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Abstract: The new discrete Edwards models in this paper are defined in terms of the
so-called restricted intersection local times of the lattice random walk in two dimen-
sions. We study the asymptotic behaviours of these new discrete Edwards models in
the superrenormalizable cases. In particular, by approximating these models we can
construct new polymer measures in two dimensions which are different from the
original polymer measures obtained by approximating the original discrete Edwards
models. The new discrete Edwards models can be thought of as zero-component
lattice ¢*-fields with different cutoffs in the free and interacting parts.

1. Introduction

Let {B;},>0 be the Brownian motion in R?. The so-called polymer measure (or
Edwards model) is formally defined by

vi(dw) = N; ' exp (—zjlflé(Bs — B,)dsdt) wdw) , (1.1)
00

where 4 = 0 is the coupling constant, N, is the normalization constant and u is
the Wiener measure. There has been a lot of works on the existence of the poly-
mer measure v;. For instance, Varadhan (see Appendix to [28]) first proved the
existence of v; for d =2, and Stoll [26] then used the nonstandard approach to
give a proof for the existence of the polymer measure v; for d = 2. For d = 3 and
small enough A > 0, Westwater [29] first constructed the polymer measure v;. At
the same time as discussing the Borel summability, Westwater [30] proved that the
polymer measure v, is also well defined for d =3 and all 1 € [0,00). Recently,
Bolthausen [7] used an alternative approach with a simple proof, inspired by the
approaches presented in [10] and [13], to construct the polymer measure v; for
d =3 and small enough A > 0. In the following considerations we always assume
that v, for d =3 is the polymer measure defined by Bolthausen. For d =4, it
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was shown in [3] that a measure related to v; exists if the coupling constant A is
non-positive and infinitesimal.

Let {X,},=0 be the simple random walk in Z¢ on the probability space
(Q,%#,P), and

n n
Tpn =2+ n 9257 576X, X)) .
i=1 j=i+m
As for v; we can formally define a probability measure g, ,,; on the space
Co([0,1] — RY) by

:um,n,i(dw) = (E exp(_le,n))—l CXP(—ATm,n)dP s (1.2)

where E is the expectation with respect to P (for the precise definition of i, 1,
we refer to [2]). We shall call the measure u,,; “(original) discrete Edwards
model” (see [20 or 24]). For m, > 1, the measure pu,, ,; has been called a
modified discrete Edwards model in [2]. Heuristically, the intersection local time

j}; fol 8(Bs — B))dsdt can be approximated by Tj, (see [20 or 24]). Hence, it is
strongly believed that the measure v, can be approximated by p; , ;. Indeed, Stoll
[26] already proved this assertion for d = 2. In fact, it was shown in [2] that v,
can also be approximated by fi;, » s for d = 2 if lim,_,o m,/n = 0. Moreover, [2]
shows that v; for d = 3 can also be approximated by fi, » ; if lim, oo n/m, = oco.
By means of this approximation, the polymer measure v; for d =3 and arbi-
trary A € [0,00) was constructed in [2] by using a similar approach as in [7].
For d = 4, some other kinds of discrete models were discussed (see e.g. [4,6,11
and 19]).

For the case of a non-positive coupling constant A, there has been also a lot
of work on the model y; ,, or some other modified models (see e.g. [3,8,9, 14]).
In [22], Le Gall obtained some estimates on the exponential moments for the renor-
malized self-intersection local time of planar Brownian motion.

We remark that the measure p,, ,,; is only related to the intersections of the
random walk {X,} with long ranges if m is “not too small compared to n.” As
mentioned before, however, we know that the measure v; for d =2 and 3 can
be approximated by p, . if m, is “not too small compared to n.” From this
point of view we can say that the measure v; is only related to the intersec-
tions of Brownian motion {B,} with long ranges. In this sense, the intersections
of Brownian motion within a short range are ignored in the construction of the
polymer measure v; which were considered in the literature mentioned before.
In this paper we will propose new discrete Edwards models defined in terms of
the so-called restricted intersection local time of the simple random walk in two
dimensions. These new discrete Edwards models are indeed related to the inter-
sections of the random walk within short ranges. We will study the asymptotic
behaviours of these new models and define the new polymer measures as their
limits.

By the random walk representation of the lattice ¢*-field (see [3, 12,15, 17,28])
we know that there is a tight connection between the intersections of random
walks (or Brownian motions) and the ¢*-field, a quantum field model. In fact,
the Edwards model can be formally thought of as the zero-component ¢*-field (see
e.g. [6,10,16]). The discrete Edwards model u; ., (see (1.2)), which is defined
in terms of the so-called intersection local time of the lattice random walk, can be
thought of as the zero-component lattice ¢*-field with the same cutoff in the free
and interacting parts. However, the new discrete Edwards model given in this paper
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(see Sect. 2 below), which is defined in terms of the restricted intersection local time
of a lattice random walk, can be thought of as a zero-component lattice ¢*-field
with different cutoffs in the free and interacting parts. We will be especially inter-
ested in the two dimensional case, in which the new polymer measures constructed
in the present paper can be proved to be different from the original polymer mea-
sures in two dimensions defined by Varadhan in [28] (or by Stoll in [26]). Using
this fact one could hopefully obtain different continuum limits for a ¢3-field by
approximating the lattice ¢}-field with different cutoffs in the free and interacting
parts.

The remainder of this paper is organized as follows: In the next section, we
introduce our new discrete Edwards models and then state the main results. In
Sect. 3, we derive a reasonable estimate on the normalization constant with small
coupling constants. In Sect. 4 we derive a reasonable estimate on the normalization
constant for all positive and finite coupling constants. From the discussion in Sect. 5
we can see that the new measures in many cases (e.g. lim,_,o, n~'m2(logn)* = oo
and lim,_,o, n~'m2(logn)*? = 0)) are different from the original polymer measure
v, in two dimensions. In Sect. 6, we prove that the polymer measure constructed in
this paper and the original one (i.e. v;) are identical, if the restricted set (i.e. Z,%ln
below) is rather big (e.g. lim,_o, n~'m2(logn)® = 0). In the Appendix we use the
random walk representation to derive a formal connection between the new models
and the lattice ¢*-fields with different cutoffs in the free and interacting parts, which
also explains the motivation for the present study.

2. Models and Main Results

As in Sect. 1, we let {X,},>0 be the simple random walk in Z¢ on a probability
space (2, %,P). Let

2-n7'm 3L, Z;f=i+11{/\’,-=/\’jez,§}s d=2,

Smn = 5 P i .
th m Zi:l Zj:i-H I{Xi=XjEZ,§,}’ =3,

5

where
Z8={mx:xe 2% cz®.

It is clear that S;, =71, where T}, was defined in Sect.1. As in [5], the
random variable S, , (for m > 1) is called the intersection local time restricted
to the subset ZZ. Some renormalization results for the restricted intersection lo-
cal time S(m,,n) were already obtained in [5]. In particular, for d =2 we ob-
tain a renormalization result for S, , of the type of those first obtained by Yor
in [31] for the normalized intersection local time of Brownian motion in R3, if
lim, 0o n”'m2(logn)® = oo and lim, .o, n~'m2(logn)* = 0. This renormalization
result is different from that corresponding to the usual intersection local time of the
simple random walk in Z2 (see e.g. [23,25]). This gives the possibility to construct
different polymer measures in two dimensions by approximation from these discrete
Edwards models defined in terms of the random variable S,,, ,. The main aim of this
paper is in fact to construct rigorously such new polymer measures in two dimen-
sions. We now define a formal probability measure on Co([0,1] — R?) in terms of
the restricted intersection local time S, ,. From now on, we always assume d = 2
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and lim sup,_,oon~ 'm2(logn)’? < oco. Let

2
:—1
B —logn,

Y= Zni i jZ i) pji (V) Pe-j (¥) »
yEZ k=1j1=1i=1

where p)(y) = Po(X; = y), and {P,} is the probability law of the random walk
{X,}. Let X € Co([0,1] — R?) be defined as follows:

XD liy=n""2X;, i=01,...,n,

and X™ is linear on [(i — )n~',in" '] fori=1,...,n. For0 < t; < --- <t <1
and 4,,...A; € B(R?), we set

Vmn 2 (X (1) € Ay,..., X (&) € Ax)

— (Eexp(=Smn()))"" I exp(~Sma(AP, (2.1)
{XO(t )AL, XD (b )EALY

where E is the expectation with respect to P, and
- n
Smn(A) = ASpn —22n~"'m> 32 Bl iy c 12y
k=1
+ 4220 °m? 1;1 Mixezy -

One can easily extend the cylinder measure (2.1) to a probability measure vy, , ; on
Co([0,1] — R?), which we write for simplicity as

Vi, 1(d®) = (E exp(—Smn(4))) ™" exp(=Sp,n(2))P(d®) . (2.2)

It is clear that the measures v; , ; and p , ; coincide (both of them are identical
to the original discrete Edwards model). For m > 1, the measure v, ,; defines
a new discrete Edwards model, which is different from the model p ., defined
by (1.2). In the present paper, we first study the asymptotic behaviour of vy, , .
One of the main results is as follows.

Theorem 2.1. If limsup, , . m2n~'(logn)*? = 0, then {Vp, n.i}tnz1 is tight for all
A €[0,00). Moreover, all limit measures of {Vm, 1} and the original polymer
measure v, in two dimensions are different for A € (0,00), provided lim,_, o, n~'m?2

(logn)® = oo.

Remark. It seems possible that all limiting measures of {v,, ..} are singu-
lar with respect to the Wiener measure u on Co([0,1] — R?) for A € (0,00), if
lim, oo n~'m2(logn)*? = 0 and lim,_,., n~'m2(logn)* = cc.

Similarly as for vy, , 1(dw) we can define new probability measures on Cy([0, 1]
— R?) by

Vi w 1(dw) = (E exp(—Sm,n(1))) ™" exp(—Sm,n(1))P(dw)
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(the S, being defined at the beginning of this section) and

V' o 1(d@) = (E exp(—=Sm n(2))) ™" exp(—Sp »(1))P(dw)

where
SA’m,n(l) = ASmn — 2in"'m? > BI{XkGZZ} :
k=1 "

We have the following results for {v, , ;} and {v"p .1}

Theorem 2.2. (i) If limsup,_ . n~'m2(logn)’/loglogn =0, then {V',, ni}nz=1
is tight for all A 2 0, and {vp, n1} and {V'm, n,} have the same asymptotic
behaviour.

(ii) If limsup,_, . m2n~!(logn)® = 0, then

’ " 2
Vig,n, ks Vmgnas Vo mpon i — Vi, B — 00

for all 1 € [0,00), where 9 represents the weak convergence and v, is the original
polymer measure in two dimensions defined in Sect. 1.

Remark. We do not know whether or not {v, .} is still tight for some 1 > 0, if
lim,—, 0o 7~ 'm2(logn)® = oco.

3. On the Small Coupling Constants

As in [2], we first give a reasonable estimate on the normalization constant for
small coupling constants. The mhin result in this section is as follows.

Proposition 3.1. If limsup,_, m2n~'(logn)*? < oo, then there are constants

Ao > 0, c; €(0,1) such that
¢ < Eexp(—S‘m,,,n(i)) < cl“l, Vi € [0, 4] .

In particular, if limsup, ,  m2n~'(logn)® < oo, then there is a constant c, €
(0,00) such that y = con+ O(1) for i =1,...,n

The idea to prove Proposition 3.1 is basically from the proof of [2, Theorem 3.1].
However, some arguments here are different from those given in the proof of
[2, Theorem 3.1]. We prefer to give here a slightly detailed proof of Proposition 3.1.
From the proof given below one can also see why we have to assume in
Proposition 3.1 that

lim sup mf,n_l(logn)s/2 < 0.
n—0o0

As in [2], we set
Pn(x) (= p(n,x)) = P(X, =x),

5,(x) (=: p d \"" ([ _di?
By0) (=-p(n,x))=2(ﬁ> exp(_ 2n>,
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For m = m,, we set

Bi(=: f(m,n)) = zl pi(0) = B+ 0(1),
-
yi(=:y(m,n)) =7y,

J1 J2
_ 2 —1
Jil,jl;iz,jz = Am’n Z Z Z ]{Xi=Xj=X} ,

i=i| j=iy xe 72

, ! !
JZ’;A = /17}12}'1—1 Z Z Z I{Xi=Xj=x} 5

i=k j=i+1 xe72
Fm, A m, A 2 —1 ! 2. -2 !
Jei =Jp —m" | In ;ﬁi—i n Z;cyi Lixez2y »
i= i=
Y s &
gy () = Eexp(=J; [ )3(X,,x) ,
m, A LA
9, x)= gr{f[ (x).
For notational convenience, we will henceforth drop m and A from the above nota-
tions. We further set

. ) !
e =kz‘:1E [exp(—.]kﬂ,l) (/1’1_1"12 2 2 lix=x=p)

J=k+1 yGZ,%,

—m?(n~" B — 2n Py )I{Xkez,zn}> 5(/\’1,36)} ,

I -_ - -
AP =" Elexp(—Ji1,)(1 — exp(=Tx1 +J511.1)
=1

— Ut =T ks1,1)3(X,%)] .

Then we have 1 X
p(Lx) = gix) = 4P + 4P

Let
)i !
AV =" 'mr % [ > pe(»)gj-(0)g1—;(x = »)

k=1yez2 |j=k+1

— Bk pi(¥)g)j—i(x — y)} ,

!
Agz) =2n2m Y 3 [Vkpk(J’)gl—k(x -)
k=1 yez2
/ J1 !
-3 S Y Y )iz - y)

J1=k+1i=k+1 j=j1+1 ZEZ,%,

X gjy-i(z = ¥)9;—j, (z = ¥)gi—j(x — z)} ,
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3 _
( ) = = n 1m2 z Z Z E[I{Xk—X,—y}
k=1j=k+1 ycz2

7 7 2
X exp(—J+1,j —J i1, 11, jijg,1 (X1, X)]
J1

Lo !
A O VD VD VD VDY Ell{x=x;, =}

k=1j1=k+1i=k+1j=j1+1y ,c72
X Tig=x=zy eXP(—Jkt1,i =ity = ji41,5 —Jje1,1)

2
X (Jer,zi+1,j; it gty + D, gien,0) 06X, x)]

In general, by definition we know that g;(x)# g s+1—1(x) for k = 2 and x ¢ Z2.
However, we can see that the conditional distribution of Jy ;-1 given {X;_; € Z,%,}
is the same as that of J; ;. Using this fact, as in [2 or 7] we can show that

AP+ 4P < oV < AP + 4P + 04D
We introduce the following notation:

lgk(x) — plk,x)|
K(m,n) = sup sup —————
()= sp S0 =200 pdkx)

y |Z] 1(pi(0) — g;(0))]
1252, ((log(i + 1))"Y2log(nfi + 1))V 1’

where #(k) = £log(n/k + 1) + (logn)~"/2. For notational convenience, we write
shortly K for K(m,n). Let ¢(x) be a generic polynomial in x with nonnegative
coefficients, which might be different from line to line. We begin with several
lemmas.

Lemma 3.2. There is a constant c3 € (0,00) such that

- - k+1\
m’ EZ Pay(V)Pyy(x — y) = c3 (1 +m? i ) p(4(k +1),x)
Y€Zy

for all k,1 = 1 and x € R2.

Proof. 1t is easy to show that

2 p p < o1 1 P =y
m Z p4k(y)p4l(x - y) = 0( )m Z kl exp _E _ 27
vezl, yez2

< O(I)m exp ( <P )

4(k + 1)
, 1 (k+Dly —k/tk+DP 3
+O0(1)m EZ% &P (‘ 4kl Ak + 1)>

[y—hoe/(ke+1)| Zm/2
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(k + DIyl lx? )
< o(m* 2L Beak + 1),x) + 0(1) (- -
ey X g;z ki 16kl Ak + 1)

< 0(1)<1+m2]%ll

which implies the desired result. O

) plak + D),x),

Lemma 3.3. The following holds for all x € Z* :

|A(1)| < 2¢(K) [ log (l + 1) +n'm*logllogn| p(4l,x) .

Proof. As in [2] we set

/
> > pi(»gi—i(x — y)Xg;—k(0) — p;—x(0)),

Jj=k+1 yEZ,%,

M~

[1 = /Il’l_lm2
k

Il

2

1
> 2 940 pe(¥) — pi(¥))gi—j(x — ),

1 j=k+1 yez'zn

M~

=Jin"'m
k

Il

k=1 J=k+1

I !
L= n""m*Y Z ( > Pi—k(0)pi(»)gi—j(x — y)
yez2

—Bi pe(¥)g1—(x — y)> .

It is easy to show that
A(ll) =h+hL+65L.

As in [5] we set for x = (x1,x2),
Sn('x): {yz(yl,)Q)EZz :xi_m/z é yi < )Ci+m/2,i: 1¢2} 5

and let 7(x) be the point y in Z2 such that x € S,(y) (this will be used in Sect. 6).
We first consider /;. By Lemma 3.2 we can show that |[;| is less than

/ln"mzZ > 2i(»gi—i(x = ) (Z(g, #(0) — pj— k(O))>

J=2yez

/
< 2K~ 'm? zz S pi(»)gi—j(x — y)((logj) " log(n/j + 1)) v 1
J=2 yez2,

< 2p(K)n~'m ZZZ > Daj(¥)Pa—py — y)((og )~ log(n/j + 1))V 1
J= yEZ

< g™ (1 +m ’_j)) ((log /)~""*log(n/j + 1)) V 1 p(41,%)

Jj=2
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< 2(K)(n~"log(n/l + 1)(log(I + 1))V + n~'m?((log 1)*"?
+ log(n/l + 1)(log(/ + 1))?)) p(41,x)
< 2¢(K)(n~ Hog(n/l + 1) log(I + 1))"* + (logn) ") p(41,x) ,
if n='m? < O(1)(logn)~%>.

By a similar argument as for /, given in the proof of [2, Lemma 4.2] we can
show that

L] < Ap(K)(n~'m*log(l + 1) +n~'1) p(4l,x) .
We finally consider I3. By the definition of f8; we know that

)
| < n~! Z} d(K)log(n/j + Dm* 3 pi(y)gi—i(x — »).
J= yezs

Thus, by the same argument as for /; given before we can show that |3| is less
than

-1 2 1 . -

< /1¢>(K)<n-1m2 log(! + 1)(log(n/l + 1) + loglog(l + 1)) + é log(n/1 + 1))ﬁ(4l,x)

< A$(K )((logn)™" + I/nlog(n/l + 1)) p(41,x)

if n~'m> < O(1)(logn)~%2. Combining the above estimates we get the desired
result. O

Lemma 3.4. The following holds for all x € Z* :
] < 2K )(n' 1+ (logn) ™) p(41,x) .

Proof. As in the proof of [2, Lemma 4.3] we set
_— i / J1 i 4
Bi=xn""% > > X m ¥ ey pi-iz — y)pj-iz — y)

k=1jy=k+1i=k+1 j=j; +1 y,zEZ,%,

X pi—jj(z—y) = gi-k(z = ¥)gj,—i(z = ¥)gj—j,(z — y)gi—j(x — 2),

I} 1 J1 1
By =22n"2Y |ypem® Y pe(Wgi—kx—y)—m* S S 2
k=1 yGZ,Z,, J1=k+1i=k+1 j=j1+1

DY ) k(W pi—k(z = y)pj,—iz — I)pj—j,(z — ¥)gi—j(x —2)| .
€Ly
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Then, we have
A? =B, +B,,
and that |B;| is less than
/ J1

l 1
PaeK) Y X Y Y X mt Y (LG-))(LG - D)

abez0 k=1 ji=k+1i=k+1 j=j;+1 2
Ry J1 J=J1 Y,Z2E€EZH

X (£L(J _jl))cpk(y)]-)4(i—k)(z - J’)l-’4(,'l—i)(z - y)p4(j—jl)(z = Y)Pa—jpx —2) .
Let
T=0-B1 =i+ D+ -jD+0 -0 —i+ 1),
L= =i+ DG =)

T

It is clear that ¢ < j — k.
By Lemma 3.2 we can show that

én*zi i i‘f i m* 3 (logn)~'?

k=1 ji=k+1i=k+1j=j1+1 ) .e72
X Pi(¥) Pai—i)(Z = Y) Pagj,—i)(Z = ¥) Pacj—j )2 = ¥) Pa—jy(x — z)
[ J1 i
<nty Y 3 3 (logn)'?
k=1 ji=k+1 i=k+1 j=j;+1
X Y kT Y Pay(z - Y)Pa—p(x —2)

yEZZ z€72

1 ! 1 1
<oy Y S Y (ogm) Y pe(y)

k=1 jy k1 ikt j=j 41 vez2
_ +1—j _
1 4+m 2 7 ) Sao+1— j)x —
co £ & !
< n ogn) 't .
B k=1 jy=k+1 i=k+1 j=j1 +1 & k+o+1—j
o+l—j , k+o+1—j )
X 1+m2—, 1l+m— 41,
( a(1-1+1))< Koti—jt0) P

r ~1/2 m | 5/2 m' 4—1/2\ 5
= 0(1) n—z(logn) +7;(logn) +n_2(10gn) p(4l,x)

< 0(1)(n~ "1 + (logn) ™) p(41,x)

if n~'m? < O(1)(logn)~%2, where we have used the basic inequality: xy <
%(x2 + 32).
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Let Z(k) =
that if avVbVe

log(n/k + 1). As in the proof of [2, Lemma 4.2] we can show
1,

”VR 1=

Y N .
ntyY N jZI > omt Y (L - (LG - D))

k=lj1=k+l i=k+1 j=j1+1 )/,ZGZ,%,
X (Z(j = 1)) Pe(Y) Pai(z = ¥)
X Dajy—i)Z = Y)Pagj—jpy(Z = Y)Pag—jy(x — 2) .
i

! ! 1 - N ~
son?y ¥ i S (LE— k) x (LG — (LG - D))

k=1 j=k+1i=k+1 j=j; +1

_ +i—j k+o+1—j
14 2 0 1 2
xT ( =i 0) U T M ke i=i D

STV
ey SR

IIA

0(1) (n21P(logn/l + 1) + n~'m*(log(1 + 1))*n~21* log(n/l + 1)
+n 2 m*(log(! + 1))’n™ "l log(n/l + 1)) p(41,x)
< 0(1)(n~2P(log(n/l + 1) + (logn)~") p(41,x) ,
if n='m? < O(1)(logn)~>/>. Combining the above estimates we can conclude that
1Bi| < oK) "1+ (logn)~" +n72 P log(n/l + 1)) p(41,x) .

To consider B,, we set
Dy =202y \um® X pe(0)gi-i(x — y)
k=1 y€Z2
! J1

!
- > X X m Y pi@piaz—y)

Ji=kH =kt j=j+ ez

Xpj-i(z = yI)pj—j(z = ¥)gi—j(x —2)| ,
PR LN A Loy
Dy=2n""% > > X m 3 (pi2)— p(y))
k=1 ji=k+li=k+1j=j1+1  y-e72
X pi-i(z = y)Pj1—i(z — ¥)pj—j1(z — y)gi1—j(x — 2) .
By the definition of y; we know that

n'lyj < o(1)n 'm*(logn)* .
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Thus, by Lemma 3.2 we can show that

2
IDi| < 220723 yym* S pi(»)gi—i(x — »)

J=1 y622
+22n? Z > Z Zm > PP Pe=i ()
J=3k=j=1i= yeZ2,
xm? 3 pi(z)gi—j(x — 2)
zeZ,z,,

< 2pK)n~? | m*(logn)® + i > 3_71 3 ( m’

= n m (10€n VEN N N

- & iy j=rimt NG — i+ 1)k —j1)

p(4l,x)

1 , 1
+i(j1—i)+i(k—jl)+(j1—i)(k—ﬁ))< = )+1>
< 2K )((logn)~" +n~"1)p(4l,x),

if n='m? < O(1)(logn)~>"2.
We now consider D,. It is easy to show that

1 ! J1 !
Pn?y 0 Y Y Y (pi@)+ m(»)
k=1 ji=k+1i=k+1 j=j1+1 y 722
X pi—i(z = y)pj-i(z — y)pj—j(z — y)p(4(l — j),x — z)
< 2n 212 p(4l,x) .

Then, we can show that the main term in the expression of D, is the following:
e L Lo,
AnTtyl Y 2 2 omt 3 (pi(e) — p(2))
k=1ji=k+1i=k+1j=)1+1  zez2
X pi-i(0)pj;-i(0) pj—;, (0)g1—;(x — 2) ,
which is denoted by D). In fact, we can show that
Dy < O()A*n*m*(logn)* + D} ,
where
YT SN N N
Dy=xn""% 3 X 2Xom > (pf2)— p2))
k=1 ji=k+1i=k+1 j=j1+1 ZGZ,%,\{O}
X pi—k(0)pj,—i(0)pj—;,(0)g;—j(x — z) .

Let us first recall an estimate on p,(x). By [20, Proposition 1.2.5] we know that
for any given o € (1/2, 2/3),

|Pa(x) = P(0)] £ O 2 p,(x),
if |x| < n* and pu(x) > 0. Using this estimate we can show that

IDY| < 22¢(K)D, + 22P(K )(logn) ™! p(41,x) ,
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where
_2 i / Vi ) 4 _ -
=n"3 > > om0 |(p(z) = p(2))]
k=1 j=k+2 ji=k+1i=k+1 z€z2\{0}
(=K' +i+ DTG =) BAUI - j)x—2).

By computation we know that

2k Jj—1

Zm? Sl: > 2 Z szj(z)

k=1 j1=k+2 j1=k+1 i=k+1 €72

= k(i —B)7 G =i+ DTG = )7 A~ j)x —2)

< o(1)(n 2% + (logn)~ 1) p(41,x) , (3.1)

if n='m* < O(1)(logn)~>/>. Moreover, we can show that

m2 2 1 =l g 1 . !
n Y T S oo )
< 0()(n 2 + (logn)™h), (32)

if n='m? < O(1)(logn)~>/%. We remark that
| K

|pj(z)_pk(z)| 0(1) 2](Z)a

if j > k = j/2. Then, using (3.1) and (3.2) we can show that
|1D2| £ (K)22(n™21% + (logn)™1) p(41,x) .
Combining the above estimates we can conclude that
D] £ $(K)(n~* 1 + (logn)™") p(4L,x) .
The proof of Lemma 3.4 is then complete. [J

We now consider A§3). We can show that the first term on the right-hand side
of A(,3) is bounded in absolute value by

1 - -
PnTmty Y % E[I{szX,:y} exp(—Jrs1,; —Jjr1,1)
k=1 j=k+1 yGZ,%,
J

Xy Z Z Z({X ) €23, Xiy=X;, €72}

iy=k+1 =i j1=j+1j2=/1

+I{Xll =X].2€Z%,Xiz=le eZ’%‘}):I
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1 ! j j ! /
SPn7mty, Y% i ij > 2 (o) k(21 — )

k=1 jkH1 2y ezl it=k 1 =i 1)+l ja=
X Giy—iy(22 — 21)9j—i, (¥ — 22)gj, - j(z21 — ¥)9j,—j1 (22 — 21)91—j,(z2 — 22)
+ (YY1 k(21 — ¥)gi—iy (22 — 21)gj—i, (¥ — 22)
X gji—j(z2 = ¥)9j,—j, (21 — 22)g1—j,(x — 21)) .

. . _ k
From this we see that the quantity of the form of n~'m? Ztl o th 1 21 Py (0)
X p,(0)py,(0), which has a bad estimate (see the arguments given in [5, Sect. 3]),
does not appear on the right-hand side of the above estimate. Thus, using the
arguments given before we can show that the first term on the right-hand side of

A§3) can be bounded in absolute value by:
P )(n 2P + (logn)~") p(4l,x) .

By the same reason as before we can show that the second term on the right-hand
side of A§3) is bounded in absolute value by:

PR )(n 721 + (logn) ™) p(41,x) ,
which proves that
457] S (2 + 2K P + (logn)™") p(4L,x) .
We now consider &/32). Let

—1 2 2, -2 2
fl = n ,Bkm I{XkGZ,%,} —An Ykm I{XkGZ,%,}’
/

="' Y m Z I(x=x;=y} -

J=k+1 yez

It is clear that
& < O(1)(logn) ™2,
if n='m? < 0(1)(logn)™>2, and

AP = ZEexp(—Jk+11)(1—exp( &+ &) — (& — E))5(Xp,x)

= ,;ECXP(—ij,I)(l —exp(&)(1 — &) — (& — &1))o(X, x)

v

l -
I;Eexp(—Jm,z)(l —(1+ & +0(EH)(1 - &) — (& — &))6(X1,x)

1 -
= /;1 Eexp(—Jii1)(E1E + O(1)E + 0(1)E3E,)d(Xr,x) -

Similarly, we can show that

/ _
AP < S Eexp(—Jp)(E1é + ONE + &)+ 0(1)EE )X, x) .
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By computation we can easily show that
! - l
> Eexp(—Jii11)E8(X1,x) < ¢(K) (;(logn)‘”2 + (logn)”z) P(4l,x);
k=1

! _
k_Zl E exp(—Ji41,1)E20(X1,x) < AP(K)((logn) ™'/ + %bg(n/l +1))p(41,x),

and

ZI: E exp(—J5+1,1)530(X1,x) < Z2¢(K) ((logn)™" +n~21) p(41,x) .
k=1

Using the above estimates we can show that
|| < 2K )((logn) ™" +n~212) p(41,x) .

Proof of Proposition 3.1. Having the preparations given before, by a similar argu-
ment as in the proof of [2, Theorem 3.1] we can easily prove Proposition 3.1.
In fact, we need only to show that

i ! )
n' S S mE Y pe(0)gi—(y) pi—«(0)

I=1k=1j=k+1  yez2

i | n
] Zkz_; Z: p;(0)m? Z Pe(¥)91-1(¥)

I=1 yGZ
< @K )(n~"'m*(log(i + 1))* log(n/i + 1) + 1) . (33)
Indeed, we can show that the left-hand side of (3.3) is less than

i i—k

n“m2¢>(K)2 S () S pi(0)

k=11=1 yez2 j=i—k—1
1 i n i i—k 1 n
=n ¢(K)k§3”21 Sy e PP My Ly sy
< ¢(K)(n~'m*(log(i + 1))? log(nfi + 1)+ 1),

which proves (3.3). Since n~'m? < O(1)(logn)~>%, we know by (3.3) that
K(m,n) < A9(K(m,n)),
and so there are constants ¢4 € (0,00) and 49 > 0 such that
K(m,n) < cqd, VA €[0,4].
In other words, we have
lgx(x) — p(k,x)| £ O()Ap(4k,x), k € [1,n], Vx € Z%, 1 € [0, Ao] .

This implies the desired result by choosing a sufficient small 4 > 0. O
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Remark 3.5. From the proof of Proposition 3.1 given above one can see that the
constant Ay € (0,00) depends on the factor limsup,_, . n~'m?(logn)*’*. However,
one can also see that the constant Ay given in Proposition 3.1 is independent of m
and n, if limsup,_, . n~'m?(logn)*? = 0.

4. On the Large Coupling Constants

In this section we always assume lim,_ o, 7~ 'm*(logn)*? = 0. The main aim of
this section is to prove that the assertion given in Proposition 3.1 also holds for all
finite and positive coupling constants, i.e.

Proposition 4.1. For any given A € (0,00) there are constants cy,c; € (0,00) such
that
ca < Eexp(—S‘mn,,,(}L)) <ec.

Remark that 2
Tei" = 8Sma(2) .

Let
G(4) = [ exp(—T12)dP, VA C Z2.
A

Let E, be the expectation with respect to P,. The next lemma plays a key role in
the proof of Proposition 4.1.

Lemma 4.2. There are constants c3,cs € (0,00) and 29 > 0 such that
-m,2A
Ecexp(—Jy, ) S ¢, A€[0,4], (4.1)

By —yy exp(=J 05 < O pleal,y —x), VAi€[0,d], [ Zn/2  (42)
for all x,y € Z°.

Proof. 1t was proved in the proof of Proposition 3.1 that (4.1) and (4.2) are correct
for x = 0. Without loss of generality, we may assume x € S,(0)\{0}. Let

t=inf{k 20 : X, € Z2}.
By the strong Markov property we can show that

ExI{XI:y} CXP(—jl,l)
= Exd{rs 0=y} + Exl{r=1 x=y} exp(—i/in_lm2 + /lzn_zmzy)

+ Y Elpeci =y Ex(exp(=J 11— ix,_—y}) - (43)

2€72
By Proposition 3.1 we know that there is a constant 49 > 0 such that

E;exp(—J1,1-)x,,_ =y < O(DPAI 1),y —2),

E,exp(—J1—.) = O(1),
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if 2 € [0,40] and z € Z2. Using the last estimate and (4.3) we can easily show that
(4.2) is true.

We now prove (4.1). Without loss of generality, we may prove (4.1) only for
I = n. We first derive an estimate on the stopping time 7. For any x € Z? we have

Pt >T)=P, (ﬁ {X; ¢Zin})-
i=1

Let I, =inf{k = 1: km> < T < (k + 1)m?}. Then

In kmﬁ

Pt > T) < P, < n N {x ¢Z,i,,}>

k=1 j=(k—1)m2+1

L1 fem?
=E | N N {Xxe¢z2)Py, , (x>m)|. (4.4)
k=1 j=(k—1)m2+1 (n=Dymp+1

By [21, Theorem 3.4] we can show that if y € S,(0),
Pyt < mj) 2 es(logmy)™!

for some constant c¢s € (0,00). By the symmetry property of {X,} we know
that ,

PX( (t > mﬁ) = Py T > mﬁ)

Iy—m2+1 =121 1 12 1
n n n

=1 —CS(IOgmn)_l -
By (4.4) we can show that

Pi(t > T) < (1 —cs(logm,)~" ). (4.5)

By (4.5) we know that for any given M = 1 there is a constant M; € (0,00) such
that
P.(t > T,) < exp(—M logn),

if T, € [Mim2(logn)?, (M; + 1)m2(logn)?].
On the other hand, we can show that

!
Eo Y Iy cny < o(Y(Im™2 Vv 1).
k=1
Hence, there is a constant ¢ € (0,00) such that
7 p
E (};} I{XkeZ,%}> < plf(Im™2 Vv 1P, Yp=0.

From this we can see that there is a constant ¢; € (0,00) such that

n—rt

Egexp (in‘1 > ﬁkm2I{Xk€Zz}> < exp(crlogn), A €[0,4]. (4.6)
k=1 "

We now prove that the following holds under the assumption |x — y|> <
O(1)n(logn)'/?:

-m,22 -
Edix,—y exp(—J 1) < O(1)pean, y —x) . (4.7)
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Indeed, if |x — y[*> < O(1)n, by (4.3) and (4.5) we can easily show that the left-
hand side of (4.7) is less than
=m, 2 =m, 2]
Ex1{1>n/2,X,,=y} exp(_J'{in A) + Ex1{1§n/2}EX1 exp(_‘ltln,n—f)I{Xn—r=y}

-m,22 -
< P2t > n/2)E" exp(—=2J7 ") + O())ExI(z <y B(4(n — 1), y — X.)

=< O(l)exp(—t:g(logn)3/2) exp(cy logn) + O(1)n™!
é O(l)[)(n,y —)C), VAS [0’ j'0]

for some constant cg € (0,00). Hence (4.7) is true if |x — y|*> < O(1)n. We now
assume |x — y|*> = Kn for some large K = 1. In this case, we know that the left-
hand side of (4.7) is less than

O(1) exp(—cs(logn)*?) + O(1) p(64n,x — y)
=m,2A
+ Elge<npyI (1, <pe—yi/8y Exe XD(=T 1 ns Ok, =) -

We need only to consider the last term on the right-hand side of the above estimate,
which is denoted by /. Indeed, we have

1 £ 0P (v > Tp) + Exlles i I(ix,_ | < y1i8)

-m,2A
X Ex, exp(—J | neo)(x,_o=y}]

< o(n M2 L o(1)n~'P, ( max IX;| = 7|x — y|/8>

1<i (M +1)m2(log n)?
< o2 £ o1 m™! _ lx—
= O™ + 0™ exp ( —eo s
g O(I)ﬁ(clonrx - y) s
for some constants cg,cjg € (0,00), where

O(1)n(logn)'/2.

We now prove that (4.7) holds under the assumption: Kn(logn)'? < |x — y|> <
O(1)n(logn)*?. Indeed, by an argument similar to the one given before we can
show that

I £ O()PY(x > n/2) + Ex[Iiz<npy{1x,_ | < |x—yI/8}

> (logn)!? and | — yJ?

I\

_n__
mZ2(log n)?

=m,2).
x Ey, exp(—J'ﬁnir)[{Xn_Fy}]

_ 2
< O(1)exp(—cs(logn)*?) + O(1)n~" exp ('C“ : nyl )

< 0(1)p(cian,x — y)

for some constant cj1,c12 € (0,00). Hence, (4.7) is also true in this case. We now
prove that (4.7) holds under the assumption: |x — y|> = Kn(logn)*? for some large
K = 1. Indeed, by (4.6) and the Hoélder inequality we have

I < O()PY2(X, = y)exp(cslogn) < O(1)p(cizn,x — y)

for some constant ¢;3 € (0, 00).
Concluding the above estimates we obtain the desired result. [J
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We now use Lemma 4.2 to prove the next two lemmas which will be used in
the proof of Proposition 4.1.

Lemma 4.3. Assume that lim,_,., m>n~'(logn)*? = 0.

(i) For any given A € [0,00) there are constants cia,ci5 € (0,00) such that
G(X; =x) < cup(ashx), VxeZ? 1 <n. (4.8)

(i) For any given A € [0,00) there is a constant ci € (0,00) which is inde-
pendent of m and n such that
Eexp(—j':';,’l) < ci6 .
Proof. (i) By Proposition 3.1 we know that there is a constant 4o > 0 such that
gix) £ 0(1)p(4Lx), VxeZ’, 121, A€[0,A].
By definition we can easily show that
jl,n gjl,l+jl+l,n, lE[l,n]-

Thus, by Lemma 4.2 we can show that

GX; =x) £ [ exp(—J 1, x,—} exp(—J 141,1)dP
Q

lIA

I exp(—J 1,0 px,=xy Ex exp(—J 1,0—1)
Q

lIA

O(1)gi(x) £ O()p(4l,x), Vx € Z% A e(0,4)].

We now prove that (4.8) holds for 1 € [0,24¢]. As in the proof of [2, Lemma 4.1]
we may prove (4.8) only for / = n. Without loss of generality, we may assume
n=2" and m = 2™ . Then we have (see the proof of [2, Lemma 4.1])

Gy =) = gn () £ O(1) T 63,1030, 5 = ¥)
YEZ

é 0(1)13(0172”1 ,x)

for some constant c¢j7 € (0,00), which implies the desired result.
(i1) This is an immediate consequence of (i). O

For convenience, we assume n = 2", Let
Ny =#{k <2m 120702 1 <X — Xy 1] < 272X, € Z2\{0}} .

Lemma 4.4. There is a constant cyg € (0,00) such that

G ( U {ANin, = M((n—ir) vV 1)*2im™2 exp(—2i_"‘_2)) < CisM~'.
i=1

Proof. By Lemma 4.3 we know that
GX = y) = 0(1)p(cisk, y) ,
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and so

o=l on—1 lez
G(Xy = < 1)1 V2 — .
kgl (Xk y)_O()0g<lx|2 )eXP< 2,”)

Then, as in the proof of Lemma 4.3 we can show that

2n1—~1
EgNim £ 3 ) G(Xe = y, Xyn—1 =)
k=1 2(i—l)/2h1§')(_y|§2i/2
yezZ\{0}
2n1—-1

=S G(Xk:y)G(erq—l_k:x—.V)'
k=1 2(—1)2_1<|r—y|<2i/2
yez2\{0}
By Lemma 4.3 we have
2nl——l
EgNim £ 0(1) Y > Bleisk, y) pleis(2" 'k x — y)
k=1 (=121 <|x—y| <2i/2
yezZ\{0}
2n1—l |
=0 ) > pleisk, y)p(eis(2" " —k),z)
k=1 20(—1)/2_1<|z|<2i/2
yez2\{0}

2nl—l
<o(hm? s > plas(2" " —k),z)
k=1 20-1)/2_1<|z| <2i/2
< O(m™((n— i)V 12 exp(=2"71),
which implies the desired result. O

To state the next lemma, we let {)? ntnz0 be a simple random walk in z?
independent of {X,},>0. Let {P,} be the probability law of {X,}. Let

~ ~m, 2 ~
Go(4) = [ exp(—J} yn-1(x))dPy ,
where A
2 27—y —1 2"1_1 2nl—l
Iy m-1(x) =24m727" D> le{)?i=ijéz,%,—x}

i=l  j=i+
ny—1

2
— (2Am?2~ M =D _ 4222~ 2m =Dy z; Lipez2 >

i=

and Z2 —x = {z —x:z € Z:}. By Lemma 4.3 we know that

G(X;=y)= Exl{X,=y—x}eXp(—j'1rf’22,ﬁ—x) =< 0(1)p(eist, y). (4.9)
Lemma 4.5. Let {x(1),...,x(2" 1)} be a given set. Suppose that there is a con-
stant M = 1 such that

2n1——l

kz_l I{x(k):z(i—l)/Z—l <|x(k)—x(2"1 ~ 1) 22, x(k)€Z2\ {0} }

< Mm™((n — i)V 1)y 2exp(—2"""72), i=12,....
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Then, there is a constant cj9 € (0,00) such that

21 1 271 1
5 —24n;—1
G (/; kz—:l I{)?j —x(k)—x@ ) ayezz\ [0y = Km & )

< ok 'M, Vk =1
Proof. As in the proof of Lemma 4.4, by (4.9) we can show that

2n1—1 2nl—l
EG}(znn—l) ,; ,; I{i,:x(k)—x(z"l—'), x(k)€ZZ\{0}}

ny—1

- -
= Zl kZl Liai-0n -1 < a)—22m =) 2272, xk)e22\ {0}}
i= =

2"1_1 . N
X ¥ Gn-1(X; = x(k) —x(2" )
j=1

) 2"1“1

= O(l)i; k; Ligu-1n1 xo—x@m =1y 22, x(0eZ2\ {01}

2m=1
xlog( vz) exp(—=2m"h)

< Oo(1)Mm~22m~1,

From this one easily obtains the desired result. O
We are now in a position to complete the proof of Proposition 4.1.

Proof of Proposition 4.1. 1t is clear that

-m, 2 7,24
() = [exp(=T -1 )exp(=T3i 1y )
Q

2n;—1 M
xexp | —2Am*2™" > Iix—xez2y | 4P

=1 j=am—=l4

=m,2), ~
— g{exp(—fﬁznl_l)dGX(2n1~1)dP
s M 1 onp—1
—n
X CXp —2dm°27" l=21 gl I{Xi"inl—lz’\;jezr%_ 2"]_1}
M= 1 on— 1-1
:g{exp( 2)»"’!22 " Z Z n] l"‘X )(1_0}> dG x(@m— l)dG,

i=1

M 12”1 1
2m—
xexp (‘2’1’" 2y 2 - 2n1—1=’\;j’)6623.\{0}}> ’
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where .
G'(4) = [exp(—J )"y -1)dP.
A

Let
AM) = N {Nin < M((my — i)V 1)’ 2'm 2exp(—2"""172)},
i=1

5 2n1—l 2nl—l

AKK) = { 2 L pexy, i =tpxez oy < K’"“zzn'_'} ;
j=1 =
ony—1

B(M) = Z I{Xi=0} < Mn; ; ,
i=1

. 2n1—l
B(M) = { Zl 1{_X2n|—l:)?j} < Mn[} .
Jj=

Then, by Lemma 4.3 we can show that

2n|—1
G'B M) =M~ 'n7t Y G =0) < 0(H)M".
i=1
Similarly, by (4.9) we can show that
Gyom-1y(B(M)) < O(H)M ™"

Recalling the assumption: m?2~" < O(l)nf/ 2 by Lemma 4.4 and Lemma 4.5 we
can show that there is a constant cy9 € (0,00) such that

G(Q) z T dGyn-1ydG
AM)YNA(K)NB(M)NB(M )

X exp(—2m*27" M?n) exp(—22K)

Zen [ Gyon-1(A(K)NB(M))dP
AM)NB(M)

Zcn [ (A-0MM™'—OMWK~'M)P
AM)NB(M)

> cy(l —O(MM ™' — 0K~ 'M)(1 — oM ™).
Hence, if M = 1 and K = M are chosen to be large enough, one obtains
G(Q) 2 e

for some constant ¢;; € (0,00) which is independent of m and n = 2", This com-
pletes the proof of Proposition 4.1. [
5. Proof of Theorem 2.1

By Proposition 4.1 and (4.2) we can easily show that {v,, ,}.>1 is tight for each
4 € [0,00), provided lim sup, . n~'m3(logn)*? = 0. In fact, by Proposition 3.1 we
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also know that there is a constant Ay € (0,00) such that {vy, »1}.>1 is tight for
each 4 € [0, Zo], provided limsup,_,  n~'m2(logn)*? < oco. Let

V(A = {u; Vi, ks, CONVEFGES weakly to u); as n — oo

Sor some {ky}n=1 with lim,_, .k, = 0o} .

By considering the expansion of moments of y; in powers of A one can see that
u, is different from the original polymer measure v, in two dimensions for all
wy € ¥ (L), if lim,_,oon~'m2(logn)® = co. O

We shall now give another approach to the problem of showing that u; +v,,
from which we can also see that u;, 4 > 0, should be singular with respect to the
Wiener measure p.

We first prove two lemmas. In this section, we always set m = m,,.

Lemma 5.1. For any given A € [0,00) there is a constant ¢; € (0,00) such that
n
Eexp (8/12n‘2m2 > Vl{xkezz}) < exp(c1A’n™y).
k=1 "
Proof. By definition we know that y = O(1)(m*(logn)® + 1). Without loss of

generality, we may assume lim,_..n 'y = co. For any given ¢ € (0,1) we set
&(n) = [en?y~']. It is easy to show that

szXI{XkGZ%} < o)M= +1), VxeZ?,
and for some constant ¢, € (0,0),
2 W l 2%, 2, i
Ec\n™"m” 3 vy cpny | S iln " m™YE
k=1 R 1
which implies that
&(n) 0o .
Ecexp | 842n2m? > VI{XkeZZ} = 2(822802)’ <l+ch?
k=1 " i=0

for some constant c3 € (0,00), if ¢ € (0, 1) is small enough. By the Markov property
we have

n n—&(n)
E exp (8/12”_2”’2 > iy ez2}> =Eexp | 88n7°m* 3 iy ez
k=1 EEm k=1 e
s 9 2 &(n)
% Ex, _gmyexp | 84°n “m* ) )’I{Xkez,%,}
=1

n—_¢(n)
< (1+es2?)Eexp (8?»2"_2’”2 = W{xkezz,}>

2\ 2 1 2 3
< O(1)(1 + ¢c34%) @ < O(1)exp(car-n™ m“(logn)”)

for some constant ¢4 € (0,00), if € € (0,1) is chosen to be small enough. This
completes the proof of Lemma 5.1. O
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Lemma 5.2. If limsup,_, . n~'m?*(logn)’? < oo, then
2

E < O(1)n"'m?*(logn) .

n
”_lmzk;I{Xkez,%} -1
Proof. In fact, we can show that (see e.g. Lemma 6.3 below)

E <n—1m2kz Iiyeny = 1) = n—‘kz (m*P(X; = 0) — P(X; € S,(0)))
=1 =1

n n
+n7'Y Y Y (PN =x)— PN =y)=0(n"" S mk "
i=1 xez2\ {0} YESu(x) k=1

Moreover, we have
1,2 & 2 22 A
E(n m kgl[{XkEZl%l}> —1l=n mEkZ::II{XkEZ,%,}

n
+2n%E m*l 2 I 27 — 1
g::l 4, ezm}kz:zk?+l X, €23}

n n—kj
=0(n~'m* +2n’E kzl mZ[{Xkl EZ"Z’}Ekzl (m’I xyezzy — 1)
1= 2=

n n—k1

n
+20°E Y My oy —k) =272 3 Y1
k=1 ! ki=1ky=1

= O0(1)n 'm*logn .
Hence,
2

n 2 n
E (”wlngl{XkeZ},} — 1> =F <”_1m2k§_:ll{xkez,%,}) —1

n
+2 (1 —En“'mzkz_:ll{xkez,%}>
< O(1)n"'m?logn,

which implies the desired result. O

Note. It seems that the estimate given in Lemma 5.2 cannot be improved.
Lemma 5.1 and Lemma 5.2 will be used again in the proof of Theorem 2.2 in
Sect. 6.

For convenience, from now on we always assume in this section that 4 > 0,
lim,—oon~ 'm?(logn)® = oo and lim,_..n~'m*(logn)*? = 0.

For w, o’ € Cy([0, T] — R?), we define

/ /
w,w )= max |x(,w)—x({,w )|,
plo, @) = max [x(tw) = x(t,0)|

where x(t,w) is the position of @ in R%. Then Qr = Co([0,T] — R?) is a Polish
space (i.e. a complete separable metric space). Using the embedding theorem (see



New Discrete Edwards Model 493

e.g. [2, Theorem 2.1]), for any n» = 1 we may assume that there are non-negative
random vectors 7; < 7, < --- in R? on (Qr, %, 1) such that

(i) 11,7 — 71,73 — T2,... are independent, identically distributed and finite,

(i) E1, = (%, %) € R?, where E is the expectation with respect to u,

(iii) the random vectors x(t, + ),x(72, + ) — x(7y, * ),... under the measure u
are independent and identically distributed, and their distribution is the same as that
of n~12X; under P, where x(u, + ) = (xi(u1, + ), x2(ua, - )), provided u = (uj,us)
and x = (x1,x2).

From (iii) we can see that {n~V2Xj,...,n~12X;} and {x(t1),...,x(tx)} have the
same distribution. We will prove that u,; v, for all u; € #°(4). For this purpose,
we may assume

9
Vmpni — Uiy N — OO.

Using the embedding theorem given before one can see that v,,,, can be thought
of as a probability measure on Q7 for 7 > 1. Thus, by [27, Theorem 1.1.1] we
know that

Jim vy 1(B) = wi(B)
for any B € # with u;(0B) = 0, where 4 is the Borel g-field. We remark that v, is

equivalent to the Wiener measure u. To get our desired result, it suffices to prove
that there is a sequence of sets {D,},>1 C Qr such that

lim w(D,) =0; lim sup u,(D,) > 0, (5.1)
n—o0 n— o0
or
liminf u(D,) > 0; liminf u;(D,)=0. (5.1
n—00 n—o0
We set

n n
_ -1,
Gy =n""m"30 3 I qmy=xmen—1223)
i=1 j=i+1
S
nom, 1 {x(z;w)en=1222} »
iz
n
2.2
G(n)y=n""m Vz%l{x(ri,w)er'ﬂz,%,} ,
iz

where =128 = {n=12x : x € S}. We also set

~ 1 1 1
B,, = {CU S Ql+n_'/4 LTy é (1 + WZ,I + n—l/z> . lC](I’l)’ g 5(2(1’1)} .

1 _ n 1 _ n
pP,=P (‘ESm,n —n lmzijlﬁl{)(iez,g} Z 3" zmzyz%f{,\;ez,%‘}) .
1= =
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By Lemma 5.2 we can show that

P, <P ( Y m ey - 1’ > (1ogn)—5/4)
i=1 "

1 1 1
+P <‘§Sm,n — 5z«:S,,,,,, > En—‘y - 0(1)(1ogn)—1/4)

< 0(1)(ogn) V4 + O(1)n*y~2Var(S,.,)
< O(1)((logn)™* + Var=\(S,,.,))

goes to zero as n — oo, provided lim, ,..n~'m*(logn)® = co. Using the above
estimate we can show that

W(By) = Py < O(1)((logn)™"* + Var™!(S,.0))
goes to zero as n — oco. Hence, there is a subsequence {7 },>1 such that
o0
kZ:l ﬂ(Bnk) < o0 )
which implies that
lim u(4;)=1.
l—o0
If we make the plausible assumption that this implies
lim pu(04;) < 1,
[—o0

where 4; = M2, B;, , then we can proceed as follows. If limsup,_,, pui(04;) = 1,

then (5.1) holds by setting {D;} = {(04,)°}. We now suppose limsup,_, . p;(04;)
< 1. Thus, for any given ¢ € (0,1) there is a constant [ = 1 such that

wi(04) = 1—¢ VIzlp.
From the proof of [27, Theorem 1.1.1] we can see that

w(A)) < Kiminf vy, (A)+1—¢ VI 1. (5.2)

It is easy to show that .
Elr, = (L, DP £ o™,

which implies
(e = (L+n" 1407y < o2

We remark that lim,_con~'y(logn)™"? =0 and lim,_.on~ 'y = co. Using these
properties we can show that

n
n2ym? 21{)(1‘62%} L 00, N — 00,
i=
and by Lemma 5.1

n
Eexp (16/12n_2ym2 Z[{Xfezz}> < exp(esA?n~ly) < O(1)n'’®
i=1 "
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for some constant ¢s € (0,00). Thus, by Proposition 4.1 and the Fatou lemma we
can show for ! < n that

vm,n,/'{(Al) § Vm,n,l(Brf)

S Vna(tn Z (L4+n7 Y 1407 4)) + O(1)E exp(—24205(n))

O(Dn~HE P exp(—4201(n) — 8220(n)) + O(1)E exp(—242L5(n))

IA

n
< O~ EVexp ( 162%nym? meez,a})
i=1

+ O(1)Eexp (—ZAZn"Zym2 ZI{X,-GZZ}>
i=1 "
goes to zero as n — oo if 1 > 0. From this and (5.2) we obtain that
Ffﬁ wld) =1—e.

This proves (5.1) by choosing {D;} = {4}

6. Proof of Theorem 2.2

In this section we first assume limsup,_, . n~'m2(logn)*? < oo and set m = m,,.
We first prove the following proposition.

Proposition 6.1. There are constants Ay € (0,00) and c; € (0,00) such that
n
Eexp (—Zmzﬁn‘l Z[{X,-ez,,%} + /I/)’)
i=1

< O()exp(ciinmP(logn)®), A €[0,A].

In particular, if limsup,  n~'m*(logn)® < oo, then for any given 1 € [0,00)
there is a constant c¢; € (0,1) such that

c; £ Eexp (—Amzﬂn_l ;I{X,EZ,,%} + lﬁ) <.

We will use the approach presented in the proof of [5, Proposition 3.4] to prove
Proposition 6.1. We set

1 !
I,Z’l”1 = Jm*fn~! ZI:CI{XiGZ»%} ~n~! X;(ﬁ ,
1= =

m, LA
qpy’ = Eexp(—I"),

and q}"’}“ = q}'f’f. We will also drop m, A from the above notations. We begin with
several lemmas.

Lemma 6.2. Suppose that 0 < I, — I} < m? and 1, 2 [n(logn)~']. Then

|Eexp(—11,11)(§1 -&) = 0(1)/1q11n‘1m2 lognrloglogn,
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where
)

)
b= it 3 Iy G=in 3 .
=l +

k=l1+1

Proof. Without loss of generality, we may assume n~'m? = O(1)(logn)~X for
some constant K = 3. Clearly, we have

Eexp(—I1;,)é < Apn'(lo — I, — 1)Eexp(—11,,)
< 0(1)/1(]11;1_1m2 logn .
By definition we know that
an, = q—exp(Apn~"i) £ O()qr,—i »

if i < O(1)n(logn)~'. On the other hand, we have
i i
Ex, k; MBIy 0y < O(1)E kzzjl Y [ P

< 0(1), i =0()n(logn)™",
which implies that
g, = Eexp(=1,-)Ex, _exp(=1.i) Z Eexp(=1i,1,-i)exp(—Ex, _11.i)
= 0(1)qy—i

Remark that

lh
Apn~! . IZ+1 EmZI{XkEZ”%,}exp(——Iul)
=4

)
< o()Apn”! ) ;HEexp(—ll,h_;)EXll_iE;(imZI{Xk_ll 22y
=4

=1

—1 2
S OWMn=q i 35 max EcExmliyezz

and
Py(dist(X;, Z;) < m(logn)~?)) < O(1)(logn)™2.

We choose i = [n(logn)~!/2]. We also remark that

h—1 hh=1
Apn~! kz;l Ex;m’Iiy cp2y < O(1)ABn" <m2 kz} k1, — 11)

< 0()An"'m*(logn)* .
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Thus, we can show that Eexp(—1y )¢ is less than

L=

—1f 2
O(1)in (m qn-i+ B kz;l max Exltgist (x,,22) 2 m(logn)-2}

2
X Ex;—y(x;)m I{Xkez,,%}qll—i)

L—h

<oy, <m2 +B X max Ex—n(x)m21{xkez,3,}>

k=1 dist (x,Z,,z,); m(log n)”2

» , [mogm ™ s R
= 0(1)171 qn—-i{m +B Z max m Px—n(x)(Xk € Zm)

k=1 dist(x,Z,%)g m(logn)—2

12—11

2

Y maxEmily e
k=[m2(logn)—8] ¥*€Z

=1

éO(lV»ﬂ“qu—i(m2+ﬁ D (mzk—1+1))

k=[m?(log n)~8]
< 0(1)/1q11_,'n_1(m2 + m* lognloglogn)

< 0(1)/1;1_1m2q11 lognloglogn,

which proves the desired result. [

Lemma 6.3. Suppose that there is a constant c; € (0,00) such that 1 < I, — [} <
con(logn)™3?2 and 1, = [n(logn)™'). Then, for any given A € [0,00) there is a
constant c3 € (0,00) such that

|Eexp(—11,1,) (&1 — &)| < esn™'mPq;, lognloglogn . (6.1)

Proof. We will use the approach given in [5,Sect.3] to prove (6.1). By Le-
mma 6.2 we know that (6.1) holds if I, —I; < m?>. We now assume [, — /| =
m? + 1. By the Markov property we have

[}
Eexp(~Nh,)(& — &) =n"'B 3 Eexp(—1y,n)(m* Iy, cz2y — 1)
k=141

h—1

=/n"'p k; Eexp(—1,1,)Ex, (ML iy ¢z — 1)

2

m
=n"1p kz} Eexp(~11,1,)Ex, (m21{xkez,%} —1)

h—1
+n7'B Y Eexp(—I, )Ex, (m21{Xk€Zr3} -1)
k=m2+1
= O(In""'m?q; lognloglogn) + in~'BEexp(—1I; ;)

h=h

2
X Z EXI](m I{Xkezrg}—l).

k=m2+1
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By the symmetry property of {X,} we know that

EGXp(—Il,Il) Z Z - (Xk+11 _Xll)I{Xk+, €z2\{0}} = 0,
2€8,4(0) 1

which implies that

Eexp(=h,) X X z-(r=X)p(y—X,)=0,
y€Z2\{0}} z€5(0)

where S,(x) was defined in Sect. 3, and u + v = u v, + v, provided u = (u1,uz)
and v = (v1, 7).
It is easy to show that

-1

n~'BEexp(~I1) X <m2pk(—X)+ 2 pk(y—x))

k=m2+1 y€Sn(0)

I —1
< O(l)q,n~" pm? logiz_’_—i < O(1)q,n"'m*loglogn.
By [20, Prop. 1.2.5] we know that if o < 2/3, |x| < k* and pg(x) > 0
pe(x) = pll,x)(1 4+ 0(k*7?)).

For convenience, when we estimate the difference: p,(x) — p,(y), we always assume
pi(x)p:(y) > 0, or p(x)=0 and p,(y) = 0. Otherwise, we may consider p;(x)
and p,y1(y), or p.y1(x) and py(y). Thus, there is a constant ¢ € (0,1) such that

L=

n"'BEexp(—=h,) X Ex, (mliy 0y — 1)
k=m2+1

=1
=0 (rz_lﬁm2 > k_1q11> +n_1ﬁEexp(—11,11)

k=m2+1

L—1
X [mz > n(y=-X)- X pk(y—le)]

k=m?+1 yez2\{0} YEZ\Sp(0)

1 s
=0|\n" B Y (mk  +k°)|q,
k=m2+1
L—1

IS Y Y Bew(-hug

k=m2+1 yez2\{0} 2€5(0)

—X 2 —X 2 _ —X 2
xexp<—|y : i ) [1—exp<—|y 11+Z|k ly =X, | )J

2 L—h
= O(n'm?lognlog logn)q;, + “n'g Y >, Eexp(—1i)
n k=m2+1 yez2\{0}

2z - (y — X;) + |2/
X pk(y_Xll){I{|y—X11[2§Mk} > [ A :

z€8,(0)
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2
o (B0 )

3 tgy—x, P> Mk

Ly ples (y—)g,)+|z|2>’}

2€5n(0) i=1 1! k!
-1,

=0 'm? lognloglogn)qll+ n DY > Eexp(—1Ii)
k=m2+1 yez\{0}

z)? 2z - (y —X1,) + |z 2
X pk(y—Xll){I{ly—X,lﬂng} z [% +0( k ! )

z€8,(0)

|z> 12z - (y = X)) + 2P
oy, pomiy 2 (k +Z e

z€8x(0)

=: 0(n"'m? lognloglogn)g; + Ui + U, .

Using an argument for L] given in the proof of [5, Lemma 3.3] we can show that
U, is less than
L—1

4
— m
on™p Y Y TEew(-hi)m(y—Xy)
k=m2+1 yez2\{0}

<o(n'p lf (m*'k™2 + m*k g,

k=m241

= O(l)q;ln_lm2 lognloglogn .

Using the argument for L] given in the proof of [5, Lemma 3.3], we can show that
there is a constant ¢4 € (0,00) such that U, is less than

L1,
o' Z Y. Eexp(—h,1) pi(y — Xip)
k=m2+1 yez2\{0}
4 oo A i
m' &cy |y — X |
Tl e pemn

-1y - X 2
<so(n ' Z %Eexp( =L)X exp(—uk—lll)

k=m2+1 yeZ2\{0}

m4 (_C4|y—X11|

X eXp Ay ) Iy—xy, P>mky

L=

<o(y gt 3

k=m2+1

|y_ 11|2)
X Z exp( — |1 —X; 2>Mk
ez g0} 2% {y—=Xp 1> >Mk}

=< O(l)qlln_lm2 lognloglogn,

1
szexp( 11 11)

if M = 1 is chosen to be large enough. Combining the above estimates, we obtain
the desired conclusion. [
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Lemma 6.4. Suppose that there is a constant cs € (0,00) such that 0 < I, — I} <
csn(logn)™>? and 1, = [n(logn)~"). Then, for any given A € [0,00) there is a
constant cg € (0,00)

g1, — q1,] < coq1,((logn)™>* + n~'m*(logn)*?).

Proof. We remark that

x2 3 2

l—x+2 -2 <e<1-x+2, wx2o0,

2 6
and ¢ =1+x+ "72 +0(x) if |x| £ M for some constant M € (0,00). Then, we
have

q1, — q1, = Eexp(—1,;,)(1 —exp(—=¢1 + &)

g 8
< Eexp(—11,) (1 — exp(&2) (1 —a+S- gl))

u+v=3

&g 8
= Eexp(—11,1,) [(51 —&)+&6é - 31 - ?2 +0 < > 5%5)} .

We first consider Eexp(—Iy,;,)¢;. By the Markov property of {X,} we can show
that Eexp(—1Iy,;,)¢; is less than

[P
WBm*n=' 3 Eexp(—Ii Mix,ez2y
k=1,+1

)
= Apm*n~" > Eexp(—Ii,, )Py, (Xie—1y € Zy)
k=I11+1

)
=< lﬁmzn-—l Z Eexp(_ll»lx)[PXll —n X, )(Xk—ll =0)
k=l‘+l

+ X PXll—ﬂ(Xll)(Xk—llzx)}
x€Z2\{0}

I m2
< O(I)ABn_lEexp(—Iul) > (k— I + 1)

k=ll+1
< O()ABn~"(m*log(ly — 1) + I — I))Eexp(~1,,1,)
< O(1)(n"'m*(logn)* + (logn)™""*)qy,

< 0(1)(logn) Vg, ,

where 7(x) was defined in Sect. 3. By a similar argument as before we can show
that
Eexp(~I1,)¢ < 0(1)(logn) Py, i=2,3. (62)

Remark that . ‘
& < 0(M)Alogn)™2, i=1,2,3.
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Thus, we know by (6.2) that g;, — gy, is less than

2 2
pep(-1) (6~ )+ &t - 2 ) + 01 ogn) 74
Similarly, we can use (6.2) to show that g;, — ¢, is greater than
52 52 _3p2
Eexp(—I1,1) | (&1 = &)+ &6 — 5 — = ) —0()(ogn) g

By Lemma 6.3 we know that
|Eexp(~11,1,) (&1 — &) < O(1)Agy,n™~'m* log nloglogn.
We remark that (see the proof of Lemma 5.2 above)

I,—1
! ZZIE(m I 1) = 0(n~'mP(log n)?) .
{xeez2y — g

Thus, by a similar argument as in the proof of Lemma 6.3 we can show that

|Eexp(—11,1,)(&} — &)| £ 0(1)A2q;,n~'m*(logn)*? .

Using this and Lemma 6.3 again we can show that

)
Eexp(—1,) (flfz & %)

Thus, we finally obtain that
lan, — a1, | £ 0O(Wgn (A+ 2 + 2)(n~"'m*(log n)* + (log n)~>?),

which implies the desired result. O

< O(1)2%q;n~'m*(log n)**.

We now use Lemma 6.4 to prove Proposition 6.1.
Proof of Proposition 6.1. By Lemma 6.4 we know that
g, < (1+cen™'m’(log n)*? + (log n)~)qy, ,

if0 < I, —1; £ 0(1)n(log n)~>? and I, = [n(log n)~']. We set ky = [n(log n)~']
and choose kg < ki < -+ < ky,_1 < k,, = n such that u, < 2[(log n)*?] and

ki — ki1 = [n(log n)“3/2] =1 u.

Without loss of generality, we may assume n~'m? = O(1)(log n)~>. Then, there
are constants c¢7,cg € (0,00) such that

gn < (1+cn™'mP(log ny*?)qy,—1 < (1+ ™ m*(logn)* gy,
< O(1)exp(cgn™'m?),
which implies the desired result. O
We are now in a position to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. (i) Let
S (A) = Sp(A) + 420~y .
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We first remark that the condition lim,_,..n'y/loglogn = 0 is equivalent to the

condition lim,_,o,n~'m?(logn)*/loglogn = 0. By Lemma 5.1, Proposition 4.1 and
the Holder inequality we can show that

E exp(—2Sm,x(2)) + E exp(—285,, (1))
< exp(con'y) < O(1)(log n)’

for some constant ¢y € (0,00), where d, € (0,00) satisfies lim,_,,J, = 0. Thus, by
Proposition 4.1, Lemma 5.1 and Lemma 5.2 we can show that

|E exp (=S, (1)) — E exp(=Sp,n(2))]
< Eexp(—Smn(A)) ‘1 — exp (4;12”_1’})2(”121{)(;622} — 1))‘
i=1 "

< O(H)E exp(—S’m,,,(/{))(logn)l/4 + (E exp(—S‘,,,,,,(i))

+E CXP(‘SZ,n(/I)))I{m—l i m2l —1]z(log n)~3/8}

{X.€22}

< 0(1)(log n)™"* + (E" exp(—28mn(A)) + E* exp(—2S), (1))

X P1/2 (

< O(1)(logn)™""* + O(1)E"2 exp(—28,n(4))

n
M eny — 1’ > (log n)-3/8)

+E"? exp(-25), ,(2)))(logn) ™"
< O(1)(logn)™"* + O(1)(logn)~"/**on |

which goes to zero as n — co. Using this fact one can easily show that {vy, , ;i }n>1

and {v;,’,’n, 1tn=1 have the same asymptotic behaviour for each 4 € [0,00), provided

limsup,,_, o, n_1m2(logn)3/1oglogn =0.
(ii) Let
8 o (2) = Ay — 22 + 42207y |

If limsup, , _ n~'m?(logn)® < oo, by Lemma 5.2 we know that there is a constant
c19 € (0,00) such that

Eexp(=S,,,(2)) Z exp(—ES,,,) = co -

In this case, by Proposition 6.1 and Lemma 5.1 we know that £ exp(——Sj,,,n(/l)) is
less than

Fm, 4/ m,44 1 — -
E'exp(=J1 " YEY* exp (15 )EY exp <8A2n Zm%y ZI{XkeZ,,%}> <cn
k=1
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for some constant ¢;; € (0,00). Let &, = n~'m2(log n)*, and
n
mm) =Pn7 S Iz min) = Ln7ly.
s

Again by Lemma 5.2 we can show that

|E exp(—S, ,(A)) — E exp(—S,n(1))|
S Eexp(—Sma(A)|1 — exp (—2&; +2& + 4n1(n) — 4nz(n))|
< O(1)E exp(—Smn(1))e* + (E exp(=Sm n(1))

+Eexp(=S,, /(DD g1 57, s |11z 0og my~a1)

xeezd
. N 12

< o()el* + 0(1) ((log n)e \PE (n_l S mi iy cp2y — 1) )
k=1

< O()gy*,

which goes to zero as n — oo, if lim, ,..&, = 0. Using the above estimate and
[5, Theorem 1.3] one can show that

/ 2
Vns = Vi, h— 00,

and so
17
Vg — Vi, B —00.
By (i) we also know that

1" 9
Vs — Vi, H— 00,

which proves the desired result. [
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Appendix

The ¢3-field theory (see e.g. [1,3, 17 and 18]) is formally described by the following
measure:

II d(x)exp (—f (1|Ve@)? +/12¢2(x)+/13¢4(X))dx> : (A1)
R4

x€ER4
To give a sense to the above formal measure, it is natural to consider its lattice
approximations. Let aZ¢ = {ax : x € Z?}. Heuristically, the quantities [ |V¢(x)[*dx,
J ¢*(x)dx and [ ¢*(x)dx can be approximated respectively by X\, _, . c,zaa??
(¢ — )% @S, za d? and a?% . 0 ¢F. Thus, one can use the following
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probability measure to approximate (A.1):

H d¢x €Xp (2/11 2 ad_2¢x¢y

x€azZd |x—y|=a,x,y€azd

~(pa® +4d2ya"?) 3 ¢ —ha® Y qs;j) ,
x€azd x€azd
where N, is the normalization constant. Let ' = a'(a) satisfy lim,_,4+a’(a) =0
For convenience, we assume a' = a and a’Z¢ C aZ%. It is clear that [ ¢*(x)dx
can also be approximated by a’dExea/deﬁ. Thus, it is reasonable to guess that
(A.1) can also be approximated by the following probability measure v, ,:

Noy T1 doeexp <2/11 Y d T,

x€azZd |x—y|=a,x, y€azd

—(ha® +4dAa®?) Y $2 - sd? S ¢§§> , (A2)

x€aZd x€a'Z4

where N, , is the normalization constant. This can be thought of as a discrete ¢*-
field theory associated to a new cutoff a’. It is interesting to find a condition on
d@'(a) under which the probability measures {v,,} and {v, .} have different limits
(if they exist).

We now consider the correlation function of v, . Following [15] (see also
[3 and 12]), we first give a random walk representation for this system. For sim-
plicity, we assume A; = 1. Let

40972, x—yl=a,
axy(a) = (8dad 24 2ha?), x=y,
0, otherwise .
Then, there is a continuous time process {X;} on aZ 4 with the local characteristics

{ay)(a)}. One can construct a discrete time Markov chain {¥,} with the one-step
transition probabilities:

axy(a)/ax(a) |x —y| =a,
axy(a) d _
n(x, y) = Z|X —y|=a a,;v(a) » X€ aZ Y = 6‘,
1, X = 6’ y= a,
0, otherwise ,
where a,(a) = —ax(a), and 0 is a “cemetery” which is not included in aZ¢. Thus,

the sample path of {X;} can be described by a diagram:
Lha3nd...rn,ay 20,

where Y and Y, are respectively the initial and final states of {X;}. Let { be the
time at which {X;} jumps from the final state Y, to 0. Let

¢
T, = Of]{X,:z}dt ,

and
PU(C) = QuC|Y, = y,n=n),
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where {QOy} is the probability law of {X;}. Let

1 1
H@) = =5 L 470y + 5 (2ad +8daH 005
x—y|=a X

and set, for F' say bounded and continuous on R,

[ MR ()i
F) = g

(This is a heuristic notation for the expectation of F' with respect to the well defined
centered Gaussian measure of covariance given by the operator a=! in *(Z¢)).
Using the random walk representation (see e.g. [3, 12, 15, 17]), one can obtain that

=) _ rd 2 2
WO (Y, = y)EW < exp ( 430" Y cwza (93/2 + 1) )>
<¢ ¢y> a,a' 'E)Q ( y) Xy <exp (—113(1"1 era'zd (¢%/2)2)> 5

where E,%) is the expectation with respect to P,(c'}) . Let us now consider the “zero-
components ¢* - field” (for its definition, we refer to [10 or 17]). In this case, we
have

(Dxtby)y, o = fng(n = y)E{) exp (—Asa’d > rﬁ)

x€a'z4

) ¢ ¢
;)Qx(yn = y)E)E;) €xXp <_/{3a/d Z ffI{X,=Xs=x}dtds> i

x€a’Zd 0 0

In this formula, the restricted intersection local time (i.e. the random variable

@S, cyza i Js Ix—x,—x)dtds) has appeared. This is one reason for our interests
in discrete Edwards models which are defined in terms of the restricted intersection
local times of the random walk. Based on Theorem 2.1 and Theorem 2.2 given in
the present paper, we hope to be able to show that the limit of {v, ,} is the same as
that of {v,,} for d =2 if lim,_,¢+d’|log a|> =0 and that the limit of {v,} is
different from that of {v,,} for d =2 if a’ is large enough compared to a (e.g.
lim,_,g+a’|log a|* = c0). We also remark that using results of [15 and 3] (inspired
by [28]) expectation with respect to the ¢% - model measure itself can be expressed
in terms of intersection local time. Also in this case then our results on {v, ,} are
relevant.

Note added in proof: In recent work (S. Albererio, X.Y. Zhou, A new lattice approximation for
the ¢3-quantum fields, Bochum Preprint *95) we obtained a similar result about v, o = Vs, in
Appendix for the ¢4 model, under the condition lim,_ g+ a’|logal? < co. We expect that these
measures are different if the latter limit is oo.
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