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Abstract: We give a simple proof of the equipartition of the eigenfunctions of
a class of quantized ergodic area-preserving maps on the torus. Examples are the
irrational translations, the skew translations, the hyperbolic automorphisms and some
of their perturbations.

1. Introduction

Perhaps the simplest trace of the ergodicity of a Hamiltonian dynamical system
one expects to find in the corresponding quantum system is the equipartition of
its eigenfunctions in the classical limit. Such a phenomenon has been proved to
occur in several cases. For the geodesic flow on compact Riemannian manifolds it
is proved in [Sc,Zl,CdV]; for Hamiltonian flows on R 2 w in [HMR] and for smooth
convex two-dimensional ergodic billiards in [GL].

In this paper we study the quantization and the classical limit of certain
area-preserving ergodic maps on the two-torus T^2\ viewed as phase space, with
canonical coordinates (q, p) G [0,α[x[0,Z?[. We will present a rather large class of
models for which the desired equipartition result can be proved very easily. We
will use the original idea of [Zl,CdV] which can be applied here with considerably
less technical complications. Before doing so, we nevertheless first need to decide
how to "quantize" an area-preserving map on the torus.

In Sect. 2 we describe the quantum Hubert spaces associated to the torus. This
problem has been addressed and solved by many authors before us with various
different approaches [HB,BV, DE, DBDEG], always with the same result. The quan-
tum Hubert space is an TV-dimensional complex vector space where TV is related
to h via the prequantum condition: 2πhN = ab. It carries an irreducible unitary rep-
resentation of the discrete Weyl-Heisenberg group {(m^9n^,φ) e R 3 \n9m G Z}.
Here we give a rigorous version of the ideas of [HB] and [BV], which is
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particularly well adapted for our purposes as will be seen below. The approach
is based on the following idea. Since the system is one-dimensional, its "wave
functions" have to be tempered distributions on the line and since it lives on the
torus, they have to be periodic of period a in position and of period b in momentum.
It then follows easily that the resulting wave functions form an TV-dimensional vec-
tor subspace £f'(κ,N) of ^ ( R ) provided 2πhN = ab for some N G N*, and that
it is empty otherwise. Here K G [0, ^[x[0, y [ is a parameter related to a choice
of phase. We then equip £f'(κ,N) with a unique Hubert space structure by re-
quiring that the translations act unitarily. We write J4?N(κ) for the resulting Hubert
space. The $?N{K) are the quantum Hubert spaces. The restriction of the represen-
tation of the discrete Weyl-Heisenberg group on ^ ' ( R ) to 2tfχ{κ) is unitary and
irreducible, the representations for different K being inequivalent. In this sense we
obtain a family of inequivalent quantizations. These results are implicit in [HB] and
[BV] (for K = 0), and are obtained also in [DE] and [DBDEG], from two different
points of view. We feel our approach here has a triple appeal. It uses only one
intuitively clear and very simple hypothesis on the quantum states. It uses only
the simplest mathematical structures. Finally, and most importantly, it realizes the
quantum Hubert spaces in a way which reduces all semi-classical estimates needed
to simple known estimates, as will be seen in Sect. 3.

In Sect. 3 we show how to quantize observables, i.e. how to associate to each
/ G C°°(Γ ( 2 )) an operator on the quantum Hubert space. We treat both the Weyl
and anti-Wick quantizations and show some estimates on their classical limit, needed
in the rest of the paper. The Weyl quantization Op^(f) of / on 3^N(κ) we present
here is identical to the one proposed in [HB] and [DEGI]. The anti-Wick quantiza-
tion Op^w(f) is based on a construction of coherent states adapted to the present
situation: they are just periodicized Gaussians. These have been used in the liter-
ature before by [LV]. We show how some of their expected properties (resolution
of the identity, semi-classical behaviour) are readily obtained by remarking that
°piw(f) is the restriction to J^N(κ) of the anti-Wick quantization OpAW{f) of
/ on ^ ' ( R ) . For completeness, we indicate how they can be used to identify
3^N(K) with a reproducing kernel subspace (%κ(κ) of L 2(Γ ( 2 ), ^ f ) , the so-called
Bargmann representation. This is also the Hubert space one would obtain from
geometric quantization, if working with a Kahlerian polarization and is as such
a space of theta-functions. We have found it convenient to do all estimates in
3ή?N(κ) directly. The computations needed to control the behaviour of the theta-
functions when h goes to 0, although intuitively clear, seem to become rapidly
messy.

At this point we can then quantize Hamiltonian flows with Hamiltonian
H e C°°(Γ ( 2 )) by constructing on 3#*N(κ) the unitary one-parameter groups
exp(—/|Qpjf (//))• Of course, they are never ergodic. We can also quantize kicked
(or pulsed) systems such as the kicked Harper model or the standard map. They have
propagators of the form exp(—^(9pjf(//i))exp(—^Op^{H2)). We are not aware of
any examples of this type that are ergodic. This leaves the question on how to
quantize those area-preserving maps known to be ergodic.

The simplest ergodic transformations of the torus are undoubtedly the irra-
tional rotations and the skew translations [CFS]. They were quantized in [DBDEG].
In Sect. 4 we will give a very short proof of the equipartition of their eigenfunctions
(Theorem 4.2). Indeed, thanks to the unique ergodicity of these transformations,
and using a simple estimate on the anti-Wick quantization, the result is obtained
directly from an Egorov theorem, proven in Sect. 4 (Proposition 4.1). This first
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example has the benefit of showing the essence of the arguments needed in the
general case.

More generally, suppose Φ is an ergodic area-preserving map that we know how
to quantize. Let us write MK(Φ) for its quantization: MK(Φ) is a unitary map on
J^N(κ) (MK(Φ) G U(Jf/v(κ)) Suppose moreover one can show an Egorov theorem,
i.e. V/ G C°°(^ 2 ) ), \/k G N, ΞC > 0 so that for all N,

\\Mκ(ΦΓkOpξ(f)Mκ(Φ)k - Opζ(f o Φk)y^N(κ)) ^ I . (1.1)

This means that the classical and quantum evolutions commute " m o d θ ( ^ ) . " It
is then a simple matter to adapt the arguments of [Zl,CdV,HMR] to show an
equipartition result as follows (Sect. 5).

Theorem 1.1. Let Φ be an ergodic area-preserving map on the torus such that
\/N 3κ G [0, ^[x[0, ψ[ and MK(Φ) G U(Jt?N(κ)) satisfying (1.1). Write

Mκ(Φ)φf = λfφf

for the eigenvalues and the eigenfunctions of MK(Φ). Then there exists E(N) c
{1,...,N} satisfying limw-̂ oo #χ = 1 such that for all functions f G
and for all maps j : N G IN —> j(N) G E(N), we have

kN nΛVfr.iN \ _ r ff» ^dqdp
lim {Φ?(N),OpV(f)φf(N)){KtN) = f f(q,p)^f (1.2)

and

lim (φf(N), OpA/(f)φ»N))(κ,N) = J f(q,p)^ (1.3)

uniformly with respect to the map j .

The proof of this theorem is given in Sect. 5. Equation (1.2) and (1.3) can
be interpreted as saying that the Wigner and the Husimi distribution of the Φ^N)
converge to 1 on T^2>} (Proposition 3.4, Proposition 3.7). Of course, this is a con-
vergence in the sense of the distributions, not a pointwise convergence.

The diffeomorphisms of the torus known to be ergodic with respect to the
Lebesgue measure include, in addition to the translations and the skew transla-
tions, the hyperbolic automorphisms and their perturbations. The hyperbolic auto-
morphisms of the torus are the simplest examples of hyperbolic dynamical systems.
A particular subclass of them was quantized in [HB]. The general case was solved
in [DE] by group theoretic methods and in [DBDEG] through geometric quanti-
zation. We treat the general case in Sect. 6 very simply in the spirit of [HB] using
the approach of Sect. 2 as follows. Any automorphism A of the torus acts on ΊR2

by a linear symplectic map. The corresponding propagator M(A) on ^ ( R ) is well
known from standard quantum mechanics or in terms of group theory (the meta-
plectic representation [F]). We show that for each A and N there exists at least one
K so that M(A)JfN(κ) C J4?N(K) and call MK(A) the restriction of M(A) to J4?N(κ).
As mentioned before, this is just the idea of [HB], except that there the choice
K = 0 was made from the beginning, which restricts the family of "quantizable" A,
as remarked also in [DE]. We think of MK(A) as the quantization of A in Jfτv(κ ).

The Egorov result needed to apply Theorem 1.1 with Φ—A is immediate.
Indeed, when A is an automorphism of the torus, it is a property of the Weyl
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quantization Op^(f) that

ξ Z A ) (1.4)

for a suitable choice of K, depending on A and possibly on N, as explained
above. Equation (1.4) states that the quantum and the classical evolutions com-
mute without error term as in (1.1), which is not surprising since it is a well
known property of linear area-preserving maps on Γ*IR. As a result of (1.4), the
conclusion of Theorem 1.1 holds with Φ replaced by A. The quantization of the
toral automoφhisms introduced in this paper is isomorphic to the one obtained in
[HB,DE, DBDEG]. By this we mean that there exist unitary operators that identify
the quantum Hubert spaces in those different contexts in such a way as to inter-
twine the irreducible unitary representation of the discrete Weyl-Heisenberg group,
the quantizations of the automoφhisms, as well as the Weyl-quantization introduced
in each case. Recently, a C*-algebraic approach to quantum ergodicity was devel-
oped [Z2]. As an example of this approach the Toeplitz quantization of the toral
automoφhisms is constructed and the analog of Theorem 1.1 proven. As remarked
in [Z2], it is not completely obvious that the Toeplitz quantization is isomoφhic to
the above ones.

Our result on the equipartition of the eigenfunctions of the quantized hyperbolic
automoφhisms of the torus complements the one obtained in [DEGI]. Indeed, there
the result was obtained only for a special class of matrices A considered in [HB]
(see Sect. 6 below, Eq. (6.7)) and taking the limit along a particular susbsequence
Nk of primes depending on A. On the other hand, given these restrictions, their
result is shaφer, since they can take E(N) = {1,...9N} (see Theorem 1.1). In this
sense, their result proves "unique quantum ergodicity" [Sa] meaning that in the
limit Nk —> oo the Wigner function of the eigenfunctions cannot have support on
any other invariant set of the dynamics. Of course, one could protest that this is
a slightly exaggerated claim, since the sequence Nk is density zero in the integers.
It is moreover chosen so as to ensure that the degeneracies of all eigenvalues
of the quantized automoφhisms remain bounded in the limit. It is tempting to
speculate that it is precisely when the degeneracies grow that "unique quantum
ergodicity" could be violated. This, at least, is what happens in integrable systems,
when constructing eigenfunctions concentrating on closed trajectories, rather than
on invariant tori [DB]. It would be interesting to see if such a phenomenon persists
here, where all periodic trajectories are highly unstable.

The proof in [DEGI] is of a completely different nature as ours: it is based on
an explicit construction of all eigenfunctions of MK(A) and uses heavily arithmetic
properties of the map A. It therefore cannot be applied to other, not explicitly solv-
able models. On the other hand, it permits to obtain additional results on the limit
N -> oc of off-diagonal matrix elements (Φ%yOpiw(f)φN

k{N)){κ,N) (j(N) + k(N))
which are related to the mixing properties of the classical map. Similar results
should be accessible with our approach along the lines of [CR].

All the examples we considered so far are obtained by periodization of affine
transformations on the plane. On the plane they are obtained by integrating the flow
of quadratic Hamiltonians, and as such they are exactly solvable both classically
and quantum mechanically. Although the situation is considerably more complex
for the quantum problem on the torus (see Sect. 4 and [DEGI]), it is fair to say
that these examples are too simple to capture the essence of the general situation.

The only other class of measure preserving smooth transformations of the torus
known to be ergodic that we are aware of all the perturbations of the hyperbolic



Equipartition of Eigenfunctions 87

toral automorphisms [M, Si]. If H G C°°(T^), we write Φf for the corresponding
Hamiltonian flow and introduce, for A G £L(2,Z), \ΊrA\ > 2,

Since A is Anosov, Φ will also be Anosov and hence ergodic if t is small enough
[M]. We define

Mκ(Φ) = e-ιiOp«(H)oMκ(A).

In view of (1.4) and the standard Egorov Theorem for e~^°Pκ^H) ([Ro]
Theorem IV. 10), it is clear (1.1) holds. Hence Theorem 1.1 applies to this ex-
ample.

2. The Hubert Space of States

Following the standard point of view of the physics literature, we will say that
the state of a quantum mechanical particle having R as configuration space, and
hence R 2 as phase space, is a tempered distribution φ G ̂ ' ( R ) . When φ belongs to
L 2(R,Jx), the state is said to be normalizable. The phase space translation operators

with (Qφ)(x) = xφ{x) and (Pφ)(x) = f ^ (JC) yield a representation of the
Weyl-Heisenberg group on ^ ' ( R ) , restricting to a unitary irreducible represen-
tation on Z 2(R,dx) [F]:

U(q, p, , pf, φ') = u(q + q',p + pf,φ + φ' + X-{qp' - pq')\ .

If the system has the two-torus Γ ( 2 ) = R 2 /Γ as phase space, where Γ = {(na,mb)
(n,m) G Z2} (a9b G 1R+ fixed), what should be its quantum states? It is reasonable
to require them to have the same periodicity as the underlying classical system i.e.

U(a, 090)ψ = e-iκ*aψ , (2.1)

eiκibιl/ (2.2)

for some K — (κ\,K2) G [0, ^[x[0, y [ . Here one allows /cφO because two distri-
butions φi and Φ2 satisfying φ\ = emφ2 for some α G 1R describe the same state of
the system in the standard formulation of quantum mechanics.

The rest of this section is an immediate extension of the approach used in solid
state physics when dealing with electrons in a periodic structure (Bloch waves).
In that case, only (2.1) is imposed. Adding (2.2) makes the computations slightly
more involved, but still straightforward provided the Poisson sum formula is used:

Σ Φ - 0 = Σe2πikx

Some additional arguments are needed to turn these calculations into proofs. As
already pointed out, the results of this section are known under various forms, in
particular in signal analysis, the theory of the fast Fourier transform, etc.
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Proposition 2.1. There exist φ G «9"(R) (φ=¥0) satisfying (2.1)-(2.2) iff3N G N
so that

2πhN = ab. (2.3)

In that case the space of solutions ^f(κ,N) to (2.1)-(2.2) is N-dimensional and
each φ G 6ff(κ,N) can be written uniquely as

for some cn e C, satisfying

cn+N = eiκ^acn . (2.5)

Conversely, each φ of the form (2.4)-(2.5) belongs to £ff(κ,N).

Notation. From now on U(q,p) := U(q,p,0).

Proof The requirement (2.1)-(2.2) implies U(a,0)U(0,b)ψ = U(0,b)U(a,0)φ.
Since U(a,0)U(09b) = e-τabU(O9b)U(a,O), there exists N e N such that

Â̂  = αέ.
To prove the rest of the proposition note that (2.2) reads

Λxφ = eiK2bφ in

from which one concludes that φ is of the form (2.4) (the factor y ^ is chosen for
later convenience). Imposing (2.1) yields (2.5). The last statement is obvious. D

From now on we always assume (2.3) holds. Let us introduce Vy G 2ζ,

The {ej}^1 form a basis of 6^f(κ,N) which allows the identification of φ G
Sf'(κ,N) with (c/)^) 1 G (C^. This is interpreted as the "position representation."
Needless to say, one passes via a Fourier transform to the "momentum representa-
tion." This amounts to performing a discrete Fourier transform on the coefficients
cn. We consider ^'{κ,N) as the space of quantum states of the system. It will
be convenient in further computations to notice that &"(κ,N) can be obtained by
symmetrisation as follows.

Lemma 2.2. Define

S(κ) : φ G 5^(R) -> S(κ)φ G ^ ' (

by
S(κ)φ = Σ {-l)Nmnei{κιan~K2mb)U{na,mb)φ . (2.6)

m,n

Then S(κ) maps «9*(R) wifo 5ff(κ,N).

Remark. One can think of the S(κ) as "projections" onto Sf'(κ9N). Note that there
is some standard group theory hidden here since the (κ,N) index all characters of
the discrete Weyl-Heisenberg group over Γ.

Proof. A simple calculation that we omit. D
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We will see below (Sect. 6) what is the role of the freedom in the choice of K.
For now, let us show how to equip £f'(κ,N) with a natural Hubert space structure.

Proposition 2.3.

(i) U(q,p)&"(κ9N)CSr'(κ9N)

iff3(nun2) e Z2 so that (q9p) = ( Λ l ^ , Λ 2 A ) ;

(ii) There exists a Hubert space structure ( , )(K,N) o n &"(κ,N), unique
up to normalization, for which all U(n\^,n2^), (n\,n2) £ ^ 2 a r e unitary. It is
given by

(Ψ,ψ/)ίκ,N)=NΣcJc'j (2.7)
7=0

in the notations of (2.4)-(2.5). We shall denote the resulting Hilbert space by

(iii) Writing UκQa,^b) for the restriction of U(%a,%b) to &"(κ,N)9 we
have

2π/a 2π/b

L 2 (R) * f f dm(κ)JfN(κ), (2.8)
o o

where dm{κ) — τ^~γdκ, and

Remark. Note that (2.8)-(2.9) is nothing but the direct integral decomposition
into irreducible subrepresentations of the representation of the discrete Weyl-
Heisenberg group {(nι§,n2^φ)\nun2 e Z , φ G R } on Z 2 (R).

Proof, (i) Using (2.4), for all ψ in Sf'(κ,N),

Since K\ and κ2 are defined mod(^) and mod(y) respectively, Sf'(κ,N) is invari-

ant under the action of U(q, p) iff there exists κ'2 = κ2 mod y such that

abκ2 abκ'2

and
Cn

Since cn+N = eiκ^acn, it follows that U(q,p)#"(κ,N) C 9"(κ,N) iff (q9p) - (m§9

%) with(nun2)eZ2.
(ii) Since

= e]+m, (2.10)

U ( θ , n - ) e, = e/ (*K 2 + 2 π Λ^e7

κ , (2.11)
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and βj+N — e~iKιaβj, the requirement for U{n\^,n2j^) to be unitary for all

(n\,n2) G Z 2 leads to the conditions:

(e],eK

k)iK,N) =

Hence, for all φ = Σ ^ o V * a n d Ψ' = Έk=oc'kek> (•> ' W ) is given by (2.7)
up to normalization.

(iii) Identifying J*fN(κ) with <CN as above, we need to prove L2(R) ^
L2([0,2f[x[0,2f[,dm(κ);€N). For that purpose, we define

F : φ e ̂ (R) ( ( κ 5 ( ) A ) ) f - 1 I 2 ( [ θ ̂  [ [o

We will first prove it is an isometry. Indeed, using (2.6), a computation shows

So
2π/α 2π/Z? i V - 1 .

0 0 j=0

L ΣΣΆUT7+./77
y=o « „' \2πΛί TV

a
i— -na

ab ψ 2f

where we have used the Fubini theorem. Thus we see that F is well defined and
has a unique extension to an isometry on L 2 (R).

To prove that F is onto, we compute F*. Note that for all x G R there exists

b I

-na. (2.12)

unique n G Z, 7 e {0,..., TV - 1}, κ2 G [0, y [ such that

One defines, for c G L2([0, ^[x[0, ψ[,dm(κ); <£N),

(Gc)(x) = — ^ - J dκxe-^mcj{κuκ2),

where x, j , n and κ2 are related by (2.12). An easy computation shows G = F*9

which proves (2.8).

In view of Theorem XIII.83 in [RS], and since the operators UJJ^-a^b) are

unitary for all K G [0, ^[x[0, ^ [ , (2.9) follows if we prove that for all φ G
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This fact is obvious since IHjfta^b) and S(κ) commute. The operators
UκQa9 £ i ) are the fibers of U(%a9

 nfb). D

The space used in [HB] and [BV] is 3Ί?N(0) identified with (£N as above.
In [S], # M f , f ) identified with €N is used, and in [DE,DEGI] all Jt?N(κ\ iden-
tified with <CN, are introduced. We will see in Sect. 6 why it is necessary to allow
for K ΦO. In addition, it will become clear in the next section that by considering
all K "at once" as in (2.8), the semi-classical estimates become simple.

3. The Weyl and Anti-Wick Quantizations

Classical observables are C°° functions on Γ ( 2 ). Having constructed the Hubert
space of states, we need to show how to associate to each / G C°°(T^) an operator
on J^N(κ). When the phase space is R 2 and the Hubert space L2(K,dx), there
are several such quantizations available. We show how to adapt two of them-the
Weyl and the anti-Wick quantizations - to the two-torus T^2\ Note first that any
/ G C°°(Γ ( 2 )) can be seen as a periodic C°° function on R 2 . The Weyl quantization
Opw(f) is the operator on ̂ ' ( R ) given by

Opw{f)= Σ fn,me^-τ^= Σ Umuίm^Λ) , (3.1)

where

f(q,P)= Σ fn,mei(2^-τmp)

n,m£Έ

(see [F] or [Ro]). It restricts to a bounded operator on L 2 (R). Since

U(na,rnb)Opw(f)U(na,mby = Opw(f)

it follows from the definition of $?N(K) that

We shall write Opξ(f) for the restriction of Opw(f) to JfN(κ). In view of
Proposition 2.3 (iii) and (3.1), we immediately have

Lemma 3.1. Iff e C°°(Γ(2)) then, as operators on I 2 (R),

2π/a 2π/b

OpW{f) = J J dm(κ)Opΐ(f). (3.2)
0 0

To interpret our main result (Theorem 1.1) and to facilitate the link with the
literature on torus quantization, we now define "the Wigner function of φ\,φ2 €
JfV(κ )." There are several different definitions around in the literature [HB,DEGI,
AB]. Our discussion will elucidate the origin of this apparent freedom of choice.

There are at least two equally elegant and equivalent ways to define the Wigner
function of two square integrable functions φ\ and φι on the line. We will see that,
adapted to the torus, they yield different notions. The first approach is interpreta-
tionally the most natural [HOSW]. Given φ\,φi G £ 2 ( R ) , one defines the tempered
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distribution W(φ\,φ2) on 1R2 as follows:

(2πhΓιW(φuφ2) : / G <^(R2) - (φuOpw(f)φ2)L2m G C . (3.3)

This is often written with the usual abuse of notation as

, Opw{f)φ2)L2m = ff^lw(φuφ2)f. (3.4)

Equation (3.4) is at the origin of the interpretation of W(φ,φ) as a "quasi-
probability density": the quantum expectation value (φ,Opw(f)φ)L2^ is written
as the "average" of / for the "quasi-probability density" W(φ,φ) [HOSW]. For
the second approach to the definition, recall first that the Weyl quantization is a
bijection

/ e ^ ' ( R 2 ) -> OP

w(f) e

([F, Theorem 1.30 and Definition (2.1)]). One calls / the Weyl symbol of Opw(f).
Defining for φ\,φ2 G L 2(R) the rank one operator Pφhφ2 by

Pφltφ2ψ = (ΦuΦ)L2mΦi Vψ e I 2 ( R ) ,

the Wigner function W(φ\,φ2) of φ\,φ2 can also be defined as the Weyl symbol
of Pφltφ2- It turns out that these two definitions are equivalent. This is a direct con-
sequence of the following property of the Weyl quantization referred to as unitarity
[Ro], traciality [FGBV], or the Moyal identity [F], depending on the authors: Weyl
quantization is a unitary map from L2(R2, -££) onto the Hilbert-Schmidt operators
on L2(R), in particular,

w d^g, V/,ff e £ 2 ( R 2 ) . (3.5)

Hence, inserting Opw(W(φ\,φ2)) = Pφuφ2 — Opw(g) into (3.5), the compatibility
of both definitions follows from (3.4). Remark that, more generally, (3.5) implies
that the Weyl symbol of any Hilbert-Schmidt operator G on Z2(IR) is the tempered
distribution / G ̂ ( R 2 ) -> 2πhΊrGOpw(f) G C. How can this be adapted to the
torus? We start with the following definition.

Definition 3.2. Let G G ̂ (J^N(κ)). The Weyl symbol of G is the distribution
σξ(G), defined by:

σf (G) : / G C^(T^) -> ^ T r GOpζ(f). (3.6)

This seems fair enough in view of the above. But be careful: a simple calcula-
tion shows that V/ G C°°(^2>), σ^(Opξ(f))Φf (see (3.8) below). This might
seem annoying but is unavoidable: the linear map / G C°°(Γ(2)) —> Opζ(f) G
^(J^M(K)) is not injective since it maps an infinite dimensional space to a fi-
nite dimensional one. As a result, one could at best call / "a" Weyl symbol of
Opξ(f\ never "the" Weyl symbol. In the spirit of (3.3)-(3.4) and Definition 3.2,
we now have:
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Definition 3.3. The Wigner function of φ\9 Φ2 G ^NW is the distribution
Wκ(φuφ2):

or V/ G

(φuOpΐ(f)φ2)(κ,N) = I ~Wκ(φuφ2)f. (3.7)
Γ(2) Z π "

This definition coincides with the one given in [HB] for K — 0, as a computation
shows. It is actually easy to see that Wκ{φ\,φ2) and, more generally, the Weyl
symbol of any G G J?(JPN(κ)) is of the form

2N

σΐ(G) = Σ cj,k(G)δ(q - qj(κ))δ(p - pk{κ)) (3.8)

for some cjΛ{G) G C and where qj(κ) = {{ - a^)§, Λ ( w ) = (f - ^ * ) £ . Note
that the space of distributions of the form (3.8) is (27V)2-dimensional, whereas
J^XJ^ΛKΌ) is only TV2-dimensional. This explains why not all cj^iG) are inde-
pendent : cjik(G% cj+Nik(G\ Cj,k+N(G) and cj+N,k+N(G) (j,k = 0,.. .,7V - 1) are

all equal up to a sign, as remarked already in [HB] for K = 0. This makes the
Weyl symbol of G a somewhat unpleasant object to work with. In spite of this and
thanks to (3.7), it is easy to rephrase Theorem 1.1 in terms of the Wigner function
of the φf(N).

Proposition 3.4. Under the hypotheses of Theorem 1.1,

in the sense of distributions on Γ (2).

In [DEGI] a different definition of the Wigner function is used. It is inspired by
the second definition for the Wigner function on the line. In our formalism, it can
be understood as follows. We already remarked that the map / —> Op^(f) is not
injective. Let us show it is surjective. For that purpose, consider the TV2-dimensional
Hubert subspace J>N of Z 2 (Γ ( 2 ) , ^ ^ ) made up of all trigonometic polynomials

Lemma 3.5. Op^ is a unitary map from J>N onto ^(J^N(κ)),( , }HS), where
VF, G G ££(2teN{κ)\ {F,G)Hs = TrF*G. In particular

Vf,g G JN, Tv(0pζ(f)T0pζ(g) = / ^fg . (3.9)
Γ(2) Z π / l

Proof It suffices to establish that the U(r§,s^) (r9s = O,...,Af - 1) form a

( J )HS-orthogonal basis of <£(3tfN(κ)). This follows from

This result suggests the following definition:
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Definition 3.6. Let F G &(JίfN(κ)). The polynomial Weyl symbol of F is the
unique element f G J'N SO that Op^(f) = F. Similarly, the polynomial Wigner
function Wp(φ\,φ2) of φ\,φ2 e 34fN(κ) is the unique element of J'N so that
Opξ(Wp(φuφ2)) =Pφι,φ2 One easily sees that

and

iv iv j

Several remarks are in order. First of all, Wp(φ\,φ2) differs from Wκ(φ\,φ2)
for all choices of φ\,φ2 This is clear from (3.8). Note also that (3.9) means that
Wp(φ\,φ2) satisfies

(φuOpζ(f)φ2)iκ,N)= J ψξwκ

P{φuφ2){q,p)f{q,p)
T(2) Z 7 l ί l

for / G JN but not for all / G C°°(Γ ( 2 )). One nevertheless has the following result:

Proposition 3.7. Under the hypotheses of Theorem 1.1,

in the sense of distributions on

Proof For / G C°°(Γ ( 2 )), write f = fN + fR, where fN is the projection of /
onto J'N. Then, since Wp G J'N,

NJ ^f^pWίiΦUΦU)- I
T(2) a O

 T{2)

- J
T{2) a b

 T{2)

- J
T(2)

A simple estimate shows that the last term converges to zero so that Theorem 1.1
implies the result. D

The polynomial Wigner function was introduced in [DEGI] (and is simply called
the Wigner function there). Polynomial Weyl symbols should a priori be easier
to deal with than general Weyl symbols. To see this, remark that any / G J'N
is completely determined by its values on the lattice (qr, ps) = ( r^,s j | ) , (r,s =
0,...9N — 1). Moreover, given dr,s G MN(<£), there is a unique / G J'N SO that
f(rfj,sjj) = d^s, and hence in view of Lemma 3.5, a unique F G J£(34fN(K)) so
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that F = Op^(f). There are now no constraints between the matrix elements dr^s as
in the case of the Weyl symbol. As we point out in Sect. 6, Wp has some drawbacks
as well, in particular for the study of the quantization of toral automorphisms. There
are still other definitions of "Wigner function" around in the literature [AB]. They
are obtained by taking the explicit expression for W(φ\,φ2)(q,p) for φ\,φι G
y(lR) and by trying to adapt it to the torus. The result has no obvious link with
Weyl quantization and we shall not consider it further.

To describe the anti-Wick quantization we need to fix some notations. For z e C,
and Imz > 0, define the gaussian

/ / I m z V _LZX2

We can then construct the coherent states [Pe]

q, p)ηOto,z)(x)

in the standard manner. It will be useful on occasion to use the bra-ket notation
of Dirac:

Λχ) = (χ \q> A
 z)

Using the symmetrisation operator S(κ) introduced in Sect. 2, we define

\q, p, z, K) = S(κ) \q, p, z) G JtTN(κ) . (3.10)

We are now ready to define, for any / G Z°°(Γ ( 2 )) its anti-Wick quantization by

ψ (3.11)
0 0 Z 7 Γ A ι

This is of course the obvious equivalent of the usual anti-Wick quantization
on L 2 (R):

This, we recall, has the property (Resolution of the identity)

. u T J Γ dPd(l !„ _ _W- -

Lemma 3.8.

(i) (OpA

κ

w(f)T = Opiw(f).
(ii) If f eC°°(TM)

OpAW(f) = Y ) dm(κ)OpA

κ

w(f). (3.12)
o o

(iii)

OpiW{\) = I<Wκ) (Resolution of the identity). (3.13)

(iv) For all f G C°°(T^) and K,

\\OPi
w(f)\\m{κ)) ύ ll/lloo (3.14)
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Proof, (i) follows by a simple calculation.
For (ii), we first show that there exists C > 0 so that

suV\\OpA

κ

w(f)y^N(κ))^C. (3.15)
K

Theorem XIII.83 in [RS] then implies that the right-hand side of (3.12) is well
defined. To show (3.15) note simply that for all φ and φ in J^v(κ),

(φ,OpA

κ

w(f)φ){κ,N) g

Since, as is easily checked, (q, p, z9κ\q9 p,z,κ) is continuous in κ9 (3.15) follows.
To prove (3.12) it suffices to compute OpAW(f)φ for φ e ^ ( R ) . Using the peri-
odicity of / and Proposition 2.3 (iii), we have, writing φκ = S(κ)φ,

mn 0 0 Zπ/l

x / / dm(κ)(q + na9 p + mb,z, K \ φκ)(κ,N)
o o

Since, as a simple calculation shows, U(na,mb)S(κ) = S(κ)U(na,mb) we have,
using (3.10),

\q + na,p + mb9z, K) = S(κ)U(na,mb)e^(nap-mbq) \q9 p, z)

_ rγ\Nmne-ί{κιna-κ2mb)ej^{nap-mbq) ι ^ \ ^

Then, one obtains using (2.6),

OpAW(f)Φ= f f dm(κ)Jfψff(q,p)Σ(-lfmne+ί{Kίna^mh)

0 0 0 0 Z π n m,n

x C/(nα, mb) \q9 p, z) {q, p,z9κ\ φκ)(κ,N)

2π/a 2π/b

= JJ dm(κ)OpA

κ

w(f)φκ .
0 0

This proves (3.12). Note that (iii) is a special case of (ii) for / = 1 and that (iv)
follows from (iii). D

Remark. Using the resolution of the identity, one can define an isometric map

W(κ,z): ψ e JPN(κ) — W(κ,z)ψ e L

by
(W(κ,z)φ)(q,p) = (q9p,z,κ\φ) .

The image of J>fj^(κ) under W(κ,z) is a reproducing kernel subspace of

L(T(2\ ^ f ) . In the language of geometric quantization, it is the space of square

integrable polarized sections of a prequantum line bundle over Γ ( 2 ) determined by
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K and N [DBDEG]. Here the polarization is Kahlerian and determined by the com-
plex vector field Xz = dq+zdp on Γ ( 2 ). The function |( , ,z,/c \ ψ)\2 on T(2) is
referred to as the "Husimi distribution of ψ" in the physics literature.

For the proof of the equipartition of the eigenfunctions we need to compare the
Weyl and the anti-Wick quantizations as N —» oo. The simple estimate needed is
given by the following lemma.

Lemma 3.9. For all f e C°°(Γ ( 2 )),

\\Opΐ(f) - OpA

κ

w(f)\\m(κ)) = O(N~ι) (N^oo). (3.16)

Proof. Thanks to (3.2), (3.12) and Theorem XIII.83 in [RS], we have

f - OpA

κ

w{f)\\^N{κ)) = \\Opw(f) - OpAW

It is a standard result [GL, HMR] that

\\Opw(f) - OpAW(f)\\^L2m) = O(N~ι) (N-^oc).

Thus (3.16) is proved. D

We end this section with a semi-classical estimate on the Weyl quantization,
crucial for the proof of the equipartition result in Sect. 5.

Proposition 3.10. For all f e C°°(Γ ( 2 )),

J j Ά ) . (3.17)TrOpΐiff^Jj
i\ o o ao

Proof. Using the basis defined above,

By (2.10) and (2.11), we have

^ ^ y=0 l,n r=0

Then, since {^y}^1 is an orthonormal basis,

In N 7=0

= /θ,O+ Σ * 1

The result follows using the regularity of / . D
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4. Translations and Skew Translations

In this section, we study two particular maps which, as stated in the introduction, are
undoubtedly the simplest ergodic transformations of the torus: the irrational transla-
tions and the skew translations. We will set a — b = 1 for convenience. The transla-
tions are denoted by τα, where α = (αi,α2) G T^2\ If α is such that αi/α2 ΦQ, τα is
said to be irrational. They act on Γ ( 2 ) as τα : (q, p) G Γ ( 2 ) -> (q + ocu p + α2) G Γ ( 2 ).
The skew translations are denoted by Φ l where β φQ, k G Z; Φ^ is defined as

φ* = τ(0j)oK with A: G SL(2,Z) of the form A: = (* *Y Both τα and Φ* are

uniquely ergodic area-preserving maps [CFS], meaning that there exists a unique
invariant probability measure for them (the Lebesgue measure). A well known and
useful fact concerning uniquely ergodic maps Φ on a compact metric space X is
that for each continuous function / on X

^ Φ k T ^ ° ? m(f) i n L ° ° ( X ) , (4.1)
1 k=ι

where m is this unique invariant probability measure [M, CFS]. We will see below
how this permits a particularly simple proof of the equipartition property. We first
need to show how to associate to each τα and Φί a unitary operator Mκ(τα) and

Mκ{Φk

β) on 3Ί?N(κ). We treat τα first.

Translations and skew translations were already quantized in [DBDEG] using
ideas from geometric quantization. We proceed slightly differently here. A natural
way to associate a unitary operator to τα would have been to choose the translation

operator C/(αi,α2) = e^lQ~aχP\ restricted to J^N(κ). But as we saw in Sect. 2, no
J4?N(K) is preserved under these operators, unless α = (^, ^ ) for some n, m G N.
We therefore need a different approach to quantize irrational translations. Recall
first that

This suggests quantizing τ(αijo) and T(o,α2) separately yielding Λfκ(τ(αi>o)) and
Mc(ΐ(0,α2)) and then defining

τ(o,α2)) (4.2)

This is how we will proceed. Recall now from (2.11) that

, ) 4 = ^2+2πy)£ ,
NJ J J

In other words, the ej, j G {0,... ,N — 1} are a basis of eigenvectors for the trans-
lations £/(0, ̂ ) . This suggests the definition

^ ( o , ^ ) ) ^ ^ 2 ^ ^ . (4.3)

Mc(τ(αi,0)) i s defined similarly by noting that £7(^,0) is diagonal in the momentum
representation.

To establish the equipartition result, the last ingredient needed is an Egorov type
theorem.
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Proposition 4.1. There exists a G$ dense subset 2 of T^ with the property that
Vα e 2, 3(Nk)keM such that V/ G C°°(Γ ( 2 )), 3C so that

κ(τa) - Opζ(f o τα
c

The proof is given below. We can now write and prove the equipartition result for
the translations.

Theorem 4.2. Write Mκ(τa)φJ = λ^φj for the eigenfunctions and the eigenvalues
of Mκ(τa), where a belongs to the G$ dense set Q) of Proposition 4.1. For all
f e C°°(Γ ( 2 )) and for all maps

we have

j :Nk

i^4,^(/)4)W)= / fdqdp
W ) ' ^ V JΨANk)n^vj j J h

• ̂ ~ τ(ΊΛ Liu

Proof. From the unitary of Mκ(τα), it follows that VΓ € N*

W ) " / /
dqdp

(κ,N)

iέ/<
ab

ώN

(κ,N)

where we used Proposition 4.1. Now using Lemma 3.9 and Lemma 3.8 (iv), we
have

ι=ι
-//dqdp

(κ,N)

c'Af)
Nk

-If
r<2)

dqdp

ab

C'Af)
Nk

Using (4.1), the result follows. D

Comparing this to Theorem 1.1, we see this is better in that we can take
E(Nk) — {1,...,Λ^}. Of course, the result is subject to the same flaw as the one
pointed out in the introduction concerning [DEGI]: the sequence Nk depends on α.
This is all the more unsatisfactory here since the translations τα are uniquely ergodic
so that there are no other invariant measures for eigenfunctions to concentrate on.
The origin of the problem is to be found in the rather weak version of Egorov given
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by Proposition 4.1. It can probably not be improved considerably. If, for example
α = (αi,0)5 αi φQ, then one can show

limsup \\MK(zayOp^(f)MK(Ta) - Opw

κ{f o τ α ) | | ^ ( ^ ( κ ) ) = 2

if f(q, p) = e2πi^-mP\
We now turn to the proof of Proposition 4.1.

Lemma 4.3. Let α, α' G Γ (2). Then 3C > 0 so that VN > 0,

\\Mκ(τa) - MK(Ta,)y{jrN{K)) ^ CNQon - α}| + |α2 -

Proof. Note that, for ^ = Σ ) ^ 1 eye* one has, using (4.3),

This, together with a similar argument for M ^ τ ^ o ) ) and (4.2) yields the result. D

Note that this implies that the map α —> M^(τα) is continuous.

Proof of Proposition 4.1. The set ^ is defined as those α G Γ̂ 2^ for which
? so that |αi — ^ | < -^ a n ^ lα2 — ] ^ I < 7̂2 have simultaneous so-

k

lutions for p\^ G TL and pi,k £%• This is easily seen to be a Gs set. The proof

follows immediately from Lemma 4.3 with α7 = (-7^, η^) a n d the observation that

Vw, m G Z,

We end this section with a brief discussion of the skew translations. We will

explain in Sect. 6 how to quantize K = (ι

0 \) G SL(2,Z). Consequently, we define

Since the Egorov theorem is exact for MK(K) (see Lemma 6.2), it suffices to use
Lemma 4.3 as in the proof of Proposition 4.1 to get an Egorov theorem for all
(β,k) E l R x I This yields the desired equipartition result that we won't state
explicitly.

5. Equipartition of the Eigenfunctions

In this section we prove Theorem 1.1. The hypotheses of the theorem will be
assumed throughout. Using the results of Sect. 3, the proof is easily adapted from
the proof of Theorem 2.2 and 3.1 in [HMR] and we will not therefore give all
details. We start with some preliminary work. The first lemma is a trivality that
does not involve any knowledge on the dynamics Φ or on MK(Φ). It is in fact
a direct consequence of Proposition 3.10. Its analogue in [Zl,CdV,HMR] is not
trivial at all and does involve the dynamics.
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Lemma 5.1. V/ e C

101

v(/);
(5.1)

< ( / ) = (OpA

κ

w(f)φ»,φ»).
Remarks.

(i) It is understood that we choose a K for each Λf. We shall not indicate the
K dependence of the μ1?.

(ii) We can write

where dμ^(q,p) = \(q, p,z,κ\φj}\2^^-. So the μ^ are in view of Lemma 3.8

positive probability measures on Γ (2), absolutely continuous with respect to the
Liouville measure.

Proof.

\μN(f) ~ Kf)\ = -ΊrOpA

κ

w{f)-μ{f)

* ι -Tr Op%(f)-μ(f)

(f)-μ(f)

The result follows from Lemma 3.9 and Proposition 3.10. D

The lemma states that on average the {Op^w(f)φ^,φjr} converge to the de-
sired quantity, a fact we already knew for the (Op^(f)φjί, φj) from Proposition
3.10. The core of Theorem 1.1 is hidden in the following proposition. To establish
it, the dynamics Φ intervenes through its ergodicity and the Egorov theorem (i.e.
Eq.(l.l)).

Proposition 5.2. V/ e C°°(T^) and Vε > 0,

hm
N

Λ= 1 . (5.2)

Proof. For / e C°°(Γ (2)) and for p € N* introduce the time average

fP=-nΈf°Ak.
P k=\

The proof is a direct adaptation from the one in [HMR]. Indeed it is based, as in
Sect. 4, on four observations. First,

μf(f) - μ(f) = (Φf, - μ(f))φf)
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is close to (φf,Op%(f — μ(f))φf) for large N thanks to Lemma 3.9. Next, since

the φ^ are eigenfunctions of MK(Φ) (stationary states), we have

(φf, Opw

κ{f - μ(f))φf) = -p Σ (φN,Mκ(ΦykOp?(f - μ(f))Mκ(Φ)kφf) .

(5.3)

The Egorov hypothesis 1.1 then implies that, for large N, the right-hand side is
close to (φj,Op%(fp - μ(f))φf). Finally, we will use ergodicity, i.e. fp —> μ(/)
together with Lemma 5.1, to conclude that, for large p and N, (φ1-, Op%\fp -
μ(f))Φf) is small, at least for "many" j . The detailed argument is analogous to
the one in [HMR] and we skip it. D

A direct consequence of Proposition 5.2 is the following corollary which is
essentially the statement of Theorem 1.1, except for the dependence of E(N) on / .

Corollary 5.3. For all f G C°°(Γ(2)) for all N, there exists a subset E(N,f) of
{1,...,^} satisfying

lim l ;
N->oo N

(ii) for all maps j :N e N —> j(N) e E(NJ)

\imJOp^(f)φ%γφlN)){κ,N) = μ(f) ,

and
\iτaJOpA

κ

w(f)φlN),φlN))(κ,N) =

uniformly with respect to the sequence j .

The proofs of Corollary 5.3 and Theorem 1.1 use completely analogous argu-
ments to the ones in [HMR] and we omit them.

6. Quantization of the Automorphisms of Γ(2)

The results of Sect. 3 allow us to quantize any globally Hamiltonian flow on T^
as follows. If H G C°°(Γ(2)) is the classical Hamiltonian of the flow then the cor-
responding unitary one-parameter group on 34fN(κ) is exp(—zjrθ/?jf (//)). But for
discrete maps such as the automorphisms of the torus, this approach does not work.
The framework we set up nevertheless provides an easy quantization for them, as
we now show. Any quadratic Hamiltonian H(q, p) = otq2 + βqp + yp2 on R 2 gen-
erates a linear flow Φt\ for all t, Φt G SL{2, R) . The corresponding Weyl quantized
operators generate a unitary one-parameter group on L 2 (R). Explicitly, one obtains
a map A G SL(2,R) —> M(A) G U(L2(R)), where for α 2 φ 0 ,

/ \ 1/2

[M(A)φ](x) = I — — I f etS(x'y)ψ(y)dy (6.1)

with

1 ύt4 2 1 1 O\ 2

2 α 2 α 2 2 α 2



Equipartition of Eigenfunctions 103

where A — ( aχ ai). The M(A) are uniquely determined up to a phase, which can

be fixed by group-theoretic consideration that won't concern us here [F]. A crucial
property of the M(A) is:

M(A)U(q,p)M(AT = uU(Λ\ . (6.2)

We shall refer to M(A) as the quantum propagator associated to A.
The subgroup of SL(2, R ) which leaves Γ (see Sect. 2) invariant is made up of

elements of the form

k Ί)
with aδ - βy = 1 and (<x,δ,β9y) G Z4. It is diffeomorphic to SL(29Z)9 and we shall
refer to the A in (6.3) as belonging to SL(2,Z) with some abuse of language. Any
A of the form (6.3) acts naturally on Γ ( 2 ) = 1R2/Γ as an area-preserving map. It is
well known [AA, CFS] that these transformations are globally hyperbolic dynamical
systems and hence ergodic iff \TτA\ > 2.

We now show how to associate to any A G SL(2, Z) a unitary operator on (some)
J4?N(κ). Clearly these A do not belong to one-parameter groups generated by a
Hamiltonian. Hence we cannot use Weyl-quantization as above. Instead, we simply
study the restriction of M(A) in (6.1) to 34?N(κ). We have

Lemma 6.1.

where

Ui

Proof. Equation (6.2) implies

U(na,mb)M(A) = M{A)U{n'a,mfb),

! f n'a\ Λ-λ ( na\ ( n' \ ( δ -β \ ( n \ _,, . /~ -, Λ / ^ o \
where , ) = A M , so , ) = ( . Then, using (2.1)-(2.3),

\m b J \mb J \m J \— y α / \m J

for all ψ G 3^N(K), we have that

U(na9mb)M(A)ψ = e

iπNn'm'e~u

Introducing the canonical symplectic form on Γ ( 2 ) : ω := dq Λ dp, we remark that
κ\n'a — K2mfb = ω((n/a,m/b),(κ29κ\)). As a result, since d e t ^ " 1 = 1,

K\n'a — K2infb = κ"na — K^

a n d

U(na,mb)M(A)φ =
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Since —yδn2 — ocβm2 + (aδ + βy)nm = γδn + aβm + m« (mod2), we have

U(na,mb)M(A)ψ = e

iπNnme-i[{</+πN^)na-{κ2+πNf^^M(A)φ .

Hence, since κi, κ2 are defined m o d ( ^ ) , m o d ( y ) (respectively) and the relation
modulo is preserved by A9 (6.4) follows. D

Given A with \TrA\ > 2 there exists for each N a K G [0, ^[x[0, y [ so that
K7 = /c. This choice can be made independent of N iff A is of the form

oddf

f even

fλ / odd evenfλ

n ) °Γ (evenf o d d ) ' ( 6 ' 5 )

in which case one can take K = 0. This is the case studied in [HB]. Otherwise,
there exists at least one choice for all even TV and at least one choice for odd N,
different one from the other. The choices are unique if Tr̂ 4 = 3. When A, TV, K are
fixed so that M(A)Jί?N(κ) C Jf^(κ ), we shall write MK{A) for the restriction of
M(A) to J4?N(K); we shall refer to MK(A) as the quantum propagator associated to
the area-preserving map A G SL(2,Έ) on T^2\

It remains to show MK(A) is unitary. But this is obvious since it is the restriction
of M{A) to one fiber of the direct integral (2.8).

We can now introduce the last ingredient that is needed in order to apply
Theorem 1.1 to Φ = A.

Lemma 6.2. Let f e C°°(^2>), then

ζ ξ A ) . (6.6)

Proof. Since Opw(f o A) = M(A)*Opw(f)M(A) [F], (6.6) is obvious, because
MK(A) and Op^(f) are simply obtained by restricting M(A) and Opw{f)
to jeN(κ). D

Note that our proof of the equipartition result for MK(A) does not use the explicit
form of the MK(A). Viewed as matrices on <EN, the latter are indeed rather compli-
cated [HB, DE, DEGI] unless

which are the matrices studied in [HB] and for which the equipartition result is
proven in [DEGI].

As a final remark, we point out that the Wigner function Wκ(φJ,φ^) of any
eigenfunction of MK(A) is invariant, i.e.

This is a direct consequence of (3.7) and (6.6). This property is not shared by the
polynomial Weyl symbol, since JN is not invariant under A.
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