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Abstract: The problems arising when quantizing systems with periodic boundary
conditions are analysed, in an algebraic (group-) quantization scheme, and the “fail-
ure” of the Ehrenfest theorem is clarified in terms of the already defined notion of
good (and bad) operators. The analysis of “constrained” Heisenberg—Weyl groups
according to this quantization scheme reveals the possibility for quantum opera-
tors without clas«ical analogue and for new quantum (fractional) numbers extending
those allowed foi Chern classes in traditional Geometric Quantization. This study
is illustrated with the examples of the free particle on the circumference and the
charged particle in a homogeneous magnetic field on the torus, both examples fea-
turing “anomalous” operators, non-equivalent quantization and the latter, fractional
quantum numbers. These provide the rationale behind flux quantization in supercon-
ducting rings and Fractional Quantum Hall Effect, respectively.

1. Introduction

The need for a consistent quantization scheme which is truly suitable for systems
wearing a non-trivial topology is increasing daily. Configuration spaces with non-
trivial topology appear in as diverse cases as Gauge Theories, Quantum Gravity, and
the more palpable ones of the superconducting ring and the Quantum Hall effect,
where the measuring tools change the topology of the system in a non-trivial way
(I, B-M-S-S, L-W, L-Li].

The most common problem which appears when the configuration-space mani-
fold possesses a non-trivial topology is the failure of the Ehrenfest theorem for
certain operators, a problem usually referred to as an anomaly. In the sequel, we
shall add the qualifier topologic to distinguish these from others directly attached
to the Lie algebra of the quantum operators and characterized, roughly speaking,
by the appearance of a term in a quantum commutator not present at the classical,
Poisson-algebra level. We call them algebraic anomalies and refer the reader to
[A-N-B-L] for a detailed analysis.
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The failure of the Ehrenfest theorem for a given operator is primarily related to
the non-globality of the corresponding classical function, such as is the case of the
local co-ordinate on a one-dimensional closed submanifold. Geometric Quantization
was intended to go further than ordinary canonical quantization does, allowing for
the quantization of arbitrary symplectic manifolds. Unfortunately, Geometric Quanti-
zation only partially accomplished this task, one of the reasons being the difficulty in
(or, even more, the impossibility of) finding a polarization suitable enough to quan-
tize a given set of classical functions [Wo, I-L], or quantizing a set of operators in
a way that would preserve a given polarization.

A quantization procedure based on a group structure, Group Approach to Quan-
tization (GAQ) [A-A, A-N-B-L], improves the standard Geometric Quantization
approach in that it provides two sets of mutually commuting operators, namely, the
left- and right-invariant vector fields. This enables us to impose the polarization
conditions by means of the left-invariant vector fields, say, while the right-invariant
ones will be the quantum operators, which automatically preserve the polarization.
The quantization group G is endowed with a U(1)-principal bundle structure so that
generators fall into two classes according to whether or not they give rise to a
term proportional to the vertical generator on the r.h.s. of a commutator. Generators
which do not reproduce any U(1)-term close a horizontal subalgebra, the charac-
teristic subalgebra, of non-dynamical generators, which should be included in the
polarization subalgebra. The principal drawback of GAQ is the need for a group
symmetry associated with the system to be quantized, and the apparent restriction
in the number of functions which can be quantized. However, this last limitation is
slighter than it might seem, since Canonical Quantization on a particular phase space
does not quantize the entire set of functions on phase space, but rather, a restricted
Poisson subalgebra. Even more, it could well happen in some cases that a more
standard quantization provides only quantum operators corresponding to a finite-
dimensional Lie algebra. This is the case, for instance, of the symplectic manifold
S?, where the quantum operators are only those of su(2) + R [G-G-H]. Moreover,
most of the interesting systems in Physics possess a symmetry group large enough
to achieve a proper quantization.

To be more precise, not only the right-invariant vector fields preserve the polar-
ization, but rather the entire right enveloping algebra preserve the structure of the
Hilbert space. This means that any element in the right enveloping algebra can be
realized as a quantum operator, although the relation between the quantum algebra
and the standard Poisson algebra on the co-adjoint orbits of the group is no longer
an isomorphism; GQA provides a quantum theory rather than the quantization of a
classical theory.

A reformulation of GAQ was proposed a few years ago [A-N-R], the Algebraic
Quantization on a Group (AQG) [some of the basic ideas in [A-N-R] have also
appeared in the context of quantum systems with non-trivial topology [L] and in
Quantum Gravity ([A] and references therein)] , which generalizes GAQ in two re-
spects. Firstly, finite transformations generalize the infinitesimal ones throughout the
method; that is, any concept or condition relative to Lie subalgebras is generalized
by its counterpart in terms of Lie subgroups, thus allowing discrete transformations
to enter the theory. Needless to say, infinitesimal objects are employed whenever
possible. Secondly, it generalizes the U(1) phase invariance in Quantum Mecha-
nics (the structure group of the principal bundle fibration of the quantum sym-
metry) incorporating other symmetries, eventually interpreted as constraints and/or
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gauge symmetries. The new structure group 7, which must include the traditional
U(1), may also contain discrete symmetries especially suitable to simulate mani-
fold surgery as, for instance, toral compactification, by means of periodic boundary
conditions. In these cases T will become an extension by U(1) of the fundamental
group of the classical phase space. This extension will be trivial in many cases,
as in the cylinder or the torus with symplectic form of integer class, but can be
non-trivial thus leading to fractional quantum numbers (see below).

From now on we shall call the “compactified” (cylindrical or toral) Heisenberg—
Weyl (H-W) group a H-W group where the structure group is T rather than U(1),
this subgroup T being the factor subgroup leading to a compactified classical (the
cylinder or the torus) phase space by the quotient G /T.

The generalization of the U(1)-equivariance to the T-equivariance condition on
the wave functions gives rise to two new, closely related features: a) the exis-
tence of non-equivalent quantizations associated with non-equivalent representations
of the larger structural subgroup 7, and b) the notion of good operators, consti-
tuting the subgroup of transformations compatible with the T'-equivariance condi-
tion, in a sense to be specified later (see [A-N-R]). Furthermore, those operators
not preserving the T-equivariance condition, the bad operators, may be seen as
quantization-changing transformations, and exhibit topologic anomalies. As in the
T = U(1) case, all the elements of the right enveloping algebra compatible with
the T-equivariance condition, for arbitrary T, can be realized as good quantum
operators.

It should be noted that, as mentioned above, AQG is formulated in terms of
finite objects. This means that some algebraic indices must replace the well-known
Chern class [w] of the symplectic form in Geometric Quantization. In fact, the
indices characterizing the (not necessarily central) extension by I' of the “clas-
sical” group G generalize the Chern class, providing also fractional values. This
is precisely the case of the motion of a charged particle on a torus in the pres-
ence of a homogeneous magnetic field, closely related to the (Fractional) Quantum
Hall Effect. The appearance of fractional quantum numbers generalizing the inte-
ger Chern classes reveals, once again, that the procedure of taking constraints and
that of quantizing, depending at least on the specific methods employed, may not
commute.

This paper is organized as follows. Section 2 illustrates the way in which AQG
operates with the help of the examples of the Heisenberg—Weyl group in 1D with
constraints mimicking the compactification of the coordinate x (Sect. 2.1) and that
of the compactification of both x and p (Sect. 2.2). In the latter case, generaliz-
ing the quantization of a compact phase space a la Dirac, a not necessarily integer
quantization condition is obtained which generalizes that of Geometric Quantization,
i.e., the condition [w] € Z (Chern class), and, associated with it, vector-valued wave
functions. In solving this problem, real (versus holomorphic) polarizations have been
employed, leading to a generalized kg-representation [Z]. This technique simplifies
the treatment and is much more intuitive, even though the configuration-space wave
functions contain delta functions. The results obtained in Sect. 2 are applied to the
quantization of the free particle on the circumference (Sect. 3, where the failure
of the Ehrenfest theorem is analysed), directly related to flux quantization in su-
perconducting rings, and to the quantization of a charged particle on a torus in
the presence of an homogeneous transverse magnetic field (Sect. 4), providing the
rationale behind the Integer and Fractional Quantum Hall Effect.
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2. Algebraic Quantization of “Compactified” Heisenberg—Weyl Groups:
Fractional Quantum Numbers

In this section, we shall explain the AQG formalism over the example of the
Heisenberg—Weyl group with one co-ordinate “compactified,” i.e., with constraints
associated with the compactification of one co-ordinate, and with one co-ordinate
and its canonically conjugate momentum “compactified.” We nevertheless recom-
mend the reading of the Ref. [A-N-R]. Although explicit calculations are given for
the Heisenberg—Weyl group with only one co-ordinate-momentum pair, the results
can be generalized, immediately, to any finite number of them.

2.1. Cylindrical Heisenberg—Weyl Group. Let us firstly proceed with the case of
the Heisenberg—Weyl group with only one of the coordinates “compactified,” i.e.,
with structure group 7 such that the quotient G/T leads to the cylinder as the
symplectic manifold. The starting point in AQG is a Lie group G which is a right-
principal bundle with structure group 7. T is itself a principal bundle with U(1)
as structure group. In our case G is the ordinary Heisenberg—Weyl group in 1D
(throughout the paper, 1D means one coordinate-momentum pair, x and p or x; and
x2), and T = U(1) x {ex, k € Z}, where {ey, k € Z} is the subgroup of G of finite
translations in the coordinate x by an amount of kL, L being the spatial period. Note
that T is isomorphic to U(1) x Z, so that its fibration is trivial.
The group law ¢ = ¢’ * g for G is:

x//:x/+x’ pl/=p/+p’
¢ = C/Ce%[(1+i)x'p+l.xp'] , (1)

where the first two lines correspond to the group law of G (the non-extended H-W
group), and the third to that of U(1). The real parameter A has been introduced
to account for a complete class of central extensions differing in a coboundary
[coboundaries have the form &(g’,g) = n(g’ * g) — n(g’) — n(g), where n: G — R is
called the generating function of the coboundary] generated by the function #(x, p) =
Zxp. (In particular, for 1 = —% we have Bargmann’s cocycle.)

From this group law we can read immediately the right and left translations,
Ryg =g +g=L,g In particular, the left- and right-invariant vector fields (gener-
ating the finite translations) become:

L0 A R0 144

T TRl L=gmt 3 P5

L 0 14+ R0 A

Xp—é;-I- % xX&, Xp—%"‘gx._/,

A &0

X’g_zga—c=_, Xg_zca—g=u. )

The quantization 1-form (the left-invariant 1-form associated with the parameter {)
can also be obtained:
a¢
0= —lpdx—(l—kl)xdp-i—h—c . 3)

i
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Since we are not considering time evolution, the quantization 1-form has
no characteristic subalgebra, there exists no discrete characteristic subgroup G,

and any combination of the two generators )Z'f and )?If constitutes a first-order
full polarization (with the time evolution added, as in the free particle in 1D,
things are a bit more complicated, see Sect. 3). Two polarizations are singled

out, Z, = ()?];) and &, = ()ZJI;), or their finite (versus infinitesimal) counterparts
Gz, = {Space translations} and Ggp, = {Boosts transformations}, leading to mo-
mentum and configuration space representations, respectively. It should be borne in
mind that the polarization conditions are needed to reduce the group representation

which otherwise would provide only the Bohr—Sommerfeld quantization. These po-

larization conditions read, in general, Xy = 0, v €EP or Y(g+Gp)= ¥Y(g) in
finite terms.

The T-function condition generalizes ordinary phase invariance (U(1)-
equivariance) in Quantum Mechanics, which is written ¥Y({ * g) = p({)¥(g), where
p(¢) is the natural representation of U(1) on the complex numbers, p({) = {. The
generalization to a bigger group T involves the use of a general representation 2 of
T (or, to be precise, of T = U(1) U T, where T, is a maximal polarization sub-
group of T; see [A-N-R]) on a complex vector space E, where the wave functions
themselves take their values. In the formalism of AQG, the representation of T is
constructed from the very representation of G, i.e., the vector space £ on which
the constrained functions are evaluated is made out of the unconstrained wave func-
tions by properly choosing their arguments. This is the reason why the group T3 is
interpreted as constraints: the representation of 7 is not an abstract representation,
but rather built with the same functions of the representation of G .

The Tp-function condition then reads ¥(gr, * g) = 2(9r,)¥(9),Vgr, € Tp,Vg €
G . In the present case Tg = T and 2({,ex) = {D(ey), where D(e;) is a representa-
tion of {ex, k € Z} (=~ Z) in the complex numbers, and there is an infinity of non-
equivalent irreducible representations, of the form Df(e;) = e, with ¢ € [0, 2Z2)
(the first Brillouin zone, in Solid State nomenclature). Therefore, there is a non-
equivalent quantization associated with each choice of non-equivalent representa-
tion of T, parameterized by ¢. The T-function condition for the wave function
implies the restriction:

e HDRP Wi (x 1 KL, p,() = X ¥ Wi(x, p,{) . 4)

Note that the constrained wave functions can be identified with the space of sections
of a U(1)-bundle on the cylinder, with connection given by (3).

We now impose the polarization conditions in order to reduce the representation.
Firstly, we shall consider the momentum space representation, where the polarization
conditions (either in finite or infinitesimal form) lead to the following form of the
wave functions:

¥o(x, p,) = Le™ 1P d(p), (5)

where the fact that Y({g) = {¥(g) (by the T-function property) has been used.
Both conditions (4) and (5) together imply for the wave function @°(p) a form
like:
P(p) = > udi(p), (6)

kez
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where ¢;(p)=d(p—¢— 2—fﬁk), i.e., the wave function is peaked at the values of
the momentum p; = ¢+ Z’L‘—hk, k € Z. The Hilbert space %S(G~ ) is made from the
wave functions defined by (5) and (6).

The quantum operators, defined as p= —ih)f’f and X = ihA’f,, act on the wave
functions as:

pye = pye
XWe = e i~ {ih%} . (7)

One of the main consequences of having generalized the structure group in
AQG is the classification of the operators (actually left translations) as good and
bad operators according to whether or not they are compatible with the 7-function
condition. More precisely, the subgroup of good operators, G, is characterized by
the condition

[Gw,T] C KerD(T), (8)
which generalizes the one given in [A-N-R]. In the present case, and due to the

discrete character of the “physical” momenta, the position operator X is expected
to be problematic, since the subgroup of good transformations compatible with

(4) and (5) is the subgroup of G in which the continuous variable p is substi-
tuted by the discrete variable p; = p? = ZLLhk, k €Z, as can be deduced from
[en, g] = (0,0,ei"tr) C KerD(T) = 1 & Vn € Z. Therefore, the good operators are P
and the finite boosts transformations by the amount of py. Position is not a good
operator in the sense that it does not preserve the structure of the wave functions,
i.e., it does not leave the Hilbert space (for fixed ¢) #*(G ) stable. This fact will
be further discussed in Sect. 2.1.1.

With regard to the configuration space representation given by the polarization
2, or the polarization subgroup Gz, the solutions to this polarization are:

P(x, p,{) = (e FIHDPP(x) . )

Applying the T-function condition (4) to this wave function in configuration space,
we obtain:

e%(H—}.)kLpe—i(1+i)(x+kL)p@8(x + kL) — e%SkLe—%(1+l)xp¢8(x) , (10)
Vk € Z, where the quasi-periodicity condition for ®*(x) immediately follows:
quasi-p
(x4 L) = erLdi(x) . (11)

It should be stressed that this result is independent of the chosen cocycle, since it
does not depend on A, as expected.
The quantum operators are:

Pyt = (e i AP [_ipV] @,
P8 = (x¥P° . (12)

Again, the position operator X is not a good operator, for the same reason as
in the momentum-space case, and the subgroup of (left) transformations leaving
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the structure of the wave functions (9) and (11) stable is the same Gy as before,
containing only P and the finite boosts in py, k € Z. Therefore, the standard position
has no meaning for any (Galilean) system with the circumference as configuration
space (see Sect. 3).

2.1.1. Is there any good position-like operator? The position operator X is not a
good operator because the variable x is not periodic: if ¢(x) is a quasi-periodic
function, x¢(x) is no longer quasi-periodic. However, the function 7 = €7* is peri-
odic, so that we could define the operator 7 = eTX and verify that 4P¢ = e'T Frpe
satisfies the same quasi-periodicity condition as Te We can then say that 7] is a
good operator.

The reason why # is a good operator is precisely that it generates a good finite
boost. We know that the only good boosts are indexed by px = 22k, ie.,

h g R g\ K .
Vi(pirg) = €Bwg) = (€FX) Ty = ). (13)

This means that #*, k € Z are the only good position operators.

The finite operator 7 is obv1ously not Hermitian; rather, it is unitary as it should
be. However #§ can be written as # = cos(Z”X) +isin(F 2”X), the good operators
cos(ZZ‘X) and sin( ZL"X) being Hermitian. These are good operators, given that they
are periodic functions of the operator X. Since the set of functions {€/Z™, m € Z}
constitutes a basis for the periodic functions of x in the interval [0, L], any operator
which is a periodic function of the position operator X is a good operator.

In any case, we might wonder about the finite boosts transformations for
P+ px, ie., about transformations of the form @'(x) = eiPXP*(x) = e#P*P*(x).
This new function verifies the boundary conditions @'(x 4 L) = e¥?0*D@#(x + L) =
et@+PLg/(x), and therefore belongs to the Hilbert space #°+#(G ). In fact, since
the representations parameterized by ¢ and ¢ + 2“ 2k k € Z are equivalent, the trans-
formed wave functions lie in the representatlon (e+ p) mod 22”. Of course, if
P = pr for some k, the transformed wave function lies in the same Hilbert space
as before and we recover the result that the finite boosts in p, are good operators.
In particular, ®%(x) = ei*X@%(x) = ei*P%(x) = eF=P(x), with d(x) satisfying (the
usual) periodic boundary conditions. This means that all the Hilbert spaces 5#%(G ),
although yielding non-equivalent representations, are related to each other by means
of finite boosts transformations, which are unitaryjransformations considered in the
union of all these Hilbert spaces U,c(g 2nn/y #°(G ). We could say that #(G ) for
a fixed ¢ is too small for the boosts operator to live in. The momentum operator,
however, preserves (and is Hermitian in) each one of these Hilbert spaces, but it is
not Hermitian in the union of all of them.

It is worth mentioning that the set of operators P, # and ﬁT close a Lie alge-
bra under ordinary commutation which is isomorphic to the non-extended harmonic

oscillator algebra. The operators # and 11Jr act as ladder operators on the ****eigen-
functions of P (this fact has been used in [0-K] to study Quantum Mechanics on
the circumference).

2.2. Toral Heisenberg—Weyl group. Let us now proceed with the case of the
Heisenberg-Weyl group with both the coordinate and the momentum “compactified,”
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i.e., with a structure group T such that G /T leads to the torus as the symplectic
manifold. We shall parameterize the plane with coordinates (x,x,) because in phys-
ical applications the coordinates play the double rdle of coordinate and momentum
(see Sect. 4.1). _

We also apply AQG to this system. Here again, G is the Heisenberg—Weyl
group in 1D (now parameterized by ¥ = (x1,x2) and (). Given L; and L,, we
introduce the lattice points Ij,; = (ki1L1,k,L7), ki and k, being integers (thus defining
a rectangular torus if we would take the quotient by them). The structure group
T will be a principal bundle with base {e, keZx Z} and fiber U(1), where
{ep kezZxZ}c G is the set of finite translations in the coordinates ¥ by an
amount of L . The group T is not in general a trivial central extension.

The group law for G now reads:

=/

’ — )?/ + )?’
1 7 7
C” — Clceﬁmw[(l+l)x‘xz+ixlx2] , (14)
where a new numerical constant @ (with dimensions of 7~!), besides the mass m,
which was implicit in the momentum p = mv, has been introduced to accommodate

the dimensions in the exponent above.
The left and right invariant vector fields can be obtained:

. o A _ R0 142 =
Xxl = —a—x—1+ ﬁmwxzu, )(xl = F + 7 ——mwxy &,
. 0 1+ 4 _ SR 0 A -
Xiz—a;c;'f‘ 7 —mowx; &, X§2_6x2+£mwxlu’
— SR 6 [l
l( CE.: X Ca—é,E.:, (15)

and the quantization 1-form is:

O = —Amwxydx; — (1 + A)mwxydx; + h% . (16)

As before, the quantization 1-form has no characteristic module, and any combi-
nation of the two generators )?fl and )?fz constitutes a first-order full polarization.

These can be written as 25 = (77 - X'JL?), where # = (n,n,) is an arbitrary unit vec-
tor. The choice of an 7' corresponds to the selection of a particular direction in the
plane. [All directions are indistinguishable, but on the mimicked torus, there are
geodesics (directions) which close, as happens with the lines x, =0 and x; =0,
and others which are open and fill the torus densely. It can be easily checked
that the cond1t10n for a geodesic with direction given by # to close is either
that 22 = 4112—% ko1, kop € Z or that #=(1,0) or W= (0,1), i.e.;, # is of the form

M= —'k / |f |, with ko € Z x Z. Also for a geodesic and its orthogonal one to close,
it is necessary and sufficient that Z ~7 be a rational, except for the case 7 = (1,0) and

i = (0,1), which are always orthogonal and closed. This condition is similar to the
condition of commensurability of the frequencies for a Lissajoux figure to be closed].
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The polarization condition 2; leads to the following wave functions:

— to— molUni—(14+n)y y2+ (et 3 Imm il
¥ =_le P(y2), (17)

where y1 =n - X, jm=n- J.% and (j)ij = g;j, with g = 1. The action of the
right operators on these wave functions is:

i 5 R = gom tmollUn ~(+0m)yy+ Ut Dina ]
X

i

X —_— =

[BJ& f

Before imposing the constraints, we have to determine the structure of the group

T. It must be done by means of finite transformations, since it is basically a discrete
group (times U(1)). We then compute the group commutator of two elements of

€t} teyxyr With the result [ep,ef] = (0,0, efmehlatib—kk)) Two cases have to
be considered:
1) e%mele(kllkz—kzlkl) — I\V//?, ];l €EZXZ = [e,;,,e];] = 15,
ii) 3k and k' / efmobilatibe—hh) 41 = 1=+ (e, ep] € U(1),

mownny(1 + 22)sz D(yy) . (18)

For the case i), T is the direct product T = {e, keZx Z} x U(1) and the
whole group 7 can be imposed as constraints. For the case ii), when
eimoliLa(kk—kk1) £ 1 for some values of & and &’ (an infinite discrete set of values,
in fact), there are two possibilities, depending on whether %%L—Z is rational or irra-
tional. In neither case can we impose the entire group 7' as a constraint group and

we have to choose a polarization subgroup 7, of T (see [A-N-R]).

2.2.1. Integer Quantum Numbers. For the condition i) to hold, it is necessary that

malL 1L2

Stk 1
o neN, (19)

which implies a quantization of the “frequency” w. As we shall see in Sect. 4, this
condition will imply the quantization of the magnetic flux through the torus surface.
This quantization condition is of the same nature as that of the Dirac monopole
case. Concerning this case, AQG simply reproduces the quantization condition of
the standard Geometric Quantization: the symplectic form must be of integer class,
defining the Chern class of the quantum manifold.

The rest of the procedure follows the same lines as in the case of the cylindri-
cal H-W group: the condition of the T-function is Y(gr *x g) = 2(gr)¥(g), with
Dep, () = [D(ep), where D(ep) is a representation of the group {ej, kezZx Z} ~
Z x Z on the complex numbers. For the moment, we shall use the trivial represen-
tation D%(e;) = 1, and later the rest of non-equivalent representations (leading to

non-equivalent quantization of G ) will be computed with the help of the bad op-
erators, as was shown in Sect. 2.1.1 for the cylindrical H-W group. The T-function
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condition then reads:
eimw[(1+2)k1L1x2+lkzL2x1]TO(f+ ZE’C) — lPO(f, C) (20)

Vk € Z x Z. Note that the space of constrained wave functions can be identified
with the space of sections of a U(1)-bundle on the torus, with Chern class » and
connection given by (16).

Applying this constraint to the polarized wave functions (17) the following re-
striction is obtained:

ehmo{H(1+20mm (14— 1T+ § + L)}-Lp) o= gmal(1420mma(yi-+y2))T * 3+ L)

x@(yp +7 - T+ L) = 8°(»2) (21)

Vk € Z x Z. This restriction has important consequences: a) the possible polariza-
tions are only those given by #'=(1,0) and #'=(0,1); b) the wave function is
peaked at certain equally spaced values of y,; and c) the parameter 4 is also quan-
tized. From these facts it can also be deduced that the dimension of the repre-
sentation is n, i.e., the representations of the toral Heisenberg—-Weyl group are
finite-dimensional, having dimension n, where n is given by (19).

Explicitly, the “allowed” values for the coordinates are x, = ’;‘Lz, keZ forn=
(1,0) and x; = ’;‘Ll, k € Z for = (0,1). The wave functions then turn out to be,
respectively:

() = 3 a4d (xz _ ELZ) for 7 = (1,0), (22)
kez n

(x)) = 3 b <x1 - lfL1> for 7= (0,1). (23)
kez n

The coefficients a; and by are not completely arbitrary; due to the T'-function condi-
tion, which now reads @°(x; + kyLy) = ®%(x,) (for 7 = (1,0)) and ®°(x; + kL)) =
®(x;) (for 7= (0,1)) VEeZxZ, they satisfy ayi, = a, and by, = by, Vk € Z.
Then, there are only » independent coefficients, so that the dimension of the repre-
sentation is n. The allowed values for 1 are given by 4 = f, k € Z, i.e., the possible
(equivalent) cocycles, or that which is the same, the possible coboundaries are quan-
tized. This fact can be easily understood in terms of the generating function of the
coboundary parameterized by A, which has the form Ax;x,, or better, eimoiax  For
this function to be quasi-periodic, i.e., eimoA(xithl )xtkl) — el * ZFe#’"‘”“‘“,VE S
Z x Z, the quantization condition for A is necessary, besides the quantization con-
dition for x; and x,.

Let us focus on the case 7= (1,0) for concreteness (the case 7= (0,1) is
completely analogous and in fact equivalent). Using the expression (22) and the
fact that ay., = a;,Vk € Z, the summatory can be regrouped, and we arrive at a
rather compact form for the wave functions:

k n=1 k + nk
(i) = X ad (xz - ;L2> =5 S g (xz ke 2Lz)

kez k=0 kaeZ

n—1 k k n—1
=> ay o (xz - +nn 2L2> = kz%ak/lg(xz) , (24)

k=0 ke€ezZ
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where (x)) =x, — £L,)

1 ,
A= X 568 —hola) = - X el (25)
ez 2 g€Z

Therefore, the dimension of the Hilbert space A#%G) is n, since it is spanned by
the functions A%(x;), k =0,1,...,n— 1.

Next, we determine the subgroup Gy of good transformations (those preserving
the structure of the wave function). As in the case of the cylindrical H-W group,
it is deduced from [ez,g] = (0,0, eimetilin—hla)y c KerD(T) = 15 VkeZxZ,
which implies %2(kiLix; — koLox1) = 27k, k € Z, and, together with the quanti-
zation condition (19) for w, leads to X = ﬁl_f,;. Therefore, the subgroup G of

good transformations is the subgroup of G in which the parameters X are re-
stricted to be ¥ = %LE, although only a finite number of them corresponding
to {X= (’%Ll, ’—;le), ki,kp =0,1,...,n— 1} are actually different, due to the T-
function condition. Consequently, no infinitesimal transformation (apart from that of
U(1)) preserves the structure of the wave function.
SR
If we introduce the (finite) operators #; = e®x i =1,2, in a similar way as
in Sect. 2.1.1 (although here they represent finite translations), we can write the
elements of T as e; = (#,)*(#,)*, and the subgroup of good operators is:

G = (L) F (1) ?, ks €Z, { € U} (26)

As in Sect. 2.1.1, the set of bad operators can be interpreted as quantization-
changing operators, sweeping the space of all non-equivalent quantizations. As was
proven there, the action of a bad operator takes the wave function out of our Hilbert
space #°(G) and puts it into a different Hilbert space #%G ) corresponding to a
non-equivalent representation of Tz (= T') parameterized by &. Thus, we define the
new functions (we restrict ourselves to the ®(x,) part of the wave function):

- 29
¢a(x2) =¢ OCIX +0¢2XX2 @0()5 ) 127mL2 0 ¢0(x2 + “2)

nl 2mn2 L o nl &
=Y R A)(x + ap) = Z arAg(x2) , 27)
k=0 k=0
where
— pi2mi I Ll — ’27"‘% E’ i 121rq(x§"’+az )L,
im)=e Ay +m)=¢ L e , (28)
qeZ

and the values of & are different from %E,; (good transformations).

To determine the non-equivalent quantizations (i.e., the minimum range of values
of the parameters «; and «, that sweeps the whole set of non-equivalent quantiza-
tions) we let the transformations of 7' act on these new functions and then we
determine the quasi-periodicity conditions:

()P B%(x2) = e BR 9(xy), (29)

()2 0%(xy) = €2 TR 0 (xy), (30)
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from which it can be deduced that a; € [0, %) and o, € [0, Ln—2). This range of values
is associated with the first Brillouin zone of the reciprocal lattice, as can be checked
if we define the parameters &= mwJ + & It is easy to verify that the wave func-
tions {A;f(xz), k=0,1,...,n— 1} constitute the carrier space (they span #%*(G))
for unitary irreducible representations (parameterized by &) of the subgroup of good
operators. Under these operators the wave functions transform as:

(Vo AT () = 2B T (xy), 31)
.\ Z 2nilk, (&
(1) AL (x2) = €50 AL oan(32). (32)

In a recent paper, [G], it is shown that, for the case n =1, the symplectic
manifold defined by the torus can be fully quantized, i.e., the entire Poisson algebra
on the torus can be irreducibly represented by self-adjoint operators acting on a
Hilbert space. Here, the same result is obtained for arbitrary integer n. Even more,
more operators than those associated with classical functions (those of T) can be

irreducibly represented, namely (ﬁi)l;",ki € Z,i = 1,2. To be precise, the n'™’s roots
of the classical functions (which would be well defined on a n-covering of the torus)
can be quantized according to our scheme. This is possible thanks to the fact that the
representation defined by the equations above is a vector representation, i.e., wave
functions are really sections of an associated vector bundle of dimension n over the
torus. To our knowledge, this is the first time a result of this nature is reported.
As in Sect. 2.1.1, we could consider the union of all the Hilbert spaces

Uz A#%(G). In this Hilbert space, the bad operators X f; are Hermitian and act irre-
ducibly, carrying a unitary irreducible representation of the toral H-W group, turning
out to be a generalization, for arbitrary integer n, of that called kg-representation in
Solid State Physics [Z], where only the case n = 1 is considered.

Summarizing the integer case, there is a continuum of non-equivalent quanti-
zations, corresponding to non-equivalent representations of 7' parameterized by d,
giving rise to different quasi-periodic boundary conditions. The value & = 0, corre-
sponding to the trivial representation Do(e,;) =1 of {ey; kezxz }, reproduces the
standard periodic boundary conditions. The wave functions are (27-28) with quasi-
periodicity conditions given by (29-30) and the subgroup of good operators is (26).

The difference between the two representations obtained here should be stressed.
On the one hand, for a fixed & the Hilbert space #%(G) carries an irreducible
representation of the subgroup of good operators. In this representation the operators

X f; do not preserve the Hilbert space; they are bad operators. On the other hand,
the union of all the Hilbert spaces | J; HAH%(G) carries an irreducible representation

. . ~R ..
of the entire toral H-W group, in such a way that the operators X; are Hermitian
and the good operators act in a diagonal form.

A brief comment is now in order. Let us consider the discrete (infinite) subgroup

generated by {(ﬁl)%‘(ﬁz)%, ki,ky € Z}, which constitutes a principal fibre bundle
with base Z x Z and fibre Z, C U(1). The group algebra of this discrete group can
be proven to be (in a suitable basis) an infinite-dimensional trigonometric algebra
[F-F-Z]. Since 7 is an integer, this discrete group has a centre, which can be removed
by means of the 7-function condition. The quotient group is the finite group gener-

ated by {(ﬁl)kn_l(ﬁz)%, ki,kp =0,...,n — 1}. This finite group (which can be seen as
a finite version of the Heisenberg—Weyl group) constitutes a principal fibre bundle
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with base Z, X Z, and fibre Z, C U(1), and admits a simple matrix representation
given in Ref. [W] (see also [F-F-Z] and [F]). The corresponding group algebra is the
algebra of SU(n) x U(1) for n odd or U(n/2) for n even, in a trigonometric basis
[F-F-Z]. By means of this representation, the limit # — oo (the “classical” limit) is
particularly simple, leading to the algebra of infinitesimal area-preserving diffeomor-
phisms of a 2D-surface (the torus, in this case). This algebra, referred to as W
in the literature, is the classical version of a variety of infinite-dimensional algebras
called collectively W, of increasing interest nowadays (see [S] for a review). In
this sense, the subgroup of good operators G can be seen as the quantum version
of the area-preserving diffeomorphisms of the torus, thus constituting a realization
of the W, algebras on the torus.

2.2.2. Fractional Quantum Numbers. We now consider the rational case, in which

%}fu = 2. In this case T has a non-trivial characteristic subgroup, i.e., there are

non-trivial elements commuting with the whole group 7. This is G¢ = {rf,;,E €
Zz}, and the polarization subgroup, which must contain G, is T, = G¢c U {k]j,;p, ke

Z}, where K p is a vector the components of which are either relative prime integers,
(1,0) or (0,1). This condition is required for maximality of the polarization subgroup,
and therefore for the irreducibility of the representation of T.

The T-function condition now reads Y(gr, * 9) = 2(gr,)¥(g), where Tp =
T, U U(1) is the maximal subgroup of compatible constraints that can be applied to
the wave function, and 2(gr,) is a representation of T on the complex numbers.
For the moment, we shall use the representation @O(erp, {) = {, which is trivial for
the elements in 7. Later, the non-equivalent representations of 7 will be straight-
forwardly computed, as in Sect. 2.2.1. The Tp-function condition on the polarized
wave functions (17) is then:

et el 20mmy H(+ D=2 )+ 5+ L DY+ L)

xg BmANEIImmOEANT T L) @0y i+ T (L ) = B() (33)
£ P

Vk € Z, and Vk € Z x Z. As in the integer case, the only polarization vectors 7
consistent with these restrictions are 77 = (1,0) and #' = (0, 1), and the same for K s
for which the only possible values are k »=1(1,0) and k »=1(0,1).

Let us fix the polarization to # = (1,0) for concreteness (the case #'= (0,1) is
completely analogous and in fact leads to an equivalent representation). The two
different choices of k »» perpendicular and parallel to 7, lead to non-equivalent repre-
sentations [this is a general feature in AQG: for a given polarization in G , different
choices of polarization subgroups T, in T can lead to non-equivalent quantizations,
even though the polarization subgroups were equivalent from the point of view of
the subgroup 7 itself (see [A-N-R])], both with dimension » and with A restricted
tobe A=k/n, keZ:

=

a) L,;P 1 e, Ep =(0,1), then the wave function is peaked at the values

y2=x, =15, k € Z, satisfies & (x; + koL2) = % (x2), and has the form

n—1
' (x) = kgo aAY(x2) , (34)
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where A,?(xz) is defined as in Sect. 2.2.1, and the subgroup of good transformations
is Gy = {ﬁL_};, keZx Z}u {§L2’ k € Z}, although only a finite subgroup of them
are distinct: .
k;
Gy = {7, (i), ko =0,...,n—1}. (35)

b) E,;p |7, ie., /E'p = (1,0), then the wave function is peaked at the values
V2 =% =kiLly, k=0,1,...,n— 1, satisfies <D‘])|(x2 + kL)) = diﬂ(xz), and has the
form

n—1
B (x2) = > @A (x2) 5 (36)
=0

. ik .
where A7%(x;) = t > gez 2 VI0L) | ith x5 ® =x, — £yL,, and the subgroup
of good transformations is Gx = {:L, k € Z x Z} U {le, k € Z}. Again, only a
finite subgroup of them are distinct:

k. k-
Ggf:{(ﬁl)%’(qz)"f’ ki,ky=0,...,n—1}. (37)

As in Sect. 2.1.1, we can compute the non-equivalent representations by applying
the whole set of bad operators to the wave functions. We proceed as in the integer
case (Sect. 2.2.1) and obtain:

a) Z',;p L 7. The wave functions have the form

O (x2) = kz_:; ax A (x2) (38)

with A7 (x;) = € 5% A(x,). They satisfy
(487 n) = e EH 0T (), (39)
()20 (1) = €27 £ R0 (x2) (40)

with a1 € [0,75), a, € [0, 2).
b) Ij,;p || #. The wave functions have the form

ﬁ‘: n—1 V)E
o) = T a7 ) 1)
rB inn Bpl %
with Ak’ﬁ” (x) = e 1 z§A;’0(x2). They satisfy
7 o~ Bp2 g
(P oy () = € P ER B (), (“2)
; o
()28 (2) = €™ B 2 (x2) (43)

with Bpl € [0, 'L,Tl)’ ﬁpZ € [O,r%—f—).
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It is easy to verify that the wave functions {Ai" (%), k=0,1,...,n—1}

and {A,:’ﬁ”(xz), k=0,1,...,n— 1} constitute the carrier spaces for unitary irre-
ducible representations (parameterized by & and f3, respectively) of their respective
subgroups of good operators. Under these operators they transform as:

a) E/;p 17

- . 452 =
AT (1) = €76 A (), (44)
R — o 4 -
()AL (xp) = €22 A7 (). (45)
b) L, I| 7. _ e bm
() AT () = @2~ ED AT P (xy), (46)
() A (y) = € B g0 (). (47)

It should be noted that although %1 = 7, the dimension of the representations
is n, and A = k/n, k € Z, as in the integer case (even more, in the case f,;p 1 7 the
wave functions coincide); the difference is found in the subgroups of good operators,
which, although isomorphic, differ in the specific values of the transformations. This
representation can be reinterpreted as mimicking a torus r times greater in one direc-
tion (determined by the orthogonal vector to k »), i.e., the area of the effective torus
is #L1L,, and therefore ﬂ“%—) = n. Thus, the same results as in the integer case
now apply, although changing L, by rL, if Igp =(1,0) or L; by rL; if I?p =(0,1).

Summarizing the fractional case, there are two continua of non-equivalent quan-
tizations, according to the choices I:};p 1 7 and [—:,;p || 7, parameterized by &, and

-

B > respectively. The wave functions are given by (38) and (41), satisfying quasi-
periodicity conditions given by (39-40) and (42-43), respectively. The subgroups
of good operators are given by (35) and (37), respectively.

Associated r-vector bundle: If we act on the wave functions with the bad operators
of T (i.e., those operators of 7 which are not in 7p) the resulting wave functions lie
in a different Hilbert space belonging to a different quantization. However, as these
operators are finite and their " power are good operators, these new wave functions
transform among each other under the action of the subgroup 7Ti.4, defined as the
set of bad operators of 7' and the identity. Therefore, constructing the vector space
spanned by these » functions (7yaq has 7 elements), we obtain an r-dimensional,
unitary irreducible representation of the group T as a whole, including the bad
operators. Explicitly:

a) E,;p 1 7. We define
AL (x2) = ()Y AP (1) = €7 BT AT () (48)
for j =0,1,...,» — 1, where they satisfy:
U B A KA € )) (49)

for j,j'=0,1,...,r — 1.
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b) Z,;p || 7. We define

AP () = (Y A () = A ez + L) (50)

for j =0,1,...,r — 1, satisfying:

B Rmn P (4 divr)y (rB
() A7 () = 2T D g (62) (51)

for j,j/ =0,1,....,r — 1.

This construction can be viewed as the r-dimensional vector bundle associated
with the principal bundle G , which has structure group 7. The r-component wave
functions are sections of this associated vector bundle.

As stated before, AQG generalizes Geometric Quantization in some respects,
in particular in that which concerns (topologic) quantum numbers. The fractional
value %ﬁ = 7 generalizes the integer class of the standard symplectic form (the
Chermn class of the line bundle). The geometric quantization of a symplectic manifold
with “fractional class” 7 would have led to r-valued wave functions (as opposed to
single-valued). Eventually, this trouble could have been circumvented by replacing
the usual line bundle by a complex vector bundle E of rank » and Chern class n,
as constructed before.

The comments at the end of Sect. 2.2.2 concerning the generalized kg-
representation can be translated to the r-bundle structure associated with the frac-
tional case.

2.2.3. Irrational Case. Finally, and for the sake of thoroughness, let us briefly
comment on the case in which p = %ﬁ is an irrational number. In this case
the characteristic group is trivial, and 7 = T, U U(1), with T, = {kf,;p,k ez}
only. As before, it can be proven that the only possible polarization vectors are
= (1,0) and 77 = (0,1). Moreover, the only consistent choice of polarizations T,
in T are also k »=1(1,0) and k » =(0,1). No restriction for A appears in this case,
and the structure of the Tz-function condition closely resembles that of the case
of the cylindrical H-W group: the wave functions are either peaked at an infinite
series of equally spaced values of y, if K p || 7 (as in the momentum space rep-
resentation in the cylindrical H-W group), or quasi-periodic if k p L7 (as in the
configuration space representation in the cylindrical H-W group). In both cases
the non-equivalent representations are labelled by ¢ € [0, I%Zhl ). The representations
are therefore infinite dimensional, and the subgroup of gooil operators is given by
Gw=A{ /%E,;,I; €ZxZ}U {cxf,;p,ot € R}. Consequently, besides the discrete trans-

. - = . - ~R .
formations in X = lL,;, the infinitesimal operator L; - X is also a good operator,
p p
that is, arbitrary translations in the direction of L,;p are good transformations. Note
that, p being an irrational number, %Ij,; never reaches a point of the lattice defined

by E,;, although it fills the corresponding torus densely when varying kezZxZ.
Therefore, in this case, the subgroups x; = 0 and x, = 0 (the classical circum-

ferences), are represented faithfully, as in the case of the cylindrical H-W group,

but the rest of the group is not faithfully represented, nor are even the points of the
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lattice (the group T'). In particular, for the infinite-order operators #;,1,, defined as
in Sect. 2.1.1 for the directions x;,x;, only one is a good operator (the one in the
direction of L,;p ), the other being a bad operator. Consequently, we cannot represent

the toral H-W group faithfully for irrational values of p.

3. Free Galilean Particle on the Circumference

Let us apply the results obtained in the last section to the simple example of the
free particle moving on the circumference.

We can study this problem easily by simply adding the temporal evolution to
the results obtained in Sect. 2.1 (for the group law, vector fields, polarizations,
Schrodinger equation, etc., see [A-B-G-N] and references therein), without affecting
the main conclusions of that section. The main new features are the introduction of
a new operator E associated with the temporal evolution and the fact that, by using
the Schrodinger equation, this operator can be written in terms of the momentum

A2 . AL N
operator as ﬁP . Since P is a good operator, E proves also to be a good operator.
A common set of eigenfunctions is given by

p(x,t) = e—% #(HZLE”)zte%(HZLL"n)x ’

. 1 2nh \?

Poi = <s+ 2Z—hn> ¢ (52)

where n € Z. Note that for ¢ = 0 the states » and —n have the same energy, which
means that all the energy ecigenstates except for the vacuum are degenerate. For
any other value of ¢, the states » and —(n +28ﬁ) have the same energy, but
—(n+ 282’#) is an eigenstate only if 282% €Z,ie, sﬁﬁ is integer or half-integer.
This means that, in general, there is no degeneracy for any value of ¢ except for the
integer values, in which case all the eigenstates are doubly degenerate except for
the vacuum, and half-integers, for which all the eigenstates, including the vacuum,
are doubly degenerate. The phenomenon of degenerate ground state in this simple
model parallels 6-vacuum phenomenon in Yang—Mills field theories [A-E-P].

The feature of non-equivalent quantizations can be reproduced (in an equivalent
way, indeed) by the introduction of an extra coboundary in (1) (more precisely,
in its counterpart when the temporal evolution is added; see [A-B-G-N]) generated

by the function ex, i.e., a multiplicative factor of the form ei¢w’ in the { € U(1)

/

composition law. [We recall that x” = x" +x + £¢ is the composition law for x
when the temporal evolution is added.] In the case of the free Galilean particle on
the real line, the only consequence of this term is the appearance of a total derivative
in the quantization 1-form @ (or, what is the same, in the Lagrangian), leading thus
to equivalent (classically and quantum-mechanically) theories, as expected from the

fact that a%t is a coboundary. The situation is quite different when the particle is on

the circumference: the generating function ex, or better 7%, is not single-valued on
the circumference unless ¢ = %k, k € Z. As a consequence, two cocycles differing
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Fig. 1. Net current in the superconducting ring against @/®,

in a coboundary generated by ex (and therefore leading to equivalent theories on
the real line) lead to non-equivalent theories on the circumference if ¢+ ZLLhk, keZ.
This process of creation of non-trivial cohomology closely resembles the appearance
of cohomology under the process of group contraction, as in the case of the Poincaré
group, in which a certain class of coboundaries (generated by a linear function in
time) become true cocycles in the ¢ — oo limit since their generating function goes
to infinity in this limit.

Another interesting way of interpreting the feature of non-equivalent quantiza-
tions parameterized by ¢, at least in the case of charged particles, is as an Aharonov—
Bohm-like effect. The different quantizations can be carried out physically by
producing (externally, with the help of a solenoid) a magnetic flux @ through the
circumference, in a way that the particle does not feel the magnetic field, but rather
the vector potential only. Under these circumstances, the effect of the vector poten-
tial is the same as that of a boost, leading to non-equivalent quantizations depending
on the flux through the circumference, in such a way that ¢ = e®/c. An interesting
physical application is that of a superconducting ring threaded by a magnetic flux,
where by Meissner effect the magnetic flux is pulled out of the interior region of
the superconducting ring, and therefore the magnetic field is effectively zero and
only the vector potential is relevant (Aharonov—Bohm effect). If the flux is [in this
case the effective electric charge is e* = 2e because electrons form Cooper pairs]
k®y, k € Z, where @y = hc/e* is the quantum unit of flux, there is no net current in
the superconducting ring, but for any other value of the flux there is a net current
which has the form given in Fig. 1.

Note that for half-integer values of &, the net current has no definite sign, as
a consequence, precisely, of the double degeneracy of states, in such a way that
states with opposite signs of velocity have the same energy and therefore there is
no energy cost to pass from one to the other.

3.1. Failure of the Ehrenfest Theorem. As mentioned in the introduction, the most
common problem appearing in systems with topologically non-trivial configuration
space is the failure of Ehrenfest theorem for certain operators (“anomalous” oper-
ators) [E]. The Ehrenfest theorem asserts that the expectation values of quantum
operators follow classical equations of motion:

d - i, o~ A
5 ) = 5 A.4). (53)
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In Ref. [E] it is claimed that when the operator A does not keep invariant the
domain of H, then an extra term appears in the r.h.s. of (53), which is interpreted as
an anomaly. In the language of AQG, we would say that 4 is a bad operator, so that
neither the left-hand side nor the right-hand side of (53) would make sense, since
the operator A takes the wave function off the Hilbert space where the Hamiltonian
H is self-adjoint (of course H is a good operator; otherwise the temporal evolution
would take the physical states off the Hilbert space, and the system would have no
physical meaning). The appearance of the “anomalous” term violating the Ehrenfest
theorem is a consequence of this fact.

Returning to the free Galilean particle on the circumference, the Ehrenfest the-
orem will fail for the position operator, which is a bad operator and therefore
Eq. (53) makes no sense in this regard.

In conclusion, whenever there are bad operators in the theory, the Ehrenfest
theorem will fail for each of these operators and, in general, any expectation value
involving these operators will be ill-defined, giving extra terms that can eventually
be interpreted as topologic anomalies.

4. Charged Particle in a Homogeneous Magnetic Field on the Torus

Now, we shall consider the most interesting problem of a charged particle moving
on a torus in the presence of a homogeneous magnetic field. This problem is re-
lated to the Schwinger model [M], and has important applications in the Quantum
Hall effect [K-D-P, La, T]. The magnetic field is perpendicular to the torus surface,
and the total flux is quantized (as we shall see), much in the same manner as the
Dirac monopole charge is quantized [W-Y]. The actual connection of this system
with the Quantum Hall Effect is based on the fact that the wave function of the
complete system factorizes in a relative-coordinate dependent term (which includes
interactions) and a centre of mass dependent term, which behaves essentially as a
particle in a transverse homogeneous magnetic field, and on the effective topology
of the experimental device in the latter system; the topology of the (semiconduc-
tor) strip along with the current and voltage leads is that of a punctured torus
[T].

First, we shall study the planar case, i.c., the charged particle on the plane, to
clarify the meaning of the different magnitudes appearing in the problem, and to
obtain a proper parameterization of the system.

4.1. Charged Particle in a Homogeneous Magnetic Field. The movement of a
charged particle in a homogeneous magnetic field can be factorized into a 2-
dimensional problem (on the plane normal to the magnetic field) times a free
movement in the direction of the magnetic field. Thus, we restrict ourselves to a 2-
dimensional system characterized by a non-zero commutator between the translation

generators, [/\7 )I;],
the magnetic field strength and g the particle electric charge [L-L, C-D-L].

We have to build up a group law for this system, which must be a deformation
of the Galilean group law (in two dimensions) due to the non-zero commutator

between the translation generators. In fact, the Galilean group does not admit any

central extension giving rise to [)?)Lcl,/\;fz] = imw,/h, and a deformation of the non-
extended algebra is required: [X/, X%] = w.J - Xt. We then arrive at the following

/\N’fz] = imw./f, where w, is the cyclotron frequency, w, = %p, H
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Lie algebra as the quantum symmetry for our system:

{Xiiﬁ*} :wcj')?;a
ERAEEES

[XL )?L] = eE (54)

[The non-triviality of the last commutator above has been referred to in the literature
as a “classical anomaly” (see e.g. [As, C-I]) but we cannot see in what sense this
commutator is anomalous, nor why it is more anomalous than any other standard
Heisenberg-Weyl-like commutator.]

A group law for this centrally extended Lie algebra becomes:

t”:t/-\—t,

- 1
P =E M (1) -7+

Al .
o (XD - 5
p"=P"+Pp,
¢ ={ertda) (55)
where the cocycle is given by:

1 ~ ~ N
&g.g)= E{mwcf' “N(@) - %= p" - M(1) - ¥+X" - M(t) - p

+

B (N 1) -p‘} . (56)

ma,

The 2 x 2_orthogonal matrices M(]) and N(z) are given by M(t) = cos w.t1 —
sinwtJ, N(¢) = sinw.t1+ cosw.t ], and J;; = ¢;;, e12 = 1. We have not taken into
account the rotations, since they do not play any dynamical role, although they
are of interest in that, when considered on the torus, they represent a very simple
example of a local (in the strict mathematical sense) symmetry of the equation of
motion which cannot be realized globally.

The left and right invariants vector fields are easily deduced from the group law:

~Laﬁ£ L~ 0

Y atwwm e w
~L 0 |
f—F—ﬁ[p-l—ma)cJ x] &,
- 0 X
X;‘—a_ﬁ'f'ﬁ‘—‘,
bl

(57)
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~R o~ 0 1 -~ N - 5 =
f—M(t)-é/%—i—ﬁ[M(t)-p—f—mch(t)-x].d,
~R 0 | S . 0 1 [~ . | SN P
X5= 35" mo, (N@)-1J) ‘&*‘zﬁ[M(”‘x*mwc (N@oy-J) - Bl &,
~R .0
X(ZZCa—C':.:, (58)
and from (57) the quantization 1-form is computed:
Lo, o L
@:E[p d¥ —X - dp—mwx -] - dx]
2 2
I AN B R it
[2m+wcp J X+ 5 x}dt-lrhic, (59)

the characteristic module of which is ¥ = (X’tL ). From this, the classical equations
of motion are written:

F=NM'(t) - Fo+—TF P, (60)

mao,

where P and 7, are arbitrary constant vectors, parameterizing the (classical) solution
manifold. With the aid of the constant w,., we may introduce R = m_<l»—c‘l - P, so that

. . - ~—1 - = . .
the second line of the equation above reads ¥ =M (¢) - 7o + R, i.e., the classical
trajectories are circumferences centred at R, with radius |7|.

The Noether invariants, in terms of the constants 7y and ﬁ, are:

lif@: ZCF()zzH,
l)zli@—mCUCJ ro .
i20=—(fp+R) =%, (61)

where H is the classical energy of the system. It should be noted that the energy
depends only on the radius |7| of the circumference, and not on the position R
of its centre, as corresponds to a system with translational invariance. [The system
possesses translational invariance in the more conventional sense (the magnetic field

. . ~R .
is homogeneous) although the translation generator X does not commute with the

e . oR . . .
Hamiltonian X, . In fact, as we shall see later, there exists a translation generator in
the Lie algebra (the magnetic translations) which commutes with the Hamiltonian
generator.]
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To obtain the representation in configuration space, we need to impose polariza-
tion conditions similar to those of the Galilean case [A-B-G-NJ:

PO — <X€ e (f)2> (62)

Solving the polarization equations we obtain for the wave functions the general
form:

¥ = (e FTPP(%1), (63)

where @(x,¢) satisfies the Schrodinger equation

i) o2 L we., 2 oo ma?
zhacb_{—gv +lh—2—x-J-V+ 3 x}d5. (64)

The quantum operators are:

h2
2m

mo,
8

2
ﬁz+ih—“§£f-j-§+ c

szihglpzce—f’iﬁ’f[ i’z] D(x,t),

maw,
2

PY— (e P T [—iﬁM(z) VAR NP )?J B 1),

ih
mw,

)?W:Ce—z‘f"f[% M@ +1) -3+ Nty -J) -ﬁ} D(%,1) . (65)

Instead of proceeding further and solving the Schrédinger equation explicitly, we
shall perform a change of variables which will clarify the meaning of the different
magnitudes entering the theory and which will facilitate the accomplishment of AQG

in the next subsection. If we define 7 = M_l(t) - 7y =%~ R, we can easily rewrite
the group law (55) and (56) in terms of # and R:

R =R +F,

c/l — C/Ce%mwc[%r'" . N(t) . F—((1+1)R1R2—1R£R1)] , (66)

where we have added the coboundary generated by —mwc(% + )RR, to accom-

modate the cocycle, in its R-dependent term, to the expression of Sect. 2.2 (except
for a global minus sign).
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From this group law we can compute again the left- and right-invariant vector
fields:

~ 0 mw.~ SR~ 0 mwm, .
Xé_a—F— i e, Xp = M(t) - =+ 2 N(0) - FE,

. 0 A _ ~R 0 14+4 —
lezg—k:—;i—mchzd, XR'_E— h mchZ':'a
L0 144 T R
Xézza—&——h—mchld, Xzz_—a'R—z'_ﬁmchli—"

L 0 SR 0

XJC'—ICBZ.:_, X=ity =5, (67)

and the commutation relations are now:

PR =0l R, [RR—0 [0 =T,

~ ~ mao, ~ ~
[ %o ] = -eym, %o K] =o. (68)

A glance at the algebra (68) reveals that it is the central extension of the di-
rect sum of the (non-extended) harmonic oscillator algebra and the (non-extended)
Heisenberg algebra. Consequently, the wave function factorizes into a harmonic
oscillator wave function (depending on ¢ and 7) times a function of R, and the
energy spectrum coincides with that of the harmonic oscillator, the degeneracy be-
ing infinite due to the Heisenberg—Weyl symmetry, which in the plane has only
infinite-dimensional unitary irreducible representations.

We are interested in a configuration-space representation, so that a second-order
polarization is needed. This is found to be:

@HO=<)ZL o ()?f)z,ﬁ.)?},ﬁ' XL> : (69)

Dt 2m r 4

where 7 and 7’ are arbitrary unit vectors. They can be chosen to be (1,0) or (0,1),
for instance.

Imposing these polarization conditions to the wave functions, we obtain the
general form:

Y =(e imw[(l"?'—(l-!-ﬂ)"i)yly2+(;»+%)nlnz}’f]¢(y2)e%"szk1 Qx2,1), (70)

where yy =7+ R, yo =7 - J-Ruy=i" - Fxg=i - J -7 @(y,) is an arbitrary
function and O(x;,¢) satisfies the Schrodinger equation:

.0 B 2 mo?
lhEQ(Kz,t) = —ﬁvm + —2—CK%:| QK1) . (71)
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This is nothing other than the Schrodinger equation for the harmonic oscillator, so
that the solutions are

Qicy, 1) = . Ao~ Dot g~ S5 g, ( m;;c Kz) , (72)
n

where H, are the Hermite polynomials.

Since the wave functions factorize, the operators /\72 will act only on the _1?—
dependent part of it, having the same expressions as in (18) (changing there x to R),
and the operators X’ ,If will act only on the (¥,¢)-dependent part, with the expressions:

<R

P .
X, =n §Q(K2,t) = |—sinw.t— + imcoclcz cos .t | Q(xy,t),
! (31(?2 )

R
K2

X

R 0 j .
=n-.J. §Q(K2,t) = |cos W t— + ima)cicz sin .t | Q(ky,t), (73)
akz A

once the (irrelevant) phase factors have been factorized out.
Using the dual transformatlon to the one taking (x D) to (7,R), we obtain the

expression of the operators X and P in terms of X and X5 7

=X

R i
’7

=X . %

oL
il

g=x-_1j. (~f—X§> (74)

S~

In addition, by % we denote the operator —ifiX 2 = l:" — maJ - ):(' It can be easily
deduced that ﬁ has the physical meaning of a linear momentum (mass times veloc-
ity), which we shall simply call momentum, while "—i'" is a momentum commuting
with the Hamiltonian, generally called magnetic translations, and this is associated
with the coordinate R of the centre of the circumferences. We can stlll deﬁne another

momentum in the theory, the canonical momentum, as = ——(X +X R) which
has the particularity that its components mutually commute, and as can be easily

checked, is a proper translation generator: it is written (for # = 0) as V¢ when acting
on @(x,t) in (63) at ¢ = 0. Its explicit expression and that of T on &(x,t) are:

fiw— e %7 *[—ﬂ(M(t)H) -V + mf“ (N(@)-1) - 7| o(x.1),
%?’:Ce‘fxﬁ'f[—ihﬁ— M § ]da(x 0. (75)

The role of the different momenta can be clarlﬁed by 1ntroducmg the vector
potential operator in the usual form, A= '”‘“CJ X = ’h(X » —X R) Then the
canonical momentum is rewritten Il = P + .Zx, and T = P + 2A H + A Then
it is easy to verify that E =L P = L(II - A)? = ,.L(T - 2A)2.

4.2. Charged Particle in a Homogeneous Magnetic Field in the Plane with Peri-

odic Boundary Conditions. Before imposing the periodic boundary conditions which
define the torus, as in Sect. 2.2, we must determine how these boundary conditions
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affect each of the coordinates. Clearly, X will be affected by the boundary conditions,
but it is not clear what happens to J. Let us return to 7 and R coordinates, where R
is the (absolute) position of the centre of the circumference (the classical trajectory)
and 7 is the (relative) position of the particle with respect to the centre of the circum-
ference, i.e., 7 = X — R. Therefore, R will be subject to periodic boundary conditions
(the same as for X) while 7 will not, being a relative coordinate (since the classical
energy H is a function of 732 = 72, periodic boundary conditions for 7 would imply
an upper bound to the energy spectrum, and even more, a periodic energy spectrum).
This makes 7 and R coordinates more appropriate to describe the system with peri-
odic boundary conditions. Now we are ready to apply the results of Sect. 2.2, having
reduced the problem, roughly speaking, to the study of an harmonic oscillator times
a Heisenberg—Weyl group on the torus, the latter being parameterized by R.

Regarding the H-W subgroup, we can apply the results of Sect. 2.2. We also
consider the two cases i) and ii), corresponding to T being a trivial or non-trivial
principal fibre bundle, respectively.

Let us consider first the case i) (Sect. 2.2.1), which is the more conventional
one. The actual condition to be satisfied is

mw.LiL,
2nh

which implies, as already anticipated, a quantization of the magnetic flux through
the torus surface, in the same manner as in the Dirac monopole case. If this flux
were produced by a monopole charge, the quantization of the magnetic charge would
follow. This kind of quantization condition guarantees, for instance, that the Wilson
loop variables in gauge theories are single-valued [M].

The wave functions turn out to be (70), where @(y,) is subject to exactly the
same restrictions as in Sect. 2.2.1, thus leading to the expression (for # = (1,0)):

=nez (76)

B} -1
*(Ry) = 1;) a A(Ry) , (77)

where & is defined as before. The wave function is therefore peaked at R, = oy +
Elp,k€Z (Ry=m+ELy, k € Z for v = (0,1)).

The subgroup G of good transformations (the ones that preserve the structure
of the wave function) is the subgroup of G with the parameters R restricted to be

~ - ~ ~R . .
R= %ng. The quantum operators E and X are good operators (since the harmonic

. . . . . ~R .
oscillator part is not subject to constraints), while the operator X ; is a bad operator.
If we analyse these results in terms of the operators X, P, T and II by means of
the expressions given in Sect. 4.1, we conclude that the operator P is a good

operator, while X, T and II are not. Consequently, the momentum (or velocity)
of the particle is a measurable quantity, but the position, the canonical momentum
and the magnetic translations are not observables. The vector potential operator is
of course also a bad operator. For all the bad operators, their finite expressions
(counterparts of 7§ of Sect. 2.1.1) can be nevertheless constructed, since all these
expressions are good operators.

For the case ii), only the fractional case a) is physically meaningful. Now the
wave function is defined on a torus r times greater in one direction [N-T-W], or,
what is the same, it is a vector-valued (with » components) function; or, in FQHE
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terminology, the centre of mass function corresponding to the vacuum is degenerate,
r being the degeneration. In this case the Hall conductance is associated with the
quotient % of the Chern class of the associated determinant bundle by the rank
of the vector bundle [V]. This result lends support to the idea that the Fractional
Quantum Hall Effect is always associated with multiple-valued wave functions, i.e.,
degenerate vacua.

Acknowledgements. We wish to thank Mark Gotay for valuable discussions.
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