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Abstract: Let Et{H) denote the negative eigenvalues of the one-dimensional Schrό-
dinger operator Hu := — u" — Vu, V ^ 0, on L2(JSί). We prove the inequality

for the "limit" case y = 1/2. This will imply improved estimates for the best con-
stants LyΛ in (1) as 1/2 < y < 3/2.

0

Let H = -A - V denote the Schrodinger operator in L2(Kd). If the potential V ^ 0
decreases sufficiently fast at infinity, the negative part of the spectrum of H is dis-
crete. Let {Ei(H)} be the corresponding increasing sequence of negative eigenvalues,
each eigenvalue occurs with its multiplicity. This sequence is either finite or tends
to zero.

Estimates on the behavior of the sequence of eigenvalues in terms of the potential
have been in the focus of research for many years. In the earlier papers the main
attention was paid to bounds on the number of negative eigenvalues ([2, 4, 18, 16,
7, 14, 12, 6]). In [15] Lieb and Thirring proved inequalities of the type

dx, κ = d/2. (2)

Since then these estimates and the corresponding constants Ly^ have been studied
intensively (e.g. [13, 9, 10]). Up to now it was known that (2) holds for all y ^ 0
if d ^ 3, for y > 0 if d = 2, and for y > 1/2 if d = 1. On the contrary (2) fails for
y = 0,d = 2 and for y < 1/2, J = 1. In this paper we prove (2) for the remaining
case d = l,y = 1/2, which does not seem to have been settled so far. This result
will imply an essential improvement for the estimates on the constants Lyi\, 1/2 <
y < 3/2. Moreover we deduce a new integral bound on the transmission coefficient
of the corresponding scattering problem.
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In conclusion the author expresses his gratefulness to M.Sh. Birman, who intro-
duced him to the topic of negative bound states of Schrόdinger operators. Moreover
I am grateful to A. Laptev, under whose intensive supervision this paper was written.

1

In this subsection we provide some auxiliary results on the negative spectrum of
the Neumann problem for the Sturm-Liouville-operator

(TNiA(rλ — —Ί/'(ΎΛ — V(ΎΛΉ(ΎΛ
I I J J 14- }\Λ'J — Vi \ A J V IΛ JwlΛ I ,

x G / = [0, /] , κ'(0) = */(/) = 0 , 0 ^ V(x) G Lλ(I) .

Let Nj(V,E) be the number of eigenvalues Et(Lf) of Lf below E < 0. According
to the Birman-Schwinger principle ([4, 18]), the value of Nj(V,E) does not exceed
the square of the Hilbert-Schmidt norm of the integral operator

/
(Qεu)(χ) = y/v(χ)jG(χ> yΈ)λ/v(y)u(y)> χ ^ i •

0

Here

G(x,y,E) = < cosh(λ ^coshi Mx-D) ' ^ = vl^Ί? ^ < 0, x, y G / ,
I λsinh(λl) y = X

denotes the Green function of the problem —u"—Eu, uf(0)= uf(l)= 0 on /. In
view of

cothq/)
\G(x9y,E)\ S j ,

one obtains the inequality

N^KE) S COt £ (jV(x)dx) , λ = ^/\E\, E < 0 . (3)

We apply (3) to the lowest eigenvalue E\(Lf), and find

ΰ(λxl) ^ lfV(x)dx , /ίi = y/\Eλ(L?)\ > 0 , ΰ(x) := xtanhx . (4)

The function ΰ(x) = xtanhx is strongly increasing in x §: 0. Let ς(y) be the inverse
function of ΰ(x) = y, x, y > 0. From (4) we immediately conclude

Lemma 1. Let E\(Lf) be the lowest eigenvalue of the Neumann problem Lf on
I = [0,1]. Assume 0 ^ V G L\(I). Then the estimate

λι S ς(lfV(x)dx)/l, λx = yJ\Ex(L^)\ ^ 0, (5)

holds.
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Next we recall a criteria, providing the existence of not more than one negative
eigenvalue of the operator Lf.

First notice that for functions u G C°°(7), satisfying the orthogonality condition
Jj udx = 0, the inequality

\u(x)\2 ^ l-S\u'\2dx, x e l , ( 6 )
5 I

holds. Indeed, we have

lu(x0) = fu'(x)xdx - f u'(x)(l - x)dx .
0 xo

This gives

JL 0

Passing to the upper bound in x0 £ I we find (6). The constant 1/3 in (6) is sharp.

Lemma 2. Assume that for the non-trivial potential 0 ^ V the estimate

ljV(x)dx S 3 (7)

holds. Then the Neumann problem Lf on I — [0, /] has exactly one negative eigen-
value.

Proof. The existence of the eigenvalue is obvious. By (6) we find

J\u'\2dx - J V{x)\u\2dx ^ 0, ue C°°([0, /]) , J udx = 0. (8)

The inequality (8) holds on a set of functions of codimension one with respect to
the domain of the quadratic form of the Neumann problem Lf. Thus Lf itself has
not more than one negative eigenvalue.

2

We turn now our attention to the one-dimensional Schrodinger operator

Hu = -u" - V(x)u9 x e IR , 0 ^ V e Z,i(R),

realized as a self-adjoint operator on Z/2(R) in the form sum sense. Let H+ and
H- denote the self-adjoint operators on Z,2(R±), corresponding to the Neumann
problem on the positive and negative semi-axes respectively.

Assume V φ 0 on R + . Fix the point /o = 0, and by iteration construct the
sequence t ^ G K c N ,

/<*> Jv{x)dx = 3 , /<*> : = lk+λ - lk . (9)
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If it occurs that Jι V(x)dx = 0, we formally choose ln+\ — -f-oo. For the elements

of the sequence / ^ we have the bound / ^ ^ 3/ J V(x)dx > 0. Hence the intervals

h'=[hJk+\l k^O, cover R + .

On each interval we consider the Neumann problem Lfku = —uff— V(x)u, u\lk) =

u'{lk+\) = 0. Let H+ = ΘkeκLfk denote the orthogonal sum of these operators. We
have //+ ̂  H+. For the ordered sequence of the respective negative eigenvalues
this implies

Et{H») g Ei(H+). (10)

In case of a semi-infinite interval the potential is identically zero on this interval,
the respective Neumann problem has no negative spectrum. Therefore it will not
play any role in our considerations.

By Lemma 2 the Neumann problem Lfk on the finite intervals Ik has exactly one

negative eigenvalue. Because of (9) the bound (5) for λ\(h) := J\E\(Lfk)\ turns

into λι(Ik) S ς(3)//(A:), or equivalent^ ι

λχ(h)ύ ζ-ψfV(x)dx. (11)

Since V ELi(IR+), the sequence Jj V(x)dx tends to zero as k —> cχo. Thus both

operators H+ and H+ are semibounded and their negative spectra are discrete. The

negative spectrum of H+ coincides (as set and in its multiplicity) with the sequence

of eigenvalues {Eχ(L%)} = {-λ\{Ik)}. By (10) we have \Et{H+)\ ^ |£/(//^)|. To-

gether with 0 ^ V e L\(R+) this implies

and we find the claimed result for the negative eigenvalues of the Neumann operator
on the semi-axes

2 '

J V(x)dx , L+ ̂  ϊψ- < 1.005. (12)
2' J

Naturally the analogous bound with the same constant holds for the operator //_.
Because of //_ 0 H+ ^ H we obtain the analog estimate on the negative eigen-
values of the Schrόdinger operator H on R,

SLιΛfV(x)dx9 Lλι S^-1 < 1-005. (13)
i 2 ' IR 2 ' 3

We recall the reverse estimate for the operator H (see and [15, 9]). The first
sum rule of Faddeev-Zakharov [8] states

JV(x)dx = ̂ Σ,V\Ei(H)\ + π~ιf\n(\ - \R{k)\2)dk , (14)

1 On the other hand for u(x) = Γι/2 one has Eχ(Lfk) ^ -Γι /7 F(x)ί/x, and Ai(4) ̂  y/ϊ/3

JlkV(x)dx.
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for (not necessary sign-defined) potentials V e C Q ° ( 1 R ) . In this R(k) e [0,1] is the
reflection coefficient of the operator H. The integrand on the right hand side is
negative, hence

VWU \ (15)

This bound can be closed to all potentials V G £i(R).

The estimate from below on the constant 1̂  1/2,1 can be improved. For a potential
0 S V e Zi(lR) the number N(V,E) of eigenvalues Et{H) < E < 0 is bounded by

} ' 2^\E\J

(see (3.7) in [5]). For the lowest eigenvalue this gives

(16)

The constant in this estimate is sharp. Indeed, if the non-trivial potential 0 :§ V £
Co°(IR) is supplied with a sufficiently small coupling constant α > 0, the opera-
tor Hau = — u" — ocVu has exactly one negative eigenvalue E\(Ha). This eigenvalue
obeys the asymptotics (see [17])

We conclude 1̂/2,1 ^ 1/2.
The previous arguments can be adapted to the problem on the semi-axes. As-

sume that 0 ^ V is continuous on R + up to the point zero, and has compact
support. We supply this potential with a small coupling constant α > 0, and con-
sider the lowest eigenvalue E\(H+A) of the respective Neumann problem on R + . Let
ua(x) denote the corresponding eigenfunction. The even extension ua(x) = ua(— x)
is an eigenfunction of the operator Ha with the extended potential V(x) = V(—x)
on IR. The corresponding eigenvalue is £i(//α) = E\{H+0L). Since the operators
Ha and //+,α have only one negative eigenvalue for sufficiently small α > 0, we
find

We obtain 1 ^ L+/2 { < 1.005, our bound on the constant for the Neumann problem

on the semi-axes is almost sharp!

Finally we remark the analog of (15) for the operator H+. For a summable
potential V(x) = V{-x) it holds

JV(x)dx S 2Σ>M(tf)l ^ 2ΣV\Ei(H- ®H+)\ = 4ΣV\Ei(H+)\ . (17)
0 i i i
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The results of this subsection we summarize in

Theorem 1. 1. The inclusion 0 ^ V e Z i ( R + ) implies the inequality

(18)

For the best constant L\ χ in (18) we have the estimate 1 ^ L\ χ ^ ς(3)/3 < 1.005.

Reversely, a priori assuming 0 ^ V eZJo c(IR+), the discreteness of the negative
spectrum together with the convergence of the sum in (18) imply V £ L\ and (17).

2. The inclusion 0 ^ F e L i ( I R ) implies the inequality

(19)

For the best constant L\_x in (19) we have the estimate 1/2 ^ Zi? 1 ^ ς(3)/3 <

1.005. Reversely, a priori assuming 0 ^ V E Z(OC(R), ίAe discreteness of the neg-
ative spectrum together with the convergence of the sum in (19) imply V £ L\ and
(15).

Remark. As usual one can drop the assumption V ^ 0. One has to ensure that the
corresponding operators //, //+ are defined in the form sum sense, and the integrand
in (18) and (19) has to be replaced by V+(x) := max{0, V(x)}.

Notice that (19) and (14) together with 1/2 ^ Li/2,i < oo imply

Theorem 2. Assume V e C0°°(IR), 2V± = \V\±V, and let R{k) be the reflec-
tion coefficient for the corresponding one-dimensional Schrδdinger operator Hu =
—u" — Vu on L2(β^). Then the integral estimate

^ SV.dx + {ALϊλ - l)fV+dx ^

holds.

We turn now to the case γ > 1/2. We restrict our considerations to the operator H
on L2(IR). Here the inequalities

UEAHW ύLyΛjV
+χl\x)dx, (20)

/ IR

are well established, but we will give an essential improvement of the estimates
for the corresponding constants Ly^\. For γ ^ 3/2 in [1] it has been proven that
Ly^ i = Lc

y\. The last notation stands for the classical constant

Hence we will stress the case 1/2 < y < 3/2. We shall compare our results with
the bounds of Lieb and Thirring,

LT f+1

1/2)
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and their improvements by Glaser, Grosse and Martin ([9]) LΊi\ ^ L^M, with

<jn - \)m-ιΓ(2rn)yy+ιΓ(y + \ - m)
= inf - ^ — π

 λ λ

 2—r1 i— (22)
\<m<3/2 22m-χmm-χΓ(m)Γ{y + \){m - \)m~Hy +\~ my+ϊ-m

Our proof of Theorem 1 can be generalized to the case y ^ 1/2. However, this
direct approach gives the bound Ly^\ :g (ς(3))2 y/3y + 1 / / 2, which is not very sharp. A
better bound can be found using the fact that the ratio Ly^/Lc

y\ is non-increasing in
y, see [1]. We find

This bound is sharper than (21) and (22) for all 1/2 ̂  y <; 3/2. In particular,

\Λ <
p () ()

0.853 , while Lψλ = 4/3 and LffM = 1.269.
If we consider only potentials V proportional to a characteristic function of a

set M C IR of finite measure,

r 1 JC

we can find a better constant by "interpolating" between the cases y = 1/2 and
y = 3/2. Indeed, the ratio

ψ
is analytic and continuous up to the boundary for complex y in the strip 1/2 <
3/2. On the boundary we have the estimates

\ψ(γ9 V)\ ^ L{λ ^
ζ-ψ, as K7 = \ , \ψ(γ, V)\ ύ I | f l = ̂ , as Ky = ̂  .

By the Hadamard Lemma we obtain

In particular, Z1}1 < 0.4341. We notice, that (23) is sharper than the results for
characteristic functions by A. Laptev in [11] for the case of dimension one .

For completeness we recall the estimate from below on the constants Lyt\, ob-
tained in [15]. To do so we consider the best constants Lx

y λ in the inequalities

\Eλ(H)\y SLl

γ,Jvy^2dx, y ̂  i . (24)

Obviously Lyj ^ Lx

y v For y > 1/2 the corresponding variational equation can be

solved analytically and one obtains3

i r ( y + ) (yVA
y-\l2Γ{y+\l2)\y+\l2)

2 One can apply an argument of Glaser, Grosse and Martin [9], to deduce a bound on Z ^ for
spherical symmetric potentials from L\f\ . Although one considers only a special class of potentials,
even the new bound on L\t\ is not sharp enough to reach Lieb's result for Lo,3 by this method.

3 In particular this gives 0.2451 < L\Λ < 0.853.
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(see [15]). Moreover in the previous subsection we showed that (25) remains true
for y = 1/2 and L\/2Λ = 1/2. For y ^ 3/2 it holds L\Λ ^ Uy\x. For y < 3/2 we have

L\Λ > Lc

y

ι

A, this implies LyΛ > Lc

y

ι

λ as 1/2 ^ y < 3/2 (see [15] and also [10]).

We proved

Theorem 3. For the numerical values of the best possible constants Lyj,l/2
S 7 = 3/2 in (20) the estimate

4ς(3) r c / _ 2ς(3)Γ(y +JL) 1 < < 3

'. For potentials V proportional to characteristic functions, the constant Ly? i

in the Lieb-Thirring inequality can be replaced by L*tl from (23).

Notice that the bound L*^ on LΊi\ does not tend to Lιλ = LCJ{ = 3 / 1 6 as y —>

3/2 — 0. For y near 3/2 the estimate on Ly, \ can be improved. To do so we shall
recall some auxiliary material from real inteφolation theory.

Let £p denote the ideal of /7-summable sequences {^IweN, equipped by the standard
quasi-norm

l l { « » } | i ; , : = Σ k l ' , P > O .
n

For a sequence {un}ne^ E £Po + ίPι one can define the (po,P\) — ̂ -function

K({un},t,p0,Pι):= Jnfu ( n (ll^Hζ, +ί|k1>||ΓΛ) , / > 0 .
un ^fPι

For a function / e LPo -f Z/̂ j one may use the analogous definition

On functions h : (0, oo) —>• [0, oo) we define the ίunctionals

It \ χl<i

Notice that Ai(ί) ^ h2(t) implies Φη,q[h\] ^ Φη,g[h2]. According to the "power the-
orem" of real inteφolation theory, see [3], it holds

{«„}, ,po,Pι)] x II{«„}!&, , (26)

,po,/»i)]>;||/||fft,, (27)

pι , r = pq , »j 6 ( 0 , 1 ) ,

0 < q ^ oo , 0 < po , p\ < oo , p^φ p\ .
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The quasi-norms on the right hand side denote the Lorentz scale of sequence
ideals ίp>r or function spaces Lp>r, respectively. For the definition of these ideals
see, e.g., [3] or [19]. We just point out, that (p = ίp>p and Lp = Lp>p.

In general it is difficult to trace the constants in the two-side estimates in (26),
(27) . However for the special case q — 1 one has the equalities (see [3], p. I l l ,
proof of Theorem 5.2.2).

Φη,dK({un}, • ,po,pi)] = Θ(η,po,pι)\\{un}\\l

Φη,ι[K(f, ,^0,^0] = Θ(η,Po,Pι)\\f\\lp,

-tιp\, ηe{0,\), 0<p0, p\

(28)

(29)

oc p0

where

1,Po,Pi)=Sr"~l inf (\yo\
0 ^0+^1 = 1

Below we shall use these identities for improving the bounds on Ly \ for certain
y e (1/2,3/2).

In this subsection we consider the Schrodinger operator

H = -A- V(x), V ^ 0 , x G R J ,

in arbitrary dimensions d ^ 1. We assume that this operator is semibounded from
below and that its negative spectrum is discrete. Let {En(H)} be the non-decreasing
sequence of negative eigenvalues of the operator //, each eigenvalue appears with
its multiplicity.

Let us start from the Ky-Fan inequality for the discrete negative spectrum. If
V = Vo + V\, and the operators

Ho = -ΘΔ -Vo, Hι = - ( 1 -Θ)Δ-Vχ, θ G (0,1),

have discrete negative spectrum, then the inequality

\Em+n_x(H)\ ^ \En(Ho)\ + \Em(Hx)\

holds for all m,n = 1,2,... We construct the sequences

ak:=Es(H0), s = 1 +

bk:=E,(Hλ), l =

and obtain

mod N+I),

Ek(H) ^ak+bk, (30)
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Assume now Vt £ LPι+κ(l^d), K = rf/2,0 < Pi < oo for d ^ 2 and 1/2 ^

/?,- < oo if rf = 1. From (30) and (2) it follows, that

Interchanging the definitions of the sequences {ak} and {bk} one can see that in

the previous expression the role of N and \/N can be interchanged. Thus we can

assume that TV is of the form k or I/A:, k G N . Passing to the lower bound over all

suitable decompositions V — Vo + V\ one finds

K({Ek(H)},t,po,Pϊ)

with 0 < /?/ < oo for rf ^ 2 and 1/2 ^ pi < oo for ί/ = 1. This relation allows

one to apply interpolation methods directly to the sequences of negative bound

states, although the mapping V ι—» {En(H)} is strongly non-linear.

Let us return to the one-dimensional case and choose po = 1/2 and p\ = 3/2. Ap-

plying the functional Φη\ to both sides of this inequality, by (28) and (29) we

obtain

k 1 1

where

Ί - " ϊ 3η N = I I j 2 3
T 2 + 2

Let M(η) be the minimum of the sequence

= >~>1>1> 1 , 2 , 3 , . . . .
It occurs that M ( ^ ) —> 1 as ?/ —> 0,1. If we minimize (32) in 0 G (0,1), we find

= 1 — η^ and

J . 7 = 2 + ^ (33)

β(»/,l,2) A/(f?) 4
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The involved functions Θ can be evaluated as

145

and

BUΛΛ = 212

/
«0

Notice, that C(ί/) -> 1 as η ->• 1, thus Z,**t -^ 3/16 as y -> 3/2 and I**! < L*, as

Theorem 4. For ί/ze constant Ly>\ in (19) //ze bound

; „/;;;,}, 1/2 < y < 3/2,

Let {φi} be some
([15, 13])

system, φt € fΓ2'(]Rrf). Then (2) implies

(35)

1=1

max{J/2,1} ^ /? < 1 + rf/2, excluding p=l for rf = 2,

with suitable constants ^ ^. In case of d = 1 and /? = 3/2 this turns into

ΣJ\Φi\2dx^K3/24Jpldx. (36)
/ = 1

The constant £3/2,1 is related to L\f\ via the formula

L\,\ = 2/y 27X3/2,1 .

Our improved estimate on L\ \ implies K\ ^ 0.203, compare with K\ ^ 1/12 in
[13].
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We also point out the case p — d — 1. Then

tf\Φi\2dx ^ K^WpφWl^^ , (37)
1=1

with a constant 1 ^ Kλ x ^ l/(2Li/ 2i), see (3.27) in [15]. Thus we find (37) with
1 ^ Kuι > 0.497.
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