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Abstract: By a suitable choice of variables we show that every Connes-Lott model
is a Yang-Mills-Higgs model. The contrary is far from being true. Necessary con-
ditions are given. Our analysis is pedestrian and illustrated by examples.

Despite its impressing success in describing particles and interactions, the Yang-
Mills-Higgs (YMH) model building kit has conceptual shortcomings:

• its rules are essentially unmotivated,
• its complicated input comprising a Lie group and three representations is only

justified by experiment,
• the model singled out by more and more precise experiments, namely the standard

SU(3) x SU{2) x (7(1) model of electro-weak and strong interactions, is ugly
and nobody really believes it to be the last word.

Concerning the first two points, the Connes-Lott (CL) model building kit [1] does
better. Its rules have a precise motivation from non-commutative geometry and
its input, comprising an involution algebra and two representations, is infinitely
more restricted than the YMH input. Nevertheless, the standard model is also a CL
model [1-4], a fact that by itself does not improve its beauty, but that perhaps
allows unification with gravity. Indeed, the Einstein-Hilbert action as well may be
formulated naturally in the setting of non-commutative geometry [5-7].

The purpose of this work is to show that the CL models represent a very
small subset of the YMH models, where we restrict ourselves to "local" models,
i.e. models defined on trivial bundles. Also we restrict ourselves to CL models
defined by means of a finite dimensional algebra srf tensorized with the algebra of
functions on (a compact, Euclidean) "spacetime" of dimension 4. These particular
models can be computed with elementary mathematics [8] and compare naturally
to YMH models. Models whose algebras are not such tensor products, as the non-
commutative torus [9], the fuzzy sphere [10] or a quantum space time [11] are
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much more involved mathematically and appear as natural candidates for the above
mentioned unification.

1. Yang-Mills-Higgs Models

Let us first set up our notations of a YMH model. It is defined by the following
input:

• a finite dimensional, real, compact Lie group G,
• a positive definite, bilinear invariant form on the Lie algebra g of G, this choice

being parameterized by a few positive number gh the coupling constants,
• a (unitary) representation pL on a Hubert space 3^L accommodating the left-

handed fermions φι,
• a representation pR on JtfR for the right-handed fermions φR9

• a representation ps on Jfs for the scalars φ,
• an invariant, positive polynomial V(φ), φ G J^s, of order 4, the Higgs potential,
• one complex number or Yukawa coupling gγ for every trilinear invariant, i.e. for

every one dimensional invariant subspace, "singlet," in the decomposition of the
representation associated to (2tf*L 0 3tfR 0 J^s) θ (.#£ 0 ^ Λ 0 ^ ) .

The standard model is defined by the following input:

G = SU(3) x 577(2) x C/(l)

with three coupling constants g$9 gi, 9\,

•#Ί = Θ [(1,2, -

where («3,W253
;) denotes the tensor product of an n-$ dimensional representation

of SU(3), an nι dimensional representation of SU(2) and the one dimensional
representation of U(l) with hypercharge y:

pie16) = <?>*, ^ G Q , 0G[O,2π),

V(φ) = λ(φ*φ)2 - !jφ*φ , φ G Λ^, A,μ > 0 .

There are 27 Yukawa couplings in the standard model.
The gauge symmetry is said to be spontaneously broken if every minimum

v G Jtfs °f the Higgs potential is gauge variant, ps(g)v φf for some g G G. Any
such minimum t; is called a vacuum. For simplicity let us assume that the vacuum
is non-degenerate, i.e. all minima lie on the same orbit under G. Then, the little
group G/ is by definition the isotropy group of the vacuum, ρ(gι)v = υ. For exam-
ple, in the standard model, any doublet of length Λ/φ*φ = μ/(2>/λ) is a minimum
and the little group is G/ = 51/(3) x U(l)em. To do perturbation theory, we have
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to introduce a scalar variable h, that vanishes in the vacuum,

h(x) := φ(x) - v ,

x a point in spacetime M. With this change of variables, the Klein-Gordon
Lagrangian is (Dφ)* * Όφ. The Hodge star * should be distinguished from the
Hubert space dual *, wedge symbols are suppressed. We denote by D the covari-
ant exterior derivative, here for scalars Όφ := άφ + ps(A)φ, φ is now a multiplet
of fields, i.e. a 0-form on spacetime with values in the scalar representation space,
φ G Ω°(M, J^s\ while the vacuum v remains constant over spacetime so that it also
minimizes the kinetic term dφ* * dφ. The gauge fields are 1-forms with values in
the Lie algebra of G:A G Ωι(M,$), ps denotes the Lie algebra representation on
J^s- The Klein-Gordon Lagrangian produces the mass matrix for the gauge bosons
A. This mass matrix is given by the (constant) symmetric, positive semi-definite
form on the Lie algebra of G,

(βs(A)υ)*βs(A)Ό .

It contains the masses of the gauge bosons and vanishes on the generators of the
little group. In the example of the standard model, the little group is generated by
the gluons and the photon which remain massless.

In the following we are more concerned with the fermionic mass matrix Jί, a
linear map Jί : fflR -» 2tfL. We want to produce it in the same way we produced
the mass matrix for the gauge bosons, via the change of variables h(x) := φ(x) — v.
For this purpose, we add by hand to the Dirac Lagrangian gauge invariant trilinears

n m

Σ 9YJ(ΨL> ΨR> <P)j + Σ 9YJ(ΨL> ΨR> Ψ*)j + complex conjugate , (2)
7=1 j=n+\

n is the number of singlets in (Jf/ ® J^R 0 rffs\ m + n the number of singlets in
(2#Ί ® Jf/? 0 J^s). For h = 0 again, we obtain the fermionic mass matrix Jί as a
function of the Yukawa couplings gYj and the vacuum v9

n m

ΨZJΐψR:=Σgγj(ΨZ>ΨR>v)j+ Σ gγj(ΨZ,ψR,v*)j.
j=\ j=n+l

As the gauge boson masses, the fermionic mass terms xj/lJixj/R are not gauge in-
variant in general. They are gauge invariant if pι(g~ι)^pR(g) = Jί for all g G G
and in analogy with the little group, we define GJI to be the subgroup of G, that
leaves Jί invariant,

pL{g~J)JϊρR(g,g) = Jί for all gM G GM .

In the standard model with its 27 Yukawa couplings, the mass matrix Jί can be
any matrix yielding mass terms invariant under the little group.

In general however, the little group is only a subgroup of G^,

For example, if we modify the standard model by choosing the scalars in the adjoint
representation of SU(2), then the little group becomes G/ = SU(3) x ί/(l) x C/(l),
there are no trilinear invariants, the mass matrix Jί vanishes, and GJI = 51/(3) x
577(2) x £7(1).
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2. Connes-Lott Models

With the two specializations mentioned in the introduction, a Connes-Lott model
is defined by the following choices:

• a finite dimensional, associative, algebra si over the field IR or C with unit 1
and involution *,

• two *-representations of si, pi and PR, on Hubert spaces J#Ί and J^R over the
field, such that p := pL 0 pR is faithful,

• a mass matrix </#, i.e. a linear map <y# : Jf# —> J ^ ,
• a certain number of coupling constants depending on the degree of reducibility

of pL Θ PR.

The data (MPι,MpR,Jί) plays a fundamental role in non-commutative Riemannian
geometry, where it is called K-cycle.

With this input and the rules of non-commutative geometry, Connes and Lott
construct a YMH model. Their starting point is an auxiliary differential algebra
the so-called universal differential envelope of si:

Ω V := si ,

ΩW is generated by symbols δa, α G i with relations

(51 = 0 , b(ab) = (δa)b + abb .

Therefore ΩW consists of finite sums of terms of the form a§δa\,

and likewise for higher /?,

The differential δ is defined by (5(ao<5#i * * δap) := (5flo<5#i ^β^.
Two remarks: The universal differential envelope Ωsrf of a commutative algebra

si is not necessarily graded commutative. The universal differential envelope of any
algebra has no cohomology. This means that every closed form ω of degree p ^ 1,
(5ω = 0, is exact, ω = δK for some (p — 1) form K.

The involution * is extended from the algebra si to Ω W by putting

(<5α)* :=<5(V)=:(Sα* .

Note that Connes defines (δάf := — δ(a*) which amounts to replacing δ by /(5. With
the definition (ω/c)* = κ:*ω*, the involution is extended to the whole differential
envelope.

The next step is to extend the representation p := pL 0 pR on Jf := J>fL 0 MR
from the algebra si to its universal differential envelope Ωsrf'. This extension is the
central piece of Connes' algorithm and deserves a new name:

π : Ωsi (),

(fli)] [®,p(aP)] , (3)
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where 2 is the linear map from 3tf into itself

0 Jt

M* 0

In non-commutative geometry, Q) plays the role of the Dirac operator and we call
it the internal Dirac operator. Note that in Connes' notations there is no factor
{—i)p on the rhs of Eq. (3). A straightforward calculation shows that π is in fact a
representation of Ωs/ as an involution algebra, and we are tempted to define also
a differential, again denoted by <5, on π(Ωsrf) by

δπ(ω) := π(δω). (4)

However, this definition does not make sense if there are forms ω G Ωsrf with
n(ω) = 0 and π(<5ω)φθ. By dividing out these unpleasant forms, Connes constructs
a new differential algebra Ω ^ J / , the interesting object:

with
J:=π(δkeτπ)=:®Jp

p

(J for junk). On the quotient now, the differential (4) is well defined. Degree by
degree we have:

Ω%srf

because J° = 0,

because p is faithful, and in degree p ^ 2,

p
s

While Ωstf has no cohomology, Ω^s/ does in general. In fact, in infinite dimensions,
if #" is the algebra of complex functions on spacetime M and if the K-cycle is
obtained from the Dirac operator, then ΩQSF is de Rham's differential algebra of
differential forms on M.

We come back to our finite dimensional case. Remember that the elements of
the auxiliary differential algebra Ωsrf that we introduced for book-keeping purposes
only, are abstract entities defined in terms of symbols and relations. On the other
hand, the elements of Ω^stf, the "forms," are operators on the Hubert space Jf, i.e.
concrete matrices of complex numbers. Therefore there is a natural scalar product
defined by

(ώ, K) := tr(ώ*/c), ώ, k G π(Ωp^) (5)

for elements of equal degree and by zero for two elements of different degree. With
this scalar product Ω@>$0 is a subspace of π(Ωjtf), by definition orthogonal to the
junk. As a subspace, Ω^^/ inherits a scalar product which deserves a special name
( , ). It is given by

(ω, K) = (ώ,Pk), ω,κ G
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where P is the orthogonal projector in π(Ωjtf) onto the ortho-complement of J
and ώ and k are any representatives in the classes ω and K. Again the scalar
product vanishes for forms with different degree. For real algebras, all traces must
be understood as the real part of the trace.

In Yang-Mills models coupling constants appear as parametrization of the most
general gauge invariant scalar product. In the same spirit, we want the most general
scalar product on π{Ωsrf) compatible with the underlying algebraic structure. It is
given by

(ώ, k)z := tr(ώ*/cz), ώ, k £ π(Ωpstf), (6)

where z is a positive operator on Jf, that commutes with p(stf) and with the Dirac
operator 3) and that leaves 2tfι and Jf# invariant. A natural subclass of these scalar
products is constructed with operators z in the image under p of the center of sέ'.

Since π is a homomorphism of involution algebras the product in Ω@s/ is given
by matrix multiplication followed by the projection P. The involution is given by
transposition and complex conjugation, i.e. the dual with respect to the scalar product
of the Hubert space J"f. Note that this scalar product admits no generalization.
W. Kalau et al. [12] discuss the computation of the junk and of the differential for
matrix algebras.

At this stage there is a first contact with gauge theories. Consider the vector
space of anti-Hermitian 1-forms {H £ Ω^s/, H* = —H}. A general element H is
of the form

"<• o.

with h a finite sum of terms PL(a§)\_PL(a\)Jt — MpR(a\j\ : 3^R —> Jf/,, ao,a\ £ s/.
These elements are called Higgses or gauge potentials. In fact the space of gauge
potentials carries an affine representation of the group of unitaries

G:={g £stf, QQ* =g*g= 1} ,

defined by

H* := p(g)Hp(g-ι) + p(g)δ(p(g-1)) = p(g)Hp(g-{) + ( - 1

( 0

wi th h9 — Ji : = PL(g)[h — Ji]pR^g~x). H9 is the " g a u g e t ransformed of HΓ A s

usual every gauge potentia l H defines a covariant derivative δ + H, covariant u n d e r

the left act ion of G on

9ω := p(g)ω, ω £

which means
(δ+Hg)gω= β[(δ + H)ω].

Also we define the curvature C of H by

C:=δH 2 %

Note that here and later, H2 is considered as element of Ω^stf which means it is
the projection P applied to H2 £ π(Ω2stf). The curvature C is a Hermitian 2-form



Yang-Mills-Higgs vs. Connes-Lott 7

with homogeneous gauge transformations

σ := δ(H°) + (H°)2 = p(g)Cp(g-1).

Finally, we define the preliminary Higgs potential V0(H), a functional on the space
of gauge potentials, by

V0(H) := (C, C) = tr[(δH + H2)P(δH + H2)] .

It is a polynomial of degree 4 in H with real, non-negative values. Furthermore
it is gauge invariant, VQ(H9) = V0(H), because of the homogeneous transformation
property of the curvature C and because the orthogonal projector P commutes with
all gauge transformations, ρ{g)P = Pp(g). The most remarkable property of the
preliminary Higgs potential is that, in most cases, its vacuum spontaneously breaks
the group G. To see this, define

Q)G =-ifπ(g-ιδg)dg ,
G

where dg is the Haar measure of the compact Lie group G. Thus <2)Q is in Ωgjtf,
unlike the internal Dirac operator <2> which is not necessarily in Ω@£/9 see the next
example. Moreover

2G = & - fp(g-ι)@p(g)άg =
G

where
JiG : = Ji - JpL(g-χ)JίpR(g)άg .

G

Note that Ji — MG leads to gauge invariant mass terms and Gj(G = Gjf. We now
introduce the change of variables

^ J J i (7)
with φ = h — MQ. Then, assuming of course a gauge invariant internal Dirac op-
erator, <2)9 = 3), Φ is homogeneously transformed into

Φg=Hg- i2% = p(g)[H - X 1

G

= p(g) [// - (i® - ijp{gf-λ)9p{gf)άg^ p(g~ι) = p{g)Φp{g~ι), (8)

Now /z = 0, or equivalently φ = —J(G^ is certainly a minimum of the preliminary
Higgs potential and this minimum spontaneously breaks G if it is gauge variant and
non-degenerate.

Consider two extreme classes of examples, vector-like and left-right models.
A vector-like model is defined by an arbitrary internal algebra si with identical

left and right representations, PL = PR, and with a mass matrix proportional to the
identity in each irreducible component. As we shall see, every vector-like model
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produces a Yang-Mills model with unbroken parity and unbroken gauge symmetry,
GM — G\ — G, as electromagnetism or chromodynamics. Since 3 and p commute,
the internal differential algebra is trivial, Ω^si — 0 for p ^ 1, and the space of
Higgses is zero, H = 0. The new variable Φ vanishes as well, because 3)Q vanishes:

/ pL(g~x)JMpR(g)dg = J pL{g~λ)JίpL{g)dg
G G

= fρL(g~l)pL(g)J?dg = JJίdg = Jί .
G G

The preliminary Higgs potential vanishes identically, but its minimum is non-
degenerate. In this example, the simpler variable Φ = H — 13 would not be in
a vector space, because 3 $Ω@si.

We define a left-hand model by an internal algebra consisting of a sum of
a "left-handed" and a "right-handed" algebra, si = sii θ s$R with the left-handed
algebra acting only on left-handed fermions and similarly for right-handed,

pάβu^R) = PL(QL,0) , PR(aL,aR) = pR(0,aR) , aL G siL, aR G stR .

Now, any non-vanishing fermion mass matrix breaks the gauge invariance, Gjt φ G,
J Φ O . At the same time, the internal Dirac operator is a 1-form, 3 — 3Q G Ω^si,
because

/PL(g~l)^pR(g)dg = / PL(9L19 ^)^PR^QR^QL^QR
G GLxGR

= I J pL(gϊ\\)dgL] J ί ( f pR(l,gR)dgR\ = 0 .

In left-right models, we have Φ — H — 13, A more interesting, intermediate example
will be discussed in Sect. 3.1 below.

In the next step, the vectors φi, φR, and H are promoted to genuine fields, i.e.
rendered spacetime dependent. As already known in classical quantum mechanics,
this is achieved by tensorizing with functions. Let us denote by ίF the algebra of
(smooth, real or complex valued) functions over spacetime M. Consider the algebra
sit := IF <& si. The group of unitaries of the tensor algebra sit is the gauged version
of the group of unitaries of the internal algebra si, i.e. the group of functions
from spacetime into the group G. Consider the representation pt : = _ ^ ®p of the
tensor algebra on the tensor product 3% := <$f (g) Jί?9 where Sf is the Hubert space
of square integrable spinors on which functions act by multiplication: (fφ)(x) :=
f(x)φ(x), f G # \ φ G £f. The definition of the tensor product of Dirac operators.

comes from non-commutative geometry. We now repeat the above construction
for the infinite dimensional algebra sit and its AΓ-cycle. As already stated, for
si = (C, J f = (C, Jί = 0 the differential algebra Ω@tsit is isomorphic to the
de Rham algebra of differential forms Ω(M,<£). For general si, using the nota-
tions of [8], an anti-Hermitian 1-form Ht G Ω^ siu
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contains two pieces, an anti-Hermitian Higgs fieldH e Ω°(M,Ω^s/) and a genuine
gauge field A £ Ωι(M, p(g)) with values in the Lie algebra of the group of unitaries,
g := {X e jrf, X* = —X}, represented on J f. The curvature of Hu

contains three pieces,

the ordinary, now x-dependent, curvature C = (5// -f //2, the field strength

F -άA+X-[A,A]&Ω2{M,p{Q)),

and the covariant derivative of Φ,

Note that the covariant derivative may be applied to Φ thanks to its homogeneous
transformation law, Eq. (8).

The definition of the Higgs potential in the infinite dimensional space

Vt(Ht) := (CQ)

requires a suitable regularisation of the sum of eigenvalues over the space of spinors
£f. Here, we have to suppose spacetime to be compact and Euclidean. Then the
regularisation is achieved by the Dixmier trace which allows an explicit computation
of Vt. One of the miracles in CL models is that Vt alone reproduces the complete
bosonic action of a YMH model. Indeed it contains of three pieces, the Yang-Mills
action, the covariant Klein-Gordon action and an integrated Higgs potential,

/ * V(H) . (9)
M M M

As the preliminary Higgs potential VQ, the (final) Higgs potential V is calculated
as a function of the fermion masses,

V:=V0- tr[αC*αCz] = tr[(C - αC)*(C - αC)z] .

The linear map α : Ω^stf —• p(srf) + π ^ k e r π ) 1 ) is determined by the two equa-
tions

tr[R*(C - aC)z] = 0 for all R e ρ(s/) ,

tr[£*αCz] = 0 for all K e π ( ^ k e r π ) 1 ) . (10)

All remaining traces are over the finite dimensional Hubert space 2tf. Note the
"wrong" signs of the first and third terms in Eq. (9). The signs are in fact correct
for Euclidean spacetime.

Another miracle happens in the fermionic sector, where the completely covariant
action ψ*(@t + iHt)φ reproduces the complete fermionic action of a YMH model.
We denote by
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the multiplets of spinors and by φ * the dual of φ with respect to the scalar product
of the concerned Hubert space. Then

φ*(βt + iHt)Φ = J * Φ*(Q + iy(A))φ - / * (φ^hy5φR + φ£h*y5φL)

M M

M

M M+ / * 0fe*(ΛT - ^ G ) 7 5 ^ + <A/(^ - ΛG)*γsψL) (11)

containing the ordinary Dirac action and the Yukawa couplings. If the minimum
φ = v is non-degenerate, we retrieve the input fermionic mass matrix Jί on the
output side by setting the perturbative variables h to zero in the first equation in
(11). The rhs of the second equation in (11) is the fermionic action written with the
homogeneous scalar variables φ. The second term yields the trilinear invariants (2)
with Yukawa couplings fixed such that Ji is the fermionic mass matrix. As already
pointed out, the third term is an invariant mass term and therefore admissible in
a YMH Lagrangian. Consequently every CL model with non-degenerate vacuum
is a YMH model with JίTs = {H e Ω^s/, H* = -H}. Note that Jfs carries a
group representation, that is not necessarily an algebra representation and we have
the following inclusion of group representations jfs C (J#Ί 0 J fR) θ ( ^ 0 ^ L ) .
Furthermore Gι = Gyg = GjtG- We have nothing to say about degenerate vacua, i.e.
minima of the Higgs potential, that lie on distinct gauge orbits. In fact, whether these
are allowed in YMH models is a question of taste for some, a question of quantum
corrections for others. We shall indicate a few examples. A final remark concerns
the unusual appearance of 75 in the fermionic action (11). Just as the "wrong"
signs in the bosonic action (9), these 75 are proper to the Euclidean signature and
disappear in the Minkowski signature.

3. Examples with Degenerate Vacua

3.1. Discrete Degeneracy. Our first example is in between vector-like models,
— 0, and left-right models, JίG = M, in the sense that here MG φ 0 and
ί. Choose as internal algebra si — M2((C), the algebra of complex 2 x 2

matrices. Both left- and right-handed fermions come in N generations of doublets,
jήfL = j ^ R = (C2 0 <£N. These Hubert spaces carry identical left and right represen-
tations

pL(a) = ρR(a) :=a®\N, a e stf .

The fermion mass matrix is chosen block diagonal to ensure conservation of the
electric charge, Gjt = U(l):

'rnx 0

0 ml

m\ and πi2 are complex N x N matrices which should be thought of as mass
matrices of the quarks of electric charge 2/3 and —1/3, and we suppose them
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different, miφm2. Then

j x lN)dg
ί/(2)

1

- 2 2 ^

ί/(2)

where we have put σ3 :=

/ 9
U(2)

1
g®-(mx

n o N
VO - 1 / '

~xAgdg-

1

' 2 !

- m 2 ) =

μ:=/wi -

= ^(trΛ)

1
—σ3 ® μ .

- w2, and

12, ^ G

g l2gdg0-

we have used

M2(<£).

A general component of the Higgs field takes the form h — h\ <g) μ, h\ being an
arbitrary Hermitian 2 x 2-matrix. Likewise φ — ψ\ ® μ and φi = /?i — l/2σ3. In
these variables, the Higgs potential can be computed to be [13]

F(//) - 2 ( tr((μμ*)2) - v ^ 7 j H[(φι + l 2/2) 2(φi - l2/2)2] .

z is necessarily a positive scalar and we have put z = Uyy. For TV = I generation, the
Higgs potential vanishes identically, and any point in J^s is minimum. The situation
is more exciting in the presence of two or more generations. Then, the minima lie
on three disconnected pieces, the orbit of φ = — JMQ with a little group G/ = Gjt =
£/(l), are two isolated points ψ\ = ± l 2 / 2 with a little group G7 = U(2). We may
wonder if quantum corrections [14] do lift this degeneracy and if so, in favor of
which vacuum.

Since Q)Q is a 1-form, one can compute the curvature of the Higgs Ϊ3)Q\

I ί 1 Λ
\\τ Jί\ I4 (8 l#5 for all TV .2'

We remark that, in the similar looking model by M. Dubois-Violette, R. Kerner
and J. Madore [15], this curvature vanishes.

3.2. Continuous Degeneracy. In the last example we had a finite, discrete degen-
eracy: the vacuum consisted of three disconnected orbits. Now we would like to
present a left-right model with continuous degeneracy, the orbits of the minimum
will lie on a horizontal gutter. Consider the complex algebra stf = M2((C) θ C θ C
with representations on J&Ί = <C2, JPR = C 2 given by

pL(Q>b,bf) = a, PR(Q>Ib. bf) = ( Λ , , I = : B. a G M2((D), (b,bf) G (C θ (C .

yU b J
Let the mass matrix be as in the last example with one generation,

0
m2
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Recall that for any left-right model we have MQ — Ji and Q)Q = £#. A general
element of Ωgstf is of the form

0

0 A

A* 0

floOi ~B\]

0

0 Ai^
, A 1,A 1eM 2(C).

As an element of π{Ω2srf), δH is

0

(*(ao-Bo)(aι-Bι

V 0

where we have used the decomposition

*(ao - - Bx

V 0 |m 2

2 , = Σl2

with

- | m 2 | 2 ) .

A general element in (kerπ)1 is a finite sum of the form Σj(al>bJQ,

with the two conditions

Therefore the corresponding general element in π(^(kerπ)1) is

= 0 .

:y K y - £ 0

7 ) K - B{) + zlΣ 7 («o - *0)*3(«i - ^ ί ) 0
V 0 0

still subject to the two conditions. Recall that A ΦO by assumption and we have the
following inclusion:

(

0 0

Ak 0N

0 0) '

To prove the last equality, we note that the subspace is a two-sided ideal in rhs
and non-zero. The algebra M2(C) being simple, the subspace is the whole algebra.
Consequently the junk is
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Now we compute the quotient Ω@s/ = π(Ω2jtf)/J2 as an orthogonal complement
of the junk is π(Ω2jtf) with respect to the scalar product (5) with z = I4,

Let us recapitulate:

Since π is a *-homomoφhism, the product in Ω@s/ is given by matrix multiplication
followed by the projection

P = ( ° °
V o I 2 ,

and the involution is given by transposition and complex conjugation. In order to
calculate the differential δ, we went back to the differential envelope:

Let now

( ί ) ( Λ v
be a Higgs. Its homogeneous variable is

In other words, ψ\ — h\ — I2 is an arbitrary, complex 2 x 2 matrix. Under the
group of unitaries G — U(2) x U(l) x U(l), is still decomposes into two irre-
ducible pieces, its two column vectors, ψ\ = : (φi 1,912)- In terms of these variables,
the curvature reads

w i t h c = h\ + h* — h*h\ = I2 — φ * φ \ . T h e p r e l i m i n a r y H i g g s p o t e n t i a l is

V0(H) = t r [ C 2 ] = t r [ ( ^ * ( l 2 - φ \ 2

= \m\\A + |m2 |4
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Its minimum is non-degenerate and spontaneously breaks the gauge symmetry. How-
ever with

0
0

ocC =

(0
0

0

Ko

0
0

0

0

0
0

\mι\2cn

0

0

m2

 2c22,

the Higgs potential

V = tr[(C - aCf] = 2 |m 1 | 2 |m 2 | 2 |φ ί 1 φ 1 2 | 2

has continuously degenerate vacua which also include the gauge invariant point,
φn = φn — 0. Indeed, the Higgs potential vanishes if and only if the two complex
doublets φn and φn are orthogonal, irrespective of their lengths. Finally, we remark
that the Higgs potential has only symmetry breaking minima for two and more
generations.

3.3. Complete Symmetry Breakdown. We have seen that, in CL models with non-
degenerate vacuum, the little group coincides with Gjg. The latter is controlled
immediately by the input. We take advantage of this to construct a model with
complete, spontaneous symmetry breakdown, i.e. a finite little group. Consider a left-
right model with real internal algebra stf = H 0 (C, S&L — 1H being the quaternions,
and two generations of fermions

><C 2 ,

We choose the mass matrix

x 0

0
b*

0 m
m 0

mx 0
0 J(2)> *"1 - 1 0 m2j

9

with m\,m2,m G IR, m\+m2, mφO. Therefore GM = 7ί2. A general 1-form is a

finite sum of terms

0 0 h\Jί\

0 0 0

H\hλ 0 0 0

0 Jί2h2 0

with

H = -iπ((ao,bo)δ(aubι)) = /

° \
0

0 /

h\ :=ao(a\ -

hλ :=-Bo(aχ -

h2 :=ao(aχ - B*) ,

h2 := -B*0(ax -B*x)

After the finite summation, the four quaternions h\,h2,h\,h2 are independent in
general. The junk in degree two is

ίi{m\-m\)k 0 0 0N

π(δ(kerπ)ι)={ ° 0 0 0 ' ' ^ G H

\ 0 0 0 0,
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and

δH =

-m2

2)(hλ+h\) 0 0 0 ^

0 m2(h2-\-h2) 0 0

0 0 Jl\(h\+h{)Jl\ 0

0 0 0 Jί2(h2+h2)Ji2)

A Higgs, an anti-Hermitian 1-form, is characterized by two independent quaternions,
h\ and h2,

'h\M\ 0 \ (φ\Jί\ 0

V 0 h2Jί2)' φ \ 0 φ2

with ψj . = hj: — 12, j = 1,2. Let us decompose each quaternion

into its two column vectors

Ψj = (ψju -iσ2φj[), Φyi = ( J ) ' * 2 : = ( / 0 '

They define the irreducible pieces of the Higgs under a unitary transformation

, Ψ9

2\ =

In other words the Higgs consists of two complex iSt/(2)-doublets with opposite
£/(l)-charges. Note that if M2 was also diagonal, we would only have one com-
plex Higgs doublet. Now the computation of the Higgs potential is lengthy, but
straightforward. In terms of the two doublets, the result for z = 18 is

V(H) = (m? + m\)[\ - φ\xφnf + 2m\\ - φ\λφ2Xf

- {m\ + m\)m2[\ - φ*nψ\\\[\ - φ2\ψ2\\ .

The Higgs potential is zero if and only if both complex doublets φn and φ2\
have length one. Since their relative orientation is arbitrary and gauge invariant,
the vacua are continuously degenerate. However, in every vacuum, all four gauge
bosons are massive and the four masses are independent of the relative orientation.
Furthermore, the little groups of all vacua are equal, Gι = {—1,-hl}, as expected.

4. Necessary Conditions

One may very well do general relativity using only Euclidean geometry. Still, we
agree that Riemannian geometry is the natural setting of general relativity. A main
argument in favor of this attitude is that there are infinitely more gravitational the-
ories in Euclidean geometry than in Riemannian geometry. The same is true for the
standard model. Its natural setting, to our taste, is non-commutative geometry. The
fact that today's Yang-Mills-Higgs model of electro-weak and strong interactions
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falls in the infinitely smaller class of Connes-Lott models is remarkable. The pur-
pose of this section is to show to what extent it is remarkable. We give a list of
constraints on the input of a YMH model. They are necessary conditions for the
existence of a corresponding CL model.

4.1. The Group. The compact Lie group G defining a Yang-Mills model must
be chosen such that its Lie algebra g admits an invariant scalar product. There-
fore g is a direct sum of simple and abelian algebras. After complexification, the
simple Lie algebras are classified according to E. Cartan, into four infinite series,
su(n + 1), n ^ 1, o{ln + 1 ) , n ^ 2, sp(n), n ^ 3, o(2n), n ^ 4 and five excep-
tional algebras G2, F 4 , E6, E-j, E%. To define a CL model, we need a real or complex
involution algebra si admitting a finite dimensional, faithful representation. Their
classification is easy. In the complex case, such an algebra is a direct sum of matrix
algebras MW(C), n ^ 1. In the real case, we have direct sums of matrix algebras
with real, complex or quaternionic coefficients, MW(R), MW(C), MW(H), n ^ 1. The
corresponding groups of unitaries are O(n,ΉL),U(n),USp(n). Note the two isomor-
phisms, USp(2) ^ SU(2) and USp(4)/Z2 ^ SΌ(5,R).

Let us outline the proof of the classification. Since si has a faithful represen-
tation on a Hubert space it is semi-simple [16]. Then si is a finite sum of n x n
matrices over finite dimensional division algebras [17]. There are only three finite,
real division algebras, IR, C and IH [18].

The groups accessible in a CL model therefore belong to the second, third,
and forth Cartan series. Furthermore we have u(n) = su{n) 0w(l) . Up to the u{\)
factor, this is the first series. At the group level, this factor is disposed of by a
condition on the determinant. In the algebraic setting there is a similar condition,
that reduces the group of unitaries to a subgroup, here SU(n). This condition is
called unimodularity and is discussed in the next section. To sum up, all classical
Lie groups are accessible in a CL model but the exceptional ones.

4.2. The Fermίon Representation. In a YMH model, the left- and right-handed
fermions come in unitary representations of the chosen group G. Every G has
an infinite number of irreducible, unitary representations. They are classified by
their maximal weight. On the other hand, the above involution algebras si ad-
mit only one or two irreducible representations. The reason is that an algebra
representation has to respect the multiplication and the linear structure, while a
group representation has to respect only the multiplication. In particular, the ten-
sor product of two group representations is a group representation, while the ten-
sor product of two algebra representations is not an algebra representation, in
general.

The only irreducible representation of Mn((£) as a complex algebra is the
fundamental one on Jf = <En. Also Mn(K) and Mn(M) have only the fundamental
representations on Jί? = R" and 2tf = <En <g> C 2, while Mn(<E) considered as a
real algebra has two inequivalent, irreducible representations, the fundamental one:
Jf = <CW, pi(α) = a, a e Mn(<£), and its conjugate: 3tf = C \ p2(a) = a.

The proof of this classification relies on the facts that the centers of the
above algebras si — Mn(K), Mn(<£), Mn(M) are the corresponding division alge-
bras, R, C, R, and that the representations of si are classified (up to equivalence)
by the automorphisms of their centers (as real algebras). Thus Mn{^) is the only
case with two inequivalent representations (Skolem-Noether theorem [19]).
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Let us summarize. The only possible representations for fermions in a CL
model are

• for G — O(n, R), N generations of the fundamental representation on Jf =

R n ® IRΛ

• for G — U{n) (or SU{n)), N generations of the fundamental representation on

j f = C" <g> <EN and N generations of its conjugate on Jf = Γ 0 C^,

• for G = USp(n), N generations of the fundamental representation on Jf = <CW (8)

In a YMH model with G = SU(2), the fermions can be put in any irreducible
representations of dimension 1,2,3,..., while in the corresponding CL model with
j / = H, there is only one irreducible representation accessible for the fermions,
the fundamental, two dimensional one. Similarly, in a YMH model with G = t/(l)
the fermions can have any (electric) charge from Z or even from IR if we allow
"spinor" representations. In the corresponding CL model with s/ — C, fermions can
only have charges plus and minus one. In any case, if we want more fermions in
a CL model, we are forced to introduce families of fermions.

4.3. The Gauge Coupling Constants. In a YMH model, the gauge coupling constants
parameterize the most general gauge invariant scalar product on the Lie algebra g
of G. In a CL model, see the rhs of Eq. (9), this scalar product is not general but
comes from the trace over the fermion representation space Jf, Eq. (6). The scalar
product involves the positive operator z, that commutes with the internal Dirac
operator and with the fermion representation p(jtf) and that leaves JtfΊ and J^R
invariant. Depending on the details of the mass matrix and of the left- and right-
handed representations pi and PR, the gauge coupling constants may be constraint
or not. The examples of the last section will illustrate this point.

4.4. The Hίggs Sector. As explained in Sect. 2, the scalar representation ps on 3^s

in a CL model is a representation of the group of unitaries only. This representation
is not chosen but it is calculated as a function of the left- and right-handed fermion
representations and of the mass matrix. As illustrated by the examples of Sect. 3,
the dependence of the scalar representation on this input is involved and we can
make only one general statement:

Nevertheless, this inclusion is sufficient to rule out the possibility of spontaneous
parity breaking in left-right symmetric models a la Connes-Lott [13].

The Higgs potential as well, is on the output side of a CL model. Its calculation
involves the positive operator z from the input and is by far, the most complicated
calculation in this scheme. We know that φ = —MQ is an absolute minimum of
the Higgs potential. If it is non-degenerate, the gauge and scalar boson masses are
determined by the fermion masses and the entries of z. See the last section for
examples.

Our last necessary condition concerns the Yukawa couplings. In a CL model,
they are determined such that M is the fermionic mass matrix after spontaneous
symmetry breaking. Up to the z dependent scalar normalization in the bosonic action
(9), the Yukawa couplings are all one. Normalization details are relegated to the
appendix.
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5. The Unimodularity Condition

The purpose of the unimodularity condition is to reduce the group of unitaries
U(n) to its subgroup SU(n). At the group level, this is easily achieved by the
condition det g = 1. However the determinant being a non-linear function is not
available at the algebra level. We are lead to use the trace instead, together with the
formula

dete2πiX = e2πitcX .

Even in the infinite dimensional case, the connected component G° of the unit in
the group of unitaries G is generated by elements g = e2πiX", X = X* £ si. The
desired reduction is achieved by using the phase, defined by [20],

phaseτ(#) := ^ Jτ f ̂ ( O ^ O Γ 1 ) df,

where τ is a linear form on si satisfying

τ(l )eZ, τ(a*) = τ(a), τ(a) = τ(g*ag), g € G, a e ^+ := {bb*,b G ̂ } ,

and where g(t) is a curve in G° connecting the unit to g. We obtain the finite
dimensional case above by putting τ(α) = trp(α) and g(t) = e2πiXt. The definition
of the phase involves two choices, that are easily controlled in finite dimensions:
the most general linear form τ can be written as τ(a) = trp(ap), aesi, pe cen-
ter si, and the ambiguity in the choice of the curve g(t) is controlled by the first
fundamental group πι(G°) which is contained in Έ, see the table below. Therefore
the unimodularity condition

e2πi phaseτ(#) _ j

is well defined and defines a subgroup

Gp : = {g G G°, e

2πiphas^(' P){9) - l }

of G°. For si = M«(<C), n ^ 2, the center is spanned by lπ and Gi = SU(n). The
center of J2/= MΛ((C)ΘMm(C), n,m ^ 2, is spanned by two elements, /?„ and
pm, the projectors on MW(C) and on Mm((C). We have

GPn = SU(n) x [/(M),

GPm = U{n) x SU(m),

GPn+Pm = S(U(n) x U(m)).

We close this section with a remark: the described reduction of the group of unitaries
G to a subgroup Gp is compatible with the model building kit of Sect. 2. In particular

% = % > = ® G (12)

and the change of variables, Eq. (7), is untouched. The proof of Eqs. (12) is done
case by case and is summarized in the following table.
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G G° G/G° Gλ G°/Gι πι(G°)

0(τi,R) 50(/i,R) {diag(-l,l,...,l),lΛ} 50(/i,R) {1Λ} Έ2

U(n) U{n) {\n} SU(n) {e2πi/nln,e
4πi/nln,.. .,en2πi/nln} {1}

USp(n) USp(n) {\2n} USp(n) {l2n} {1}

All elements of G/G° and G°/Gx are multiples of the identity except for O ( Λ , R ) /
5Ό(w,R). However, integrating p(g~ι)@p(g) first over the normal subgroup
5Ό(«,R) yields a matrix whose blocks are already diagonal matrices.

6. The Standard Model

We would like to conclude by locating the standard model within the CL scheme.
The pedagogical example to illustrate the YMH model building kit is the Georgi-
Glashow 50(3) model [21]. Miraculously enough, the pedagogical example in the
CL subkit is almost the Glashow-Salam-Weinberg model. Indeed, this example
is the electro-weak algebra stf = M Θ C, (group of unitaries G — SU(2) x
represented on two generations of leptons, N = 2,

With respect to the suggestive basis

/ V ή ^ eR, μR

of 3^L θ ^Λ» the representation has the following matrix form,

The internal Dirac operator is

0 M\ ( 0 / 0

' \ ( 0 Me) 0

with
(me 0

y \j ''i-μ

T h e m o s t genera l pos i t ive 6 x 6 matr ix z, that c o m m u t e s wi th p(stf) a n d wi th 3) is««)
0
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with positive numbers y\ and y2. Consequently the coupling constants g2 of SU(2)
and g\ of U{\) are related,

2

= - = 2 , sin'0w = - .

Details are given in the appendix. In this model, Φ of Eq. (7) takes the form

0 I / <P\ -<

0

and is parameterized by two functions ψ\,φ2 : M —> C Under gauge transforma-
tions, these transform as an SU{2) doublet

In terms of these parameters, the Higgs potential reads

V(φ) = K(l - \φ\2)2 ,

+ y2m
2

μ .

Note that the scalar fields ψ\ and (̂ 2 are not properly normalized, they are di-
mensionless. To get their normalization straight, we compute the factor in front
of the kinetic term tr(dΦ* * άΦz) in the Klein-Gordon action tr(DΦ* * DΦz) as a
function of the variable φ. By inserting Eq. (13) we obtain:

tr(dΦ* *dΦz) = *2L\δφ\2 .

Likewise, we need the normalization of the gauge bosons and as shown in the
appendix, we end up with the following mass relations:

2 L 2 2

mw = : 1 »
y\ + yi yi+ yi

2 = 2 ^ = 2yi (I - m2jm2

μ)
2

(y2/yι + m l / l

Consequently

me < mw < rnμ , mH < Vϊ(mμ — me) .

We obtain a model with less constrained weak angle by slightly modifying this
example. Let us represent the electro-weak algebra on one generation of leptons
and one generation of (uncoloured) quarks,

j ^ L = <C2Θ C 2, JT* = (C Θ C) Θ C
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with suggestive basis

and representation

p(a,b) :=

fa 0 0 0N

0 a 0 0

dR,

21

9
0 b

We choose the internal Dirac operator:

\

0

0

mu 0

0 md

0

0
md

0

0

(0 me)

0

0

0
me

0

0

All indicated fermion masses are supposed positive and different. Now, the most
general scalar product on the differential algebra Ω@(M 0 C) is defined with the
7 x 7 matrix

xl2 0 0 0^
0 y\2 0 0
0 0 xl2 0
0 0 0 y,

with positive numbers x and y. In this example we get:
Ύ A- V

Z =

sin θw —

implying 5x

- < sin2 i

3y

1

This z is in the image of the center of H θ C under p if and only if JC = y and
we have sin2 θw = 0.4.

The drawback of these two examples - electrically charged neutrinos and up-
and down-quark with opposite charges-is corrected by adding strong interactions.
As strong interactions are vector-like, this addition is immediate except for the fact
that the representation of the left-handed quarks, (3,2, | ) in Eq. (1), is a tensor
product. However, this is a tensor product of two representations of two unrelated
algebras (Mi(<C) and H ) and as such, it can be included in the CL scheme by
generalizing the representations to bimodules [1,22]. A bimodule is a pair of alge-
bras, each represented on a common Hubert space, such that the two representations
commute. The constraints indicated in Sect. 4 remain otherwise unaffected and for
the standard model, they can be stated as follows. The scalar representation is one
weak isospin doublet, implying a mass ratio for the W and Z bosons given by the
p factor

P '=
mW

r COS2 θu
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With the general scalar product (6), the other constraints read [23],

mt > yhmw > v3me ,

For the more restricted scalar product coming from the center, the constraints are
tighter:

mt = 2mw , rnH = 3Λ4mψ , sin2 θw < — = 0.533 .

It is a pleasure to acknowledge the help and advice of Robert Coquereaux,
Vaughan Jones, Daniel Kastler, John Madore and Stanislaw Woronowicz.

7. Appendix

This appendix collects our normalization conventions of a YMH model in a space-
time of signature H . Let φ, ψ9 and W be complex fields of spin 0, 1/2, and 1.
The kinetic terms determine the normalization of the fields in the Lagrangian and
the masses and coupling constants are defined with respect to this normalization.
With ft = c = 1, the Lagrangian is

1 # 1 2 *

2 2 φ

Note the one half in front of the scalar Lagrangian, i.e. we decompose the complex
scalar into real fields as φ = Re φ + /Im φ. We use the following definitions:

Ψι(x)

Our gamma matrices are,

( l o o o \ / o o o r

0 1 0 0 1 l _ I 0 0 1 0
0 0 - 1 0 y :~ 0 - 1 0 0
0 0 0 - 1 / V - l 0 0 0,

(' 0 0 0 -i\ / 0 0 1 0

0 0 / 0 3 ._ 0 0 0 - 1
0 / 0 0 y '" - 1 0 0 0

-z 0 0 0 / \ 0 1 0 0
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They satisfy the anticommutation relation yμyv + yvyμ = 2^μvl4 with the flat
Minkowski metric

0 0 0
. - - 1 0 0

η~ I π o - l o
0 0 - 1

We take

( 0 0 1 0N

0 0 0 1
1 0 0 0
0 1 0 0,

such that y2

5 = I4. y5 anticommutes with all other gamma matrices, yμy5 + y5y
μ = 0.

With the definitions
I4 — V5 I4 + 75

ΨL'.= — 2 — ^ ' ^Λ : = — 2 — ^ '
the free Dirac Lagrangian reads

In Euclidean spacetime, the Dirac Lagrangian written in this chiral form vanishes
identically and the fermions have to be doubled. With

Wμv:=dμWv-dvWμ9

the free part of the Yang-Mills Lagrangian becomes

The couplings of the gauge bosons to scalars and fermions in their respective repre-
sentations are introduced through the covariant derivatives, while the self couplings
of the gauge bosons come from the field strength. All their coupling constants derive
from the choice of one invariant scalar product on the Lie algebra. Amazingly
enough, the parametrization of this scalar product seems uniform in the literature,
at least for the classical groups,

(b9b'):=\bb'9 b,bfeu(l),

2
{a, a') := -r tr(tfV), a,ar e su(ή) .

The gauge bosons sit in a 1 -form A — Aμ dxμ with values in the Lie algebra and
the Yang-Mills Lagrangian reads

= ~\(Fμv,F
μv)

with the field strength F = \/2Fμv άxμ άx\ Fμv = dμAv - dvAμ + [Aμ,Av].
As an illustration, let us consider the standard model of electro-weak interactions

with G = SU{2) x U(l), one doublet of scalars φ and Higgs potential

V(φ) = λ(φ*φ)2 - ^ - ( φ » . (14)
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First we choose the electric charge generator Q:

iQ:=i(g2sinθw(

a normalized vector in the Cartan subalgebra of g = su{2) φw(l) spanned by the
weak isospin and hypercharge,

h-=i [gi ( ̂  _f/2 ) °) » γ := M βι)

We complete iQ to an orthonormal bias of g c of eigenvectors of [Q, ],

Z := i ί g2cosθw I 'Q _j .^ J ,-gλ sinί

0) θ]
'7

The eigenvalues are 0 and dz^2 sin#w =: ±e. The multiplet of gauge bosons is now
written as

Aμ(x) := γμ(x)ίQ + Zμ(x)Z + - 1 ( F F ^ ) / + + W;(x)Γ) ,

where the photon yμ(x) and the Zμ(x) are real fields while the W is complex.
The scalar fields sit in a SU(2) doublet with hypercharge ys = —1/2:

βs(a,b)φ = (a + ysbl2)φ9 a e su{2\ b G u(l) .

ps denotes the Lie algebra representation. In order to keep the photon massless, we
must choose g\ such that one of the scalars has zero electric charge,

This implies

g2

The gauge bosons masses come from the absolute value squared of the covariant
derivative of the vacuum υ. Since v satisfies \v\2 = μ2/(4λ) we choose

\\~P{A)υ\2

and obtain

^\~ps(Aμ)υ\l = ̂

with
and mw — cosθwmz .

To compute the mass of the physical, real Higgs scalar H, we change variables in
the Higgs potential,
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φ=υ+i 7 , Λ

V M*)
and obtain

K(<p(jc)) = Π » + -m2

HH2(x) + terms of order 3 and 4 in H(x\hz(x\hw(x),

with /-
m// = v2μ .

We come back to the first CL example of Sect. 6. If we write ω = l/2ωμv djcμ άxv G

Ω2M then ω * ω = l/2ωμvω
μvdx°άx1άx2άx3. Consider the Yang-Mills Lagrangian

in Eq. (9) on Minkowski space,

- t r [p(F)*p(F)z] = i

This term is nothing else but —1/4 (Fμv,F
μv). Hence

is by comparison equal to

Consequently

and sin2 θ w = 1/3. The remaining two pieces of the Euclidean Lagrangian (9) read

in Minkowski space

2L\(dμ + p(Aμ))φ\2-K(l-\φ\2)2,

and after the proper rescaling of the scalar

Comparing with

2"

Eq. (14) we

iμ))ψ\

have

-

A:

1 A
+ 2L

μ2

\ω\2

\6L2

K

L

and

2 2 r ^ 2 o 2 o A

mw — ̂ 2T7T = ' mH = 2μ = 2— .
16/ί ^1+72 ^
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