+(Φ(f))(ko), while in
the second we perform integration by parts:

/ \ |Φ(/)(*ό + *) + Φ(/X*o - k)\ dk
l/N K

= / \Φ(f)(k
\/N

+ / h I
\/N K \/N

^ M+(Φ(f))(k0)+ f \M+{Φ{f))(h)dk = 6>(log N). D
\/N K

To begin with the proof of the theorem, we rewrite equation Hyφ — λφ = 0 as
a system of first-order equations:

where w and φ are clearly related by w(x) = (p?λ)- We perform two transfor-
mations with the system (2), the first of which is the variation of the parameter
formula,

where it is convenient for our purpose to choose ψ\(x) = exp(/\/Ix), \j/2(x) —

exp(—iy/λx). Substituting (3) into (2), we get for y(x):

if -V(x) -V(x)exp(-2iVλx)\

y(x) = — — y(x). (4)

lyfl \V(x)Qxp(2iVλx) V(x) )
We can also write this system as

y (5)

where βf stays for the diagonal part of the system and iV for the non-diagonal part
which we would like to consider as a perturbation. The matrices 3) and ΊV have
the form

0 D(x)J9 \W(x) 0

with D(x) = ~φ=λV(x) and W(x) = -φ=λV(x)Qxp(-2iVλx) in our case.

The main approach to the study of the asymptotics of solutions for systems
similar to (5) is to attempt to find some transformation which will reduce the
off-diagonal terms so that they will become absolutely integrable and then try
to apply Levinson's theorem [3] on the Lι-perturbations of the systems of linear
differential equations. It was discovered by Harris and Lutz [10] that when W(x) is a
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conditionally integrable function, the following simple transformation of the system
(5) works in some cases. We let

y(x) = (I + J)z(x), (6)

where / is an identity matrix, while Ά satisfies Ά' = Ψ~, that is,

0 q(

with q(x) = — /x°° W(x)dx. In this case q(x)X:^? 0, so that for large enough x the
transformation (7) is non-singular and preserves the asymptotics of the solutions.
For the new variable z(x) we have:

which after calculation leads to

0 D)+{ m ) \2qD-q2W

Since q(x) decays at infinity, there is hope that q(x)D(x) and q(x)2W(x) may be
both absolutely integrable, even if initially W(x) was not.

We now return to a particular case of the system (5) we consider. Our W{x)

is equal to — -Λ=F(x)exp(—2iVλx), depending not only on x but also on the en-

ergy λ, and we are seeking to define q(x,λ) = -Λ= /χ°° F(s)exp(—liyfλs). The next

technical lemma shows that under our assumption on the decay of the potential we

can do it and, in fact, rather successfully for every energy λ which belongs to the

set S in the statement of Theorem 1.1.

Lemma 1.4. Suppose that V(x)eLι>Xoc satisfies V(x) ^ C|x|"3/4-£ for \x\ > a
with some positive constants C,a,ε. Then for every k 6 JίΛ(Φ(V(x)x1^4)), the
integral J^° Qxp(-iks) V(s)ds converges and moreover

oo

/ exp(-iks)V(s)ds = O(x~1/4log x)
X

as x —• oo.

Proof Note that V(x)x1^4 is square integrable and therefore by Lemma 1.3, for
every k G Jί+{Φ{V{x)xx/A)) we have as x —> oo,

/ V(s)sι/4 exp(-iks)ds = O(log x)
o

(we change ik in Lemma 1.3 to —ik, but since V is real, it does not change the
set S). Writing V(s) = V(s)s~ι^4sι/4 and integrating by parts we get

/ V(s)exp(-iks)ds = x~ι/4 J V(s)sι/4 Qxp(-iks)ds
0 0

+ 7 / r5/4 I V(s)sl/4 exp(-/*5) ds dt.
4 0 0
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The first summand clearly behaves at infinity like O(jc~1/4log JC), while the second
is absolutely convergent, since

Γ5/4 / V(s)sι/4 Qxp(-iks)ds S CxΓ
5/4\ogt (8)

by Lemma 1.3 for all t > 2 with some constant C\. The integral over (0,2) is
finite since V(x) G L1'100. Therefore, the integral /0* F(s)exp(—ίks)ds is condition-
ally convergent and its "tail" is equal to

OO X

J V(s)exp(-iks)ds = -x~ί/4 f V(s)sι/4 exp(-iks)ds
o

1 OO t

+ A I r5/41 v(s)sV4 exp(-iks)dsdt,
4 x 0

which we can estimate for x large enough using Lemma 1.3 and (8):

fV(s)exp(-iks)ds S Cxχ-ι/4 log x + Ci JΓ5/4 log tdt = O(x~ι/4 log x). D

Now we note that the condition λ G S is equivalent to 2\J~λ e Jί+(Φ(V(x)xι/4))
by the definition of the set S. Therefore, for every λ G S there is a number aχ
such that for any x > ax the function q(x,λ) is less than \. Applying the "/ + J "
transformation for x > ax for each λ G S, we get a system (7) for x > ax. The
shift on the finite distance from the origin certainly does not affect asymptotics
since the evolution, corresponding to such a shift is just multiplication by some
constant (for each λ) matrix. Lemma 1.4 allows us to see that the non-diagonal
part and, in fact, the whole second summand of the matrix in the system (7) is
now absolutely integrable. Indeed, every element of this matrix is equal to the
product of some bounded function and the function V(x)q(x,λ), the latter being
absolutely integrable and moreover, by our assumption on V and Lemma 1.4, sat-
isfying |F(jt)<7(x,/ί)| < C2(λ)x~ι~εlog x for every λ G S with the constant C^ de-
pending on λ. We could now apply Levinson's theorem, but in our situation we
do not need the whole power of this result. Rewriting the system (7) for every
λeS as

with V(x) real and \\R(x,λ)\\ G U with f™ \\R(s,λ)\\ ds = O(x~ε\og x), we can in
a standard way transfer this system into the system of integral equations, apply the
Gronwall lemma and prove (see [22] for the details) that for each λ G S there exist
solutions zχ(x\ zχ(x) with the asymptotics

zλ(x) = exp ( - ^ = / V(x)dχ)j (1 + O(x~εlog*)).

Applying now transformations (6) and (3) to obtain the solution asymptotics of the
initial problem, we conclude the proof of Theorem 1.1.
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Remarks. 1. One may apply the proven results to the study of the absolutely
continuous spectrum of Schrόdinger operators with spherically symmetric poten-
tials in ΈJ1, satisfying |K(r)| ^ Cr~3/4~ε. In a standard way, one decomposes the
Schrόdinger operator Hv into a direct sum of one-dimensional operators Hv,ι =

— 4μ+ (fn(l)r~2 + V(r)) acting on different moment subspaces (see, e.g. [21]). It
is easy to see that the set Si of energies for which all solutions of the equation
Hy,ιφ - λφ are bounded will be in fact independent of /, since the term fn(l)r~2

decays fast at infinity. Correspondingly, the singular spectrum of Hy on R + may
only be supported on the complement of the set S.

2. With very little effort, the introduced method yields results for the whole-
line problem for the Schrόdinger operator Hy with potential V G L1'100 satisfying
|F(JC)| S C(l -h |x|)~3 / 4~ ε for |x| large enough. The substitution of Lemma 1.2 for
the whole line can be easily recovered from the remark in [26] and says that on
the set S+US-, where S+ and S- are the sets of energies for which all solutions
are bounded as x approaches correspondingly plus or minus infinity, the spectrum
is purely absolutely continuous of multiplicity two (in the sense of Lemma 1.2). Of
course, Lemmas 1.3 and 1.4 can be used for studying the asymptotics of solutions
at —oo as well as at +oo. We get in this case that the whole positive half-axis
is filled by the absolutely continuous spectrum of multiplicity two and the singular
spectrum may only be supported on the complement of S+ US-. Moreover, it is a
known fact [13] that the multiplicity of the singular spectrum may only be one for
the whole-line Sturm-Liouville operators.

3. In fact, Theorem 1.1 is more than a deterministic analog of the Kotani-
Ushiroya theorem in the power range α G ( | , 1]. Indeed, one can check that from
the assumption fM F dμ = 0 in their random model it follows that a.e. potential is
conditionally integrable and satisfies

oo

JV(t,ω)dt ^ C(ω)(\ + \x\)~β

X

for every β < oc — ̂  with probability one. Assuming conditional integrability of V
and certain power-decay estimate on the "tail" of potential, we can extend our result
about the presence of the absolutely continuous spectrum on potentials satisfying
only \V(x)\ ^ Cx~2 / 3~ε. We treat this case in the Appendix.

As a byproduct of the computations we performed, let us formulate the following
proposition, which is in fact a slight variation of Theorem 2.1 from Harris and
Lutz [10]:

Proposition 1.5. Suppose that for given energy λ > 0, the function V(x) f^° exp

{—2ί\fλt) V(t)dt is well-defined and belongs to Lι(0, oo). Then there exist two

linearly independent solutions φχ, φλ of the equation Hγφ — λφ = 0 with the fol-

lowing asymptotics as x —> oo:

φλ(x) = exp (iVλx ~

/ / oo oo \ \

x 1 + O If V(s) f V(t)exp(-2iVλt)dt ds\)
\ \ X S / J

In particular, all solutions are bounded.
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Based on the technique introduced in the proof of our main theorem, we
now prove the result showing that certain conditions on the Fourier transform of
potentials decaying faster than x~3/4~ε are sufficient to ensure the absence of the
singular component of the spectrum on the positive semi-axis.

Theorem 1.6. Suppose potential V(x) satisfies \V(x)\ < Cx~3^4~ε for allx > a and
the Fourier transform Φ(xx^V(x))(k) belongs to Lp'loc for some p > 1/ε. Then
the spectrum of the operator Hv on the positive semi-axis is purely absolutely
continuous, and for every energy λ G (0, oo) there exist two solutions φχ9 φλ with
the asymptotics as x —> oo,

φλ(x) = exp (iy/λx - ^

It is clear that we can concentrate on proving the stated asymptotics for ev-
ery λ in the positive half-axis. A slight modification of Lemma 1.3 is
needed:

Lemma 1.7. Suppose that the Fourier transform Φ(f){k) of the function f(x) e L2

belongs to Lp'loc, p > 2. Then for every value of k,

N

J f(x)exp(ikx)dx = O(Nι/p).
-N

Proof As in the proof of Lemma 1.3 making use of the Parseval equality, we get

N OO s j n ATf

J f(x)Qχp(ikx)dx = J —— (Φ(/)(t - 0 + Φ(f)(k + t))dt.
-N 0 l

Again, the integral from 1 to oo is bounded uniformly in N by the product of
L2-norms of the functions under the integral. The remaining part we split into two
integrals and estimate them using Holder's inequality:

i sin Nt

J ——{Φ(f)(k -1) + Φ{f){k + t))dt
l/N '

\φ{f)(t)\pdt\ =
k-X J

where p' is a conjugate exponent for p : p' = -^y. The second integral is estimated

in a similar way:

(Φ(f)(k-t) + Φ(f)(k + t))dt

/
J \Φ(f)(t)\Pdt) =0{NχlP). D

k-MN J
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Proof of Theorem 1.6. The same calculation which we performed proving Lemma
1.4 (integration by parts) shows that under the conditions of Theorem 1.6 for every
positive λ, we have

oo

q(x,λ) = ! V(x)exp(-iVλx)dx = O(χ-ι/4+ι/p)
X

as x —> oo. This implies that for all energies the function V(x)q(x,λ) is absolutely
integrable and moreover satisfies the estimate for large enough x,

\V(x)q(x,λ)\

By Proposition 1.5, the proof is complete. D

Remark. It is easy to modify the proof of Lemma 1.7 and Theorem 1.6 to obtain
a local criteria for the absence of singular spectrum. That is, if V satisfies the
conditions of Theorem 1.6 and Φ(xι/4V(x))(k) belongs to Lp(a,b), b > a > 0,
then the spectrum of the operator Hv is purely absolutely continuous in the energy

interval (£,£).

We note that the conditions stated in the theorem are rather precise. For
example, in the celebrated Wigner-von Neumann example (historically the first
example of the decaying potential having positive eigenvalue embedded in the ab-
solutely continuous spectrum), the asymptotic behavior of the potential at infinity is
V(x) = -8(sin2x)/x + O(x~2) (see, e.g. [22]) so that ε=\, while the singularity
of the Fourier transform of xι^4V(x) is easily seen to be of the order (k — 2)~ 1 / 4

which belongs to Lp>loc with p < 4. It is an open question whether one can replace
condition Φ(xι^V(x)) G I A l o c , p > 1/ε with the simpler one Φ(xιlAV(x)) G L1/ε' loc

so that the last theorem still remains true.

2. Non-Power Decreasing Potentials

In this section we apply the method described in the preceding section of the paper
to a wider class of potentials. This class will include, in particular, certain potentials
of the bump type, which are "mostly" zero but have bumps decaying at infinity.

Let us introduce the class of potentials we will treat.

Definition. We say that the potential V(x) G L°°(0, oo) belongs to the class
^_α(0,oo) if there exists a potential V(x) GZ°°(0,oo) satisfying \V(x)\ g Cx~α

for x large enough and a countable collection of disjoint intervals in (0,oo)
{(βyA)}"i> bj g aj+ϊ V/, such that

O, * G ( α w A )
v { x _ Σ « = i ( Z ? . _ a . ) χ x e {bn,an+ι) -

Roughly, the potential V(x) is obtained from V(x) by inserting a countable number
of intervals on which V(x) vanishes; while on the rest of the axis, it is V(x) shifted
on the distance which is equal to the sum of the lengths of the intervals inserted
so far. Of course, V(x) G ̂ _ α need not decay faster than any power at infinity.
However, if we "compress" V(x) by collapsing all intervals on which it vanishes,
we get a potential which is bounded by Cx~α for large x.
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The following theorem holds for potentials from the class ^_3/4_ε:

Theorem 2.1. Suppose V(x) e ^_ 3 / 4 _ ε , ε > 0. Then the absolutely continuous
part of the spectral measure fills the whole positive semi-axis, in the sense that
p a c(Γ) > 0 for any measurable set T c (0,oo) with \T\ > 0. For almost every
energy Λ, £ (0, oo), there exist two solutions φχ, φλ with the asymptotίcs as
x —> o o ,

φλ(x) = exp ίiVλx --^β) V(s)ds) (1 +

Proposition 1.5 implies that to prove the stated result, we need only to show
that the function R(t) = F(x)/χ°° V(t)exp(-2iy/λt)dt is well denned and belongs
to Lι(0,oo) for a.e. λ £ 1R+. To proceed with the proof, we need some further facts
from the theory of Fourier integral.

The following result is due to Zygmund [31].

Theorem (Zygmund). If f £ Lp(—oo, oo), where 1 ^ p < 2, then the integral

F(f)(k,N) = -}=] f(x)exp(-ikx)dx

converges as N —> oo, in an ordinary sense for almost every value of k.

This will serve us as an analog of Lemma 1.3. However, it is a much
more sophisticated result by itself. One of the consequences is that we do not
have a description of the exceptional set on which convergence fails (and corre-
spondingly, where the singular spectrum may be supported). For future reference,
let us denote by A(f) the set of full measure for which the integral F{f)(k,N)
does converge.

The main idea now is the same as before: to perform in some "clever" way
integration by parts to get estimates on the tail

oo

q(x,λ) = J V(t)exp(-2iVλt)dt
X

for a.e. λ. Of course, there is no hope anymore that q(x, λ) will, in general, decay
even as some power for potentials we now consider. However, the special structure
of the potentials allows us to overcome this problem.

Proof of Theorem 2.1. Let us factorize V(x) = V\(x)V2(x) in the following way:
J

O, xe(an,bn)

Σn

J=ι(bj - aj))VAV(x - Σ ; = i ( ^ " aj))9 x G (ftΛ,αΛ+i)

and
ί foi - Έ]Zl(bj - fly))"1/4, X £ (ambn)

I (* - Σ£=i(*y - *y ))~1/4> * e (bn,an+ι) '

Therefore, V\(x) is obtained from the function x 1 / 4F(x) in the same way as V(x)

is obtained from F(x), while the quotient ψ^βr = F2OO is a continuous piecewise
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differentiable non-increasing function. Since |K(JC)| < Cx~3/4~ε for large enough JC,

we have that xι^4V(x), and therefore also V\(x) belong to L2~ε(0,oo). Then by

Zygmund's theorem, for all λ from the set \(A(V\{x))2 (quarters of the squares of

the points from the set A(F(V\(x)))) of full measure in the positive semi-axis the

limit limΛί-»oo Jo V\(t)Qxp(—2iy/λt)dt exists, so that we can consider for these λ

the conditionally convergent integral Ĵ °° V\(t)exp(—2iy/λt)dt. Let us integrate by

parts the expression

oo

q(x,λ) = J Vι(t)V2(t)exp(-2iVλt)dt
X

OO OO OO

- V2(x) J Vι(t)Qxp(-2iVλt)dt + / V2(t) J Vλ(s)exp(-2iVλs)dsdt.
X X t

For the values of λ which we consider, the absolute value of the integral j^° V\(t)

Qxp(2iy/λt) dt goes to zero at infinity and therefore is bounded by some constant
C (depending on λ) for all values of x. Hence, we can estimate the right-hand side
in the last equation by

/ oo \

c(v2(x)+f\V2(t)\dt) S

since V2(x) is a non-increasing positive continuous piecewise differentiable function.
Thus, we get that for a.e. λ

W ~ r-

V(x)J V(t)Qxp(2i\ίλt)dt ύ C(λ)\V(x)V2(x)\ .

To conclude the proof, we notice that the function V(x)V2(x) is absolutely
integrable by the way we constructed the functions V(x) and V2(x); the Z^-norm
of their product is equal to the Z^-norm of the function x~ιl*V{x). On the intervals
(ambn), where V2(x) is defined to be constant, V{x) vanishes, and on the intervals
where V(x) is equal to shifted V(x), V2(x) is just shifted x~1//4. D

One of the situations to which Theorem 2.1 applies is when we have a sequence
of repeating bumps of the same shape but with decreasing magnitude. Fix U(x) e
L°°(0,a) and let

~ oo

V(x) = Σ 9nU{x - an\ an - an-χ > a .
7 1 = 1

For potentials of this type, Pearson [20] has shown that if one chooses the dis-
tances between bumps to be big enough, then if Σ«^i 9n ~ °°> m e correspond-
ing Schrόdinger operator has purely singular continuous spectrum on R + and
if Σ/2=i 9n < °°' m e spectrum on the positive semi-axis is purely absolutely
continuous. Otherwise, there was essentially nothing known about possible spec-
tral behavior for Schrόdinger operators with bump potentials which are not ab-
solutely integrable and not power decaying. From the last theorem it follows
that if \gn < Cn~3/4~ε, the absolutely continuous spectrum remains on the posi-
tive semi-axis, no matter how U(x) looks and which distances between bumps
we take.
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3. Jacobi Matrices

Now we prove similar results for Jacobi matrices. We consider the self-adjoint
operator hv on / 2 (Z + ) (with Z+ = {1,2,...}) given by

hvu(n) = u(n + 1) + u(n - 1) -f v(n)u(n) ,

(9)
w(0) = 0 ,

where v(n) is real valued, tending to zero at infinity sequence. All the theorems
we have proven for Schrόdinger operators in the first two sections have their
analogs for Jacobi matrices. Of course, we need to replace the positive semi-axis by
the segment (—2,2), the interior of the essential spectrum of the free discrete
Schrodinger operator. Since we consider only decaying potentials, the essential spec-
trum is the same for hv. The way the argument goes in the Jacobi matrices case is
very close to the continuous analog and hence sometimes we will omit the proofs.
We will still use the notation Φ(f)(k), but now for the Fourier transform of the
I2-sequence f(n):

* ( / ) ( * ) = I2 - lim Σ exp(i*/)/(/).
N*oo

All other notations introduced in the preceding sections of the paper also remain
valid. Let us begin by stating our main theorem for Jacobi matrices:

Theorem 3.1. Suppose that v(n) satisfies \v(n)\ < Cn~3^4~ε for some positive con-
stants C, ε. Then the absolutely continuous component pac of the spectral measure
p of the operator hv fills the whole segment (—2,2), in the sense that pac(T) > 0
for any measurable set T c (—2,2) with positive Lebesgue measure. The singular
component of the spectral measure may be supported only on the complement of
the set S = 2cos(\Jί+(Φ(nχlΛv(n))) (Ί (-2,2) {values of energy such that 2arccos
of half their value belongs to the set M+{Φ(nλ^V{n))\ we fix the range of the
arccos to be [0,π]. Moreover, for every λ e S there exist two linearly independent
solutions ψχ(n), φλ(n) with the following asymptotics as n —> oc:

= exp (ikn + ^ ^ Σvλ(l + O(n~ι/4 log n)),

where k = arccos \λ.

The strategy of the proof is the same as in the Schrόdinger operators case. The
analogs of the three lemmas we used heavily are as follows:

Lemma 3.2. Assume that for every λ from the set B, all solutions of the equation
hvφ — λφ are bounded. Then on the set B, the spectral measure p of the operator
hυ is purely absolutely continuous in the following sense:

(i) pac(A) > Ofor any ACB with \A\ > 0,
(ii) PsingW = 0.

Proof This lemma follows from the subordinacy theory for infinite matrices, de-
veloped by Khan and Pearson [14]. Recently, Jitomirskaya and Last proved more
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general results for Jacobi matrices [12]. The reference for a simple direct proof of
the lemma is the paper of Simon [26]. D

Lemma 3.3. Consider the function f(ή) G 12(Z). Then for every k0 G Jί+(Φ(f)\
we have

N

Σ /O0exp0V) =
l=-N

Proof The Parseval equality in this case yields

N 1 * sin(W + l/2)(Ab - <

sin ^Λ
*)

The final expression may be estimated exactly as in the proof of Lemma 1.3. D

Lemma 3.4. Suppose that sequence v{n) satisfies \v{n)\ < Cn~3/4~ε with some pos-
itive constants C,ε. Then for every k G Jί+(v{n)n1^), the sum Y^Zn exp(—ikl)v(l)
converges and moreover,

oo

£ exp(-/«M/) = O(n~ι/4 logn)
l=n

as n —* oo.

Proof Summation by parts gives

= n~ι/4 Qxp(-ikl)(v(l)lι/4)
1=1 7=1

1=1

and applying Lemma 3.3, we obtain that for the values of k G Jf+(v(n)nι/4) the
sum converges as n —> oo. For the speed of convergence we have an estimate:

/=«
Λ-1/4Σe3φ(-ϊ«)(t?(/)/1/4)

7 = 1

"^((7-1/4 _
7=1

7

7 = 1

V
log n

/=«
•

In the discrete case, the solution φ of the formal equation hυφ = λφ satisfies
the recursion relation

φ(n)
φ(n)
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Let k — arccos \λ for λ G (—2,2). Applying to the system (10) a discrete analog
of the variation of the parameters formula

( / i + l ) ) exp(-*(/i + l ) ) \ fAn\

φ(n) ) \ exV(ίkn) exp(-Λ i) ) \Bn) ' l j

we get for new variables the finite difference system

Hnlf 1 exp(-2ι*/i)\\ MΛ
2sint V-exp(2i*Λ) -1 )J \Bn) ' l j

Now we are in a position to apply the discrete analog of the Harris-Lutz
technique to study the asymptotics of the solutions of the system (12). For ev-
ery λ e (-2,2) such that 2k = 2 arccos \λ belongs to Jί+{Φ{nλlAv{n))), by Lemma
3.4 we can define

q(n,k) = -τ-4-r Σ v(l)cxp(-2ikl) ,
z sin K ι=n

and moreover, q(n,k) behaves as O(n~ι^4\ogn) as n goes to infinity. The "/ + β "
transformation will be

Λ ( ) . (13)
Bn) \q{n,k) 1 )\Dn)

 K '

This transformation is non-singular as far as n is large enough and so we can
reconstruct the asymptotics of our generalized eigenfunctions from the asymptotics
of the variables C«, Dn. Substitution of (13) into the system (12) yields

o v w a y (.4)

Direct computation shows that every element of the matrix R{n,k) is a prod-
uct of numbers, uniformly bounded in n for each k e \Jί+(Φ(nι^4v(n))) and
q(n,k)υ(n) or q(n + l9k)υ(n). Hence by Lemma 3.4 and our assumptions on poten-
tial v9 we have ||i?(«,Λ;(Λ,))|| = O(n~ι~ε logn) at infinity for every λ from the set
S in the statement of Theorem 3.1. We can further simplify (14) by applying the
transformation

V o \(EΛ

For E, F variables we have

where / is an identity matrix and R(n,k) satisfies the same norm decaying con-
ditions as R(n,k). One can also directly check by looking at the transformations
we performed with the initial system (10) that the determinant of the matrix
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R(n,k) is equal to .
l —

5̂ simple argument, carried out in Lemma 3.5, 5 ^ 1 ; M 2

\q{n+\.,κ )\

immediately below, shows that there exists a solution of (16) with the asymptotics at
infinity

The application of transformations (15), (13), (11) allows us to compute the asymp-
totics of the generalized eigenfunction φχ and therefore concludes the proof. D

Lemma 3.5. Suppose we have a recursive relation

F

F
n (17)

and the matrix R(n) satisfies
terminants of the matrices Π
there exists a solution Hn of (17) such that

lι(7L+). Moreover, suppose that de-
a r e bounded away from zero. Then

Hn-
l=n

\\R(n)\\

as n • o o .

Proof A standard argument shows that the product Π/=i(^ + ^(O) converges as
n goes to infinity under the conditions of the lemma to a matrix we will denote
i?oo = Π/Ξi<7 + ^ ( 0 ) The condition on the determinants of finite products ensures
that Roo is invertible. Pick the vector H\ =R^([

Q). Then for n large enough so
that ΣZn P(OII < 1, we have

Hn-

:r=n\\m\
/=l

= O (Σ \\R(D\\ ) •

Let us specifically stress one consequence of the calculations we performed and
formulate

Proposition 3.6. For discrete Schrόdinger operators, similar to the continuous ones,
in order to prove that for a certain energy λ G (—2,2), all solutions of the equation
hυφ — λφ = 0 are bounded, it is enough to show that the sequences q{n,k)v{n) and
q(n + \,k)v(n) {where k = arccos | ) belong to / 1 (Z + ) .

This observation leads to the following theorem, which provides conditions under
which the singular component of the spectral measure of the operator hυ on (—2,2)
is void. It is an analog of Theorem 1.6:

Theorem 3.7. Suppose that \v(n)\ < Cn~3^4~ε and the Fourier transform Φ{nι/Av
(n))(k) belongs to Lp(0,2π) with p > l/ε. Then the spectrum of the operator hv

on the segment (—2,2) is purely absolutely continuous. Moreover, for every value
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of λ £ (—2,2) there exist two solutions φχ and φλ of the equation hvφ — λφ = 0
with the following asymptotics as n —> oo:

n

Φλ = exp ( ikn + ^ - j - Σ "
ι=\

where k = arccos ^λ

Proof The proof is a complete analogy of the proof of Theorem 1.5. One only
needs to replace integration by parts with Abel's transformation (summation by
parts). D

Finally, we discuss Jacobi matrices with non-power decaying potentials. The
class of potentials we treat is again potentials which are "mostly" zero and become
power decaying after "compression."

Namely, we say that a potential v(n) belongs to the class ^ α if there exists
a potential υ(n) such that \v(n)\ ^ Cw~α and two sequences of positive integers
{ai}™\ a n d {Mzίi satisfying bt-\ < aι < hi for all /, such that

O, aι ^n < bι

v(n- Y!j=λ(bj - aj))9 bι^n< aM '

We have the following theorem:

Theorem 3.8. Let potential v{n) belong to ^_ 3 / 4 _ ε . Then the absolutely continuous
spectrum of the operator hv fills the whole segment [—2,2], in the sense that for
any measurable set T C [—2,2] with positive Lebesgue measure we have pac(T) >
0. Moreover, for a.e. λ G (—2,2) there exist two linearly independent solutions ψχ,
φλ with the following asymptotics as n —> oo:

ψλ = exp (ikn + j ^ - £ v(l)

where k — arccos jλ.

For the proof of this theorem we need an analog of Zygmund's result for the
case of Fourier series instead of the Fourier integral. We refer to the work of
Menchoff [17] for the following result:

Theorem (Menchoff). Suppose {^( c ) } ^ is an orthonormal system of functions
on the interval (a,b) and the sequence {cn}^=ι belongs to lp(Έ) 0 < p < 2. Then
the series

N

Σ
l=\

cnφn(x)

converges, in the ordinary sense, for almost every x e (a,b).

In particular, taking φn(x) = exp(mx) and (a,b) — (0,2π), we obtain an analog
of Zygmund's theorem.

Proof of Theorem 3.8. Given Menchoff's theorem, the proof essentially repeats the
argument we gave to prove Theorem 2.1 in the second section. D
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Appendix

In this section we prove

Theorem A.I. Suppose that potential V satisfies \V(x)\ ^ Cix~3~ε and is con-
ditionally integrable with \ J^° V(t)dt\ ^ Cιx~δ for some positive δ. Then the
absolutely continuous component of the spectral measure of the operator Hγ fills
the whole 1R+.

For the proof of the theorem, we need to introduce some notation. Suppose that
potential V(x) satisfies |K(JC)| ^ C\x~a~\ with some α > \ and ε > 0. Then we
denote by S(V) the set of energies

\q(x9λ)\ = fV(t)exp(-2iVλt)dt S C(λ)χ-a+2 log x

Following the proof of Lemma 1.4, it is easy to see that S(V) contains the set

Jί+(Φ(xa~ϊV(x))), and hence is a set of full measure.

Proof To make the argument simpler, it is convenient to modify slightly the J> + Ά
transformation we applied to the system (4):

, / -V(x) -V(x)cxp(-2iVλx)\
y (x) = —-= _ y(x).

2Vλ\V(x)exp(2iVλx) V(x) )
Now we let

y(x) = (I - \q\2Γι'2(J + l)z(x) ,

where Ά and q = q{x, λ) are the same as before. As we did earlier in Sect. 1, we
will always assume that since we are interested in the asymptotics, we perform
the «/ + Ά transformation "far enough" so that \q\ < 1 for the x we consider. A
calculation leads us to the following system for z(x):

\(Wq - Wq) + 2\q\2D 2qD -

2qD - q2W ~\(Wq - Wq) + 2|#|2Z>

Here, as in the first section, D stands for ιy=V(x) and W for ιy=V(x)

exp(—2/Λ/ΛJC). As we already mentioned above, on the set S(V) of the full measure
we have |#(x,/l)| ^ C(/l)x~1/6log x. Hence, for all energies λ G S(V), the function
q2(x,λ)V(x) is absolutely integrable and | /χ°° q2(x, λ)V(x)dx\ ^ C(λ)x~ι~ε\og x.
Therefore, we can rewrite the system in the following way:

Ό+\(Wq-Wq) 2qD \ \
- , — +Λ(JC) z, (18)

2qD D-\{Wq-Wq)J )

where all entries of the matrix ^ are from Lι. The only dangerous terms are the off-
diagonal terms in the matrix, since the diagonal terms are purely imaginary and alone
would not lead to unbounded solutions. The main idea now is to iterate the J> + Q
transformation, improving the rate of decay of the off-diagonal terms. To apply this
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procedure, we need first of all to ensure that qD = ^χV(x
an a.e. λ integrable function. For any λ G S(V), we have:

X OO

/ V(t)J V(s)Qxp(-2iVλs)ds

oo

J V(s)exp(-2iy/ls)ds

A Kiselev

exp(—2iVλs)ds is

0

/ F(0 Λ J ( / F(J) exp(-2/\/L) ds

V(s)dsJQxp(-2iVλt)dt.

Hence, it is easy to see that for the energies λ which lie in both S(V(x)) and
S(V(x)f™ V(t)dt) we have (recall that by our assumption | Jχ°° V(t)dt\ ^ Cχx~δ)

OO OO

/ V(t) J V{s) exp(-2/>/Xs) ds dt <
X t

Applying the modified J + Ά\ -transformation

where q\ = ^ Ĵ °° V(t) ft°° V(s) Qxp(2iks) ds dt, we get after a computation similar
to the one leading from the system (4) to (18),

D+\(Wq-Wq)
2

2qλD
(19)

Here J>i is a matrix with entries from Z,1. The off-diagonal terms in the system

(19) have a rate of decay \qλ(x,X)V(x)\ ^ C{X)x~τ~b\o% x for a.e. 1
To complete the proof, we need to apply the <$ -\- & transformation several times.

The following lemma shows that under the assumptions of the theorem we can do
this and it also determines the number of necessary iterations and the set of full
measure for which we can derive the asymptotics of solutions.

Lemma A.I. Under the assumptions of Theorem A.I, the function

fn(h,λ) =
OO

V(t2) J

is integrable for every λ € Sn = p)"=0 Sj, where

Sj = s\ v(tι)ljv(t2)dt2

and moreover,
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Proof. The proof is by induction. We have already checked that for n = 1 the
statement is true. For the sake of simplicity, we assume integrability and give an
apriori estimate for the tail integral. Of course, one can easily prove integrability
by essentially the same (but a longer) computation. Now, integrating by parts, we
find that

oo

Jfn(tι,λ)dti
X

/oo \ / oo \ oo /oo \

= yfV(tOdh) (J/„_,(/,, A)Λ,J - Sfn-i(tuλ) I / V(t2)dt2\ dh •

According to the induction hypothesis and our assumption on V9 the first summand

on the right-hand side is bounded by C(λ)x~6~nδ\og x for every λ G Sn-ι I*1 t n e

second summand we perform integration by parts, integrating V(t\) Jt°° V(t2)dt2.
As a result we get:

OO OO 1 /OO

-ffn-ύtuλ) J V(t2)dtλdt2 = - -
x tx

 Z \x

2

fn-2(tχ,λ)dtχ

As before, the first term decays as Cx 6 nδ log x for every λ G Sn_2. We continue

to integrate by parts the second term, integrating V(t\)(ft°° V(t2)dt2)
2; we again

get a sum of two terms the first of which (off-integral) is well-behaved while the

second is again integrated by parts. We perform such a procedure n times and in

the end, summarizing the result of the whole calculation we find that

oo \

JV(t2)dt2) exp(2ή/M ) ^ ,
Ί /

where g(x, λ) satisfies the decay condition

\g(x,λ)\ ^ l δ

for any λeSn-\. The last term obviously satisfies the same estimate for every

λ G Sn. Hence, as claimed, /χ°° fn(t,λ) ^ C(λ)χ-^~nδ log x for every 1 G ^ . D

The proven lemma justifies the iteration of the «/ + Ά transformation, since on
the nth iteration, to obtain qn, we need to integrate qn-\D which, up to irrelevant
energy dependent constants, is exactly /„ from the statement of the lemma. After
the nth iteration we arrive at a system

+ϊ(Wq-Wq) 2qnD
z. = _ . +

where the matrix Mn has absolutely integrable entries. Also by the second statement

of the lemma, \qn(x,λ)V(x)\ ^ C(λ)x~6~nδ\og x for every λ £ Sn and is therefore
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absolutely integrable as soon as n > ^ . Therefore, for the energies from the set Sm

of full measure, m = [^] + 1 iterations are enough to bring the system to the form

where we can apply Levinson's theorem (or, as was noticed in Sect. 1, just use the

integral equation technique, bearing in mind that our unperturbed eigenfiinctons are

bounded). We also note that for every λ e Sm, transforming back, we get solutions

φχ{x) and φχ(x) with the asymptotics

φλ(x) = (expO'Λ/I* - -L= J V(t)dt

/ x oo \

+ — / V(t)J sin(2vΊ(ί - s))V(s)ds dt) x (1 + O(x~p log *)) ,
4 /^ 0 t J

where p = mm(ε,mδ — \) The solutions φχ(x) and φχ{x) are bounded and clearly
linearly independent. This completes the proof of the theorem. D
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