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Abstract: It is shown that compact quantum groups containing torus subgroups can
be deformed into new compact quantum groups under RieffeΓs quantization. This
is applied to showing that the two classes of compact quantum groups K™ and Kq

studied by Levendorkii and Soibelman are strict deformation quantization of each
other, and that the quantum groups Au(m) have many deformations.

1. Introduction

This paper answers in the affirmative the following two questions of RieffeΓs: (1)
Are Drinfeld's algebraic twistings K™ of the quantum groups Kq, as studied in [20,
12, 13], strict deformation quantizations of KqΊ (2) Can the quantum groups Au(m)
constructed in [25, 26] be deformed? The key to answering these questions is a result,
in the spirit of [17], on deformations of arbitrary compact quantum groups (instead
of only compact groups as treated there). We believe this result is of interest in its
own right.

We now describe the results of this paper in more detail. Let A be a Woronowicz
Hopf C*-algebra in the sense of [30, 2, 25, 26], whose coproduct is denoted by Φ.
We will also call it a compact quantum group, referring to its dual object (cf. [26]).
Suppose that the quantum group A has an abelian Lie subgroup T. This means that
there is a surjective C* -algebra homomorphism π from A to C(T) preserving the
coproducts (see [25, 26]). For any element h in T, denote by Eh the corresponding
evaluation functional on C(T). Assume that η is a continuous homomorphism from a
vector space Lie group MJ1 to T, where n is allowed to be different from the dimension
of T. Define an action a of Rd := Mn x Mn on the C*-algebra A as follows:

In the above,

λrK*) = (Eη(-s)π <8> id)Φ, pη(U) = (id 0 Eη(u)π)Φ,

where id is the identity map on A. For any skew-symmetric operator S on M71, one
may apply RieffeΓs quantization procedure [16] for the action a above to obtain a
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deformed C*-algebra Aj, where J = S Θ (-5). The family AhJ (ft e 1) is a strict
deformation quantization of A (see Chapter 9 of [16]). Our main result for answering
RieffeΓs questions is the following theorem.

1.1. Theorem. (See 3.9) The deformation Aj is also a compact quantum group (namely
Woronowicz Hopf C* -algebra) containing T as a (quantum) subgroup; Aj is a com-
pact matrix quantum group if and only if A is.

The construction of the action a above is a rather straightforward reformulation,
in the general compact quantum group setting, of the construction of [17], where
Rieffel deals with only compact groups. The theorem above is a generalization of the
main theorem in the paper cited above. However, the proof of the above theorem is
quite different from the proof of the corresponding theorem in [17]. In [17], Rieffel
works with the algebra of smooth functions on the undeformed compact Lie group to
obtain the coproduct on the deformed algebra, which is remarkable in that it gives the
first example of a deformation quantization of the entire algebra of smooth functions
on a smooth manifold. In the present setting, since it is not clear what it should mean
by "the algebra of smooth functions on a compact (matrix) quantum group," we work
with the Krein algebra *y& of A (in the sense of [25, 28]) to obtain the quantum group
structure on Aj. We refer the reader to [18] for a generalization of the construction
in [17] to the case of non-compact Lie groups, and to [10, 5] for deformations of
non-compact Lie groups by using techniques that are different from those used by
Rieffel (See also [11]).

Using the construction of the Drinfeld-Jimbo quantum groups [4, 8], Levendorskii
and Soibelman introduced two families of compact quantum groups Kq and Kq for
each simple compact Lie group K [20, 12, 13]. The maximal torus T of K is still a
subgroup of both the quantum groups Kq and K™. Applying the construction above
(with an appropriate skew-symmetric operator S), we have the following result, which
answers RieffeΓs first question.

1.2. Theorem. (See 4.2) The compact quantum groups Kq and Kq are strict defor-
mation quantization of each other in the sense of Rieffel [16].

Applying the above construction to the quantum groups Au(m) constructed in
[26] (since they contain many abelian Lie subgroups) yields an answer to RieffeΓs
second question.

1.3. Theorem. (See 5.1) The quantum groups Au(m) can be deformed under Rief-
fel's quantization. The deformed quantum groups Au(m)j are quantum subgroups of
Au{m). The quantum groups constructed in [17] are quantum subgroups of Au(m)j
for suitable m.

The author would like to thank Professor Marc Rieffel for drawing his attention
to the problems in this paper, and for helpful discussions.

2. Preliminaries

For convenience of the reader, we recall in this section some basic definitions. For
use in later sections of this paper, we also collect a few elementary results concerning
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actions of groups on Hopf C*-algebras. For a positive integer d9 Md = B(Cd) denotes
the C*-algebra of d x d matrices over the complex numbers C.

2.1. Definition, (cf. [30, 2, 25, 26]) A Woronowicz Hopf C*-algebra (or a compact
quantum group) is a unital C* -algebra A together with a dense *-subalgebra *y&
generated by u^ (where p G N and i,j G {1,. . . ,dp}, and N is an indexing set),
a C* -homomorphism Φ : A —> A 0 A, and a linear algebra-antihomomorphism
K, : ^ —> ^/&, such that,

(I) The matrix uv = (ufj) is a unitary (or equivalently, an invertible) element of

Mdp 0 A, for all p G N;

(2) For peKandiJe{h..., dp}, Φ{up

iό) = Σti *4 ® ukj>'
(3) For ae^&, and p G N, /ς(/φ*)*) = a, and (id 0 κ)(up) = (up)~\
We denote the above Woronowicz Hopf C* -algebra simply by A. For a Woronow-

icz Hopf C* -algebra A, we will also call it a compact quantum group, referring to
its dual object G, as in the case of a compact group G with Woronowicz Hopf C*-
algebra A = C(G) (cf. [25, 26]). The algebra *A? is the generic example of Krein
algebras [28, 25].

2.2. Let A and B be compact quantum groups. A homomorphism from the quantum
group B to the quantum group A is defined to be a unital C* -algebra homomorphism
from A to B that preserves the coproducts. The quantum group B is called an em-
bedded quantum subgroup (or simply quantum subgroup) of A if there exists a
surjective C* -algebra homomorphism from A to B that preserves the coproducts (cf
[25, 26]).

2.3. We define a Hopf C*-algebra (see e.g. [2]) to be a C*-algebra A (unital
or not) such that there is a nondegenerate (see [2]) C*-algebra homomorphism Φ
from A to the multiplier algebra M(A 0 A) satisfying the coassociativity condition:
(id 0 Φ)Φ = (Φ 0 id)Φ.

A left invariant mean (resp. right invariant mean) on a Hopf C* -algebra A is
defined to be a state φ on A that satisfies

(ψ 0 φ)Φ = φ (resp. (φ 0 ψ)Φ = φ)

for any state ψ on A. If φ is both a left and right invariant mean, we simply call it an
invariant mean.

On every compact quantum group, there exists a unique invariant mean, which is
called the Haar measure of the quantum group ([30, 25, 26, 23]).

2.4. Notation. In the following, let A be a compact quantum group such that the space
X(A) of non-zero *-homomorphisms from A to the algebra C of complex numbers
is non-empty. Then X(A) is a compact group, and it is a compact Lie group if A is
a compact matrix quantum group in the sense of [30]. Consequently the counit of A
is continuous. The group X(A) is called the maximal subgroup of A (see the end
of Sect. 2 of [26]).

Let x,y G X(A). Define endomorphisms λx,py of the C*-algebra A by

λ^ = (Ex-ι 0 id)Φ, py = (id 0 Ey)Φ,

where Ex is identified with the homomorphism x from A to C and x~ι is the inverse
of x in the group X(A). In the notation of [30] (see near the end of Sect. 1 there),
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\x(a) = a * Ex-\, py(a) = Ey * a

for a e A. Since A is a bimodule over the algebra A* of continuous functionals of
A (in the sense of Sect. 1.2.4 of [25]) and X(A) is a group, we see that both Xx

and py are automorphisms of the C* -algebra A commuting with each other, and that
x — > λx and y —> py define strongly continuous actions of the compact group X(A)
on A. In other words, we have C*-dynamical systems (A, X(A), λ) and (A, X(A), p).
The actions λ and p clearly commute with each other.

2.5. Proposition. Let x G X(A), and let (akι) be a finite dimensional representation
of the quantum group A (not to be confused with the representation of the algebra A).
Then \χ(dij) (resp. px(βij)) is a linear combination of the coefficients akj (resp. an),
with k (resp. I) varying.

Proof The proof follows from unraveling the definitions of the actions λ and p, using
Q.E.D.

2.6. Proposition. We have (id (g) XX)Φ = (p-x 0 id)Φ for any x e X(A).

Proof This follows immediately from the coassociativity of Φ. Q.E.D.

2.7. Proposition. We have the equalities

Φ\x = (\x 0 id)Φ, Φpx = (id 0 px)Φ,

for any x G X(A).

Proof Let (α^) be any finite dimensional representation of the quantum group A, so

Φiflij) = Σk aik ® akj. Then

x-\ ®id(g) id)(aik 0 akϊ

kl

= (Ex-\ ®id® id)(Φ 0 i

= ((Ex~ι 0 id)Φ 0 id)Φ(dij) = (Xx

From this we see that ΦXX - (Xx 0 id)Φ.
Similarly we have Φpx = (id 0 px)Φ. Q.E.D.

2.8. Proposition. The equalities

are valid as maps on *J& for any x G X(A).

Proof. Since Ex-\κ = Ex, using ΦK = σ(κ 0 κ)Φ (see [30, 25]), we have

Xxκ = (βx-\ 0 zd)Φ/c = (Ex-\ 0 zd)σ (« 0 «)Φ

= κ(id 0 EX)Φ = κpx,

where σ is the flip map on A® A sending a<g>b to b®a. Similarly, we have ρxκ- κXx.
Q.E.D.
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2.9. Remark. We note that the actions λ and p preserve the Haar measure of the
quantum group. This is an immediate consequence of the definition of these actions
and invariance properties of the Haar measure.

2.10. If A is a (not necessarily unital) Hopf C* -algebra such that the space X(A)
of non-zero *-homomorphisms from A to C is non-empty, then X(A) is a locally
compact semi-group, and the observations in 2.4, 2.6, 2.9 are still valid if we replace
X(A) by a subgroup of X(A), and 2.7 and 2.8 are also valid for x in subgroups of
X(A) if A has a continuous antipodal map.

2.11. Deformation quantization by actions ofM,d. We briefly recall RieffeΓs defor-
mation quantization [16] from actions of the abelian Lie group V = M.d on (not
necessarily commutative!) C*-algebras. Let (A, V, a) be a C*-dynamical system. De-
note by A°° the algebra of smooth vectors of the action a endowed with the Frechet
topology coming from the action of the Lie algebra of V on A°°. Let J be any skew-
symmetric operator on V. For a,b £ A°°, define a x j b by the following oscillatory
integral (for discussions on general oscillatory integrals, see Chapter 1 of [16]):

axjb= / aJu(a)aυ(b)e(u v),
Jv Jv

where u v is the inner product of u and υ onV and e is the function e(t) - exp(2πiί)
for a real number t. Then A°° is an associative *-algebra under the product x j and
the involution of A restricted to A°°. Let S?A be the space of A-valued smooth
functions on V such that the products of their derivatives with any complex valued
polynomials on V are bounded under the evident super norm of S^A. Then S^A is
a pre-Hilbert (right) ^-module with A-valued inner product defined by

<f,9 >Λ= / f(υ)*g(υ)dυ
Jv

for /, g G 5^A. For each a G A, define an operator Lά on S^A by

a(x + Ju)f(x + υ)e(u υ)
v Jv

for / G S^A, where ά(x) = ax(a) for x G V. Then La is a bounded operator having
an adjoint on the pre-Hilbert A-module S^A, and a ^ L~a is a *-representation of
(A°°, x j ) into the C*-algebra of bounded operators on S^A. Now define

Then || || j is a pre-C*-norm on the algebra A°° endowed with the new product x j .
The completion of this pre-C* -algebra is denoted by Aj. To summarize: for every
quadruple (v4, V, α, J), Rieffel associates a deformed C*-algebra Aj\ the family A^j
(fi G M) is a strict deformation quantization of A.
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3. Deformations of Compact Quantum Groups

The goal of this section is to prove Theorem 1.1. We first fix the set-up of the section.

3.1. Assumptions and Notation. Our standing assumptions throughout this section are
as follows: A is any compact quantum group (with the notation as in 2.1), T is a
subgroup of the quantum group A, where T is a compact abelian Lie group. Namely,
there is a surjective homomorphism π of C*-algebras from A to C(T) preserving
the coproducts. For any element h in T, denote by Eh the corresponding evaluation
functional on C(T). Let η be a continuous homomorphism from a vector space Lie
group Mn to Γ, and S a skew-symmetric operator on M.n. The letters m, /, id, Φ, e, K
will denote, respectively, the product map from ^ ® ̂ Λ to ^ , the unit of A, the
identity map on A, the coproduct of A, the counit of A, the coinverse of A.

We remark that the above assumptions on A are equivalent to the the following
assumptions: the space X(A) of non-zero *-homomorphism from A to the algebra
of complex numbers is a compact group, and there is a continuous injective group
homomorphism from T to X(A). In particular the counit of A is continuous. These
assumptions are fulfilled by all the nontrivial compact quantum groups constructed
so far (see e.g. Sects. 4 and 5 in the following).

Put
λη(3) = (Eη(-S)π 0 id)Φ, ρη(u) = (id ® Eη(u)π)Φ.

Note that the meanings of λ and p here are slightly different from those in Sect. 2,
but this should not cause confusion. The action a of Rd := M™ x Rn (so d = In) on
the C* -algebra A is defined by

OL{s,u) = \{s)Pη(u) >

where s,u G IRn (the u here is not to be confused with the up's in 2.1). Let J =
S 0 (-S). Applying RieffeΓs strict deformation quantization [16] to the quadruple
(A,]Rd,α, J), one obtains a deformed C*-algebra Aj.

Our goal in this section is to show that Aj is also a compact quantum group.
First we show that the space ^A> is an algebra under the product x j and is dense in
the C*-algebra Aj. This is the main reason why we are able to work with the Krein
algebra ^ , instead of a larger algebra, as is the case in [17].

3.2. Proposition. The space *s& is contained in the space A°° of smooth vectors of
the action a. Under the product and involution of Aj, the space <y& is an involutive
algebra. The space *A> is dense in A°° under the Frechet topology of A°° and is
therefore dense in the C* -algebra Aj under the C*-norm of Aj.

Proof Let α^ G ̂  be a coefficient of a finite dimensional representation (α^) of
the quantum group A. Then by Proposition 2.5, o;(s,u)(α i j) is a linear combination
of the αjfe/'s. The coefficients in this linear combination are smooth complex valued
functions on Md, because the map π sends the Krein algebra *J& of A to that of C(T)
(see [25, 26]) and the Krein algebra of C(T) is contained in the algebra of smooth
functions on T (note that η is automatically smooth). This proves the first statement
of the proposition.

Let φij) be another finite dimensional representation of the quantum group A. By
definition, the formula for α^ x j bki is
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= /

= /

which, by Proposition 2.5, is easily seen to be a linear combination of the products
CLi'j'bk'v'S' Hence α^ x j bki is in the subspace ^A? of A°°, though the above integral
is defined in the Frechet space 4̂°° and requires the completeness of A°° (see [16] for
the precise definition of the integral). Since elements of *A> are linear combinations
of the coefficients of finite dimensional representations of the quantum group A by
virtue of the Peter-Weyl theorem for compact quantum groups (cf. [30, 25, 26]), we
see that ^4? is indeed an algebra under the product Xj. Since ^ is an involutive
algebra under the product of A and the action a preserves its involution, we also see
from the above that ^/& is an involutive algebra.

Let i: A°° —> A be the inclusion map from the Frechet space A°° to the Frechet
space A, where the Frechet topology on A is given by the C*-norm thereon. Then i is
equivariant and continuous, where A°° and A are endowed with the actions β := ce|A°°
and α, respectively. Hence we can invoke Proposition 1.1 of [17], with (A°°,β) and
(A, a) here being the (B, β) and (A, a) there — the conclusion of that proposition is
still true if we replace B°° = (A00)00 there by ̂ , because (A00)00 = A°° and for
b G *A> the element βψφ) defined in the proof there by

βφΦ)= / / Φ(s,u)a(s,u)(b)= / / φ(s,u)\η{s)pη(u)(b)
Jv Jv Jv Jv

is in <y& because of Proposition 2.5. This proves the last statement of the proposition.
Q.E.D.

We will denote the algebra ( ^ , x j ) simply by *A?j. Now we define the coproduct
and the coin verse on Aj and verify the axioms of Definition 2.1.

To proceed, as in [17], let

C = {F eA®A\(ph®id)F = (id®λh-ι)F, for all h G Γ}.

Then by 2.6, Φ(A) is contained in C. Note that C is a C*-algebra. Let Ψ denote Φ
viewed as a homomorphism from A to C. Define an action β of M.d on C by

β(s,u) = λη(s) ® Pη(u)

Note that β is initially defined on A 0 A, but since λ and p commute with each other,
we see that it can be restricted to an action of V on C. By 2.7, we see that the map
Ψ is equivariant for the actions a on A and β on C.

Similarly, define an action 7 θ f l d x l d o n i ( g > i b y 7 = α(g)Q;. Then 7 restricts
to an action of M2d on the subalgebra C of A ® A, because T is abelian and λ and
p commute with each other. Let

L = JφJ = Sθ (-S) ΘSθ (-5).

As shown in [17], we have CΊ

L = C^. Let
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where ρ is the inclusion from CΊ

L to (A 0 A)Ί

L. Since {A 0 A)Ί

L = AJ 0 AJ by 2.2
of [17] and both Ψj and ρ are unital C* -algebra homomorphisms, thus we obtain a
unital C* -algebra homomoφhism Φj from Aj to Aj 0 ^4j.

3.3. Proposition. On the dense subalgebra *y&j of Aj, we have for each p G N,

dP

Therefore axiom (2) of Definition 2.1 is satisfied.

Proof Recall that on A°°, we have that Ψj = Ψ (see [16]), and that Ψ is simply Φ on
A. From Proposition 3.2, ^/& is contained in T4°°. The rest is now clear. Q.E.D.

We remark that the coassociativity (idj 0 ΦJ)ΦJ = (Φj 0 idj)Φj of Φj is a
consequence of the axiom (2) of Definition 2.1, where idj is the identity map on Aj.
So the above proposition generalizes Theorem 2.3 of [17].

As in [17], we have a surjective homomoφhism TΓJ from Aj to C(T)j = C(T).

3.4. Proposition. 77ze map TΓJ preserves the coproducts. Namely, we have

where ΦT is the coproduct on C(T).

Proof Since by definition [16], TΓJ|A°° = 7rU°°, and on the subspace ^Aj of

(7Γj 0 7Γj)Φj = (7Γ (g) 7Γ)Φ =

by the density of ^A?j in ^4j and the continuity of TΓJ, we see that πj preserves the
coproducts. Q.E.D.

Let eτ be the counit of C(T). Define ej := e ττrj.

3.5. Proposition. The map e j has the property

eΛυξj) = δij

for any υξj.

Proof. This follows immediately from the definition of ej, because ê Tr = e and
πj\,4 = πlt. Q.E.D.

We remark that as in [17], ej satisfies the counit property

(idj 0 ej)Φj = idj = (ej 0 idj)Φj

on Aj (not just on ^Sj)'. this follows from Propositions 3.3 and 3.5.
Define the map KJ on ^/&j to be the same as K,. We can do this because as a

vector space, ^y&j is the same as ^S.

3.6. Proposition. The map KJ is an anti-algebra homomorphism for the product x j
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ofΊy&j, and for a e ^4j, κj(κj(a*)*) = a.

Proof Let α, b e <y&. First we note that

• / /

κj(a Xjb) = / / κ(aJ(s,u)(a)a(tίV)(b))e(s • t + u υ)

even though K is not assumed to be continuous because by Proposition 2.5, for fixed
a and b, there is a finite number of finite dimensional representations of the quantum
group A such that the expression

α j ( s , u ) ( α ) α ( t , i ; ) ( δ ) e ( s t + u v)

is a linear combination of the products of the matrix coefficients of these representa-
tions. Then by Proposition 2.8 we have

κj(a Xjb) = / / «(αj ( S ) U)(α)α ( ί > V)(6))e(s -t + u υ)

= κ(λη(Ss)Pη(-Su)(a>)λη(t)Pη(v)(b))e(S ' t + U ' v)

= κ(λη(t)Pη(v)(b))κ(λη(Ss)Pη(-Su)(a))Φ t + U v)

= Pη(t)λη(v)K,(b)pη(S3)λη(-Su)K(θ>)e(S ' t + U ' υ),

which, by Proposition 1.13 of [16],

= Pη(-St)λη(Sv)Φ)pη(s)λη(u)K(a)e(s t + U v)

= hi jib) Xj κj(a).

Now the identity ftj(ftj(α*)*) = a is immediate because the involution is not de-
formed. Q.E.D.

To show that Aj is a compact quantum group, it remains to show that the up's
are unitary and that (idj 0 κj)uv = (up)~ι. For this we need to first show that KJ
satisfies the antipodal property on ^Λj. Let πij be the product map from ^&J®^?J
to ^ ? j .

3.7. Proposition. On the algebra <y&Jy we have

πijiidj <g> KJ)ΦJ = Ijβj = mj(κ,j 0 idj)Φj,

where Ij is the unit of the algebra Aj.

Proof Let (α^-) be a finite dimensional unitary representation of the quantum group
A, so κ{aij) = α*̂  Then by 2.8 and 2.6 we have
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k

Σ / / m(aJ(s^) ® a(t,v)κ)(aik 0 Q>kj)e(s -t + u-v)
k J **

= Σ / / m ( ^ ® K

fe ^ ^

= Σ / / m^d ̂  Ae)
which, by 3.1 of [17] and 1.11 of [16], and then 2.8,

= Σ / / m^d ® κ)(λη(Ss)Pη(-v) ^ Pφ))(βik 0 akj)e(s -t + u v)
k J J

= Σ / / m ^ d 0 ^)(λ^(5s) 0 pη(t))(aik (g) a fc i)e(5 t)
fc ̂  ^

= Σ / / Eη{-Ss)^il)(ίlk(^rkEη{t)^{θLrj)e{s t)

= Σ / / E η{-S8)π(a>ir)Eη(t)π(arj)e(s t)

= / (Eηi-ss)®Eη(t))Φτπ(aij)e(s t)

= Eη{0)π(aij) = tτπ(a>ίj) = e ( a ^ ) = ej(dij).

That is on ̂ j , πij(idj <8> /^J
Similarly mj(κ,j 0 idj)Φj = Ijcj on ̂ j . Q.E.D.

3.8. Proposition. For every £>, ί/ze matrix uv is an unitary element of the *-algebra

Md J ^

where the inverse (up) takes place in Mdv

/ The argument is contained in the proof of 3.2 of [30]. For reader's convenience
we present the detailed proof anyway. The equalities

can be written as the equality

ϋ ijk

where ef is the standard matrix units of M^p. Applying the map
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idp 0 mj(κj ® idj)

to both sides of this equality, and using 3.7, 3.5 and 2.1.(3), where ίdp is the identity
map on Mdp, we obtain

Similarly, applying the map idp ® πij(idj 0 KJ) to both sides of the same equality,
we obtain,

ij ij

This proves the proposition. Q.E.D.

Summarizing 3.2, 3.3, 3.4, 3.6 and 3.8, we have proved part (1) of the following
theorem.

3.9. Theorem. (1) With the dense subalgebra *y&j, its generating elements u?j, the
coproduct Φj, and the coinverse κ,j, as defined above, Aj is a compact quantum
group. The compact abelian Lie group T is still a subgroup of the quantum group Aj.

(2) Aj is a compact matrix quantum group if and only if A is.

Proof. The " i f part of (2) is clear from the proof of (1). Because T is again a subgroup
of Aj, AJ satisfies the assumptions set forth at the beginning of this section. Hence
we can apply the deformation process developed in this section to Aj. Note that
(AJ)-J = A (see 7.5 of [16]), so the "only i f part follows from the " i f part. Q.E.D.

Notation. Let A = C(G) be a Woronowicz Hopf C*-algebra so that the construction
Aj in the theorem above can be applied. We will also denote Aj by C{Gj).

3.10. Remarks. (1) We remark that for A = C(G) with G a compact Lie group, the
above theorem becomes precisely the main theorem in [17].

(2) As in [17], the Haar measure hj of the quantum group Aj is still the same as
the Haar measure h of A, namely on the common subspace ^Λ of both A and Aj,
we have

hj(a) = h(a), for a G Λ>.

From this we see that if A is a compact matrix quantum group of Kac type (one on
which the Haar measure is a trace, see [2]), then Aj is also one such. (See also 5.2
in the following.) Therefore all of the compact quantum groups constructed in [17]
are of Kac type.

(3) Examining the proof of the above theorem, one can check that if we use either
of the following two actions:

the theorem is still valid.
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We conclude this section with a generalization of Example 4.3 of [27] (see also
[25]). Recall [25, 27] that a Woronowicz Hopf C*-dynamical system is defined to be
a C* -dynamical system with the additional assumption that the automorphism group
preserves the coproduct of the Woronowicz Hopf C* -algebra.

3.11. Proposition. Let D be the subgroup ofΈLd consisting of vectors of the form (s, s)
with s in W1. Put βs = α(S}S). Then (A,D^β) is a Woronowicz C*-dynamical system
equivariant for the action a, its deformation (Aj,D, βj) is still a Woronowicz C*-
dynamical system.

Proof Same as the proof of 4.3 of [27]. Q.E.D.

4. Deformations of Quantum Groups Kq and K™

Based on the earlier work [21], Soibelman [20] studied the representation theory of
the function algebra of a general compact simple quantum group Kq, which are "com-
pact real forms" of the Drinfeld-Jimbo quantum groups [4, 8]. In [12], Levendorskii
introduced a deformation Kq of the quantum group Kq by a purely algebraic method
(the so-called twisting construction of Drinfeld), and studied the representation theory
of its function algebra. See also [13] for a summary of [20, 13]. For related work,
see e.g. [31, 22, 19, 3, 9] for the analytical case, and [6, 7] for the algebraic case,
as well as the literature cited in these papers. In [17], Rieffel raised the question as
to whether the general quantum groups Kq can be deformed under strict deformation
quantization into quantum groups K™. This section is devoted to giving an affirmative
answer to this question using the deformation developed in Sect. 3.

To establish the notation for this section, we first recall the notation of [20, 12,
13]. Let G be a simple complex Lie group with Lie algebra Q. Fix a triangular
decomposition g = n_ Θ f) θ n+, together with the corresponding decomposition Δ =
Δ+UΔ- of the root system and a fixed basis {â }™^ for Δ+. For each linear functional
λ on f), H\ denotes the element in f} corresponding to λ under the isomorphism ί) = ί)*
determined by the Killing form ( , ) o n g . Note that if the reader keeps the context
in mind, the symbols a and λ used in this context should not cause confusion with
the same symbols used in the previous sections in the definition of the action a. Let
{Xa}aeΔ U {Hi}^=ι be a Weyl basis of g, where Hi = Hai. This determines a Cartan
involution ωo on g with ωo(Xa) = —X-a, uo(Hi) = -Hi. Let I be the compact real
form of g defined as the fixed points of CJO and K the associated compact real form
of G. Put f)i = Θf=ιRHi, and T = exp(if)i), the later being the associated maximal
torus of K.

Let q > 1. For n,k GN, n > k, define

n _ -n

ίn]q = V '
q-q-1

ni = [n]q[n- l]q .. • [n - k + l]q

\

The quantized universal enveloping algebra Uq(o) [4, 8] is the complex associative

algebra with generators Xf, K^1 (ί = 1, , n) and defining relations:
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KiKr1 = 1 = KrιKu KiKj = KjKu

KiXfK~x = qMa^Xf,

[Λ^Λj \-Oij q2_q_2 ,

k=0

where g* = ς ^ " * ) .
On i7g(g) there is a Hopf algebra structure with coproduct

A(Kfx) = Kfι ® Kf\ Λ{Xf) = Xf ®Ki + K

and counit and antipode respectively

ε(Xf) = 0, ε(Kfι)=l, S(Xf) = -q

Under the *- structure defined by

Uq(o) is a Hopf *-algebra.

The algebra Uh(&) is the C[[h]] algebra generated by Xf and Hi with the defining
relations

[Hi, Hj] = 0, [Hi, Xf] = ±(oa, aj)Xf,

k=o I κ

The Hopf *-algebra structure on Uh(#) is defined as above,

where the involution of C[[/ι]] is given by (ch)* = ch for c G C.

Let u = J2k i ckiHk®Hι £ Λ 2 ^ . Then one can define a new coproduct on Uh(o)
by

Δu(ξ) = exp(-ihu/2)Δ(ξ)exp(ihu/2),

where ξ G Uh(&) and A is the original coproduct on Uh(o). The new Hopf * -algebra

so obtained is denoted by Uh,u(θ)'

The function algebra £[Kq] of the compact quantum group Kq is defined to be

a certain dual of the Hopf *-algebra Uq(o). It consists of matrix elements of finite

dimensional representations p of Uq($) such that eigenvalues of the endomorphisms

ρ(Ki) are positive. The function algebra C[K™] of the compact quantum group K™

is defined to have the same elements as £[Kq] and the same ^-structure as C[Kq\

while the product of its elements is defined using Δu instead of A. The completions

of the algebras C[Kq] and C[Kq] under their universal C*-norms are denoted by
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C(Kq) and C(Kp respectively. The algebras C[Kq] and C [ i φ are examples of
Krein algebras *Jt> in the sense of [28, 25].

For each dominant weight A of g, Soibelman introduces [20, 13] the matrix
elements CA

μΩ of the highest weight Uq($) module (L(Λ), pX) as follows. Let {v^}
be an orthonormal weight basis for the unitary Uq($) module L(Λ), and let {l^} be
the corresponding dual weight basis in L*(Λ). Put Ω = (i,j). Then CA

μ Ω is defined
by

where ξ e Uq(%).
To avoid confusion with the Killing form, we now use s Θ v, instead of (s, v) (as

used in the previous section), to denote an element of Rd = M71 x Γ . In the present
setting, the space M,n is \)^, with inner product < , >= — ( , ), where ( , ) is the
Killing form of Q restricted to fĵ . We will also use < , > to denote the inner product
on f)i θ f)i. Noting that the compact abelian group T is also a subgroup of both Kq

and K™ (see [20, 12]), we can define as in Sect. 3 an action of Rd on C(Kq) by

Thus the map η there in this case is defined by 77(5) = exp(2πis). This action may
be viewed as an action of H = T x T in the sense of [16]. For each v in the weight
lattice P of g, the element Hu is in ί)^. Keeping the notation of [16] for the spectral
subspaces of the action a (see 2.22 there), we have the following lemma.

4.1. Lemma. The matrix elements C^}μ Ω are in the spectral subspaces A-(Hu®Hμ)

Proof. In the notation of [16], we must show that

Let ξ be an element in Uq(g). We compute:

= l^(pΛ(oxp(-2πis))pΛ(ξ)pΛ(exp(2πiv))v(

μ

j))

This proves the lemma. Q.E.D.

In [12, 13], the following identity is obtained:

( (

where the left-hand side is the multiplication in C(Kq) and the right-hand side is the
multiplication in C(Kq), and ύ is the map on f)* determined by u via the Killing
form ( , ) on g. Letting
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p = - ( # „ , Θ Hμι), q = ~(HU2 Θ Hμ2),

4π

where Su is the skew-symmetric operator on f}i defined by

the previous identity becomes

<#,*,« , ° C f t = ^(~2πi < p, Jq £ μ i > l £ > μ j i V

On the other hand from 2.22 of [16], we have by virtue of Lemma 4.1 that

< # , μ i | β l * J ^ Λ = exp(-2πi < p, Jςr > < ; μ i ^ c £ μ 2 ^

Note that the elements C^Ω generate C[K%] and (C[ϋΓg], Xj), the later being the
algebra with the product x j on C[Kq]. As a matter of fact, the elements C^ Ω, with
A running over the fundamental weights, already generate these algebras. Summariz-
ing these, we have reached a proof of the following result.

4.2. Theorem. The Hopf "-algebras C[K%] and (C[Kq], x j) are ίsomorphic.

From the viewpoints in [28], the compact quantum groups K™ and (Kq)j are
isomorphic, since the above theorem says that they have the same Krein algebras.

From the universality of the C*-algebra C(K%), there is a map of Woronowicz
Hopf C*-algebras from C(Kq) to C(Kq)j sending each of the elements C^ Ω to
itself (viewed as elements in different algebras). We believe this is an isomorphism.
One possible way to prove this is to try to adapt the method of 10.2 in [16]: Show
that there are no α-invariant ideals in C(K%). To achieve this, one would need to
know in detail the ideal structure of the C*-algebra C(Kq), which is presumably
more complicated than the ideal structure of the corresponding *-algebra U[K^].
If the map mentioned above is not an isomorphism of (7*-algebras, this is a kind
of pathology analogous to the one that involves C*(F2) and C*(F2)-the C* -algebra
C*(F2) is a quotient of C*(F2) by a pathological ideal, where F2 is the free group
on two generators. In any case, as noted in the previous paragraph (see also [28]),
whether this map is an isomorphism or not is a question in C*-algebras, not one in
quantum groups.

5. Deformations of Quantum Groups Au(m)

We now apply the construction in Sect. 3 to the quantum groups Au(m) (see [25, 26])
to answer RieffeΓs second question mentioned at the beginning of this paper. Recall
that for any positive integer m > 2, Au(m) is the universal C*-algebra generated by
m2 elements α^ such that both (α^ ) and (α*,) are unitary elements of M m 0 A u ( m ) ,
where (a*j) is the matrix obtained from (α^) by applying the involution * to each
of its entries. More explicitly, Au(m) is the universal C*-algebra generated by α^
subject to the relations
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fc=l
m

\~^
/ a>kia

k=l
kj -δiJ->

m

^2aikajk =
k=\

for i, j = 1, ,ra.
The unitary groups £/(&) are subgroups of the quantum groups Au(m) for all

k <m. This can be seen as follows. Let u^ be the coordinate functions on the group
U(k). Define

α^ = mj if zJt7 < fc, and α^ = <5̂  if either k < i < m or k < j < m.

Then the map τro defined by πo(α^) = α^ defines an embedding of the unitary group
U(k) in the compact quantum group Au(m)

Let T be a torus subgroup of U(k), say, of dimension n. Then T can be viewed
as a subgroup of the compact quantum group Au(m) with the surjective morphism π
from Au(m) to C(T) given by the composition of τro defined above and the restriction
map from C(U(k)) to C(T). The Lie algebra of T can be identified with the vector
space Mn with the zero bracket. Let η be the exponential map from Mn to T, and let
S be any skew-symmetric operator on Mn. With the ingredients Au(m), T, π, 77 and
S, we are in the setting to apply the construction in Sect. 3 to obtain quantum groups
Au(m)j.

5.1. Theorem. (1) The quantum groups Au(m)j are quantum subgroups of the quan-
tum groups Au(m).

(2) For each compact quantum group C{G)j constructed in [17], there is an m
such that one may define Au(m)j, and C(G)j are quantum subgroups of both Au(m)j
and Au(m).

Proof Since u = (α^) and ΰ = (a*j) are both unitary representation of the quantum
group Au(m), we see from the proof of 3.8 that u and ΰ are still unitary representations
of the quantum group Au(m)j. A moment's reflection shows that Au(m)j is also
generated by the α^'s as a C*-algebra. Thus by the universal property of the C*-
algebra Au(m), there is a unital C*-algebra homomorphism π from Au(m) to Au{m)j
sending the generators α^ of Au(m) to the generators α^ of Au(m)j for each (i, j).
It is clear that π preserves the coproducts. This proves (1).

Since G is a compact Lie group, it has faithful finite dimensional unitary rep-
resentations. Let (uij) be one such, say, of dimension m. Hence G is a subgroup
of the quantum group Au(m). Let π be the surjective Hopf C*-algebra morphism
from Au(m) to C(G) sending α^ to u^ for each pair (i, j). Then under the obvious
action of M.d on Au(m) coming from the action of Md on C(G), π is equivariant, so
it can be deformed into a map π j , which is easily seen to be still a surjective map
of Woronowicz Hopf C*-algebras. Hence C(G)j is a quantum subgroup of Au(m)j.
Since Au(m)j is a quantum subgroup of the quantum group Au(πι), we see that
C(G)j is a quantum subgroup of Au(m). This completes the proof of (2). Q.E.D.

5.2. Remarks. (1) From Sect. 5 of [30], one can see that the quantum groups Au(m)
are universal in the following sense (see [24]): Any compact matrix quantum group
of Kac type (see Remark 3.10.(2)) is a quantum subgroup of Au(m) for some m. It
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is easy to see that 5.1.(2) (and its proof) can be generalized to the following setting.
Let A be a compact quantum group of Kac type with a torus subgroup T. Let π be
a surjection of Woronowicz Hopf C*-algebras from Au(m) to A. We can apply the
construction in Sect. 3 to obtain Aj and Au(m)j. Then the deformed map π j is again
a surjection of Woronowicz C*-algebras.

(2) For most invertible matrices Q, the quantum groups AU(Q) and AO(Q) con-
structed in [24] have many torus subgroups. Hence, as described in this paper, they
are also subject to the Rieffel quantization.

(3) By the nature of RieffeΓs quantization [16] (see Theorem 7.5 there), the
quantum groups Au(m)j defined above can also be deformed into Au(m) using — J
(Compare the proof of 3.9.(2)). It is natural to expect that Au(m)j is isomorphic to
Au{πί). We believe that this is unlikely because of 2.22 of [16]. Therefore it is of
interest to solve the following problem.

Problem: For each ra, classify the quantum groups Au(rή)j.
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