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Abstract: We continue our study of the statistical mechanics of a 2D surface above
a fixed wall and attracted towards it by means of a very weak positive magnetic
field h in the solid on solid (SOS) approximation, when the inverse temperature β
is very large. In particular we consider a Glauber dynamics for the above model and
study the rate of approach to equilibrium in a large cube with arbitrary boundary
conditions. Using the results proved in the first paper of this series we show that
for all h G (/z|+1,Λ|) ({hi} being the critical values of the magnetic field found
in the previous paper) the gap in the spectrum of the generator of the dynamics
is bounded away from zero uniformly in the size of the box and in the boundary
conditions. On the contrary, for h = hi and free boundary conditions, we show that
the gap in a cube of side L is bounded from above and from below by a negative
exponential of L. Our results provide a strong indication that, contrary to what
happens in two dimensions, for the three dimensional dynamical Ising model in a
finite cube at low temperature and very small positive external field, with boundary
conditions that are opposite to the field on one face of the cube and are absent
(free) on the remaining faces, the rate of exponential convergence to equilibrium,
which is positive in infinite volume, may go to zero exponentially fast in the side
of the cube.

0. Introduction

This paper is the second part of a work, begun in [CM], about the equilibrium and
non-equilibrium statistical mechanics of a SOS surface above a fixed wall at low
temperature and attracted towards it by a very weak external field.

Although the problem is clearly relevant for the understanding of wetting
phenomena (see e.g. [FP1,FP2]) and, more generally, for the study of two di-
mensional interfaces, our main motivation originates from the study of the ergodic
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properties of Glauber-type dynamics for discrete spins systems on the lattice when
the thermodynamic parameters, e.g. the temperature and the magnetic field, are in
the one phase region of the phase diagram.

An important open problem in this context can be formulated as follows: con-
sider a discrete spin system with a unique Gibbs measure μ and assume in addition
that

(*) the conditional expectation of a local function / in a cube of side L tends
exponentially fast to its thermodynamic limit μ(f) when L —> oo, uniformly in
the boundary conditions (this is the case if, for example, the Dobrushin-Shlosman
uniqueness condition holds [DS]).

Can one conclude that a reversible Glauber-like dynamics with respect to μ is
ergodic and the approach to equilibrium is exponentially fast in the sup norm?

A positive answer to this problem has been given, as far as we know, only
when, either

(1) the dynamics is attractive [MO1], or
(2) the lattice is two-dimensional [MOS].

Notice that condition (*) has been proved for ferromagnetic Ising type models
in arbitrary dimension, for any temperature above the critical one or for small
temperature and arbitrary external field different from zero [MO1], and in the 2D
Ising model in the whole one phase region [SSh].

In the general (non-attractive) case, exponential convergence to equilibrium has
been proved only with the additional assumption that

(**) the gap in the spectrum of the generator of the dynamics in a finite region
is bounded away from zero uniformly in both the boundary conditions and the size
of the region.

We refer the reader to [SZ] and references therein and to [M01,M02,LY], where
only cubic regions were considered.

It is important to stress that (**) is equivalent to the condition that the trun-
cated correlation functions in a finite volume (e.g. a cube) decay exponentially fast
everywhere inside the volume (in the bulk and close to the boundary) so that, in
particular, it implies (*).

The contribution of [MOS] consisted in showing that in two dimensions (**)
is actually equivalent to (*). The argument of [MOS] heavily depends on the facts
that the boundary of a two dimensional square is one dimensional, and so it breaks
down in higher dimensions, where (**) has been proved only deep inside the one
phase region (see for more details [MO1]). Thus no "finite volume results" are
available near the boundary of the one phase region, particularly near a line of a
first order phase transition.

Already in [MO1] (see also [MOS]) the possibility was discussed that, even if
the thermodynamic parameters correspond to a unique phase and (*) holds, in a
finite cube one could have some sort of "boundary phase transition" which could
slow down dramatically the approach to equilibrium.

The main goal of this paper is to provide substantial evidence that this phe-
nomenon happens in the 3D Ising model at low temperature and nonzero magnetic
field. More precisely we will argue that it is possible to tune the magnetic field as
a function of the inverse temperature β in such a way that the gap in the spectrum
of the generator of the dynamics in a finite cube with suitably chosen boundary
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conditions becomes exponentially small in the side of the cube. Notice that for the
same value of the thermodynamic parameters and thanks to the result of [MO1],
the gap of the infinite volume dynamics as well as the thermodynamic limit of the
gap in finite cubes with + boundary conditions [SI] are bounded away from zero.

In order to clarify the discussion, let us consider the 3D Ising model in a cube
Q of side L, at low temperature and small, positive external field h. As boundary
conditions we take —1 on the bottom face V of the cube and free (i.e. absent)
on the other faces. Since the magnetic field is positive, the typical configurations
of the systems will be mostly pluses (plus phase) away from the bottom face. Thus
there will be, with large probability, a unique contour Γ separating the plus bulk
phase from the minus boundary conditions on the bottom face, and it is quite clear
that the statistical properties of such a contour will play an important role in the
mixing properties of the Gibbs measure of the system and on the rate of approach
to equilibrium for an associated Glauber dynamics.

In order to attack the problem one can simplify the model by approximating
the contour Γ with a two dimensional surface φ = {φ(x)}xev, where the random
variable φ(x) represents the height of the surface at x above the bottom face of the
cube, and one may assume that the probability distribution of the surface is that of
the solid on solid model (SOS),

1
- £ Σχ,yEV;

- Σ \φ(χ)-ψ(y)\
xev yevc

\x-y\ = l

(0.1)

A kinetic version of the model is readily obtained by considering a Glauber dy-
namics for it, namely a single spin Markov process on the configuration space,
reversible with respect to μy(φ) and such that each move consists in replacing at
some site x, φ(x) with φ(x) ± 1.

The equilibrium problem for this system has been recently studied in [DM] and
further analyzed in [CM]. We recall for the reader's convenience the main result of
[CM], since it plays an essential role in our analysis of the non-equilibrium case.

Theorem [CM]. There exists βo such that for all β ^ βo there are positive numbers
l β

h w i t n ^nax = L^ 2 ™]' s u c n t n a t the following holds for k = l , . . . , £ m a x :

(i) \e~^k S βK(β) ^ 4e~^k.
(ii) Ifh (β) <h< h\_x{β) {define h*(β) = +oo), then

(a) there exists a unique Gibbs measure for the interaction (0.1),
(b) there exist m(β,h) > 0, C(β,h) > 0 such that for any N ^ [%/h + lj

sup \E%φ(0)-E$φ{0)\ S

where EhςfN(φ(0)) denotes the expected value of the height of the surface at x = 0

in a square QN of side N and center at the origin, with boundary conditions ψ.
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(lii) If h = hl(β), then both partitions functions Zk(QN) and Zk+ι(QN), with
boundary conditions φ = k and ψ = k + 1 respectively, admit a convergent cluster
expansion. Hence there are at least two distinct extreme Gίbbs measures.

In the present paper we turn our attention to the Glauber dynamics of the SOS
surface in a square QN of side N, with boundary conditions φ and magnetic field
h; more precisely we analyze the gap^^ jv) m the spectrum of its generator which
is related to the relaxation time to equilibrium. Our main result is

Theorem. In the same setting as in Theorem [CM] we have, for allk— 1,... ,&max,

(i) ifhϊ(β) < h < h*k_λ(β) then there exist L0(β9h% κ(β,h) > 0 such that

inf inίlffΦh>HQL)^«β9h).

(ii) Ifh — hl(β), then there exist positive constants C\(β,h), C2(β,h) such that
for all N > 10/h

£ gap* 0(βy) ύ

where 0 means free boundary conditions.

Going back to the 3D Ising model discussed above, we can conclude that there
is good evidence that for three dimensional systems it is possible to have a strong
absence of uniformity in the thermodynamic limit of interesting dynamical quan-
tities like the gap in the spectrum of the generator of the dynamics. Such unex-
pected phenomenon makes quite hard the discussion of the ergodicity properties of
the associated Glauber-type dynamics in the infinite lattice when additional useful
properties like attractivity are missing and its solution seems to require new and
more sophisticated techniques. We expect, in particular, that one should envisage a
method to exploit the fact that the boundary conditions for which the gap is not
bounded away from zero in the thermodynamic limit should be very unlikely with
respect to the infinite volume Gibbs state.

Let us now describe the contents of the paper. The proof of part (i), discussed
in Sect. 2, is organized as follows. Using the methods of [MOS] and some apriori
bounds on the moments of the random variable φ(x) proved in [CM], one easily
improves part (i) of Theorem [CM], by showing that a stronger form of weak depen-
dence on the boundary conditions (strong mixing in the language of [M01,M02,
MOS]) holds. Once strong mixing is established, a lower bound of the gap in
any large enough cube, uniformly in the volume and in the boundary conditions,
follows from the "block dynamics approach" envisaged in [MO1]. This method re-
quires, however, as an input, a lower bound on the gap in a given fixed block. Such
a bound would be trivial were the random variables φ(x) bounded. In our case the
problem requires some extra work and our solution is based upon the so-called
"Cheeger inequality" (see [LS]).

The proof of the upper bound of part (ii) is discussed in Sect. 3 and it uses
the variational characterization of the gap. More precisely, using a suitable test
function / , we show the existence of a bottleneck: the system, in order to relax
to equilibrium, has to make an excursion to a region of the configuration space
of very small equilibrium measure. Finally Sect. 4 contains the proof of the lower
bound; our method relies upon a novel recursive estimate of the gap that allows us
to overcome the problem of the unboundedness of the variables φ(x).
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1. Preliminaries

For the reader's convenience we recall most of the basic definitions that were given
in [CM].

1.1. General definitions. We consider the two dimensional lattice Z2 whose elements
are called sites and its dual Z\ = Z2 + (1/2,1/2). For X J G 1R2 we define two
distances

2

d(x,y) = \χ- y\ = Σ \χΐ - yt\ a n d ^ o o O , y ) = \χ- y\oo = m a x \xt - y{ .
1=1 ί = 1 » 2

[x, y] is the closed segment with x, y as its endpoints. The edges of Z2 {Z\) are
those e = [x,y] with JC,jμ nearest neighbors in Z2 (Zl). Given e, the edge of Z2,
e* is the unique edge in Z\ that intersects e. The boundary of an edge e — [x, j ] is
be = {x9 y}. The boundary of a subset of edges α is the set of sites δot that belong
to an odd number of edges of α. A set of edges is called closed if its boundary is
empty.

We will often consider our model on a square

ί { (xuxi) eZ2:-L^ Xi ^ L, i = 1,2 } if N = 2L + 1
QN = <

[ { (JCI,JC2) G Z 2 : - L + 1 ^ jcî  ^ L, i = 1,2 } if TV = 2L

/I and F will denote arbitrary subsets of Z2. If A is finite we write A ddZ2. The
cardinality of A is denoted by |/L|. We define four kinds of boundaries:

dA = {xeA:d(x,Ac)= 1},

dA = {xeA\doo(x,Ac)= 1},

d+A = {xeAc :d(x,Λ)= 1},

<5Λ = {,?* = [x,^]* : {χ,y} Π/1Φ0, {x,y}ΠAcΦ0} ,

where Λc = Z2 \ A.
(x\,...,xn) is called a.path fromxi to xn if |xι+i — Xi\ = 1 for / = l,...,w — 1. A

*-path is the same as a path with |x/+1 — xz| = 1 replaced by rfoo(*zΛ+i) = 1. A (*-)
path is called self-avoiding if x/φx/ for all {/,y} such that z=t=y and {z,7'}φ{l,«}.
If x\ =xn the (*-) path is called closed.

A C Z2 is said to be connected (*-connected) if for all x, y in A there exists
a path (*-path) from x to y which is entirely contained in A. A CC Z? is called
simply connected if /Lc is *-connected. A set of edges α is connected if the union
of all its edges is connected in IR2.

We denote by CB the set of all finite closed connected set of edges of Z\.
If α e CB then we define the interior of α (see Fig. 1) as the set of all sites
x = (xux2) e Z2 such that the half line

{xι} x (x2,+oo)

intersects α in an odd number of points. The interior of α is denoted by α and is
always a (possibly disconnected) simply connected subset of Z2 for each oc e CB

CB(V) is the set of all α in C 5 such that α C K.
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•

Iill•
Λ

Fig. 1. Proof of Proposition 4.1.

1.2. The SOS model The configuration space of the model is Ω = Z+ , or
Ωy ~ %+ for some V cΈ2. An element of Ωγ will usually be denoted by
φ — {φ(x%x G V}. If U C V C Z 2 , and φ G Ωj/ we denote by φυ the restriction
of φ to the set U.

Given F c c ί and some boundary condition (b.c.) ψ e Ω, one defines the
hamiltonian as

(1.1)Σ

and we always assume 0 ̂  J(x, y) ^ 1 for all x, 3;. We write J e SV ifJ(x, y) < 1
only for the boundary terms, i.e. if J(x,y) — 1 unless [x,y]* G δV. If we take
J(x, y) — 0 for all boundary terms, then we have free boundary conditions that we
also denote by

h \ \ AΣPW. 0-2)Σ
,7e

\x-y\=\

The partition function is given by

Given any set α of dual edges (for instance α = δV) we define

Σ

(1.3)

(1.4)

(if J = 1 everywhere this is just the ordinary of a).
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As in [CM] we often assume that J satisfies the hypothesis H(Λ,t) for some
y l c c ί and t ^ 0, namely that

(i) J e δΛ,
(ii) | φ ^ t\<x\ for all α <G CB(Λ).

We also define

A(J) = {x e Ί? : J(x,y)*l for some y £ Z2} . (1.5)

If # ( Λ , 0 holds for J then, clearly, for each V C Λ,

\A(J)ΠV\ S \dV\ g

When •/(*,>>) = 1 for all x,y, we drop the superscript J.
For U C.7L2, let F(/ be the σ-algebra generated by the collection of sets

{φ £ Ω : φ(x) = n}xeU,neZ+

and let F = FZ2. The (finite volume) conditional Gibbs measure on (Ω,F) associated
with the Hamiltonian (1.1) is defined as

e-βHvΛΦM if φ(x) = ψ(x) for all x e Vc

 ( J g )

θ otherwise.

We also regard μ^A'^ as a measure on Ω^ by extending each configuration φ e Ωv

to the whole space in such a way that it agrees with the boundary conditions outside
V. The expectation with respect to the measure (1.6) is denoted by Έv' ( ). The
set of probability measures (1.6) satisfies the compatibility conditions

μJ/'Φ(φ) = Σ μJΛK\φ')4Kφ\φ) for all V C A CC Έ2 . (1.7)
ψ'eΩ

We refer to Sect. 1.2 of [CM] for the definition of (infinite volume) Gibbs measure,
the definition of increasing (decreasing) functions, and the statement of the FKG
properties.

1.3. The dynamics and our results. In the rest of this section, for readability pur-
poses, we assume to have chosen β, h and J, so we don't write them explicitly if
no confusion arises.

The stochastic dynamics we want to study is defined by the Markov generator

(4f)(φ)= Σ c(x,φ,s)[f(φx'°)-f(φ)] (1.8)
χev,s=±ι

acting on L2(Ω,dμy), where

ψ ' (y) = \ , Λ , .,
t φ(y) + s if y = x .

In (1.8) φ denotes a configuration on the whole lattice Έ? which, in view of (1.6),

4)agrees with the b.c. φ on Vc. In general we identify L2(Ω,dμy) with
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The nonnegative real quantities

c(x9φ9s) xeZ2, φeΩ,s = ±l

are the transition rates for the process. We set c(x, φ,s) = 0 if φx's φΩ, that is if
φ(x) — 1 and s = — 1. The assumptions on the transition rates are

(Hi) Tranlatίon inυariance. If there exists y such that φ(x) = φ(x + y) for all
x G Z 2 , then c(x + 7,<p,s) = c(x,φ,j) for all x G %2, s = ± 1 .

(H2) Nearest neighbor interactions. If φ(y) = φ(y) for all y such that
dθ,j/) S 1, then φ , φ , j ) = c(x,φ9s).

(H3) Attractivity. If φ ^ φ and φ(x) = <p(x), then

φc,φ,+) g c(x,φ,+),

Φ , φ , - ) ^ c(x,φ,-). (1.9)

(H4) Detailed balance. For all x, φ, 5 such that φx's G ί2,

e x p [ - ^ } ( φ ( x ) ) ] φ ? φ,s) = exp[-βHφ

{χ}{φ{x) + j ) ] φ , φ^'5, -j) . (1.10)

(H5) Positiυity and boundedness. There exist cm(β,h) > 0 and CM(β,h) < 00
such that,

n ΐ f x, O Φ ? Φ ^ ) ^ Cm(β,h),
φ£Ω, s=±l: φx>s£Ω

sup Σ c(^,φ,s) ^ CM(AA) < 00 . (1.11)

Two cases one may want to keep in mind are (χ is the characteristic function)

φ , φ,s) - mm{e-βAχ>sH(φ), 1} χ{φx'* G Ω}

and
c(x,φ,s) = [1 +

where
Λ,^(<P) = Hφ

{χ}{ψ{x) +s)- Hφ

{χ}(φ{x)) .

(Hi)-(H5) guarantee that there exists a unique Markov process with semigroup

Ty(t) and generator L\. Uy is a bounded operator on L2(Ω,dμy). The process has

a unique invariant measure given by \vv. Moreover puv is reversible with respect to

the process, i.e. Uv is self-adjoint on L2(Ω,dμy). Given φ G Ω we denote by <p/ the
random configuration at time t evolving according to the process, so that

KfiΨt) = If(ψt)dJPφ

v = (7t(t))f(φ), \/φeΩ such that φVc = ψyC .

Έφ and Ψφ stand respectively for the expectation and the probability measure as-
sociated with the process starting from ψγ at time zero and subject to b.c. φγc.

The attractivity assumption implies (see for instance [L])

(1) If / is an increasing function on Ωv then Ty(t)f is also increasing for all
t ^ 0.

(2) If pi, P2 are two probability measures on (ΩV,ΈV) such that p\ ^ ρ2, then

P\T${t) ^ PiTf{t) for all t ^ 0.
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(3) For any φ, φ1 in Ω such that φ ^ φ', the standard coupling [L] Ψfφ of

φt9 φ't is such that JPpφ'{φt ^ | } = 1, for all t ^ 0.

This last property allows us to define a standard coupling of two Gibbs measures

which preserve the order of the b.c. Take in fact vpΦ as the unique invariant
measure of the (standard) coupled process (φt,φ

;

t). Then we have

(1) Vy {(φ,φf) : φ = φo} = μ^(φo) f° r aU φo £ Ώκ

(2) vjjΛ {(φ, φ7) : φ' = φ0} = μψ

v (φo) for all φ0 G Ωv.

(3) If ^ ^ ιA7, then vpψ'{(φ9φ') : φ ^ φ'} = 1.

A fundamental quantity associated with the dynamics of a reversible system is the
gap of the generator, i.e.

gap^(F) - g a p ( 4 ) = inf spec (-Zj^ \ l x ) ,

where Ά1- is the subspace of I?(Ω9dμy) orthogonal to the constant functions. The
gap can be also characterized as

= inf &J1, (1.12)

where S is the Dirichlet form associated with the generator L,

4(fJ) = ̂ E Σ μUψ)c(x,φ,s)[f(φ^s)-f(φ)]2 , (1.13)

and V a r ^ is the variance relative to the probability measure μv .
Then main result in this paper is

Theorem 1.1. In the same setting as in Theorem CM of the Introduction, if the
transition rates satisfy (Hi)-(Hs), then we have for all k = l,...,A:max,

(i) ifhl(β) < h < hl_λ(β) then there exist L0(β9h)9 κ(β,h) > 0 such that

inf inf gap^ίβO^fcGM).

(ii) If h = hl(β) there exists a positive constant C\(β,h) such that for all
N > 10/A,

dίAA)

where CM is given by (1.11).

2. Lower Bound on the Gap for

In this section we will show that, if A£(/0 < A < hl_λ{β), then the finite volume
Gibbs measures show a weak dependence (in a strong sense) on the boundary
conditions.

As a consequence, we obtain a lower bound for the gap of the dynamics in a
finite, large enough square QN- This lower bound is independent of the boundary
conditions and of N. Thus we get part (i) of Theorem 1.1.
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We will adapt to our model the ideas and techniques developed in [MOl,MOS],
supplemented by results of Sect. 3 of [CM] and by Proposition 7.1 of [CM]. As in
[CM] we often need a small constant, so we set

ζ = 1000- 1.

2.1. Strong mixing. Following the basic result of [MOS], we strengthen the result
of Proposition 7.1 of [CM].

Theorem 2.1 {Strong Mixing). Let β be large enough and h e (*£(/?), A*_i(/0)>

with 1 ^ k ^ £ m a x = [ew\. Then there exists L0(β9h), C(β,h) and m(β,h) > 0
such that, for any L ^ Lo, any A C QL and any y e d+QL, we have

sup sup \μfL{A) - μh

άf(A)\ £ C £ e ^ ^
ψ,φ'eΩ AeFA xeA

ψ'(x)=ψ(x),VxΦy

Remark. Following [MOl], we will say that SM(L,C,rn) holds if the above
inequality with the prescribed constants is valid for a square QL.

Proof. If the random variables were bounded then the result would simply follow
from Proposition 7.1 of [CM], thanks to the main theorem of [MOS] which states
that, for discrete bounded spin systems with finite range interaction, weak mixing
implies strong mixing in two dimensions.

Thus we have to take care of the unboundedness of the φ(x)'s . If one examines
closely the arguments of [MOS] one finds out that the two basic ingredients (besides
the dimensionality and the finite range condition) are the following:

(i) Weak mixing in the form stated in Proposition 7.1 of [CM],
(ii) Let C, m be the "weak mixing" constants appearing in Proposition 7.1 of

[CM], and let lo(β,h) be such that

oo 1

J=h 2

Then there exists N(β,h) ^ /0 such that

inf μ*{ φ(x) = φ(x) Vx G Q^ } > 0 for some φ G Ω . (2.1)

While for bounded spins with finite range interaction, (2.1) is a trivial consequence
of the boundedness of the interaction, in our case (2.1) follows from part (ii) of
Proposition 3.2 of [CM], if one chooses the reference configuration φ identically
equal to + 1 , and N = IQV [S/h -f l j . In fact from the FKG inequality one gets

mf μ\.{ φ(x) = +1 Vx G Qs } 2; J ] mf μψ

Q.{φ(x) = +1} ^ b2(

Thus (i) and (ii) hold also in our case and the theorem follows. D

2.2. Proof of part (i) of Theorem 1.1. We are finally in a position to prove a
lower bound for the gap of the dynamics defined in Sect. 1.3 in any finite, large
enough square QN, independent of the boundary condition and of N.
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We follow very closely Sect. 4 of [MOl]. Given an even integer Lo = 2K0 and a
cube QN, N = ΆLQ, we consider its covering by squares Qι

L such that if two different

squares Qι

L and Q[ overlap then necessarily each one of them is translated by KQ

of the other along at least one of the two coordinate axes. Let

®n = {Qί0}

and consider the block-dynamics defined in the Appendix, determined by β,h, the
b.c. ψ and the collection @n9 through the Markov generator Lh^ given by (Al.l).
The same proof of Theorem 4.1 of [MOl] shows that, if SM(Lo,C,m) holds and
moreover Zo is so large that

CL2

oQχp(-m^Γo) S 7^ , (2.2)

then the gap of L^ is bounded away from zero uniformly in ψ and in N = ΠLQ.
Thus if we choose LQ — Lo(β,h) large enough so that both Theorem 2.1 and (2.2)
are satisfied we get

mf inf g a p ( 4 f ) £ Mβ,h) > 0 . (2.3)

In Proposition 2.2, on the other side, we will show that, considering the usual single
site dynamics on each block Qι

L , if L$ > [8/Λ + l j , we have

J f ) > 0 . (2.4)

Finally, Proposition Al.l gives an estimate for the gap of the single site
dynamics in the full volume QN, in terms of the quantities appearing in (2.3),
(2.4). Thus, assuming to have chosen Lo such that L$ ^ [S/h + lj also holds,
we get

inf inf gap(L^) ^ -K\ κ2 > 0.

The factor | is the "overlapping" factor appearing as the last term in (A 1.2).
The extension of the theorem to all N ^ Zo is straightforward after one realizes

that Theorem 4.1 of [MOl] is valid for any coverings {ζ?i0} of QN such that the

following holds: for each site x E QN there is a square Qι

L ,

In this way we can "cover" any square QN with N greater than say lOLo Π

We are thus left with the proof of (2.4).

Proposition 2.2. For each β,h > 0, N ^ N\(h) = |_8//z + l j , we have (remember
that we always assume 0 rg J(x, y) ^ 1 )

Proof. We recall that J G OQN means (see Sect. 1.2) that J = 1 everywhere with the
possible exception of the boundary terms. Let then A = Q^. As we did in Sect. 3
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of [CM] we define

^ \ Σ \φ(x)-φ(y)\- Σ φ(*) + * Σ ψW, (2.5)

which satisfies

(n - 1) \δV\j+H^\φ) ^ H^\φ) £ (n - 1) \δV\j+H^°°(φ) . (2.6)

For I C 0,1 we define δX as the set of all φ G X such that there exists φr G X c

with

YJ\φ{x)-ψ\x)\ = \.

The proof is based on the so-called Cheeger inequality given in [LS], which in our
case says

where, letting μ — μ ^ ,

i= j?ί Λ Σ μ(ψ) Σ Φ,<?^)^ ,mf cm(β,hf(dX)

and

Thanks to the boundedness of the transition rates (1.11), the proposition is thus
proven if we can show that

M = sup Σ Σ Φ,fl>,*) ̂
Ω eΛ s=±\

u(dX}
inf inf inf ^ ^ — - > 0 . (2.7)

We denote by ψ\ the configuration on A which is equal to 1 everywhere, and we
consider two cases depending on whether ψ\ belongs to X or not.

For each φ e X we set

m(φ) = inf {/ : φ Λ / G X} ,

φr — φ Λ m(φ) and φ" = φ Λ (m(φ) — 1) ,

so that φ ; G X and φ / ; G l c . If we define Tφ = φ', then we claim that

(2.8)



Layering Transition of SOS Surface II. Glauber Dynamics 185

where ΩΛ = {0,1,2,.. .}A. To prove (2.8) one has to observe that, since φ(x) ^ φ(y)
implies φ\x) ^ φ\y), then

\φ(χ) - φ(y)\ = \φ'(χ) - φ'(y)\ + I(Φ - <?')(*) - (Φ -

^ - ( φ - φ')(x)+J(x9y)\φ'(x) -

This implies

Hf'\Ψ) > HJ/'*(φ')+UhΛO°(φ - Ψ') • (2-9)

So, if we let Z = ZJ-h^{Λ), we have

^ Z " 1

φETX φeΩΛ: Tφ=φ

φβΩΛ:Tφ=φ

ti e-^°°M . (2.10)
<peόΛ

To complete the proof we are going to use the following facts:

(a) For each X, for each φ e TX, there exists φ e dX such that φ — 1 ^ φ ^
φ, and

Statement (a) is a trivial consequence of the definition of Tφ, while (b) follows
easily from (a). Given (a) and (b), we can proceed as follows:

φETX

= Z-\e5βN2 Y^ # | ^ G τ χ .

Φedx

(2.11)

The proof of (2.7) when <pi φX, follows then from (2.10), (2.11) and Proposition 3.1

of [CM] (the fact that ΩΛ should be replaced by ΩA is not essential).

• φi eX.

The key ingredient is the following observation

(c) there exists s(β,h,N) such that for all X e ΩΛ with μf^iX) g 1/2 for
some ψ e Ω, there exists φ e Xc with supx φ(x) ^ s(β,h,N).

Proof of (c). By Proposition 3.2 of [CM] and Chebyshev inequality, we have

μf'Φ (supφ(x) > / - U E μf'Φ{<P(x) > r) ^ -
K x ) xeΛ r
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So, by taking s(β,h,N) = [4 \Λ\ bx(β9h91)]"1, we get

which implies (c).
Choose now some φ G Xc such that sup̂ . φ(x) ^ s. Since ψ\ G X, there exists

φ G 3X such that φi ^ φ ^ φ. Hence, using the trivial bounds

we obtain (remember (2.6)),

- 1

-5β\Λ\s{β,h,N)

This completes the proof of (2.7) and Proposition 2.2. D

3. Upper Bound on the Gap at h*k(β)

In this section we prove the upper bound in part (ii) of Theorem 1.1. More precisely,
we have

Theorem 3.1. Let β be large enough and let k G 7L+ such that 1 ^ k ^ kmax =

[β§J. IfN> 10/ (̂jS), then

where cM(β,h) is defined in (1.11).

We set for simplicity h* — h\{β) and A = QN. In order to find an upper bound
on gzph*>®(Λ) we are going to use the "look for the bottleneck" approach, i.e. we
take advantage of the variational characterization for the gap (1.12) and choose an
appropriate test function /o which illustrates how the system, in order to relax to
equilibrium, has to make an excursion to a very unlikely region.

Given φGΩwe set

σ(x) = sign(φ(x) - k - 1/2)

and, for U CC Έ?

Mu(σ) = Mu(σ(φ)) = Σ Φ ) ,
xeu

mu(σ) = mu(σ(φ)) = \U\ι
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In analogy with the solution of the similar problem for the 2D Ising model in the
phase coexistence region, we take as a test function

fo(φ) = χ{MΛ(φ) > 0} - χ{MΛ(φ) < 0} .

Using (1.11), we find

<*> β(/o,/o) ^ μhl'\\MΛ{φ)\ g 2} sup £ ch*'\x,φ,s)
Ω±

2}, (3.1)

while

Var**'0(/o) = μh*'\MΛ(φ)ΦQ} - {μh*'\MΛ{φ) > 0}

-μh*Λ{MΛ{φ)<0}f. (3.2)

The proof of Theorem 3.1 is then a consequence of (1.12), (3.1), (3.2) and
Lemmas 3.3, 3.4 proven below.

3.1. Bound on the Dίrίchlet form. We want to show that, if β is large enough and
N ^ lθ/h*k(β\ then

μhy\\MΛ{φ)\ S 2} £ e - « * W I .

The idea is the following (see also [S2]). Take Λ! c A. Then either there is a
"contour" separating the phase σ = 1 from the phase σ = — 1 or there is a circuit
surrounding Λf, where σ is either all plus or all minus. So we need to prove that

• the probability of having a large contour of length / with free b.c. goes like
exp(—costjS/)

• the probability of having \MΛ/\ ^ 2 conditioned to the existence of a (+)
circuit or a (—) circuit surrounding A' goes like exp(—cost j

Before stating the next lemma we have introduce another definition. Given

σ e {-1,1}V, let σ+ e {-1, l} 2^ be defined by

σ+(x) = I
σ(x) if x G V

The set {e* : e = [x,y], σ+(x) + σ+(j>)} can be written as a union of its connected
components αi , . . . ,α r , where αz G C#(F). A closed set of dual edges α is called a
contour for σ if α = αz, for some /.

Lemma 3.2. Z^/ /? be large enough, 1 ^ k ^ &max, Λ = g ^ i ^ r eαcA α G CB(A\
let α0 = α \ ^A Γ/ze«, ί f α ί l W φ l ί β«J |α o | > iV/100, we

μ}{M{φ eΩΛ:oc is a contour for σ(φ)} ^

Proof. Let /z* = /ẑ (>5). Given α G Q(yl) we define the event

Xa = {φ G ΩA : α is a contour for <p} .
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We also let Λ\ — α, A2 = A \ α and

Aι={xeΛx :d(x,Λ2)=l},

A2 = {xeΛ2 :d(x,Λι)= 1}.

We observe that both A\ and Λ2 are simply connected. In fact A\ is the interior of
a closed connected set of dual edges, and A2 is the interior of (a U δΛ) \ (a P\ δΛ)
which is again a closed connected set of dual edges because α touches δΛ. So
we have

where

χ\ ={φeΩΛ: σ(x) = - 1 Vx e Δu and σ(x) = +1 Vx G Λ2} ,

Xα

2 = {φeΩΛ: σ(x) = +1 Vx e ^1, and σ(jc) = - 1 Vx e J 2 } .

In the following we are going to show how to estimate μΛ (Xj). μΛ (X£) can
be dealt with in the same way. Choose now the couplings J(e) which correspond
to free b.c. on the boundary of A, i.e.

1 ϊ ί [ x ^ δ Λ . (3.3)
θ ii[x,yY &δΛ y '

In this way, since, for φ € x£,

we can write
, * 0 . e->\«\Z^\Λx)Z*r*+\Λ2) ^

At this point our strategy depends on whether |α Π δA\ is greater than or less than
^\δA\. In the first case we estimate the denominator as

while in the second case we write

We treat only the first case because the second is identical. So, assuming |α Π δA\
\\δA\, we get

What is left to complete the proof is to convince ourselves that (remember the
definition of H(Λ,t) given before (1.5) and that ζ = 1000"1)

(*) H(Λ2, IOC) holds for J .
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In fact, assuming (*), we apply Corollary 4.2 of [CM] to estimate the above quotient
and obtain

μhΛ>\xί) ύ exp[-jS|αo| + \δΛ2\e-*K] g ^ l a o M * o M ^ I ^ e\«,\{-β+m) ?

where we have used |αo| ̂  A//100.

Proof of (*). Let η G CB^AI). We are going to show that \η\j ^'^\η\, which is
more than enough. We recall that with our choice of J, \η\j = \η \ δA\ and that
δA2 = αo U (δΛ \ α), so that

\η ΓΊ δΛ\ S \δΛ2 Π δΛ\ = \δΛ \ α| ^ ^\δΛ\ (3.6)

because of what we assumed right before (3.5). We consider three cases:

(1) If 7̂ does not touch any two opposite sides of A, then \η\ §: 2\η Π δΛ\, so
\η\j = \η\-\ηnδΛ\>ί\η\.

(2) If η touches exactly 3 sides of A, then, since it is closed, \η \ δA\ ^ \\δA\,

so, by (3.6), \ηΠδΛ\ ^ 2\η\δΛ\ which implies \η\j ^ \\η\.

(3) If η touches all 4 sides of Λ, then \η\ ̂  |(5/l|, so |ι/|y ^ ^|^|.

This proves (*).

Thus we have obtained

We can now state our first key estimate

Lemma 3.3. Let β be large enough, 1 ^ k ^ kmax and A = 2^- Then, if
N ^ 1000,

Proof We borrow the basic idea from [S2]. Let h* = hl(β). Consider a square
A1 = QN, of side Nf = N - 2[N/20\. In this way d(δΛ,δΛ') = [N/20\. It is then
easy to check that

μh*'${\MΛ{φ)\ ϊ 2} ϊ μf 0 \\mΛ,{φ)\ ύ | } (3.7)

Following [S2] we consider the events

Y± = I φ e ΩΛ :
j ^ there exists a connected set R C A \ A', surrounding A!

such that σ(x) = ±1 for all x e 7?

and, letting Y = Y+ U 7~, we write

μ f Θ ( r ) . (3.8)
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The idea is to show that the first two terms are small because of Corollary 4.3 of
[CM], while the last term is small because of Lemma 3.2. The first two terms can
be taken care of in the same way, so we will deal only with the first.

Consider A! as a disjoint union of N' horizontal strips Sj, each strip being a
Nf x 1 rectangle. Accordingly write

A' = Si U S2 U U SNf .

By conditioning on the "most external" R which surrounds A', and using the
FKG inequality and the Markov property as we did in Proposition A 1.1 of [CM], we
find

mA,{φ) ύ\ ύ sup /4'* + 1 lmA,(φ) £ |
V Λ'CVCΛ

V connected and
simply connected

Applying Corollary 4.3 of [CM] to each Sj we get

^ sup Nf sup μpk+λ imSj{φ) ^\

d dV connected and
simply connected

^ N'e-ίW ύ Ne-^N ^ e~^N . (3.9)

We now complete the proof with an estimate of the last term in (3.8). The basic
observation here is that if φ £ Yc, then there is a contour α for φ touching both
δA and δA\ which implies

|αo| = \oc\δA\ ^ 2d(δA,δAf) ^ 2\N/2Q\ .

It is easy to check that for any dual edge e*,

#{α e CB(Λ) :oc3e*, \ao\ = 1} £ Kι+ΛN+ι ,

where Kι is an upper bound for the number of α of length / containing a fixed
edge. Then, by Lemma 3.2, setting /0 = 2|Λ//20j,

μh^\Yc) S Σ ^ * ' 0 ί α i s a contour for φ}
xECB(Λ)

Φ \ l 0

^ μΛ {α is a contour for φ}

/=/o

Together with (3.7), (3.8) and (3.9) this proves the theorem (if N ^ 1000 then
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3.2. Bound on the variance of /Q. In order to find a lower bound on the variance
of /o, we prove

Lemma 3.4. Let β be large enough, 1 ^ k ^ kmax. Take A = QN with N >
10/hϊ(β). Then

μfM{φ e ΩΛ : MΛ(σ(φ)) < 0} ^ e ^ ,

μfM{φ E ΩΛ : MΛ(σ(φ)) > 0} ^ e~^N .

Proof. Let A* = h%(β). We assume, for simplicity that N = 2L + I is odd and
subdivide A into two rectangles, so we consider the central horizontal row

R = {[-L,L]ΠZ} x {0}.

Then we write

Λ = ΛιURUΛ2,

where Λ\ is the N x L rectangle above R and Λ2 is the rectangle below R. Consider
now the events

X = {φ e ΩΛ : φ(x) = k, Vx G R} ,

yi = { φ G Ω Λ : M > l ί ( σ ) < 0 } ί = l , 2 .

Then

μh*>*{MA(σ) < 0} ^ μ f 0 (7! Π 72 \X)μh*>\x)

/£\ή£\fr\ (3.10)

where J is taken as in (3.3). To take care of the first two terms, we observe that
H{A\,\) holds for J by an argument very similar to the proof of statement (*)
in Lemma 3.2. So, using the row decomposition as in (3.9), and Corollary 4.3 of
[CM], we get

(3.11)

(same for Y2).
Let's consider now the last term in (3.10). If φ e l then

Hh*' V ) = Hf>k(φ) + HJf'k{ψ) + h*kNV) = Hf(φ) + H

SO

The idea is again to use the cluster expansion to estimate the quotient of partition
functions. For this purpose we introduce a small coupling on the boundary of A,

ί l \S[x9yγ$
Άχ,y)={ , (3 .13)

[ l O C i f [ ] * ^
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where we have set ζ= 1000"1. Jensen inequality (see Proposition 4.5 of [CM])
and Proposition 3.5 (which is given below) yield

yJX,k( Λ\ Γ * rt 1

7 h , ^ J ^ exp \-\Qζβ\δΛ\ sup ΈΪΛ

Λ \φ(x) - k\\ 2: e~n^^ . (3.14)

Hence, since H(ΛU\)9 H(Λl9\) holds for J , and H(Λ9 IOC) holds for J for all

V CC Z 2 , all three partition functions

yj,h*,ks A \ yJX
/Ll \^/i-\ }} Δj

have a cluster expansion, thanks to Theorem 4.1 of [CM]. With the help of
Theorem 4.4 of [CM] it is not difficult to show that

zJ,h*,k{Λ) = e '

where ε(β) —>• 0 when β —> oo. Together with (3.12), (3.14) this implies

and then, by (3.10), (3.11)

tf'*{MΛ(σ) < 0} ^

The proof of the second statement is identical. D

In the next proposition we complete the proof, by showing how to get the second
inequality in (3.14). We will actually give a more general statement than the one
needed.

Proposition 3.5. Let β be large enough, 1 ύ k ^ kmax, Λ = QN, N >
Then

Proof. Let h* = hl(β) and for any positive integer k let, as in [CM],

h(β) =lK{β\ h+

k{β)l h~(β) = γ-W,

ht(β)=±e-W*-ι\hΐ = ±e-P.

By FKG we can write

μh*>0{φ(x) ^n}^ μh/{φ(x) ^ n} \/h e IM(β) , (3.16)

/ # ' \ φ ( x ) %n}^ μf{φ(x) £ n} VΛ 6 Ik(β) . (3.17)

Choose now h G Ik+\(β), and a positive integer j . We want to show that the RHS

of (3.16) is less than e~^ when n — k + 1 +j. As in [CM], for V C A, we define
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the events

there exists a path (x\,..., xs) such that
S+(ΛJ, V) = < φ G ΩΛ :

I xi G V, xs G dΛ and φ(x/) ^ 7 for each i
If x e Λ and 7 > 0, trivially we have that φ(x) ^ k + 7 + 1 if and only if φ G
S+(Λ, £ + 1 +7, {*}). Thus, by Theorem 5.2 of [CM] we get

μf{φ(x) ^ t + 1 + 7 } ^ e - ^ Λ

If, on the contrary, x G Λ \ <M, then we define the event F as

F = S+(Λ, k + 1 + L//2J + 1, δ+{x}).

So

At*[0M*) ^ * + 1 +j} S μf(φ(x) ^k+l+j\Fc) + μh/(F) . (3.18)

By Proposition A 1.1 of [CM] one finds

μf(φ(x) ^k+l+j\Fc)ϊ sup μf+λ+^{φ(x) ^ k + 1 + j} .
V3x

V connected and
simply connected

Using FKG again and Proposition 3.5 of [CM], and letting m = [j/2\, we get

μf +l+m{φ(x) ^k+l+j}^ μhyk+x+m{ψ{x) ^ k + 1 +j \ φ(y) > m V7 € V)

= μh/+l{φ(x) ^k+l+j-m} ^ e-^J~m)

^ e-τoβJ .

On the other side Theorem 5.2 of [CM] says that

μh/(F) g e-ί«1+'") g e - i W .

These last two inequalities, together with (3.16), (3.18) give

In a similar way one finds, for j > 0

Therefore, for all x G Λ9

h*>0 \φ(x) - k\ ^ 1 + 2 g β- ί#+ ^ 1.1. D
7 = 1

4. Lower Bound on the Gap at Λ£(/0

In this section we complete the proof of Theorem 1.1 by proving a lower bound
on the gap of the generator of the dynamics for h = /*|(β) and arbitrary boundary
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conditions, which is of the same order of the upper bound discussed in the previous
section, namely a negative exponential of the boundary of the square QL.

As in [CM] we define N0(h) = (ζ3h)~\ where ζ= 1000"1. We prove that
(remember that we always assume 0 ^ J(x,y) S 1 and that J G δQ has been de-
fined in Sect. 1.2)

Theorem 4.1. If β is large enough, then, for each 1 ^ k g kmax = [eϊo\, there
exists a positive constant G(β,hl(β)) such that

mϊQ inf

for any square Q of side L ^ 20N0(h*k(β)).

Remarks. (1) Free boundary conditions are recovered by simply setting J(x,y) = 1
everywhere but J(x,y) = 0 for all x,y such that [x,y]* G δQ. Moreover, using
the fact that the gap is positive uniformly in the boundary conditions for each
L ^ [$/h+ lj (Proposition 2.2), we can easily find a constant C\{β,h) > 0 such
that statement (ii) of Theorem 1.1 holds.

(2) By using a more sophisticated approach which requires the so-called
"surgery" technique one can replace the factor SOβk with 80/?.

Proof. Let h* = A*(j8), No = N0(h*) and No = KW0. The proof is obtained by
recursion as follows. For L e Z + , let

Proposition 2.2 says that gL > 0 if L ^ [S/h + l j . Given now L ^ 2N0, it is pos-
sible to find positive integers s, {A'}/=i s u c n t n a t

L = Lo > Lx > - - > Ls = No ,

5-Lt £Li-ι ^ Ί-Li i = l , . . . , j

(a proof of this is given in Appendix A2). We clearly have

< logZ -
S <

S = log(5/4)

Then we prove the following recursive inequality

&,_!(β,h*) ^ gLi(β,h*) G0(β, h*) e'20^1' VI ^ i < s (4.1)

for a suitable Go(β,h*) > 0. Iterating (4.1) and observing that

1 = 1 !=1
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we get

gL{βX) ^ g#o(β,h*)ίl[Go(β9h*)e-WkLi] ^ G(β9h*)lo*Le-WkL

for some G(β,h*) > 0, and so the theorem is proven.

In order to establish (4.1), we actually prove the slightly more general inequality

inf gL(β, h* ) ^ gN(β, h*) G0(j8, h* ) e'20^ \/N ̂  No .
1

We proceed as follows. Let N ^ No, 5N/4 < L ^ 7N/4 and Λ = QL. A can be
obtained in a unique way (apart from permutations) as a union of four overlapping
squares of side N that we denote by Au i — 1,...,4 (see Fig. 1). Let A\ be the
northeast square in A, A2 the northwest one and so on, proceeding counterclockwise.
Let Q) — {Aι,A2,A3,A4}, and consider the block-dynamics defined in Appendix Al,
determined by β,h*,J, the b.c. φ and the collection Q), through the Markov generator

LJf>ψ given by (Al.l).
Thanks to Proposition Al.l we know that

f ** J f φ * ) . (4.2)
Thus, in order to prove the theorem, it remains to show that there exists Go(β,h*)>O
such that

inf inf gap(4 A * ψ ) ^ G0(β,h*)e'20^ . (4.3)

By Proposition A 1.2, this in turn follows, if we can prove that

ψJfMψ'φ){{φt,φt) :ψx=Ψ:} ^ G o ( A A ' ) e " 2 0 ^ for all φ,φ

such that φ ̂  φ , (4.4)

where (φt,φt) is the coupled process defined in Appendix Al. The idea at this
point is that in order to have φt — φt on A it is "almost" sufficient to impose that
the two configurations agree on a subset of A whose cardinality is of the order of
the boundary. Let in fact (see Fig. 1)

Using the explicit construction and notation for this coupled process given in
Appendix Al, we have

ψJf'ψ'(ψ'Φ){φ,=φ,}^mP2P3, (4.5)

where p\ is the probability of having τ(6) ̂  1, p2 is the probability that the order
in which the first six blocks are updated is given by

/(I) , . . . , / (6)= 1,3,2,4,1,1/, (4.6)

and /?3 is the probability of having φτ^ = φ τ ( 6 ) , given (4.6). Define now the events
(the random variables (η,ή) have been introduced in Appendix Al)

' " ,η(x)^'^ = (1,1) Vx € At} .
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Then we observe, and this is the key remark, that, since the interaction is between

nearest neighbors, if the events F[φ^ψ() and F3

φ^ι>Ψτ(ι) happen, then necessarily
(given (4.6)) φτ^ = φτ^y Thus, taking into account

(i) that (η(x\ή(x)) = (1,1) if and only if ή(x) = 1,

(ii) the properties of the standard coupling v^.'φ (η,ή) given in Sect. 1.3, we
get

p3 ^ inf Prob(F<f '*"> Π if^)

^ inf inf ( μX*'ψ'{φ € ΩΛι : φ(x) = 1, Vx € Ax} f . (4.7)

Clearly the event {φ(x) = 1 VJC G At} is a decreasing event so that, using the FKG
property we get

///«'{φ(χ) = ι\/χeAι}^ π μXw{φ(χ) = 1} (4.8)

Now we subdivide the JC'S in A\ into two groups, depending on whether they are
close to the boundary or not. Let then

A[={xGAι :d(x9dΛ\) ^ No} ,

A'(=Aλ\A\.

We claim that

(a) \A[\ ^ 4N0 and ̂ l ^ 2N.

(b) If x £ A[, then for all J e δΛu φ' e Ω, μJ^φ>{φ{x) = 1} ^ b2(b,h*) > 0.

(c) If x e A'{, then for all J e δΛu φ' 6 Ω, μJ**'φ'{φ(x) = 1} ^ | ^ - 4 ^ .

(a), (b) and (c) together with the obvious bound

P\ Pi ^ e~β

clearly imply (4.3) with

and so the theorem would be proven.

• To prove (a) it is sufficient to observe that A\ = TυU T^ (see Fig. 1), where
Tv is a vertical line of length N whose distance from the vertical sides of A\ is
greater than

((L -N)Λ (2N - L)) - 2 ^ -N ^ 2N0 ,

since 5N/4 < L ^ 7JV/4. An analogous statement holds for 7 .̂
• (b) is proven in Proposition 3.2 of [CM].
• The proof of (c) is a little more involved and we have to use the fact that at

distances greater than NQ from the boundary it is very likely to have k ^ φ ^ k + 1.
Let in fact JC G A". Let FQ be a square of side NQ (or NQ + \ if NQ is even) centered
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at x and let V\ be the square still centered at x but with side No — 2[7Vo/4j — 2. By
(1.7), taking into account that if J G δA\ then J(x, y) = 1 for all {x, y} C Λ\, we
obtain

ίa μ ^ φ > { φ ) = 1 } = : ^ ' { φ i x ) = * > ( 4 9 )

Take now h = he~Aβk ^ A*. Because {φ(x) = 1} is a negative event, by the FKG
property,

μh;/{φ(x) = 1} ^ μ^{φ(x) = 1} . (4.10)

Furthermore, if we let

(the event S+(Λ9j9V) has been defined in Proposition 3.5) by 5.1 of [CM] and
A 1.1 of [CM] we have

4φ'
sup μf+X{φ(x)=\}. (4.11)

VV

l40

φ'{φ(x) = 1} ^ < φ

V connected and
simply connected

On the other side, letting

F = {φ G Ωv : φ(y) = k + 1 V> G K, such that |x - ^ | = 1} ,

and using Proposition 3.5 of [CM], we find, for each simply connected V contain-

ing V\,

- 4supμί )

(4.12)

But an explicit computation, gives

In this way we have found

inf inf μX^'{φ(x)=l}^1-e-^ \/xeA'{. D
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Appendix Al. The Block Dynamics

Given

(i) the hamiltonian (1.1), with parameters (β,h,J\
(ii) a boundary condition ψ e Ω,

(iii) a collection 3) — {Λ\9...,Λn} of finite (possibly overlapping) subsets of Z2,

and letting
n

A = (J Λj,

we define as the standard block dynamics (with respect to β,h,J,φ,Θ) the Markov
process on ΩA whose generator is

n

(L%f)(φ) = Σ Σ ^Ai(n)[f(n) - f(<P)] f o r a 1 1 φ such that φΛc = φΛc . (Al.l)
Ϊ = 1 ηeΩ

The sum over η is actually restricted to those configurations that agree with φ

outside Λf because of (1.6). A straightforward computation shows that L^ is still

a bounded self-adjoint operator on L2(ΩA,dμ\). We assume to have chosen β,h,J
and won't mention them explicitly in the following. Then

Proposition Al.l. For all β,h > 0, all J, ψ, let UA be given by (1.8) with transition
rates satisfying (Hi)-(H 5 ). Then

( V1

g a ρ ( Z ^ ) ^ g a p ( ^ t ) i n f i n f g a p ( Z ^ ) ( s u p # { / :ΛiBx}) . ( A 1 . 2 )
i φ£Ω ι \xeΛ J

Proof Let

Thanks to (1.12), (A1.2) is proven if we can show that

4 ( / > / ) ^ 9~λ sup #{i: Λ, 3 x} Siifj) for all / G L2(ΩA,dμ+). (A1.3)
xeΛ

But, using (1.7), we find

) ^ \ Σ ^ ( Φ ) Σ Σ <('/)[/('/)-/(<P)]2

= \ Σ Σ ^(<?')Σ μφΛ,(φ) Σ <(»;)[/(ί) - f(<p)Ϋ

Σ ^(Φ')Σ Var^(/) ^ ff"1 Σ
φ'GΩ i φ'eΩ
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On the other side, by (1.7) again,

1 ,

z φ'eΩ ί φeΩ xeΛιts=±ι

^ sup #{/: yl/ 3

(A 1.3) and the proposition are thus proven. D
We want to introduce now a coupling between two copies of the block dynamic

process in such a way to preserve the order given by the initial conditions. Given
ψ, φ, φ such that i/̂ c = φΛc = φΛC, consider the process (φt,φt) which starts from
(φ, φ) at time zero and evolves according to the generator

Σ

where v ^ is the standard coupling defined in Sect. 1. Given the starting point

(φ9φ) G Ω2, the process (φt9φt) can be constructed explicitly as follows. Let

(a) τ(y), j = 1,2,..., be the jump times of a Poisson process with rate n =
number of blocks.

(b) (η,ή)uΦ\ for (<p,φ) e Ω2, i = I,...,/! and 7 = 1,2,... be a collection of

ί22 valued independent random variables (and independent of the τ/s) distributed

according to v^φ(η9 ή).
(c) /(y) for j = 1,2,... be a collection of i.i.d. (and independent of what has

been defined before) random variables with uniform distribution on {1,...,«}.

Define now

(1) (φo,φo) = (φ,φ)9

(2) (φ,,φ,) = (φτUhφτU)), for all 1(7) ^ ί < τ(y + 1),

(2) (

Then we have

Proposition A1.2. With respect to the quantities previously defined

(i) both φt and φt have the same distribution as the process associated with
the generator (Al.l).

(ii) If φ ^ φ, then

Prob{φ, <, φt} = 1 for all ί ^ 0 .

(iii) If Frob{φ\ = φx} ^ p for all starting points φ,φ such that φ ^ φ (and
such that they agree with φ on Λc% then

(i) is a standard computation, (ii) follows from the definition of (φt,φt) and from

the properties of the coupling measure v^φ. To get (iii) we use the (time) Markov
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property which yields

Prob{φ,*<pJ ^ (1 - p)[t} ^ e~(t-l)p. D

Appendix A2

Proposition A2.1. Let N ^ 100, L ^ 2N. Then there exist integers s, Lu such
that

L — Lo > L\ > - - > Ls = N ,

-Li ^ Li-ι ^ -Lf i = l , . . . 9 s .

Proof. Let also X be the set of L's such that the proposition holds. We want to
show that X contains all integers greater than or equal to IN. Let 7V0

+ — N^~ = N
and, for each i G %+, we set Kf = [Nj~9N*]9 where

Nf = LT^Ϊ-IJ
 a n d Nf = [-A^dl

(\x] is the smallest integer not less than x). Obviously

K i O j J [Γ5»/41,L7«/4J]

and, since for n ^ 100,
[7n/4\ ^ Γ5(/i + l)/4] ,

we have in fact
Kt= U [ [5/1/41, L7/I/4J].

So, for each m G iζ there exists n G iζ _i such that

5 < m < 7

4 = n" = 4 '

This implies
CO

Ϊ = 1

Furthermore, since TV ^ 100, we have

N~ ^ (5/4)27V + 5/4+1 g (7/4)7V - 1 g 7V+ ,

and it is easy to check, by induction, that

W ^ Nttλ Vz ^ 2 .

Thus we get

oo oo

U ί o U [Λ£-iΛ+] = [̂ i+

? oo) ̂  [2N, oo) . D
1=1 1=2
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