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Abstract: We are concerned with approximate methods to construct global solutions
with geometrical structure to the compressible Euler-Poisson equations in several
space variables. A shock capturing numerical scheme is introduced to overcome the
new difficulties from the nonlinear resonance of the system and the nonlocal behav-
ior of the source terms. The convergence and consistency of the shock capturing
scheme for the equations is proved with the aid of the compensated compactness
method. Then new existence results of the global solutions with geometrical struc-
ture are obtained. The traces of the weak solutions are defined and then the weak
solutions are proved to satisfy the boundary conditions. The initial data are arbi-
trarily large with L°° bounds.

1. Introduction

We consider the Euler-Poisson equations for compressible flows with the form

pt + V m = 0 ,

mt + V (Zf&) + Vp(p) = pVφ-V , ( U )

0 = p - £ > ( * ) ,

where p(x,0 G R, m(x,t) G R^, and φ(x,t) G R denote the density, the mass, and
the potential of the flows, respectively; p(p) — py}/y, y G ( l , | ] , is the pressure-
density relation function; τ > 0 is the momentum relaxation time; D(x) is the

doping profile; and Δφ — | 4 + 1" τ4 is the Laplacian of φ in RN. On the
ϋX\ ^ ΰXN

non-vacuum states (p > 0), u = - is the velocity of the flows.

This system describes the dynamic behavior of many important physical flows
including the propagation of electrons in submicron semiconductor devices (cf.
[4,20,24,37]) and the biological transport of ions for channel proteins (cf. [5] and
the references cited therein). In the hydrodynamic model for semiconductor devices,
p, m, and φ are the electron density, the current mass, and the electrostatic potential,
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respectively. In this model, the velocity overshoot and ballistic effects are simulated,
which can not be recovered from the classical drift-diffusion model (cf. [2,3]). The
biological model describes the transport of ions between the extracellular side and
the cytoplasmic side of the membrane in the ion channels, which are porous proteins
inserted across cell membranes. In this case, p, m, and φ are the ion concentration,
the ion translational mass, and the electric potential, respectively.

For concreteness, in this paper we focus on the following initial-boundary prob-
lem for (1.1) in the domain {(χ,t) G R^ x R+| 1 ^ |*| ^ 2}:

(ρ,m)\t=0 = (po(x),mo(x)),

% | = i =/w % | = 2 = 0, (1.2)

% | = i = Φi(t), φ\\z\=2 = Φi(t) ,

where φ\ and φι are bounded in L°°. The ideas and methods developed here can
be applied to solving the unbounded domain {(x,t) G R^ x R+| |x| ^ 1} to obtain
the similar results by following the techniques as in Chen-Glimm [9,10].

The system (1.1) supports the formation of nonlinear shock and contact waves.
Therefore one can not expect the global smooth solutions with large amplitude and
has to investigate the weak solutions containing the shock waves. In this paper we
develop a shock capturing scheme and apply this scheme to proving new existence
results of weak entropy solutions with geometrical structure of the Euler-Poisson
equations.

The system (1.1) with spherical symmetry can be rewritten as:

Pt + mx= a(x)m ,

mt + (ίf + P(p))χ = a(x)f + pφx-^> (1.3)

Φxx = Φ)Φx + P - D(x) ,

where a(x) = — ^- and the force term φx is nonlocal involving the global behavior
of the solution.

In the case N — 1, a(x) = 0, that is, (1.3) becomes the one-dimensional Euler-
Poisson system as (1.1) without the geometrical source terms. There have been
some important investigations on the one-dimensional case, for example, [1,14,21]
for the stationary problem and [36,44,19,29] for the evolution problem. In Degond-
Markowich [14], the existence for the one-dimensional steady-state equations was
obtained in the subsonic case, and in Gamba [21], a viscosity method was used
to study the boundary layers that appear when the viscosity coefficient vanishes.
In Marcati-Natalini [36] and Zhang [44], the Godunov scheme and the fractional
step procedure (cf. [16]) were used to construct the approximate solutions, where
the Riemann solutions serve as the building blocks, and a compensated compact-
ness framework (cf. [6,15]; also see [7,17]) was applied to proving the conver-
gence of approximate solutions and the existence of weak solutions. In Fang-Ito
[19], the existence of the global weak solution was established by the viscosity
method with the aid of the same compensated compactness framework. Also see
[11,12,22,29,38,45] for other related references.

In the case N > 1, a(x) is not equal to zero. Then the nonlinear resonance
between characteristic modes and the geometrical source terms occurs at the sonic
state, that is, some of the characteristic speeds and the source speed coincide at
the sonic state. Such a nonlinear resonance causes extra difficulties in solving the
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equations (cf. [9,33,34] and the references therein). Therefore more efficient meth-
ods have to be developed to solve (1.3) for this case, instead of using the traditional
method for the case a(x) = 0 (see [9,10,18,26,27,33,39,40,31]). Liu [33] first
combined the steady-state solutions with Glimm's random choice method to prove
the existence of global solutions of transonic nozzle flow provided the initial data
have a small total variation and are bounded away from sonic and vacuum states.
In Glaz-Liu [26] a shock capturing scheme was developed to calculate the transient
gas flows in a Laval nozzle. Also see Glimm-Marshall-Plohr [27] and Embid-
Goodman-Majda [18] for related discussions. Recently, an efficient shock capturing
scheme was developed in Chen-Glimm [9,10] to solve the Euler equations with
geometrical structure. In [9,10] the approximate solutions were constructed by in-
corporating the steady-state solutions with the Godunov scheme and the initial data
can be arbitrarily large with L°° bounds. The existence of global weak entropy so-
lutions for general L°° initial data was established by first discovering the important
properties of the steady-state solutions. In this paper, we focus on the system (1.3)
with bounded a(x) and nonlocal source terms, which excludes the singularity near
x = 0 for the spherical symmetric case as in the earlier work, but we are able to
handle the difficulties from the nonlinear resonance of the system and the nonlocal
behavior of the source terms. We use the shock capturing ideas from Chen-Glimm
[9,10] to develop an efficient shock capturing scheme for the present problem (1.2)
-(1.3). Then we use this scheme to establish the new existence theorem for the
global weak solution to the initial-boundary problems of (1.1)—(1.2) with nonlocal
source terms, with the aid of the compensated compactness framework.

The general strategy to solve nonlinear problems, such as (1.3), is the following:
First one constructs an appropriate sequence of approximate solutions and then
makes some apriori estimates, which are good enough to ensure the convergence
of a subsequence to the solution. In this process some theorems or frameworks on
convergence should be properly chosen based on the estimates one can obtain from
the approximate solutions. For (1.3) with φ ) Φ 0 , as usual, one may consider the
Helly framework: the uniform boundedness of the approximate solutions in both
L°° and total variation norms implies the convergence. However, the total variation
norm increases as p approaches 0, due to the nonlinear resonance at the vacuum
state p = 0, that is, different characteristic speeds coincide at the vacuum, as well
as the nonlocal forcing term and the geometrical source terms.

This difficulty in applying the Helly compactness framework to (1.3) can be
overcome by using the compensated compactness framework: the uniform bounded-
ness of the approximate solutions and H~x compactness of the corresponding weak
entropy dissipation measures implies the compactness of the approximate solutions.
The importance of this framework is that it takes the vacuum into account in the
correct physical variables (p,m) near the vacuum. This framework was proved in
[17] for the case y = 1 + ^j+T' m = 2 integers, and in [6] for the general case
of gases 1 < y g 5/3 (also see [15,7]). Further discussions on this framework for
other cases can be found in [32]. Due to the geometrical source terms, we adopt
the approach of Chen-Glimm [9,10] to construct the approximate solutions satisfy-
ing the framework. One of the key ideas of this approach is to use the piecewise
steady-state solutions, which incorporate the geometrical source terms, to replace
the piecewise constants from the Riemann solutions as the building blocks, moti-
vated by [18,26,27,31,33,39,40]. The main difficulty to achieve this idea is that,
in the transonic case, no smooth steady-state solution exists and an approximate
steady-state solution, including a standing shock, has to be introduced, satisfying
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some important properties similar to those of the smooth solution. This construc-
tion considerably improves the traditional fractional Godunov scheme for this case.
The corresponding approximate solutions can be estimated to satisfy the required
bounds. For this purpose, the properties of the steady-state solutions are important,
such as the oscillation and the average of the steady-state solutions and the behav-
ior of the corresponding Riemann invariants, since the steady-state solutions are the
fundamental building blocks. See Chen-Glimm [9,10] for the details.

To construct the approximate solutions of (1.3), we also incorporate the frac-
tional step procedure for the extra terms like pφx — ™ into our construction of ap-
proximate solutions, and some careful attention must be paid to the nonlocal term
ρφx as in Marcati-Natalini [36] and Zhang [44]. In the level of the fractional step
procedure, our fundamental building blocks are the steady-state solutions, while the
building blocks in Marcati-Natalini [36] and Zhang [44] are the classical Riemann
solutions. First we solve the third equation in (1.3) to get φx that involves the term
/* pdξ. To obtain the uniform bound of the approximate solutions, we estimate the

Riemann invariants, for which the nonlocal term fχ phdx is involved. For the case
a(χ) — 0, one has the conservation of particles, i.e., J ph(x, i)dx — J po(x)dx, as
used and proved in Marcati-Natalini [36] and Zhang [44]. For the case α(x) + 0,
one does not have such a conservation principle because of the geometrical source
terms. Therefore we have to make a proper estimate on the nonlocal term in order
to get the uniform estimate of the approximate solutions. For this purpose, we use
the first equation of (1.3) in a different but equivalent way. We change the definition
of the Godunov values in the scheme and prove a new property of the steady-state
solution. Then we can make a new estimate on the nonlocal term, which is good
enough so that the uniform estimate can be achieved. To estimate the H~ι com-
pactness of the weak entropy dissipation measures, we first make the estimates on
the mechanical entropy pair, which will also be used later to prove the convergence
and existence. Because of the different definition of the Godunov values, we have
to prove the existence separately for the first and the second equations of (1.3) and
to use the new property of the steady-state solution. Some extra terms from the
fractional step procedure have to be taken into account.

We also apply these procedures to prove the existence of the two-dimensional
symmetric rotating solutions of (1.1) with the aid of the method of quasidecoupling
(cf. [8]), due to the linear degeneracy of the extra field generated from the angular
momentum and the fractional step procedure. We first transform the system into an-
other equivalent system, for which we can conveniently make the uniform estimates
of the approximate solutions. Then we show the convergence of the approximate
solutions (ph,mh) by the compensated compactness framework. To show the con-
vergence of mh, we apply the method of quasidecoupling to deduce that the family
of the Young measures, determined by the approximate solutions, is the family of
Dirac measures.

We will also investigate the boundary values of the weak solutions as in [28].
First we define the traces of the weak solutions along the boundary, which satisfy
the weak form of the Gauss-Green theorem and have the Lipschitz regularity. Then
we prove that the weak solutions satisfy the initial-boundary conditions, which also
tells us the well-posedness of the boundary problem.

In Sect. 2, we review some basic properties of the Riemann solutions to the
homogeneous systems. In Sect. 3, we first revisit some important facts on the steady-
state solutions (see [9,10] for more details). Then we prove a new property of the
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steady-state solutions, which is essential to estimate the nonlocal term and to prove
the existence.

In Sect. 4, we combine the modified first order Godunov scheme with the frac-
tional step procedure to construct the approximate solutions for the initial-boundary
problems. The steady-state solutions are the building blocks in our construction.
Some estimates on the entropy are also given.

In Sect. 5, we first discuss the spherically symmetrical solutions and prove the
uniform boundedness of the approximate solutions in Sect. 5.1 and H~ι compactness
of the corresponding entropy dissipation measures in Sect. 5.2. The convergence of
the approximate solutions and the existence of weak entropy solution are estab-
lished in Sect. 5.3. Then we apply this theory to obtain the existence of the nozzle
solutions.

In Sect. 6, we apply this existence theory to the two-dimensional symmetric
rotating solutions with the aid of the method of quasidecoupling (cf. [8]) and a
transform of the system into an equivalent one. In Sect. 7, we investigate the traces
of the weak solutions on the boundary.

We remark that all the uniform bounds of the approximate solutions we obtain
are independent of the momentum relaxation time τ, which is important for investi-
gating other problems such as the relaxation limit as τ —» 0. We also note that the
Godunov scheme in this paper can be replaced by the Lax-Friedrich scheme. The
techniques and ideas developed here can be applied to solving the bipolar Euler-
Poisson equations (cf. [4,41]) with geometrical structure in several space variables.
For recent developments on two-dimensional viscous steady-state solutions for the
Euler-Poisson equations, see Gamba-Morawetz [23].

2. Preliminaries

In this section, we review some basic facts about the Riemann solutions for the
homogeneous systems. The equations for the two-dimensional symmetric rotating
flow discussed later are also considered here, parallel to the equations for the spher-
ically symmetric flow.

Consider the homogeneous system:

vt + f ( υ ) x = θ9 l < x < 2 , (2.1)

where v = (p,m)τ and f(v) take one of the following two forms:

m = m, f(υ) = U , — + p(p)j , (2.2)
or

" \m = (m9m)τ

9 f(υ) = (m, j + p(p\ "j\ , (2.3)

with p(ρ) = ρy/γ, y > 1.
The systems for (2.2) and (2.3) have parallel facts on the Riemann solutions.

The eigenvalues are

P P
for (2.2) and

m θ m θ m
P P P
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for (2.3), where θ = Jjγ-. The two characteristic fields for (2.2), and the first and the
second characteristic fields for (2.3) are genuinely nonlinear. The third characteristic
field for (2.3) is linearly degenerate.

The Riemann invariants are

m pθ m pθ

for (2.2) and

m pθ m pθ m
W = p + T ' Z=~p~Ύ' ω=~p'

for (2.3).
The discontinuity in the weak solutions of (2.1) satisfies the Rankine-Hugoniot

condition:

where σ is the propagation speed of the discontinuity, and VQ and v are the cor-
responding left state and right state, respectively. A discontinuity is a shock if it
satisfies the entropy condition:

σ(η(v) - η(v0)) - (q(v) - q(v0)) ^ 0 , (2.5)

for any convex entropy pair (η,q). The shock with speed σ = 0 is called the standing
shock.

Consider the Riemann problem of (2.1) with initial data

[>_, X < XQ ,

(2.6)
V+9 X > X0 ,

where xo E (1,2), v± = (p±,m±)Ύ', and p± ^ 0 and m± are constants satisfying

— < oo. For the Riemann problem of (2.2), there are two distinct types of

rarefaction waves and shock waves. For the Riemann problem of (2.3), there is a
linear wave - the contact discontinuity for A3, in addition to the rarefaction waves
and shock waves corresponding to λf, i = 1,2, on which m = const.

For the Riemann problem (2.6) and the Riemann initial-boundary problem of
(2.1) with data:

v\t=0 = v+, m\x=ι = 0 , (2.7)

we have the following facts on the solutions.

Lemma 2.1. There exists a piecewise smooth entropy solution v(x,t) for each
problem of (2.6) and (2.7) satisfying

(w(v(x9t)) S max(w(ϋ_),w(t;+)),

\w(v(x,t))-z(v(x,t)) ^ 0 ,

and, for (2.6),
z(v(x9t)) ^ min(z(t?_),z(ι;+)),

and, for (2.7),
z(v(x,t)) ^ min(z(ι;+),0) .
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In addition, for these two problems for (2.3),

min(ω_,ω+) ^ ω(x,t) ^ max(ω_,ω+).

Lemma 2.2. For the Riemann problem (2.6), the regions

Σ = {(p,m) : w ^ wo, z ^ z0, w -z ^ 0}

and
Σ = ί(P»tn^m)\w S wo, z ^ zo> w — z ^ 0, ω_ ^ ω ^ ω + }

are invariant for (2.2) <m/ (2.3), respectively. For the Riemann initial-boundary
problem (2.7), //ze regions

Σ = {(p,/w) : w ^ w0, z ^ z0, w -z ^ 0}, z0 ^ 0 ^ ° °,

and

Σ = {(ρ,m,m) : w ^ wo, z ^ zo, w — z ^ 0, ω_ ^ ω ^ ω + }, z0 ^ 0 ^ —^——-,

are invariant for (2.2) and (2.3), respectively. That is, if the Riemann data lie in

> m e n the Riemann solutions v(x,t) £ Σ and b^ Ia

 v(x>t)dx Σ
For the Riemann initial-boundary problem of (2.1) with data: v\t=o = V-9

m\x=2 — 0, we have the similar results to those for (2.7) in the above two lemmas.

A pair of mappings (η,q): R2 —> R2 is called an entropy-entropy flux pair
if \7q — V^V/. If ή(p,ΰ) = η(p,pΰ) satisfies ή(0,ΰ) = 0, for any fixed ΰ — -,
then η is called a weak entropy. For example, the mechanical energy-energy flux
pair

is a strictly convex weak entropy pair of (2.1).

Lemma 2.3. Assume (p,m)τ — (p,pΰ)τ is a Riemann solution 6/(2.1), and
Q ύ P = C, \ύ\ ̂  C\ for some constant C > 0. Then, for any weak entropy
pair (η,q),

\Vη\ ^ C, \Vq\ g C; |ί;τV2?;ι;| ^ CvτV2η*v;

where v is any vector and the constant C depends only on C and η, indepen-
dent of v.

3. Steady-State Solutions

In this section, we first revisit some important properties of the steady-state solutions
from [9,10]. Then we prove a new lemma that is essential to our uniform estimates
and existence in Sect. 5 due to the geometrical source terms and the nonlocal term.
As in Sect. 2, the equations for the two-dimensional symmetric rotating flow dis-
cussed later are also considered here, parallel to the equations for the spherically
symmetric flow.
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Consider the system of steady-state equations with boundary condition:

f(v)x = a(x)g(υ),
v*=*o

where a(x) — — 7 ^ with A(x) G C2, ^4(x) ^ Co > 0, and t; = (p,m) τ , t?o =

(po,^o) T

? /(^) and g(v) take one of the following two forms:

I /(ϋ) = (m, ̂  + ,p(p))T, fif(ϋ) = (m, *£ ) τ ,

m = (m,m)T = (pw,pω) τ, m0 = (m o ,m o ) τ =

/( ) K

or

The steady-state solutions for (3.2) and (3.3) have parallel properties. Set

the sound speed c = pθ. Then M = M(v(x)) = ^ is the Mach number and

Mo=M(υo).
For the nonsonic case, \MQ — 1| ^ /^MQ, with some /? G (0, ^) and h G (0,/ZO)

for some sufficiently small h0 G (0,1), (3.1) has a smooth solution.
When \MQ — 1| ^ /^MQ, the steady-state equation (3.1) does not have exact

smooth solutions, but has approximate solutions in the following sense.

Definition 3.1. v is an approximate solution o/(3.1) if

\f(v)x - a(x)g(v)\ ^ o(l), as h -> 0 . (3.4)

Near the sonic case, K0Vh ^ |M 2 - 1| ^ h^M^ with Ko = 2^ψ-, take

m(x) = mo(l + ao(x - x0)), m(x) =

o), x e (xo — \,XQ + §). Then t; = (p,m
for (3.3), is an approximate solution in the sense of (3.4) and satisfies
where ao = a(xo), x e (xo — \,XQ + §). Then t; = (p,m) τ for (3.2), or v = (p,m,m)τ

l i

(3.6)

For the transonic case, \M§ — 1| < KQΛ/JI, we introduce a standing shock at
= x with left state V- — (po-,rrio) and right state v+ = (po+,rh~o), where

The corresponding Mach numbers are MQ± = 1 =p 2(0 4- l)Koy/h + O(A). Take

άίfi 4- n Λ Λ \ \

c-f) , (3.7)
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with f e(*o-4^A,*o + 4^A). Then v(x) = (p(x),m(x))τ for (3.2), or

v(x) = (p(x\m(x\fh{x))Ύ for (3.3), defined by

( p-(x), x G [xo - §,*),

standing shock, x = x ,

p+(x)9 x e ( ί , * 0 + f ] , ( 3 ' 8 )

m(x) = mo(l + αo(* ~ *o)), Λ(x) = ^ ω o p ( x ) ,

is an approximate solution of (3.1) with p 0 ^ 0 in the sense of (3.4) satisfying
(3.6). Furthermore, we have

Lemma 3.1. There exists a smooth steady-state solution v{x) of (3.1) when

% — \\ ^ H^MQ, an approximate smooth steady-state solution v(x) when

^ \MQ — 1| ^ /Z^MQ, and an approximate steady-state solution including

a standing shock at some x G (xo — J\^θ)^x° + 4(\+θ)h) w n e n Wl ~ 1| <

with h ^ ho, in the sense of (3.4), such that, for x G [XO — §,xo + |]>

( w(v(x)) ^ w(vo)(l + CA), if Mo > 0 ,

I z ( φ ) ) ^ z(ι?o)(l + CA), ifM0<0,

and, for (3.2),

i *0+!

/ ( > / (l

, / o r (3.3),

/ ϋ(α:>/x i;o(l + 0 ( A - / ϊ ) ) ) , (3.9)

the constant C and the bounds O(y/h)9 O(A2(1~^}), and O(hι+β) depend only
on the bound of A(x) and are independent of Mo.

We now introduce a new property of the steady-state solution.

Lemma 3.2. Let v(x) = (p(jc),m(jc)) be a smooth steady-state solution of (3.1)
when \MQ — 1| ^ A^MQ, or an approximate smooth steady-state solution of (3A)
when \MQ — 1| ^ A^MQ /« Lemma 3.1. TAew, /or h ^ ho, p{x) satisfies the fol-
lowing property.

1

- / ^ ) ( p ( x ) - p o ) ^ = PoO(A2<1-«); (3.11)



342 G.-Q. Chen, D. Wang

i *O+J

- / A(xXp(x) - po)dx = poOih1^), (3.12)
h

where the bounds 0(h2^ ^ ) and O(hι+β) depend only on the bound of A(x).

Proof (1) If |M0

2 - 1| ^ /Λtf0

2, then (3.1) has a smooth solution v(x) =

(p(x),m(x)). By the Taylor expansion on p(x), for JC G [xo — f ?χo + f L

^(x)(p(x) - po) = (A(x0) + (^(JC) - ^(JCO)))P/(JCO)(JC - xo) + ̂ (jc)p / /(^)(^ - xo)\

for some jμ between XQ and x. A careful estimate shows that (cf. [9])

|p'(x)| ^ Cpoh~β, \p"(x)\ ύ Cpoh~2β .

Therefore

h h
-j -*0~'~2 1 ^0 ' 2

- / ^(x)(p(x)-po)ί/x=^(xoy(^o)τ / (x-xo)dx +

(2) If |M0

2 - 1| g ^M 0

2 , (3.1) has an approximate solution (3.5) or (3.8) satis-

fying ρ(x) - po = poO(Vh). Then by (3.9), (3.10), and β G (0, \), we conclude

- / A(x)(p(x)-po)dx= - J (A(xo)(p(x) - po)
n h n t,

+ (A(x)-A(xo))(p(x)-po))dx

= PoO(hι+β) .

This completes the proof. D

4. The Shock Capturing Scheme

Consider the following problem:

vt + f(v)x - a(x)g(v) + G(ι;,JC, t) , 1 < x < 2 ,

4=o = z ; oW, (4.1)

m\χ=i = m\χ=2 = 0 ,

where v = (p9m)Ύ with m_= m, or m = (m,m)τ, f(v), g(v) and a(x) are the same
as in (3.1), and G = (0,G2) G C.

In this section, we construct the approximate solutions vh — (ph,mh)τ =
{ph,ρhΰh)τ of (4.1) in the strip 0 ^ t ^ T for any fixed Γ G ( 0 , O O ) , where
h = jj > 0 with a large positive integer M and At > 0 are the space mesh
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length and the time mesh length, respectively, and satisfy the following Courant-
Friedrichs-Levy condition:

A = max f sup \λi(ρh,mh)\) ^
- 4(γ+l)Δt ~2Λ'

where λi9 / = 1,2, or 3, are the eigenvalues of (4.1).
Assume that vh(x,t) is defined for t < nΔt. Then we define vj = (p^rnj) as:

p" = U ~2) : , m" = - f mh(x,nΔt -0)dx,

for 2 ^ j S M ~ 2; and

2 A(x)ph(x,nAt-O)dx

m
22

n

M_λ = — J mh(x,nAt -0)dx.3k 2-U

In the strip nΔt ikt<(n+ l)^lί, we define v{j(x,t) as follows:

(a) For 1 +yΆ ^ * ^ 1 + (j + 1)A, 1 ^ y ^ M - 2, ί^(x,0 is the approximate
solution of the generalized Riemann problem of the system

*>t + f(v)x = a(x)g(ϋ) 9 (4.2)

with initial data
[v-(x\ x < l+(y+I)A,

where f-(x) and f+(x) are the smooth solutions or approximate solutions in Sect. 3
of the steady-state equation

f(υ)x = a(x)g(v), (4.3)

with boundary conditions: f_(l Λ- jh) = v"9 v+(\ + (j + \)h) = v?+ι;

(b) For 1 S x S 1 + h, VQ(XJ) is the approximate solution of the generalized
Riemann initial-boundary problem of (4.2) with data

v\t=nAt = υΐ(x), m\χs=ι = 0 , (4.4)

where v~[(x) is the smooth solution or the approximate solution in Sect. 3 of the
steady-state equation (4.3) with boundary condition: v^(l + A) = i J1;

(c) For 2 — h ^ x ^ 2, ι>o(xΌ ^s m e approximate solution of the generalized
Riemann initial-boundary problem of (4.2) with data:

v\t=nAt = V~_ι(xX H x = 2 = 0 , (4.5)

where v^_x(x) is the smooth solution or the approximate solution in Sect. 3 of the

steady-state equation (4.3) with boundary condition: v^ί_ι(2 — h) = vn

M_x.
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We solve the above problem for small time approximately to get VQ(XJ) by
perturbing about the solution R of the corresponding Riemann problem of the
homogeneous system:

vt + f(υ)x = 0 , (4.6)

with data

{ V-(l + (y + \)h — 0), x < 1 + (y + )̂A ,

ϋ+( 1 + (y + ^ )A + 0), x > 1 -h (y + ^ )A ,

for 1 +y'A ^ x < 1 + (y -h 1)A, 1 ^ j ^ M — 2; and the Riemann initial-boundary
problems of (4.6) with data (4.4), for 1 < x ^ 1 + A; and with data (4.5), for
2 - A ^ x < 2.

First, let

α ~~| (A ,̂ w), otherwise .

Then Ra(x,t) satisfies the entropy condition on its discontinuities and

f = 0, ifp(x,t)>hP,
\ R ( t ) R ( t ) \ ^ -

Then, as in [13], we approximate the possible existing κth rarefaction waves
(vϋ,v+), K = 1,2, in Ra(x,t) by finite discontinuous rays ^ = λκ(v[) separating
finite constant states v[, i — 0,1,... ,/r, with u£ = i ϋ and υ\r = i;^, such that

if K = 1, w(ϋΓ+1) = wOΌ + A, z(ί;[+1) = z(v[), O^i ύlr-h

if K = 2, φ ^ ) = z(ι;f) + A, w O ^ ) = w(ι;f), 0 ^ / ^ /r - 1.

In this way, we obtain the approximate Riemann solutions consisting of finite dis-
continuities separating finite constant states vu / = 0,1,.. .,/, with υ0 = v_(1 + (j +
j)λ - 0) and vι = v+(l + (y + j)A + 0). Let t5/(jc) = (^.(x),^/^)) be the exact
smooth or approximate steady-state solutions such that vt{\ + (j + \)h) = vt.

We use the cut-oίf technique and denote by ty(x) = (p/(x),pz (x)w/(x)),
0 ^ / ^ /, the approximate steady-state solutions as follows:

The approximate solution ι>o(x,0 = ( / 9 Q ( X , 0 ? ^ O ( X Ό ) m t n e rectangle [1
1 +C/ + 1)A] x [nAt,(n+ I)At) or [1,1 + A] x [nAt,(n+ 1)At) or [2 - h,2] x
(« + 1)^0 consists of the exact or approximate steady states ty(x), / = 0,1,.. .,/,
separated by the discontinuities, subject to the Rankine-Hugoniot condition, with
speeds

P(pι+ι(x(t))) - p{Pi(x{t)))

where K: = 1 or /c = 2, determined by the κth original elementary waves from
which the discontinuity comes. Then the approximate solutions t?o(x>0 approach the
approximate Riemann solutions as t —> nAt.
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We have the following estimates on the entropy as in [9,10]:

Lemma 4.1. There is a constant C depending only on the uniform bound ofυ^xj)
such that, on any approximate shock wave with speed σu

- η*(Vi)) - (q*(vi+ι) - q*(Vi)) ^ 0 ,

and

\σi(η(vi+ι(x(t))) - */(»,(*(/)))) - (q(vi+ι(x(t))) - q{Vi

and, on the discontinuous rays, x = x/(t), σt = ^jjp-, of the approximate rarefac-
tion waves,

\σi(η{vi+ι{x{t))) - η(Vi(x(t)))) - (q(vi+ι(x(t))) - φt(x(t))))\ ^ Chl~2β ,

for any C2 weak entropy-entropy flux pair (η,q) and the mechanical energy-
energy flux fa*,?*).

Finally, we define the approximate solution vh(x, t) — (ph(x,t\mh(x,t)) of (4.1)
in the strip nΔt ^ t < (n + I)At by the fractional step procedure:

Ό\X9 t) = υ*(x, t) + G(υξ(x9 t),x, t)(t - nΔt) . (4.7)

5. Spherically Symmetric Solutions and Nozzle Solutions

Consider the spherically symmetric solutions of (1.1) in R^:

(ρ(x91)9 m(x9 0, φ(x, 0 ) = ί P(x> t)9 m(x9t)-9 φ(x, t) ) ,

where x — \x\,m(x9t) — p(x9t)u(x,t). Then (1.1)—(1.2) becomes

vt + f(v)x = a(x)g(v) + G(v9x9t)9 1 < x < 2, t > 0 ,

(5.1)

^ m\x=χ = m\x=2 = 0 ,

where

v = (p,m)τ, f(v) = ί m9 — + p(ρ)j 9

g(υ)=(m9—) ,

a n d a(x) = -*=! = - ^ , A(x) = e~F"^ = NωNxN~\ ωN = ^ g ^ , with

-D(ξ))ξN~ιdξ + c{pj^j - ^ , (5.2)



346 G.-Q. Chen, D Wang

where

c(p,t) = c0 (φ2(t) - φι(t) - fsι-NJ(p - D(ξ))ξN-ιdξds\ , (5.3)

and Co = yr^

We construct the approximate solutions of (5.1) as the construction for (4.1)
with m = m and, in this case, (4.7) becomes

ί ° (5.4)

m (x, ί) = mo(x91) + O2(p0(x, /)> w o ( x ' ^Λx' 0(^ - nΔt),
for «zJί ^ t < (τi + l)zlί.

5.7. Uniform Estimates. In this section, we will make the L°° estimates to get
the uniform bounds of the approximate solution vh(x9t) = (ph(x,t\mh(x9t)). For
simplicity of notation, we denote C > 0, a universal constant depending only on
Γ, throughout this paper.

First we have the following lemma about the conservation of particles.

Lemma 5.1. There exists a constant C > 0, which depends only on the bounds of
A(x) and ρ0 + | ^ | , such that, for any t G [0, T],

2

fph

0(x,t)dx S C + Cmax{p*}/^ ,
1 J

for some n with t G [nAt,(n + l)At).

Proof. By the construction of the approximate solutions, we have

2 {n+\)Δt

fA(x)ph

0(x,(n +l)At-0)dx+ f A(x(t))Σ(σ[ph

0] - [mh

0])dt
1 nΔt

2

= JA(x)ph

Q(x,nAt + 0)dx + O(hβAt).

1

Using the Rankine-Hugoniot condition, one has

(n+\)Δt

I A(x(t))Σ(σ[ph

0]-[mh

0])dt = 0,
nΔt

and then
2 2

/Λ(jt)pg(jc,(/i + I)At - 0)dx = JA(x)(ph

0(x,nAt + 0) - p\{x,nAt - 0))dx
1 1

2

+ fA(x)ph

0(x,nAt - 0) JJC + O(A^+1) .
1

By the construction and Lemma 3.2, we have

(5.5)
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and

- J A(x)(ph

ofanAt + 0) - φdx = pnj0{hι+β).
n i+O'-i)A

Then, by subtracting and adding the term p", we get

jA(x)(ph

ofanAt + 0) - p\fanAt ~ 0))dx =
i

and
2

/Λ(jt)pg(*,(/!+l)zlί--O)rfjc
1

= jA(x)ph

ofanAt -0)dx + Σ ρ"O(h2+β) +
l j

Therefore, by induction on n, we have

jA(x)ph

0(x,nAt -0)dx = JA(x)ph

0(x,0)dx + Σ Pnj0(hι+β) + O ( ^ ) , V/i.
l l y

For any t e [0, Γ], ί G [nAt,(n + 1)^0 for some «, then by the construction of the
approximate solutions, the Rankine-Hugoniot condition, and the above estimates,
one has

jA(x)ph

0(x9t)dx = jA(x)po(x)dx + Σ ff}O{ti+fi) + O(A^). (5.6)
1 1 j

Since A(x) ^ TVωiv f° r anY χ € (1,2), Lemma 5.1 follows from (5.6). The proof is
completed. D

Let Πτ = [1,2] x [0, Γ]. We have the following uniform estimate.

Theorem 5.1. Suppose there exists a constant C > 0 such that 0 < po(x) S C and
lwo(*)l = C for aM x ^ (1,2). Then, for h ^ ho, there exists a positive constant
C(T), independent of h and τ, such that

hβ g pA(x,0 g C(Γ), |^(x,OI ^ C(Γ), (x,ί) G i7Γ .

Proof Suppose, for small A,

suppA(*,0 ^ τ«

Then Lemma 5.1 implies

fpho(x,t)dx^C, Vίe[0,Γ]. (5.7)
1

By the construction of (ρ\mh% we have pΛ(jc,f) ^ A ,̂ for fat) e Πτ. By (5.3)
and (5.7),
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In nΔt 5Ξ t < (n + \)Δt, we estimate the Riemann invariant w using (5.4) and
(5.7):

(t - nΔt)

- nΔt) + CΔt.

By Lemma 3.1 and the construction of (ph,mh), we have

J w(vh

0(x,t)) ^ max(swpxw(v^(x,nAt + 0)),

|z(ι;g(x,O) ^ minίi

for /z ^ h0. Then

C,O) ^ max (supw(vh

0(x,nAt + 0)), 1J (1 + CAt) ίl -

- min (inf z(v%(x,nAt + 0)), - l ) (1 + CAt)1' ~"Δt

 + CAt.

Similarly, we have

z(vh(x9t)) ^ min finf z(vh

0(x,nAt + 0 ) ) , - 0 (1 + Cdί) [1 - ^ ~ nΔ )
\ x / \ 2τ J

- max ( supw(vQ(x,nAt + 0)), 1 ) (1 + C J ί ) — - ^ h

Note that

where the bound O(h) depends only on the bound of A{x). Then

w{vnι) = w{v1){\ + O(h)), z(v") = z(v")(l + O(h)),
J J J J

where v = { I , fw vn(x,nAt — 0)dx.

Set Mn = maxίsup^ w(υξ(x9 nAt + 0)), - inf^z(υξ(x9 nAt + 0)), 1). Then

Mn+λ S Mn{\ + CAt) + CAt.

Thus τ

Mn+X ^ M 0(l + CAt)^t+x + CΓ(1 + CAt)Tt ^ C ( Γ ) .

This implies

h CzlO + CAt S C(T),

+ CzlO + Czl/ ^ C(Γ) ,
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Therefore, there exists a constant C(T) > 0, which is independent of h and τ, such
that

mh(x,t)hβ ύp\xJ)ύC{T\ \uh(x,t)\ =
ph(x,t)

Choose ho > 0 such that h^ < ^ ^ . Then, for h ̂  ho,

ύ C(J).

hβ ύ p\xJ) ύ C{T) < 1 .

This completes the proof. D

5.2. H~λ Compactness of Entropy Measures. We need the following basic lemma
(cf. [7,43]) to prove the H~ι compactness of entropy measures for the approximate
solutions (ph,mh).

Lemma 5.2. Let Ω c R^ be a bounded domain, then

(compact set of W~hq(Ω)) Π (bounded set of W'U(Ω))

C (compact set of W~^2(Ω)),

where q and r are constants, 1 <q^2<r<oo.

Theorem 5.2. If {vh} are the approximate solutions, then the measure sequence

Φh)t + q(vh\

is a compact subset of H^(Ω) for all weak entropy pairs (η,q), where Ω is any
bounded and open set in Πτ.

Proof. For any ψ G CX(ΠT), we have

πτ

= A(φ) + M(φ) + N(ψ) + L{(φ) + L2(φ) + Σ(φ) + E(φ), (5.8)

where
Λ(φ) = fj((η(vh) - η(υh

0))φt + (q(vh) - q(vh

0))φx)dxdt,
πτ

M(φ) = } φ(x, T)η(vh

0(x, T))dx-J φ(x, 0)η(vh

0(x, 0)) dx ,
1 1

N(φ) = - JJa(x)g(υho)Vη(vh

o)φ(x,t)dxdt,
πτ

Li(Φ) = Σ / (Φo-) ~ Φn

0+))(Φ ~ Φf)dx ,
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and

Σ(Ψ) = I Σ (σ[η] - [q\)φ{x{t\t)dt, \E(φ)\ ^ Ch^\\φ\\Hl ,
o

where v%± = υ\(x,nΔt ± 0), φj1 = φ(l + jh,nAt), the summation in Σ(φ) is taken
over all discontinuities in υfo at a fixed time t, σ is the propagating speed of the
discontinuity, and E(φ) is the error term including the error in the steady-state
solutions and the error near the vacuum in the construction of approximate solutions,
and

[η] = η(vh

0(x(t) + 0,0) - η(vh

0(x(t) - 0 , 0 ) ,

[q] = q(vh

0(x(t) + 0,0) " q(vho(x(t) - 0, t)) ,

are the jump of η{v^(x,t)) and q(v^(x,t)) across a discontinuity S = (x(t)9t) in

i%(x,t). D

First we have the following two lemmas.

Lemma 5.3. For any n and h ^ ho,

l- J (ph(x,nAt-O)-p])dx =

This directly follows from (5.5) and

1
τ - 0 ) - py

w)

Lemma 5.4. There exists a constant C > 0

vn)τV2
(1) Σ / / ( I -*M± - vnj)τV2η*(vnj+s(vn

0± - v]))(vn

0± - v])dsdx ^ C,
J,n χHj-l-)h 0

(2)Σ / l«δ±-^l2Λ
• / > π i+(y-j)A

/ We substitute (η9q) =

(v) - f(v)),

with v = (A^,0), and ^ = 1 in the equality (5.8) to obtain

T

Σ / Ofί(t>8-) " ^*K + ))^ + / Σ ( 4 ώ - [ίί])Λ ^ Co . (5.9)
y,» i+o-i)/, o
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Rewrite the first term as

Σ

= Σ
y,« ( y ) u\)

Then we have from the Taylor expansion, the construction of vh, and Lemma 5.3
that

Σ

1+0"+j)Λ
0(1)

and

Σ /
hn i + ( y _ l ) A 0

and

Σ

1+0+\)h i

Σ / /(I
j,n l+U-ί)h 0

- VjΫΨη^j + s(v"0+ - - v"j)dsdx

Here we actually proved the ' + ' part of (1).
We have

1+0"+j)Λ l

from the above estimates and (5.9).
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Since σ[rfc] - foj] ^ -CU~2β, then

T

Therefore, there exists a constant C > 0 such that

Σ

and

1

J(l-s)(vn

0_ - _ - v])dsdx g C

This proves the / - / part of (1).
Since V 2 ^ ( r , r ) ^ co(r,r),co > 0, then (1) implies (2).
We now continue the proof of Theorem 5.2.

(a) From the lemmas in Sects. 2 and 3, Lemma 5.3, and Lemma 5.4,

\N(φ)\ % C\\φ\\Com ,

2 ( 1 «

and

\Σ(ψ)\ S

J " • / ' "

Hence

that is

By the embedding theorem, (C0(Ω))*
is compact in ^ - ^

ΣWc έC.

~ι^,for 1 < qx < 2,M+N+Li +Σ
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(b) For any φ G Co

α(Ω), \ < α < 1, using Holder's inequality, we have

S Σ / \Φ ~ Φj\ (\Φo-) - Φ])
J l

f Σ / K--vfdx
\j l

l+O"+j)Λ

+Σ

By the Sobolev theorem: ^ ^ ( Ω ) C Co

α(Ω), 0 < α < 1 - -p, we have
p,

that is,

for 1 < q2 < Ϊ ~ . Therefore L2 is compact in W X'qi, and then

is compact in W~~ι'q°, where 1 < qo = min(q\, q2) < y ^
The uniform boundedness of the approximate solutions implies M + N +L-

is bounded in Wι'r, r > 1. By Lemma 5.2, M + N -]- L -\- Σ is compact in H
(c) Finally, for A(φ) we have

| | ^ ( ^ ) | | ^ //(IIVJ/HOO + IIV^II,
πτ

Since Cg°(Ω) is dense in H^(Ω\ then

so 4̂ is compact in H

We know from H^H^-i ^ CÂ  -> 0, as h -+ 0, that E is compact in

Therefore A-\-M-\-N-\-L-\-Σ-\-E is compact in H^(Ω), which means that η(vh)t

+ q(vh)x is compact in H^iΩ). D

5.5. Convergence and Existence. In this section, we prove that (5.1) has a weak en-
tropy solution, which is the limit function of the approximate solutions.

Definition 5.1. A measurable function v(x, t) = (p(x, t),m(x, t)) is a weak entropy
solution of (5.1) if for any test function φ G CQ(ΠT) with ψ(l,t) = ψ(2,t) =

= O, (5.10)
πτ l
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and, along any shock discontinuity with left state V-, right state v+, and
speed σ,

σ(η(v+) - η(v_)) - (q(v+) - q(v.)) ^ 0 , (5.11)

for any convex weak entropy pair (η,q).

Now we introduce the following compensated compactness framework (see
[6,7]):

Lemma 5.5. Assume that the approximate solutions vh = (ph,mh) satisfies

(I) There is a constant C > 0 such that 0 ^ ρh(x, t) ^ C,
mh(x,t)
ph(x,t)

(2) The measure η(vh)t + q(vh)x is compact in Hlθ(}(Ω),for all weak entropy
pairs (rj,q), where Ω c Tlτ is any bounded and open set.

Then, for 1 < γ ^ 5/3, there exists a convergent subsequence (still labeled) vh

such that vh(x, t) —> v(x, t) = (p(x, t),m(x, t)) almost everywhere.

In Sects. 5.1 and 5.2, we have proved that the approximate solutions vh(x, t)
constructed in Sect. 4 for (5.1) satisfies (1) and (2) of Lemma 5.5. Thus we have
the following theorem.

Theorem 5.3. There is a convergent subsequence (still labeled) vh in the approxi-
mate solutions vh(x, t) = (ph(x, t\mh(x, t)) such that

vh(x, t) -> v(x, t) = (p(x, t\ m(x, t)\ a.e. as h -> 0 ,

and that the function v(x,t) is a weak entropy solution of (5A) in the sense of
Definition 5.1 and satisfies

0 ^ p(x, t) S C(T\
m(x, t)

P(x, 0

for (JC, t) e Πτ, where C(T) > 0 is a constant.

^ C(T),

Proof. The convergence follows from Lemma 5.5. Now we prove that v(x, t) sat-
isfies (5.10) and (5.11).

(a) Let φ e Cl(Πτ) be any test function with ψ(l,t) = ψ(2,t) = ψ(x,T) = 0

and set φ(x, t) = *jj$ e Cι

0(Πτ). One has

2

J
ΠT 1

= ff (A(x)phψt +A(x)mhψx)dxdt
πτ

= JjA(x)(mh - m*)ψxdxdt + )ΣA(x(t))(σ[ph

0] -
Πτ 0

(5.12)
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where

355

hi = Σ ψ" I A(x)(p»(x,nAt - 0) - pfanAt + 0))dx ,

= Σ ~ 0) -

By the fractional step procedure and the Rankine-Hugoniot condition, one has

JjA(x)(mh - m*)ψxdxdt = = 0

By the construction of vh(x, t), Lemma 3.2 and Lemma 5.4, one has

(A(x)(p$(x,nAt-O)-p]) 0)))dx
j>"

J,n

1+0-

Taking the limit h —+ 0 in (5.12) and using the dominated convergence theorem,
one has

2

// ( M + mψx + a(x)mφ) dxdt+ f po(x)ψ(x, 0)dx = 0 .
/7Γ 1

(b) Similarly to (a), by the fractional step procedure and the Rankine-Hugoniot
condition,

πτ

p(ph) )φx+( a
\

-^- + G2(vh,x,t))φ)dxdt
Ph ) )

(5.13)
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J
πτ

I - 0) - + 0))dx .

By the construction of vh

9 Lemma 3.1, and a similar estimate in [16] (also see
[35]),

J>n

nΔt

Σ /
j,n {n-\)Δt

(G2(υfa9t)9x9t)ιKx9t)

-G2(vξ(x9nAt - 0)9x,nAt - O)φ])dxdt

where ^ > 0 is an arbitrary and sufficiently small constant, π , r2 > 0 are cons-
tants (cf. [16]).

By Lemma 5.4 and a similar estimate to In,

I/22I ^ O(Λ)| |.AIIC.

Taking the limit h —> 0 in (5.13) and noting that δ is arbitrarily small, we conclude

(mφt +(— + p(p)

2

Jmo(x)ψ(x,O)dx = O.

a(x)— + G2(v,x, t)j ψj dxdt

(c) For any convex weak entropy pair (η,q) and any nonnegative test function
ψ € Cl{Πτ) with K V ) = φ(2,t) = φ(x,T) = 0,

II(φh)Φt + Φh)Ψ* + (a(x)g(vh) + G(vh,x, t))Vη(vh)ψ)dxdt
πτ

9 0) dx = A(ψ) + A(ψ) + , (5.14)

where the operators A,Σ,L\,L2,E are the same as those in (5.8) and

= JΠ(a(x)g(υh) + G(ί;Λ,x, O)Vιj(ι;A) - a(x)g(v*)Vη(v*))φdxdt.
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As in Sect. 5.2, and since σ[η] — [q] ^ —Ch2~2^, we have

A(ψ) ^ -Ch\\ψ\\Hi9 A(ψ) ^ -
o

Σ(Φ) = / Σ ( ' M - [q])Ψ(x(t),t)dt ^ -
0

Moreover, as in Sect. 5.2,

J,n

l_ - vnj)dsdx

i 1

-ΣΨ? I f(l-s)(v»0+-v»)τ

j,n i + 0 _ l ) A 0

x V2η(vnj +s(vn

0+ - vnj))(vl+ - vnj)dsdx

\Liin S Σ / \ψ{x,nΔt) - W\{\η{vl_) - r^ή)\ + \η(v"0+) - ηtfj

(
Σ
J

J'n

Taking the limit /* —> 0 in (5.14) and using the dominated convergence theorem,
we verify that the limit function v = (p,m) satisfies

η(v)t + tfϋ), - (Λ(*)0(U) + G(ϋ,x, t))Vη(v) ^ C ,

in the sense of distributions. Using the standard procedure (cf. [30]), we conclude
that the limit function υ(x, t) satisfies the entropy condition (5.11) along any shock
wave. And the uniform boundedness of υh(x,t) implies the boundedness of the
weak solution υ{x, t).

5.4. Nozzle Solutions. Now we consider the following equations for the nozzle flow:

( (Ap)t + (Am)x = 0 ,

I {Am)t + {Λ«£)χ + Ap(p)χ = AGl 9 ( 5 1 5 >



358 G.-Q. Chen, D. Wang

1 < x < 2, t > 0, with initial-boundary conditions:

J (p, m)| ί =o = OoO), /»<>(*)),
I m| x = i = m\x=2 = 0 ,

where ^4(x) G C 2 is the cross-sectional area of the nozzle at x and Gi is the same
as in (5.2).

Set a(x) = - τ ^ y . Then system (5.15) is equivalent to

f pt + mx = a(x)m ,
2 2 (5.17)

*»/ + (*- + /Kp))* = α ( * ) ^ + G2(p,m9x,t) .

As in Sect. 4, we construct the approximate solutions (ph(x9t),mh(x,t)) of (5.17)
and then prove that the approximate solutions satisfy the compensated compactness
framework (Lemma 5.5) as for (5.1). Then we conclude that there is a subsequence
in the approximate solutions strongly converging to the L°° function (p(x, t),m(x, t))
almost everywhere.

Theorem 5.4. Assume that the initial data (po,wo) are bounded in L°°. Then there
exists a bounded weak entropy solution (p(x,t\m(x,t)) of (5.15)—(5.16) in the
sense of Definition 5.1.

6. Two-Dimensional Symmetric Rotating Solutions

Consider the solutions of (1.1) in R2 of the following form:

where x = (x\9X2) Then (1.1)—(1.2) becomes

f + p{ρ))x = - ~ + G2(p,m,/?U 0 , (6.1)
/ ΪΪITΪI \ 2 mm m

\ — )χ - ~x~ ~ 7 '

with the initial-boundary conditions:

ί (ρ,m,m)\t=o = (po(x\mo(x),mo(x)),
1 i i n ( ^
[ m\x=ι = m\x=2 = 0 ,

where x = \x\ and G2 = px~\fi(p -D(ξ))ξdξ + c(p,t)) + \m2p - ξ with c(p,t)
the same as in (5.3) for N = 2.
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Set m = me*, ώ = ^ = ωeτ. For any test function φ e CQ(ΠT), taking

φ — ψe~τ e CQ(ΠT), one has

2 mm A , ,
^ dxdt-

πτ

Then (6.1)—(6.2) is equivalent to

vt + f(υ)x = a(x)g(v) + G(υ9x91),

=o = vo, (6.3)

c=i = rh\x=2 = 0 ,

where υ = (p,m,m)τ = (v,m)τ with ΰ = (p,m) τ , a(x) = — ^, /( f ) — (m, y , ^ ) τ ,

g(v) = (m, y , ^ ) τ , and G = (0, G 2 , 0 ) τ with G2(p,m,m,x, t) = G2{p,m,me~^x, t).
We can construct the approximate solutions of (6.3) as the construction for (4.1)

with m = (m,m). In this case, (4.7) becomes

Γ ρh(x, 0 = PoC*' 0> mh(x, 0 = ^ o ( x ' 0 >
* (6.4)

m

Λ ( x ? o = W(J(JC5 ί) + G2(m^(x, t)9mζ(x9 t)9x9 t)(t - nΔt).

Equivalent^, (pΛ(x, t),mh(x, t),mh(x91)) = (ph(x, t),mh(x, t\mh(x, t)e~?) is the
approximate solution of(6.1)-(6.2).

In the strip nΔt ^ t < (n + l)Δt, by the construction and Lemma 3.1, we obtain

, 0 ) ύ max(supx w(v£(x,nAt + 0)), 1)(1 + CΔt),

9 0 ) ^ min(mfxz(v^(x,nAt + 0)), -1)(1 + CΔt),

o(*, 01 ύ supx |ώo(x,«zlί + 0)|(l + At).

Theorem 6.1. Assume that the initial data satisfy \UQ(X)\ + |ώo(*)| ^ Co,
0 ^ Po(^) ^ Co, /or some Co > 0. Then there exists a positive constant C(T),
independent of h and τ, such that

\u\x9 0 | + \ώh(x, 01 ύ C(Γ), ^ ^ pΛ(x,0 ύ C(T), (x, t)eΠτ.

Proof For ώh{x, t\ in the strip nΔt ^ t < (n-\- \)Δt, from (6.4)

|ώA(jc,OI = |ώo(^,0l ^ sup |ώί(jc,/ι^ + 0 ) 1 ( 1 + ^ 0 -

Set Mw = supx \ώ%(x9nΔt + 0)|. Then Mn+X g Mw(l + J 0 Therefore

Mw + 1 ^ s u p | ώ 0 ( x ) | ( l + z l 0 w + 1 ^ C 0 ( l + z l 0 * + 1 ύ C{T),

which implies the uniform boundedness of ώ . Then, by the same procedure of the
proof of Theorem 5.1, we have the uniform estimate for ph and uh. D



360 G.-Q. Chen, D. Wang

Following the arguments of Sect. 5.2, we can conclude

Theorem 6.2. Assume that υh = (ph,mh,mh) = (vh,τhh) are the approximate
solutions of {63). Then the measure sequence η{vh)t + q{vh)x is a compact subset
of H^{Ω) for all weak entropy pair {η,q\ where Ω c Πτ is any bounded and
open set.

Then, similar to Sect. 5.3, we have the following convergence and existence
results.

Theorem 6.3. Assume that vh = {ph,mh,mh) are the approximate solutions of
(6.3). Then there is a convergent subsequence {still labeled) vh such that

vh{x, t) -> v(x91) = {p{x, t)9m(x, t),m(x, t)\ a.e.

and that the function v{x, t) is a bounded weak entropy solution in the sense of
Definition 5.1.

Proof The convergence of {ph{x, t),mh{x, t)) follows from Theorem 6.1,
Theorem 6.2, and Lemma 5.5. To show the convergence of mh{x, t), we use the
method of quasidecoupling (cf. [8]). By the similar argument in Sect. 5, we have

{xphd{xώh))t + {xmhά{xώh))x ^ o{\) -^ 0, h -» 0 ,

in the sense of distributions for any convex function a G C2.
Define the probability measures μXίt by (μXJ,g{ώ)) = (vXtt,g(xώ))9 where vXJ

is the Young measure determined by the approximate solutions vh{x, t). Then μxj

satisfy
(xp(x9 t){μXtUά(ώ)))t + (xm(x9 t)(μXft,a{ώ)))x ^ 0 .

xp{x, t) ^ 0, and μXio = <5co0(;c), since ώ^{x) —» ώo(x), a.e. By the refinement of

Note that {xp{x, t))t + {xm{x, t))x = 0, in the generalized sense of distributions,
xp(x, 0 ^ 0, and μXi0 = ( 5 ^
Lemma 3.5 of [8] as in [10],

μx,t = δώ(x,t), (x, t)eΠτ- {ρ{x, 0 = 0} .

This implies that m (x, t) —> w(x, ί), a.e. By the similar argument in Sect. 5, we can
prove that v{x, t) = (p(*, 0>m(x> 0>^(X 0 ) is a weak entropy solution of (6.3) and

that, equivalently, {p{x, t\m(x> 0 J ^ ( ^ > 0 ) — (P(X> 0>m(x> 0^(x^ 0e~Ί) is a weak
entropy solution of (6.1)-(6.2).

7. Traces of Weak Solutions

In this section, we consider the boundary values of the weak solutions. We first
define the traces of the spherically symmetric solutions as in [28] and then prove
that the weak solution satisfies the initial-boundary conditions, which implies that
the initial-boundary conditions are well-posed. For the solutions with the other type
of structure, the situation is the same.

Let v = v(x9 0, {χ, 0 € 0> 2 ) x (0,Γ), be a weak solution of (5.1) satisfying
(5.10). Define a function £ : C^(R2) -> R2 as:

+ f{v)φx + {a{x)g{v) + G)φ)dxdt,
πτ
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for ψ e C^R 2 ) . Choose Co, CT, ίu ζi £ Cι

0(R) with

Co(O) - 1, ζo(T) = 0; ζτ(0) = 0, ζτ(T) = 1

0, ζ2(2) = 1 .

Then define the trace ι>*( ,0), t;*( -, Γ) : C<5(R) -» R2 of v along the part (1,2) x
{0}, (1,2) x {T} of the boundary of Πτ, and the trace f*(v)(\9 ), /*(ϋ)(2, ) :
C<5(R) -* R2 of /(t;) along the part {1} x (0, Γ), {2} x (0, Γ) of the boundary of
Πτ as:

t;*( ,0)(χ) = fi(χ Co) - * ( l ) £ ( ί i Co) - z(2)£(C2 Co),

χ), /*(ϋ)(2, )(χ) = -2(ζ2 χ ) ,

for χ e Cl(R), where χ ζo(x, t) = χ(x)ζo(t), etc. For any t e (0, Γ), we can also
define f*( , 0 as the trace of v along the part (1,2) x {t} of the boundary of
(1,2) x (0,0 or (1,2) x (t, T). For any x e (1,2), define f*(υ)(x, ) as the trace of
f(υ) along the part {x} x (0, T) of the boundary of (l,x) x (0, T), or (JC,2) x (0, T).
Then, as in [28], we have the following lemma.

Lemma 7.1. Lei v be a weak solution of'(5.1) satisfying (5.10).

(1) * ;*(- ,0) | ( U ) , t;*( , Γ ) | ( l f 2 ) GL£(1,2);

G C<J(R2),

G(v,x, t))φ)dxdt
πτ

= J Ό*(X, T)ψ(x9 T)dx-J υ\x9 0)φ(x, 0) dx
1 1

+ ff*(Ό)(2,t)φ(2,t)dt - ff*(v)(l,t)iKl,t)dt. (7.1)
0 0

(2) For all x\ < x2, t\ < t2, with (x\,x2) x (t\,t2) C Πτ9 the functions

[tut2] -> R2,ί ι-> fv*(x9 t)dx; [xux2] -> R2,x ι-> f f*(υ)(x9 t)dt

are uniformly Lipschίtz continuous.

Now we prove that the traces satisfy the initial-boundary conditions.

Theorem 7.1. Let vh(x, t) = (ph(x, t),mh(x, t)) be the approximate solutions of
(5.1) constructed in Sect. 4 and v(x, t) — (p(jc, t),m(x91)) is the limit function of
vh as h —> 0. Then v(x, t) satisfies the initial-boundary conditions:
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Proof. By the construction of υh

9 for any φ e C^(R2), φ(x, t) = ^ e C<|(R2),

one has

2 2

ff(ρhφt + mhφx + a(x)mhφ)dxdt + fph(x,O)φ(x,O)dx-fph(x,T)φ(x,T)dx
Πτ 1 1

ΠT 1

-fA(x)ph(x9T)ψ(x9T)dx
1

fjA(xXmh-mξ)ψxdxdt + SΣAx(t)Xσ[pξ] - [mξ])ψ(x(t),t)dt
Πτ 0

+ Σ
/ 'w i+(y-i)Λ

(7.2)

Note that, by the fractional step procedure and the Rankine-Hugoniot condition,

JjA(x)(mh - m^)φxdxdt = 0{h) ,
πτ

IΣ^WOX'tPo*] " [mho])kx{t\t)dt = 0 ,
o

and by the similar estimate in Sect. 5.3,

- 0) - ph(x,nAt
j,n i + ( y _ l ) Λ

Taking the limit /z ^> 0 in (7.2) and using the above estimate, one has

2 2

// ( M + ™ψχ + a(x)mφ)dxdt + /'po(x)ψ(x9 0)dx - lim jV(x, ^)Ά(^ Γ) έ/Λ = 0.
77 Γ 1 h^° 1

Using (7.1) to substitute the first integral of the above equality, we have

0 0 1 1

+ /p*{x9 T)ψ(x9 T)dx - lim / p\x9 T)φ(x, T)dx = 0. (7.3)
1 h~>° 1

Take φ(x,t) = ζ(x)χ(t)eCι

0(R2) with ζ9 χ e $(ΈL)9 and χ(0) = 1, χ(Γ) = 0,
= 0. One has

2 2

1 1
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which implies p*(x,0) = po(x) on (1,2). Similarly, one has m*(x,0) = mo(x)
on (1,2).

Take ψ(x,O = ζ(x)χ(t)eCl(R2) in (7.3) with ζ, χ e q}(R), and χ(T) =
χ (0) = 0, C(l) = 1, C(2) = 0. Then one has

o

Therefore /w*(l,ί) = 0 on (0,Γ). Similarly, one concludes m*(29t) = 0 on (0,Γ).
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