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Abstract: We consider Floquet Hamiltonians of the type Kp := —id; + Hy + fV(wt),
where Hj, a selfadjoint operator acting in a Hilbert space J, has simple discrete
spectrum E; < E; < --- obeying a gap condition of the type inf{n *(E,+1 — E,);
n=12,...} > 0 for a given a > 0, ¢t — V(¢) is 2n-periodic and » times strongly
continuously differentiable as a bounded operator on #°,w and f are real parameters
and the periodic boundary condition is imposed in time. We show, roughly, that
provided r is large enough, f small enough and @ non-resonant, then the spectrum
of Kr is pure point. The method we use relies on a successive application of the
adiabatic treatment due to Howland and the KAM-type iteration settled by Bellis-
sard and extended by Combescure. Both tools are revisited, adjusted and at some
points slightly simplified.

1. Introduction

Spectral analysis of Floquet Hamiltonians or, equivalently, Floquet operators [7, 17]
is known to be a tool to investigate the dynamical stability of a quantum system at
least in the spirit of the RAGE theorem (see e.g. [6]). If K = —id, + H(t) is pure
point, then for all initial conditions Y in 3#, the solution Y, of the Schrodinger
equation fulfills lim,—,oo sup, ||€(}4] > a)yx|| = 0, with & being the spectral mea-
sure of an arbitrary self-adjoint operator 4. Though it has been realized recently
that such information is rather incomplete; in particular it seems that one cannot
predict the time behaviour of (4, Ays) from the nature of o(K) (see e.g. [3]).

This paper is concerned with Floquet Hamiltonians Kr := —id; + Hy + BV (wt)
depending on two real parameters f§ and w. The unperturbed (true) Hamiltonian Hy
in a Hilbert space # has a simple discrete spectrum o(Hp) = {E1,E», ...} obeying
the gap condition given in (2.1) below (with & > 0). The family V' (¢) is 2n-periodic
and sufficiently many times strongly differentiable.

Except for the methods based on randomizing of some parameter [8,4] and
using the Kotani’s trick [13,16], two approaches are known to analyze the spec-
trum of Kp. The first one is called here the KAM-type iteration method and it
was introduced and popularized by Bellissard [1]. This method requires some kind
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of exponential-like decay of matrix entries of the perturbation ¥ if expressed in
the eigen-basis of the unperturbed Floquet Hamiltonian Kr o := —i0, ® 1 + 1 ® Hj.
These constraints were afterwards reduced by Combescure [5] to a sufficiently
fast power decay. With this hypothesis and assuming in addition that f is small
enough and w non-resonant, one can show that Kr is pure point. As observed by
Howland [8], another type of results can be obtained using the adiabatic analysis.
No restrictions are imposed on f§ and w but the information about the spectrum is
less precise. If V(¢) is smooth enough then the absolutely continuous spectrum of
Ky is empty.

The present paper is based on the observation that these two methods can be ap-
plied successively. First the adiabatic algorithm is used several times to improve the
behaviour of the perturbation so that the hypothesis of the KAM iteration method
is satisfied. The main theorem is stated in Subsect. 4.1 and claims, roughly, that
provided V(¢) is sufficiently smooth, § sufficiently small and w non-resonant, then
Kr is pure point. As an example we recall in Subsect. 4.2 the well-known quantum
Fermi accelerator. Up to now, the adiabatic analysis of this model excluded the
absolutely continuous spectrum of the Floquet Hamiltonian (8,9, 15]. Here we are
able to show that the spectrum is even pure point provided the amplitude of oscil-
lations is small and the frequency non-resonant. The mentioned theorem is more or
less an immediate consequence of extensive preparatory work contained in Sects. 2
and 3 which was necessary to adjust both the KAM iteration and adiabatic tools to
our goal.

Section 2 is devoted to Combescure’s modification of the KAM iteration method
[5]. The basic difference is that Combescure, wishing to treat the case « = 0, im-
posed some additional decay conditions on the entries of the perturbation matrix. We
restrict ourselves to « strictly positive and thus we don’t employ these constraints.
As a consequence we differ in some estimates, orders of decay and constants.

In addition, we modify very slightly the algorithm by not insisting on the full
diagonalization in each intermediate step when one adds a part V™ of the per-
turbation containing only finitely many parallels to the diagonal. We believe that
this makes the structure of the method more transparent. For the same reason we
reinterpret one key estimate due to Bellissard [1] as a bound on the norm of an
operator I' which inverts the commutation equation [D,W] =V, ie., I = adBl.

Section 3 is devoted to the adiabatic method. Basically, main features of the
approach we have used were already contained in Howland’s original paper [8].
However there are some differences. To measure the degree of compactness of
the perturbation, Howland introduced subspaces of the space of bounded operators
by requiring, in principle, a power decay independently in both indices » and m
for the matrix (X,,) of a bounded operator X in a suitable basis. The subspaces
introduced in our approach are characterized by a power decay in the absolute value
of differences |n — m|. They form even subalgebras and seem to fit more naturally
with the adiabatic algorithm making the mechanism more transparent and, this is
the main reason, they are adjusted to the desired application of the KAM iteration
procedure.

The result due to Howland about the absence of the absolutely continuous part
of spectrum was generalized by several authors who wished to treat also multiple
eigen-values [14,10]. These authors applied much more sophisticated machinery.
As already mentioned, we restrict ourselves to simple eigen-values but we suggest
that this restriction is not intrinsic to the approach we have chosen. We believe
that owing to the proper choice of the classes of operators we are able to stay on
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a more elementary level and consequently to treat the problem in a comparatively
simple manner.

2. The KAM-Type Iteration Method

2.1. Formal Algorithm. We consider a time dependent Hamiltonian H(¢) in a sep-
arable Hilbert space # of the type:

H():=Ho+ V().

Hy is a selfadjoint operator on J# the spectrum of which is discrete, a(Hp) =
{E,; n € N} (remark: 0 ¢ N), and obeys the following fundamental gap condition:

Ja > 0 such that ig}{I n *(E, —Ep) > 0. 2.1)
n

Hence the spectrum o(Hj) is simple. Set also
AE :=min{E,| — E,; n € N}. 2.2)

The function ¢ +— V(¢) is bounded measurable and T-periodic with values in the
symmetric bounded operators in . The so-called Floquet Hamiltonian Kp :=
—i0, + H(t) acts in L?(0,T) ® #. We wish to consider the frequency w = 2m/T as
a parameter lying in a compact interval Q :=[a,b], 0 < a < b < oco. We found it
most convenient to rescale the time so that the period is fixed to be 27 and then w
appears as a parameter standing in front of the time derivative. So from now on,

Kr := —iwd; + H(?),

acting in %" := L?(0,2n) ® # with periodic boundary condition in time (and V(¢)
is assumed to be 2m-periodic). If the potential V' is zero then Kz := —iwd; @ 1 +
1 ® Hp; its spectrum is simply the closure of wZ + o(Hp). Notice that from the
simple form of Kr o one deduces immediately that it is selfadjoint and since V is
bounded and symmetric the same holds true for Kr.

We shall use the eigen-basis basis of Kr ( to identify the Hilbert space 4~ with
[(Z x N). Thus Kr becomes

K=K, :=Dy+V, actingin [2(Z x N),
where Dy is a diagonal matrix with elements on the diagonal
Do(j) = Do(j; w) :i= o+ Ej, , (2.3)

and 7 denotes the matrix obtained from the previous function ¢ — V(¢) by com-
puting its matrix elements in the eigen-basis of Kr .

The method for proving that K has also a pure point spectrum is simply to try
to construct a basis of 2(Z x N) in which K is diagonal. The algorithm consists
in generating a sequence of operators K, which converges to a diagonal operator
unitarily equivalent to K. To this end we split, following Combescure, the operator
V in a sum, with the 2™ term 7™ being made of all the elements of the matrix ¥
which are at the distance » = 0 from the diagonal:

V= 20 ym, V™ k)= V(j,k) if |[j—k|=n and 0 otherwise,
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where |j — k| := |ji — k1| + |j2 — ka|. It is easy to see that V'™, n > 1, contains at
most 4n non-vanishing parallels to the diagonal. In addition to the sequence {K,},
three other auxiliary sequences of matrices are constructed, namely {G,},{V,} and
{W,}, such that

K,=Dy+G,+V,, n=012,...,

and G, is diagonal for every n, G,(i,j) = G,(i)d;;, while V, is offdiagonal.
These sequences are determined recursively by the following rules:

(i) Go = VO, 75 =0.
(ii) Provided G,, V, were already determined, then W, solves the equation

[Do + Gu,Wy] =V, and diagW, =0. (2.4)

Hence for i=j,

Va(i,))

. 2.5
Do) + Ga0) — Do) = Gnl)) (23)

Wa(i,j) =

Clearly, W,y = 0. Uniqueness of the solution of (2.4) makes it possible to define the
linear operator I,
r,yv,=w,. (2.6)

(iii) Set inductively,
Up:=1L U, :=exp(W,)U,—1 = exp(W,)---exp(W;) .

Then
Kni1 = e""(Dy + G, + V,)e™ " + U,y Oyt 2.7)

and
G, ;= diagK, 1 — Dy, Va1 := offdiag K11 . (2.8)

Clearly, G; = V® and ¥, = ¥,

We have used above the obvious notation: diag A for the diagonal part of 4 and
offdiag 4 for its off diagonal part.

Finally we make a simple but important observation. The matrix ¥'(7,j) depends
on the indices i; and j; only through the difference i; — j;, since V acts as a
multiplication in the ¢ variable. We claim that the same property is shared by all
the matrices V,(i,j) and W,(i,j) and that the diagonal values G,(i) depend only on
i (and not on #;). Since this property is preserved under multiplication of matrices,
to check this claim it suffices to notice that: (i) all the matrices V™ (i, j) depend
only on i; — jj, (ii) the diagonal elements Dy(;) are linear in jj, (iii) the matrices
[W,Do] as well as e” Dope=" — Dy depend only on i; — j; provided the same is
true for W. The claim follows then by induction using the formulas (2.5),(2.7)
and (2.8).

2.2. Small Divisor Problem and the I' Operator. The crucial problem when apply-
ing the algorithm of the KAM iteration method is the treatment of small divisors
in (2.5). Propositions concerned with this difficulty are recalled below. They will be
used repeatedly and this is why they are given in a formulation which is indepen-
dent of the step number. Thus in this subsection we drop the index n. In Theorem 2.3
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we shall point out that a key estimate giving a solution to this problem can be
interpreted as a bound on the norm of the operator I'. But first one has to remove
some “bad” or “resonant” values of w € Q =[a,b], 0 < a < b < 00, which spoil
the inequality

(Do + G)(i) — (Do + GY()| = 7li—jI™°,

for y > 0 and ¢ > 0 chosen in an appropriate way.

Let us formulate it more precisely. Assume that we are given a function
E :IN — R fulfilling the a-gap condition (2.1) and another function g : N x N x
Q — € such that

lgllo:=sup |g(n,m;w)| < o0,
weQ;n,meN
lgll == sup gin,mw) —gnmay| _
w, 0 €Q;n,meEN w—ao
and
g(n,m;w) = —g(m,n; w) . (2.9)

Notice that while || - || is @ norm, || - ||; is only a seminorm. Given y and o
positive we set

Qoag 1= U Tymn 5
(k,m,n)EZXNXN
lk[+|n—m] +0
where
Igmn = {w € Q; lkw + Ey — En + g(n,m; )| < y(lk| + [n —m[)™"} .
The following theorem is due to Bellissard [1] who proved it in the case a = 1.
Theorem 2.1. Let E and g be defined as above and suppose that

llglle < min{4E, inf Q}, (2.10)

lgll < 1. (2.11)
Provided o obeys the inequality 6 > ox(o) where
fo<a=sl,
if 1 <a,

Ri—

ox(a) := { (2.12)

2
1+a
then there exists C; = C1(E,Q,0) = 0 such that for every 7,

0 < y < min{4E, inf Q} — [|gllo = |QRbaa| < 1_7“;“1%

For the reader’s convenience a sketchy proof is postponed to Appendix 1. It is
rather close to Bellissard’s original treatment since we can use the fact that o > 0
and consequently no weights are employed as in [5].

To proceed further we shall need a subalgebra of bounded operators in
I(Z x N) distinguished by exponential decay out of the diagonal (matrices are
expressed in the standard basis).

Definition 2.2. Banach algebra #(Q,r), r = 0, is the subspace of L°((Z x N)? x
Q, ) formed by matrices A, depending on the parameter w € Q, for which the
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norm ||A||q,, is finite (|d| := |di| + |d]),

e, = > eldl;’< sup |4, j; w)|

dETXT i—j=d; weQ

+ sup

’
i—j=d; 0,0’ €Q O —w

A j; @) = AG,j; co)D
For a diagonal matrix A, ||A||q,, does not depend on v and we shall sometimes
write it also as ||A||q. We shall call B°T(Q,r) the subspace of B(Q,r) of elements

having zero diagonals.

Remark. All the properties concerning these algebras are proven in [5].

We are now in a position to recall a theorem which gives a solution to the
small divisor problem. In addition to the mapping £ : N — R with the same
properties as above we are given a mapping G : N x Q — C such that, if con-
sidered as a diagonal matrix depending on w, G(i, j; @) = G(i2; w)d;j, G has a finite
norm ||Gllq. Let finally I' : Z°T(Q,7) — %°%(Q',7') be the operator defined by:
W =TV iff [Dy+ G,W]=V. Here we assume that 0 < r' < r, Q' C Q and D,
was given in (2.3).

Theorem 2.3. Let Q,G,E, I’ and 6 > ox(a) be as above and assume in addition
that
2||Glle < min{l, 4E, inf Q} .

Then for every y obeying

0 <y < min{4E, inf Q} - 2||G|lq,
there exists Q' C Q such that
Ci(o)

o\ < 12, (2.13)
L= T30
and the norm of T : B°N(Q,r) — B°N(Q',r") can be estimated by
IFI £ Co)y™*(r = /)27 " (2.14)

The constant C(0) = C\(E,Q,0) was introduced in Theorem 2.1 and

20 + 1

20+1
Cy(o) = Cu(E,Q,0) = ( ) (1 + min{4E, inf Q}) .
As already mentioned, the bound (2.14) means only a reinterpretation of a known
estimate [1,5] and the proof can be found with some modifications in various
papers. For example, a nice presentation is given in [2]. But to make this paper
self-contained we recall the proof in a sketchy form in Appendix 2.

2.3. Convergence of the Algorithm. Thus it is possible to cope with the small
divisor problem provided one accepts losing some values of w in each step of the
KAM algorithm. In the n™ step, the estimate on the small divisor will be governed
by a constant y, and the loss of exponential decay is determined by a constant
Pn =¥y — Fur1. We choose

v

=Pt u>1, p,=pn’, v>1,
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for some fixed positive 7 and p. We introduce also the numbers

v

i?

v+

1 with 7 :=

(oo}
fni= Y. pj, hencer, <rn”
Jj=n

We set Qp = Q) = Q and then in the n™ step, n = 1, we restrict ourselves to
Q11 C Q, so that Theorem 2.3 is applicable. To avoid clumsy notation we shall
write simply [|[Vall = (| Vall@u,rw> |Wall = (Wall@,,1,rmi15--- - To fulfill the hypothesis
of Theorem 2.3 we shall assume now and verify afterwards that the norms ||G,||
are bounded uniformly and

1
sup ||Gy|| £ -min{4E,inf 2,1} . (2.15)
nx=1 4
Furthermore we shall require the constant y to satisfy
1
7 < Emin{AE, infQ,1},

and hence j < min{4E,inf Q} — 2sup, . ||G,]

With these restrictions one can actually apply Theorem 2.3 and so |Q,\Q,+1] <
Ci(1 —2||Gy||)" 'y, and for the operator I, : BN(Q,, 1) — BT (Qui1,7ms1) We
have ||IT,|| £ Coyy2p;2°~!. Then for

Q=N Q,

n=0

it is clearly true

—1 0o
|Q\Q'| £ Ci(0) (1 — 251;1? ||G,,H> y, where y:= L)? > 21:)),, . (2.16)

u—1
Letting
Cr:= %ﬁgg% ,
the bound on I',, can be rewritten as
ITall £ Fp:= Crm?#+Co+DY, (2.17)
Some other estimates follow obviously,
Il < Il 10 S e (5l )

Though the operator I is defined on the space #°T(Q,r) distinguished by exponen-
tial decay the matrix V is required, owing to Combescure’s trick, to exhibit only
sufficiently fast power decay. We shall characterize it by the quantity

Cy = sup (1 +[d|*) sup |V(ij)| < . (2.18)
dez? i—j=d

The constraints on the power 7 will be specified later. Notice that the norm ||[V®)||o,,
is finite for any » = 0. In fact, since ¥ doesn’t depend on w,

1V ®lar < 4ne™ sup Vo))l

i—jl=n
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Setting here » =, < 7n"*! and taking into account (2.18) we get (n = 1),
v=2= VM| < 4Cyen' T

Our goal is to show that under appropriate conditions, ||V,| = ||Vall,.», tends to
zero as n tends to infinity. It is elementary to derive the following lemma from
the relations (2.7) and (2.8) defining the algorithm, provided one uses the fact that
Il - |le,» is @ norm of an algebra and the equality [Dy + Gy, W,] = V.

Lemma 2.4. For any n = 1 one has

[Vurrll < 2270w |Vl + (TN NP, (2.19)
[UE < ™), (2.20)
Gri1 = Gallg,,, < 22w, |17l + 1T INT VD). (221)

Let us now introduce an auxiliary sequence {x,},

x0:=0 and x,:=F,||V,l, fornz=1, (2.22)
and constants
Cy = Fanr < 2u+Q2o+1)y e Ae7
3:=sup — =<2 , Cy:=4e"CyCr. (2.23)
nx1 n

Multiplying both sides of the inequality (2.19) by F,; we get for n = 0,

C n
Xpp1 < 2C3xﬁezx" + n +41 7 exp (2 mZ::l xm> , (2.24)
where
pi=1—1-2u— Qo+ 1)v. (2.25)

It is easy to solve this finite difference inequality.
Lemma 2.5. Assume that f > 1 and a sequence {x,},=0 obeys the inequality
(2:24) and xo = 0. Then there exists a constant C} = C}(B,Cs) such that C; <
CY implies

X < 3Csn b, foralln=1. (2.26)
Proof. Clearly, (2.24) implies x; < C4 < 3Cy. The proof is then easily carried out

by induction. C4 should be small enough so that the following induction step goes
through,

<3Cn "t 2C3x2e™n < Can+1)77
Xn = SCan = Ca(n+ 1) Pexp(2y]]_ %) = 2Ca(n + D
= Xap1 S 3G+ 1P O

The constraints on t follow from the requirement § > 1. Since ¢ > 1, v = 2 and
g > ox(a), we get

T>242u+ 2o+ 1)y >4+2Q20x+1)=40x+6.
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This means

6+2 ifa<l

227
6+ ifa>1 @27

T > () := {

Conversely, if 7 > 74(a) then one can choose u > 1, v = 2 and ¢ > gx(a) so
that f > 1. In that case C3 and C; are fixed by (2.23) and Lemma 2.5, respectively.
According to (2.23), the inequality C4 < C; will be satisfied provided Cy is small
enough,

1 .
Cr < 2e7CEC(a) P - 77 (2.28)

We must still verify the condition (2.15) on ||G,||. From (2.21) and the proof
of Lemma 2.5 one obtains immediately that

Gus1 = Gulle,,, < Fl (zczxiez"" +Ca(n+ 1) Pexp (z > xm>>

1<m=n
< 3GF i+ 1P =12 Cp(n+ 1) 77

Consequently, recalling that G, = V(©®,

& > 12 -
1G]l S 1Gill + 5 126°Cym! = < PO+ =&y

n=2

<Gy (1 + leze’) < Cy(1+3¢),
where in the last line we used the fact that 7 is always greater than 6. So again,
one can always satisfy the bound (2.15) by taking Cy small enough.

We have arrived at the conclusion that ||V,||or,o tends to 0 as n — oo (cf. (2.17),
(2.22) and (2.26)). By the Cauchy criterion, G, tends to some matrix G, in the
norm || - |loro and necessarily G is diagonal. Similarly, since

o0 o0
2 Wallero = 2 FallVall < oo,
n=1 n=

UZ! tends to UZ! in the same norm.

2.4. Stability of the Pure Point Spectrum. One can show by induction that the
relations (2.7) and (2.8) mean (n = 1)

n
Do+ G+ Vy = Uy (Do + 3 V“”’) ul. (2.29)
m=0

It is possible to perform the limit » — oo since the convergence in the norm
| - |l,0 implies the convergence in the standard operator norm in %(/?) for any
fixed w € Q' [5]. In addition to the final conclusion of the preceding subsection we
note that obviously

n

S VW SV, asn— o0,

m=0
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in the norm || « ||or o and hence in the standard operator norm as well. However,
respecting the fact that Dy is unbounded though self-adjoint with its natural domain,
let us make a short comment about the convergence procedure since this point is
usually carelessly skipped.

First note that W, preserves the domain Dy and [Dy, W,] is bounded. To this
end it is enough to observe that Dy, being diagonal, can be applied formally to any
sequence (without any restrictions on summability) and it holds formally

DoW, = Wy(Do + G,) — G, W, + V), .
Consequently we find that exp(£#,) preserves the domain of Dy and
exp(£W,)Do exp(FW,) — Do

is bounded. This follows from the formal equality
S s k—1—j
Do exp(Wy,) = exp(Wn)Do + Z Z A (Do, W IW, ~' .

Hence U,~! preserves the domain of D, as well and the equality (2.29) can be
rewritten

n
DU, = U (Do + Gy + Vy) — ( Zo V<'">> Ul
m=l

Now to perform the limit procedure it is enough to notice that Dy is closed. We
conclude that U! preserves the domain of Dy, too, and

Uso(Do + VUL = Dy + Goo

We note also, as it is quite obvious from their construction (cf. (2.4), (2.8)) that all

the matrices W,(j,k) are anti-Hermitian and the diagonal elements G,(i;) are real

provided the matrix V(j,k) is Hermitian. Consequently, in that case U, is unitary.
Thus after an obvious rescaling we get

Theorem 2.6. Let Q = [a,b] C0, oo and Q > w— K, := Do+ V be a family of
selfadjoint operators acting in I*(Z x N). Dy is supposed to be diagonal in the
standard basis of 1*(Z x IN) with entries on the diagonal given by

Vie Z xN, Do(i):= wi+E,,
where E : IN — R fulfills the gap condition

inf{n~*(E,+1 — E,); n€ N} >0

for some strictly positive a. We assume also that V obeys the following power
law decay condition

sup (1+1|d]*) sup |V(i,j)|=:Cy < oo
dez? i—j=d

for some 7 strictly greater than tx(a) given in (2.27).



Floquet Hamiltonians with Pure Point Spectrum 337

Then there exist two constants y* > 0, C* > 0 such that the inequalities
0<y<y*and 0= Cy £C*y? imply that one can find a subset Q' C Q ful-
filling |Q\Q'| <y and for every w € @', K, is pure point.

3. Adiabatic Method

3.1. Classes of Operators. The assumptions on the unperturbed Hamiltonian Hy and
its spectrum o(Hy) = {E1,E,,...}, including the a-gap condition (2.1) with some
o > 0, are the same as in Sect.2. Using the eigen-basis of Hy we identify the
Hilbert space s with /> = /*(IN). This means that the eigen-vectors of Hy coincide
with the vectors of the standard basis {e,} in /2. The aim is to modify Howland’s
adiabatic treatment in order to show that provided V(¢) is smooth enough then the
Floquet operator K = —id, + Ho + V(¢) (with periodic boundary conditions in ¢) is
unitarily equivalent to another one, K = —id, + Hy + V(t), and the new perturbation
V(t) enables application of the KAM algorithm. In this situation the value of the
period is inessential.

We start from the définition of the classes of bounded operators as announced
in Introduction.

Definition 3.1. For k € Z,(0 € Z,) we say that a bounded operator X belongs
to the class o/ C B(I?) if and only if (adp,)* - X € B(I*). Thus by definition
Ao = B(I*) and we set also A oo = V50 Zk-

Notice that a matrix (X,»), if expressed in the standard basis, corresponds to
an operator X € 7, if and only if the diagonal sequence {X,,} belongs to /°° and
the matrix with entries (E, — E;)*X,m corresponds to a bounded operator. It is so
because the last two conditions imply that the matrix (X, ) itself corresponds to a
bounded operator. This assertion can be easily verified using the fact that the a-gap
condition (2.1) implies

inf 't —m'"* " E, —E,| > 0. (3.1)

Thus it is enough to show the boundedness of the operator Y corresponding to
the matrix (¥,,), Y, = 0 and Y, = |n'** — m'**|=* for n+m (k = 1). But since
1 > 24+ (1 —2z)f for any z €[0,1] and B = 1, we have |xf — y#| = |x — y|f for
any x > 0, y > 0. Then the Schur—Holmgren criterion gives the result,

o0
sup ZY,,,,, <sup Y |n—m|TF0k < o S =k (3.2)

n m*n Jj=1

Let us summarize basic properties of the classes .oZ.

Lemma 3.2. The classes </; are nested,
.52/](+1Cﬂk, fOVkZO,l,... . (33)

For every k, s/} is a x-subalgebra in B(1*).

Proof. Concerning the property (3.3), for £ =0 it is true by definition and for
k=1, X € o1 implies that the operator (adg, )¢ - X with vanishing diagonal
belongs to o/, C B(1).
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o is closed with respect to multiplication because of (3.3) and the relation
k ko (k j k—j
(adpy)" - XY =3 7 ((adg,) - X)((adp, )™ - Y).
J=0

o is closed with respect to Hermitian conjugation because of
(adsy)* « X* = (=Df((adp,)* - X)*. O
The following definition takes into account the time dependence.

Definition 3.3. We shall say that a family X(t) of bounded operators depending
periodically on t (with a given period) belongs to C"(y) if and only if X(t)
is strongly C" and (ady, )t - (d/dt}’X(t) is bounded and strongly continuous for
s=0,1,...,r

3.2. One Step of the Adiabatic Method. Suppose we are given V(t) € C"1(.oty)
and set H(¢) := Hy + V' (¢t). We wish to diagonalize partially H(¢) at every moment
¢t while taking care about differentiability. Partially means starting from some suffi-
ciently high eigen-value and this turns out to be possible owing to the gap condition.
Necessarily this subsection is mostly technical but the techniques involved are very
standard. This concerns the adiabatic method applied to the lower part of the spec-
trum and the regular perturbation theory [12] applicable to higher eigen-values. We
acquire some basic steps from [8].

We are looking for a family of unitary operators J(¢) such that the domain
D(Hp(t)) =J()* (P(H(t))) contains the standard basis and the corresponding ma-
trix Hp(t) =J(¢)*H(t)J(¢) fulfills

Hp(t)ym =0, forn <N, m>Norn>N m=IN,
= E,(t)0pm, forn >N, m > N. (3.4)

Here N € N is chosen sufficiently large so that the regular perturbation theory is
applicable to H(t) starting from the N eigen-value. The eigen-values {E,(¢)},>n
form the spectrum of H(t) on the interval |(Ey + Eny1)/2,+00[. Let us recall
briefly the construction.

Set 7, = 47! min{E, — E,_1,Es;1 — E,} for n > 1 and ry =47 Y(E; — E;). N
is chosen so that », = 3 sup||V(¢)|, for all » = N. Let us denote by I', the
positively oriented circle with radius 7, and centred at E, (local notation; I',
shouldn’t be confused with the I' operator of the KAM method). Then the pro-
jectors (n > N, R(z,t) = (H(t) —z)™")

1
Pn(t) = —% fR(Z,t)dZ
I'n

are rank one and 1
Qn(t) = ||Pn(t)en”~ Py(t)ey

are eigen-vectors corresponding to E,(t). They are strongly C™*! and periodic in ¢.
Denote by Qp the orthogonal projector onto span{ey,...,ey} and by Q(¢) the spec-
tral projector of H(¢) onto the interval ] — oo, (Ey + Ey41)/2]. Then rank Q(¢) = N.
Moreover, using Kato’s proof of the adiabatic theorem one can show that there ex-
ists a partial isometry U(¢) mapping Ran(Qy) onto Ran(Q(¢)) and vanishing on
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Ker(Qp)=Ran(Qy)*. Furthermore, U(¢) and U(¢)* are periodic in ¢ and strongly
C™1. Now we are able to define J(¢),

J()Qo = U(1), J(t)e, = @u(t), forn > N. (3.5)

To be able to cope with differentiability of J(¢) we shall need the following lemma
which can be extracted from [8], Part I, Sect. 5.

Lemma 3.4. The following estimates hold.
K@a(t), (d/dtY u(t))| < cr(s)n™", (3.6)
[{@n(0), (d[dt) om(D)] < Ca($)|En — En| ™", 3.7)
for nm > N, n$m,and s=1,...,r+ 1.

Now we can state the basic observation of this subsection.

Proposition 3.5. If V(t) is strongly C"™*! then the same is true for J(t). Further-
more,
Hp(t)— Hy € C" (A ) . (3.8)

Proof. 1t is clear from the defining relation (3.5) that J(¢) is strongly C"*! on
Ran Q. Thus we have to show the same also for the subspace Ran(I-0Qy). Let &
be the linear hull of {e,},>n. Then £ = Ran(I — Q) and J(¢)x is C"*! for every
x € Z. Denote by J)(¢) the operator on % defined by J)(¢)x := (d/dt)*J(¢)x.
It suffices to show that the norms |J)(¢)|| are bounded uniformly in ¢ for s =
1,...,7 + 1. Instead of J®)(z) we shall consider two operators QpJ(¢)*J®)(¢t) and
(I — Qo)J(¢)*J®)(¢). Using repeatedly the identity

QoJ (1) TV D(t) = —~(d[dn)U(t)* - JU(t) + (d/d1)( QoI (1) TV(1)) ,

one finds that
s—j

s—1 j .
0T = T 2y S U - SO
=0

with some constants oy;. Thus we deduce that provided J(¢) is strongly C*~!,
then the norm |QoJ(¢)*J®)(¢)|| is uniformly bounded in . Consequently it is
sufficient to show that the norms ||(I— Qp)J(¢)*J®)(¢)| are uniformly bounded
in t for s=1,...,r+ 1. But the matrix (Y (¢)um)n>n m>ny corresponding to
(I — 00)J(£)* JO)(¢) restricted to Ran(I — Q) has entries Y (£),m = (@n(?), (d/dt)®
©m(t)). Thus we can use the estimate (3.7) combined with (3.1) and recall once
more the Schur—Holmgren criterion which again leads to the inequalities (3.2), now
with k = 1.

Further we note that from the regular perturbation theory one can deduce that
for n > N absolute values of the differences E,(¢) — E, are bounded uniformly in
n and ¢ and the same is true for the derivatives (d/dt)°E,(t), s = 1,...,r + 1. Since
by construction Hp(t) fulfills (3.4) the property (3.8) follows immediately. O

3.3. Improving Decay of the Perturbation Matrix. The decay property we are
interested in is characterized by the class of bounded operators &/, as introduced
above. Let us proceed to the formulation of the basic result concerning the adiabatic
algorithm.
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Theorem 3.6. Assume that Hy acting in a separable Hilbert space # has a discrete
spectrum with simple multiplicity and that the eigen-values fulfill the o-gap condi-
tion (2.1) with some a > 0. Assume further that we are given a T-periodic fam-
ily of potentials V(t) € C"* (o), with k,r € Z,.. Then the Floquet Hamiltonian
K = —i0, + Ho + V() acting in A = Lz(]O T[,#,dt) (with periodic boundary
condition) is unitarily equivalent to K = —i0, + Hy + V(¢t), with V(¢t) € C"(Ly41).

Proof. First we shall show that J(¢) € C"*!(o/;41). We know from Lemma 3.5
that J(¢) is strongly C"*!. The equality J(¢)*H(¢)J(t) = Hp(t) can be rewritten as

ad(Ho)J (t) = J(t)(Hp(t) — Ho) — V(£)J (1) . (3.9)

Since the RHS of (3.9) is bounded we have J(¢) € C%(/1). Now by the fact that
o is an algebra, by the assumption on V(¢) and because of the property (3.8)
one can proceed by induction in s to show that J(¢) € CO(ofy) for s = 1,...,k + 1.
Differentiating step by step (» + 1)-times the relation (3.9) and using the same
reasoning in each step one obtains J(z) € C"T' (i y1).

The family J(¢) acting by multiplication in L>(]0, T [, #,dt) determines a unitary
operator J in this Hilbert space. One gets J*KJ =: K = —id, + Hy + V(t), where

(J'(t) = (d/dt)J (1))
V(t) = Hp(t) — Hy — iJ(1)*J'(¢) .

If J(¢) is strongly C™*! then the same is true for J(¢)*. This fact follows im-
mediately from unitarity (for the zero order) and from the equality (d/dt)J(¢)* =
=J(¢)*J'(¢)J(¢)*. Hence J(t)* € C™*Y (A1) and J(£)*J'(t) € C"(L41). Thus in
view of (3.8) we have V(¢) € C"(Hy1). O

Applying repeatedly Theorem 3.6 we obtain

Corollary 3.7. With the same assumptions on Ho, if V(t) is bounded and strongly
C™*, with r,k € Z, then K is unitarily equivalent to K with V(t) € C"(<L).

Remark. 3.8. Let us now make an observation important in the sequel about de-
pendance of ¥V on an additional parameter . Let us assume in Theorem 3.6 that
V(t; B) belongs to C"+!(of;) in ¢ for all values of § lying in some neighbour-
hood of 0. We shall require even more, namely that ﬂ_ladgo < (d/dtyV (L p) is
bounded uniformly for all ¢ and sufficiently small § whenever j =0,1,...,k, and
s=0,1,...,7+ 1. This means that V(¢;f) and all its derivatives up to the or-
der » +1 depend in the norm on f as O(f). Then the unitary mapping J(¢; )
constructed with the help of adiabatic and perturbation methods will possess a sim-
ilar property: ﬁ_l(J(t,ﬁ) —1) and ﬁ_l(d/dt)jJ(t,ﬁ), for j=1,...,r + 1, are uni-
formly bounded in ¢ and f. The same is true for the operators B~'(Hp(t; B) — Ho)
and B~1(d/dt)’Hp(t; B), for Jj=1,...,r+1. Now reexamining the proof of
Theorem 3.6 one can claim that ¥ (z; §) w1ll depend on f in the same manner though
with obvious changes in orders related to the new class C"(/;1). Particularly, if
we set in Corollary 3.7 V(¢t; B) = BVo(¢), with Vy(t) being strongly C"**, then
ﬁ_ladfio - (d/dtyV(t; B) will be uniformly bounded in ¢ and B for j =0,1,...,k
and s =0,1,...,7

Let us conclude this section with some comments concerning absence of the
absolutely continuous spectrum and the multiplicity of eigen-values. As observed
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by Howland in [8], if the perturbation V' (¢) is sufficiently smooth then the absolutely
continuous spectrum of the Floquet operator K is empty. Here this result is obtained
as a byproduct as demonstrated by

Proposition 3.9. If X € o/, with k > o~ and diag(X) = 0 then X is trace class.

Proof. The proof follows from the estimate [[X|| e < D, ,u[Xam|- The RHS can
be shown to be finite with the help of the integral criterion. O

We recall too that the condition on zero diagonal means no principal restriction
on V(t) since diag ¥ () can be written as a sum of a bounded constant part plus
a time dependent part but with the time average equal to zero. The constant part
can be combined with Hy and the time dependent part can be removed by a gauge
transformation [8].

Remark. Note that the assumption about simplicity of the spectrum of H, was
needed in fact only in some neighbourhood of infinity. But we even suggest that
this version of treating the adiabatic process can be extended to the more general
case considered by Nenciu [14] and Joye [10]. Namely, rather than imposing the
a-gap condition on eigen-values of Hy one assumes that the spectrum of Hj can
be written as a union of groups of eigen-values, o(Hy) = |J g, with multiplicities
uniformly bounded and the a-gap condition is then imposed on these groups of
eigen-values, dist(o,,0,+1) = cn®. Apparently the main complication caused by this
generalization is that infinite matrices should be split into finite-dimensional blocks
which may lead to a more complicated notation.

4. Pure Point Spectrum

4.1. Main Theorem. Now we can formulate the main result of this paper. The
Floquet Hamiltonian will be assumed to depend also on a real coupling con-
stant B, K, p = —iwd; + Ho + pV(t). The conditions on H, are the same as in
the previous two sections, V(¢) is 2m-periodic and strongly C™**, with r,k € Z,
to be determined. According to Corollary 3.7 and Remark 3.8, after £ steps of
the adiabatic method we get another but unitarily equivalent Floquet Hamiltonian
Kw,,g = —iwd; + Hy + V(t; B), with vt B) € C"(}) and, in the sense specified in
Remark 3.8, ¥(t; f) is of order O(f). We shall suppress the tilde.

The symbols V,,,(¢; B) stand for matrix elements in the eigen-basis of Hy. Then
for i,j € Z x N,

V@i, j; B) = % :ftl/izjz(t;ﬁ)e-i(il_jl)t de.
Integrating r-times by parts and using V € C"(/;) we get
|Ei, — Ep IV (i Bl < <IBICU+ lin — i)™
Since, by virtue of (3.1),
|E, — Ep| 2 cl/|n1+tx _ m1+a| > c“|n _ m|1+a ,
we arrive finally at the estimate

V(i j; B)| < clBI(L+ lis — ji]) (1 + |ip — jo|) (% 4.1)
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Now to apply Theorem 2.6 we need Cy to be finite (cf. (2.18)). A sufficient
condition is that both » and (1 + a)k are strictly greater than 74(a). In the final
formulation of the result we shall rescale back the time.

Theorem 4.1. Assume that Hy acting in a separable Hilbert space # has a simple
discrete spectrum and its eigen-values {E,} fulfill the a-gap condition (2.1) with
some o > 0. Assume further that there is given a 2m-periodic strongly continuous
Sfamily V(t) of self-adjoint bounded operators in #. The Floquet Hamiltonian
Ko p = —i0, + Ho + BV(wt) is supposed to act in A =L*]0,T[,#,dt),
T = 2njw, with periodic boundary condition in t and with the frequency w ly-
ing in an interval Q = [a,b], 0 < a < b < .

If V(t) is N(a)-times strongly differentiable,

N(a) == [txe(0)] + [tx(@)/(1 + )] + 2, (4.2)

(tx(a) is given by (2.27)) then there exist constants y* > 0, B* > 0, such that

the inequalities
0<y<y*, 0=p=p%7,

imply that one can find Q' = Q'(y,B) C Q with properties
|Q\Q'| <y and K, is pure point
for every w € Q.

4.2. Example: Fermi Accelerator. To give at least one illustration to Theorem 4.1
let us mention the well known Fermi accelerator. In this case the Hilbert space it-
self depends on ¢, #, = L*(]0, y(¢)[,dx), with y(¢) being a T-periodic strictly pos-
itive function. The time-dependent Hamiltonian is H(¢) = —d?/dx* wih Dirichlet
boundary conditions. The Floquet Hamiltonian acts in # = L>(M,dtdx), M =
{(t,x); 0 <t<T, 0<x< yt)}, and is defined as K = —id; — &%, with peri-
odic boundary conditions in ¢ and Dirichlet boundary conditions in x.

K is known to be self-adjoint [11,9]. To treat the spectral problem of K we
shall borrow a transformation procedure from the paper [15]. First one applies the
unitary transformation

W : L3(M,dt dx) — L*(]0, T[,dt) ® L*(]0, 1[, dx) ,

(WY)(t,x) = p(t)"* exp <—%y(t)y’(t)x2> Yt y(t)x),

to get
Ki:=WKW™', Ky = —id, + y(t)2(Ho + V(¢t)),

where —H, is the Dirichlet Laplacian in L?(]0,1[,dx) and V(¢) is a family of
bounded operators in the same Hilbert space,

1 /
V() = 30y ()2 (43)
Furthermore, the function

f@) = Ofds y(s)~?
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fulfills f(¢t + T) = f(¢t)+ T, with T := f(T), and conversely, f (1 + T) = f~'(¢)
+ T. Set
K:=—id,+Hy+ V), V@)=V "'@),

acting in L*(]0, T[,dt) ® L*(]0, 1[,dx). Denote by U;(t) and U(t) the 1-parameter
families of unitary operators in L?(]0,1[,dx) determined by U;(0) = U(0) =1
and

10U (1) = y(6) 2(Ho + VO)UI(0),  i6,0(t) = (Ho + V()T () .

It holds U(¢) = Uy(f~'(1)), partlcularly U(T)= Uy(T). The families U;(¢) and
U(t) induce unitary operators U, and U in the corresponding (obvious) tensor
products of Hilbert spaces and, as shown by Yajima [17] and
Howland [7],

e—iKiT :UI(I®U1(T))U1_17 e KT :ﬁ(l@U(f‘))ﬁ_l :

Consequently, K is pure point if and only if the same is true for K. So one can
focus on the Hamiltonian Hy + V() instead of the original one. But now, V(¢) is
a T-periodic family of bounded operators which is, moreover, strongly C” if y is
chosen C"*2,

It was conjectured in [9] that in the generic case K is pure point. We can confirm
this conjecture provided y is sufficiently smooth, the amplitude of oscillation is small
and the frequency is non-resonant. To be more precise assume that

() = yo + pz(wt), (44)

z 1s 2n-periodic and w € @ =[a,b], 0 < a < b < co. From the above transfor-
mation it follows (cf. (4.3)) that ¥(¢; B) is of order O(B) and strongly C” pro-
vided z € C™*2. In this case H, fulfills the a-gap condition with o = 1. Recall that
N(Q) =17 (cf. (4.2)).

Now we can apply Theorem 4.1.

Proposition 4.2. If z € C'° then there exist constants y* > 0 and p* > 0 such

that the inequalities
0<y<y% 0SB =P,

imply that one can find Q' = Q'(y,) C Q with properties: |Q\Q'| <y and for
each w € @', the Floquet Hamiltonian K related to the Fermi accelerator is pure
point.

Remark. We claim that the condition z € C!° in this proposition can be weakened
to z € C'3. The point is that the regularized potentlal V(t) itself exhibits some decay.
Assuming that z € C'® we have V(1) = v(t)x?, w1th v € C'®. One can calculate
explicitly the matrix elements of the potential x*> in the eigen-basis of Hy. The
eigen-vectors are @,(x) = v/2sin(nnx), the eigen-values E, = n’r2, n € N, and the
resulting matrix elements equal (—1)"*"8mn/n*(m*> — n*)?, for m #n Consequently,

sup [n — m|P|(d/dt)V ,m(t)] < o0,

with =2 and 0 < s < 16. After five steps of the adiabatic algorithm we obtain
a transformed potentlal V(t), which is strongly C'' and obeys a similar condition
but now with f =12 and 0 < s < 11. This property is already sufficient for the
application of the KAM-type iteration as claimed in Theorem 2.6.
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We note that it is possible to pass from this observation to a general assertion
but we restrict ourselves to just a sketchy remark. One can introduce another type
of classes of operators 43 C %(/%), in addition to those having been introduced
in Definition 3.1. An operator X € %(/*) belongs to € if and only if its matrix
elements (X,») in the standard basis obey the condition

sup [n — m|P| X m| < 00
n,m

It is not difficult to verify that % is a *-subalgebra of %(/)* provided f > 1
(or B =0). Clearly, ¢y = #(/*) and oy C 61+« (and is not equal), for k =
1,2.... Let us also define the symbol C"(%p) = %p in a way quite analogous to
Definition 3.3. Adapting the proof of Theorem 3.6 one can show that the final
assertion of this theorem can be reformulated as

Assume further that we are given a T-periodic family of potentials V(t) € (6/’;”,
with r € Z,, $=0 or B > 1. Then the Floquet Hamiltonian K = —id; + Hy +
V(t) acting in A = L2(J0, T, #,dt) is unitarily equivalent to K = —id, + Hy +
V(t), with V(1) € €}y

Appendix 1. Proof of Theorem 2.1

Since obviously g mn =I_gnm it is sufficient to consider only non-negative £.
Where convenient we shall reparameterize (k,m,n) as

=m—n and d:=k+m—-n=k+p.
Proof will be done in several steps.
Step 1. Excluding the cases k = 0 and n = m. One has obviously for all n$m,
AE > ||gll, and y = 4E —||gll, =
Vo € Q |E, — En +g(nm;0)] Z p Z yln—m|" = lopm=10.
Similarly for all k%0,
y £ inf Q= Vo € Q, lkw| = infQ = yk| ™" = Lpn=0.

Moreover, notice that i, , =@ as soon as n = m. From now on we shall only
consider k = 1and 1 <n <m, whence 1 < p<d-—-1.

Step 2. Measuring the Iy ,. Let w and ' be in I, and denote g(n, m;w) and
g(n,m; ") shortly by g and ¢g’. Then one has

_ !
2ylk +m— [ > |k(w—w’)+g—g’|=lw—w’l'k+ 9-9 ‘

o — o
2 o — /| llgl) -

Since ||g]l, < 1, we find

2yd~7

e (AL.1)
d—p—lgl,

]Ik,m,n] _S_
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Step 3. Counting the Iy mp. If Iy m, is not empty, this means that there exists w
such that, on the one hand, (b = sup Q)

Ey—E,=—(ko+E, —Ep+g)+ko+g < yd° +ko+ |9l
<y+d-Do+lgl, < do < db. (A12)

On the other hand, owing to the gap condition (2.1) with a > 0 (it is crucial now),
there exists Cg > 0 such that

Em —En

m—n

Ceg(n*+m*) £ (A1.3)

Combining (A1.2) and (A1.3) we get for fixed p and d,
< bd

l+(n+p) <n"+m+p) = .
Cep

Set
r = b/CE

(only local notation, for purpose of this proof). Then we deduce that p < (rd)/(1+%)
and for given d and p there are at most ((rd/p) — 1)/* — p values of n. Finally
one can see easily that d > (2% + 1)/r.

Step 4. Upper bound on the measure of Quug. According to the above discussion
(cf. (Al.1) and the estimate of number of »’s) the measure of Q.4 is bounded by

0o pPmax(d) rd 1/ 2yd“7
= (%) -p) 2 (AL4)
d=dp, p=1 p d-p—lgl,

where prax(d) := min{[(rd)/+9],d — 1} and dpin := [(2* + 1)/7].
Further we shall use the estimate

@-p-lgly)" < max{1, (2r)¥} (A13)

_ 2
1—lgll;
To see (Al.5) it is enough to notice that d — p — ||g|l, = (d — p)(1 — ||g||,) and
afterwards to consider separately the cases d < 2(2r)"* and d > 2(2r)'*.

Next, replacing pmax(d) by [(rd)"/(1+9] and using P p=1* < 1+ [¥ p~dp,
we can estimate

pmax(d) [ g\ &
)Y (—) — P = py(rd), (AL.6)
p=1 P

where

xl/ot a+1 ~
Pu(x) = p— (Tx(a Djoo+1) _ 1) '

In the case o = 1 a simple limit shows that ¢;(x) = (x/2) In(x).

Finally it remains to perform the summation over d. Taking into account the
asymptotic of @,(x), x — 400, one finds that ¢ must be chosen larger than ox(a)
(see (2.12) for its definition) in order to insure the convergence of the sum. The
summation of ¢@,(rd)d~'~° will give a constant which depends on r, « and ¢ and
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since » depends on E and @ (in fact, only on sup Q) we conclude that

Ci(E,Q,0)

[Qbaa| = ——7—7-
) 1= llgll,

Appendix 2. Proof of Theorem 2.3

We define g(n,m; ) := G(n; w) — G(m; w). Clearly, both |g|;, i =0,1, are esti-
mated by 2||G||, and the condition (2.9) is fulfilled. Moreover, since 2(|G||, <
min{1, 4E, inf Q}, the conditions (2.10) and (2.11) are satisfied as well.

Let W = I'V. The estimate of |||, ,, is rather technical; to avoid cumbersome
formulas we introduce temporarily the shorter notations

d:=|i—j|, 0:=Dy(i;w)— Do(j;w)+ g(ia, j2; ®), =V(i,j;,0),

with the same convention for W and g. Furthermore, &', V’,..., designate 6, 7,...,
where w has been replaced by w’. Since all conditions to apply Theorem 2.1 were
verified there exists a subset Q' of Q so that for all (i, j, ) € (Z x N)? x ' it
holds |6] = yd~7 (and similarly for &").

Then we have W = V/5, W =V'/d,

|W|+ w-w K 1+ _1_5;5, + lV—V/
o—o | T |6 O w—aw dw—ol’
and & .
— =i —ji+ g—g,‘ < d+2|Gl,.
w—w w—w

Because d = 1 and y < 9 := min{4E, inf Q} — 2||G||, we get

166 _ _
It S o—a | S 1+ "d+2|Gllg) <y 'd  (po+1+2[Gllp) .
Consequently,
w-w|_ Al
|W|+} F| S 721+ 90 + 2]|Gllg) (IVI+I ,D
w— @ = @

and

w—-w
sup (|W|+‘ o

< ¢y 2! sup |V| + r-v
li—jl=d;w,0’€Q’ @ o

/
li—j|l=d; 0,0’ €’ w—-w

).

with ¢; := 1 + min{4E, inf Q}.
It remains to sum over d. Since for positive p:

20_ + 1)20‘+1

sup e—pdd2<7+1 —
ep

d=0

the theorem is proved. The bound on |Q\Q’| is just that one given by Theorem 2.1.
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