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Abstract: We consider lattice spin systems with short range but random and un-
bounded interactions. We give criteria for ergodicity of spin flip dynamics and es-
timate the speed of convergence to the unique invariant measure. We find for this
convergence a stretched exponential in time for a class of "directed" dynamics (such
as in the disordered Toom or Stavskaya model). For the general case, we show that
the relaxation is faster than any power in time. No assumptions of reversibility
are made. The methods are based on relating the problem to an oriented percola-
tion problem (contact process) and (for the general case) using a slightly modified
version of the multiscale analysis of e.g. Klein (1993).

1. Introduction

Adding disorder to a system of many interacting particles may in general be a highly
non-trivial perturbation. The study of spin flip systems with quenched disorder is
certainly not so well developed as their corresponding versions without disorder. In
this paper we show how percolation techniques can be useful for investigating that
part of the phase diagram in which the disordered dynamics typically forgets about
initial data. In this uniqueness regime (high temperature, high noise, low density,
strong magnetic field, strong bias,...) the main problem consists in circumventing the
dynamical consequences of the so-called Griffiths' singularities, see Griffiths (1969).
A consequence of the disorder is that there will typically be large regions on which
the spins are strongly interacting. This is completely analogous to the situation in
equilibrium. What is far worse here however, is that these "bad" regions should be
thought of as infinitely extending in the time direction, i.e., spins there will relax
only very slowly in the course of time. Depending on the size and the "badness" of
these regions, the relaxation time may become arbitrarily large. Therefore we cannot
expect to see typically an exponential decay to the invariant measure.
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As far as we know, there exist very few rigorous results for dynamics governed
by random parameters. Mostly they concern Glauber (or heat-bath) dynamics for
spin glasses with nearest neighbor interactions. For one-dimensional spin glasses
with unbounded pair interactions, Zegarlinski (1994) recently found a convergence
to equilibrium faster than c exp —tδ with δ G (0,1) and c dependent on the realiza-
tion. Moreover he argues that for any dimension this is the best possible result: the
dynamics has no spectral gap. This assertion is confirmed by the extensive computer
simulations of spin glasses by Ogielski (1985). He observed the time dependent cor-
relation function q(t) = Έ((σx(0),σx(t)}) for large systems during long observation
times and also found a stretched exponential decay. There, q{t) is calculated in ther-
mal equilibrium and is an average over all realizations. Randeria et al. (1985) argued
for a lower bound for this same correlation function, by considering the contribution
to the relaxation process of independent tightly coupled and unfrustrated clusters.
The energy needed to flip a cluster with diameter L typically goes as ~ σLd~ι,
with σ the surface tension. The relaxation time thus goes as exp(—cσLd~ι). Using
this and the fact that the probability to find such a cluster is ~ Qxp(-λLd) they

get q(t) > exp—^(logO^1- This does not agree with the simulations of Ogielski
(1985). Palmer et al. (1984) introduced different degrees of freedom to elucidate
the relaxation in strongly interacting glassy materials. They propose a serial relax-
ation process, slower modes are constrained by the faster ones: the former can't
decay before the latter are finished. The formula they obtain for q(t) contains two
parameters that can be chosen so that a stretched exponential decay appears.

Here we do not restrict ourselves to reversible continuous time spin glasses.
Also other continuous and discrete time spin flip dynamics are regarded. The com-
mon characteristic is a short range interaction governed by random and possibly
unbounded parameters.

We describe the influence of the initial data on the asymptotic state via oriented
percolation (contact process) in a random environment. For the subclass of dynam-
ics in which the spatial dependence of the transition rates is "directed", we get a
stretched exponential for the decay in time. For the more general case, we only get
a decay faster than any power of time. An important ingredient already appeared in
the work of Campanino-Klein (1991), Klein (1993) and Klein (1994).

The outline of this paper is as follows: Section 2 contains general definitions.
Section 3 is devoted to the main results for both discrete time and continuous time
spin flip dynamics. In the Appendix we collect the more technical arguments and
modifications with respect to the multiscale analysis of Klein (1993).

2. Definitions

We consider spin systems defined on the regular ^/-dimensional lattice 7Ld. Nearest
neighbor sites x, y G 7Ld are connected by bonds (x,y); we write x ~ y if two sites
x and y are nearest neighbors (or adjacent).

A configuration σ puts a spin value σ(x) = 1 or σ(x) = — 1 on every site x eΈd.
Ω = {—1, + 1}Z is the set of all configurations. Our results can easily be extended
to other finite single site state spaces.

We study quenched disorder. This means that the disorder is frozen in the inter-
actions or transition rates. The relevant objects for our analysis are the (random)
transition kernels (see below) and we do not need to refer to specific forms of the
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interaction. We therefore write π to denote such a general (random) realization (of
the disorder). Π is the set of all these realizations. Q is the probability law on the
realizations. E the expectation value with respect to the distribution Q.

Independent point percolation plays a crucial role in our construction. The points
are the vertices of the space-time lattice associated to the dynamics. One indepen-
dently assigns to every point a value 0 or 1 with a certain density. A point with
value one is called open. An open path is a sequence of neighboring open points.
We say that percolation occurs if there is a positive probability for the event that
there exists an infinite open path. The percolation problem will be time-oriented:
only paths with decreasing time coordinate on the space-time lattice are considered.
For more details and definitions we refer to e.g. Grimmett (1989).

The densities at each point may (and frequently will) differ, depending on the
(random) realization.

Some more notations:

dist(/,0)= min \x - y\ , (1)
*esupp/
xGsuppg

with supp/ the support of / and \x — y\ = Σt=\ l*α — JΌcl 11/11 is the usual supre-
mum norm of / and δx = sup^ \f(ηx) — f(η)\ the oscillation of / at x e Zd. The
total oscillation is then

3. Dynamics with Random Transition Rates

3.1. Disordered Probabilistic Cellular Automata. A Probabilistic Cellular Automa-
ton (PCA) is a parallel updating discrete time evolution σn,n = 0,1,... on Ω. σn is a
Markov process defined by transition probabilities px(±l,η) and for every Λ £ Έd,

?τob[σn(x) = ξ(χ),Vx £ Λ\σn-ι = η] = Π Λ(«*)lί) (2)
XEΛ

for ξ, η e Ω.
For simplicity we assume that the px( \η) depend only on the nearest neighbor

spins η(y)9y ~ x and on η(x). While the dynamics is time homogeneous we add
quenched disorder by letting the transition probabilities {px( \η)} depend on the
realization n of the disorder. It may for example enter in the coupling between
x ~ y or in the bias (see the examples below). There typically are extra parameters
(such as the noise level or temperature) available to modify the behavior of our
PCA for the same distribution of realizations.

We use Pn to denote the transfer operator of the PCA and Pξ =P%~ιPπ. A
probability measure vπ on Ω is invariant if vπPπ = vπ. The PCA is ergodic if there
exists a unique invariant measure vπ, such that for all probability measures μ on Ω,

μPn — vπ . (3)

See Lebowitz et al. (1990) for more details.
The PCA evolution is of course not deterministic because Pπ applied to a con-

figuration η E Ω (the delta measure concentrated at η) gives the product measure
with densities {px( \η)}. Our object of study is therefore a stochastic dynamics
in which the degree and/or nature of the stochasticity (noise,...) itself is randomly
determined (via the quenched disorder realized by π).
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Define
kx = max var(px( \η), px( \η')) , (4)

η,η'

where var( , ) is the variational distance. kx is a function of the realization π
but we assume that π only enters locally: {kx} is a one-dependent random field. In
particular, the kx, x in the even (odd) sublattice of Έd, are jointly independent. At
the same time there typically will be large regions on which the kx are large (close
to one). This is similar to what happens in the equilibrium case (see Gielis-Maes
(1995)) but, as remarked before, these regions are copied at every time step and
therefore give rise to infinite "cylinders" on the space-time lattice. This is the reason
why, contrary to the equilibrium case, we cannot allow a kx to be one with positive
probability.

Example 1 (Discrete time spin glass). Let Jxy = Jyx for x ~ y be an independent
family of real-valued random couplings, the transition probability is

Px(σ(x)\η) = hi + σ(x)tmh(β £ Jxyη(y))] . (5)
z y~χ

Here,
fc=tanhj8Σ \Jxy\ . (6)

y~x

Example 2 (A random version of Stavskaya's PCA). The {yx} are independent and
identically distributed non-negative random variables. The transition probability is

if I/O:) = */(*+1) = +1

J (7)
otherwise

In the case yx = y with y large, the PCA has more than one invariant measure. Here,

fc = l - e " λ * . (8)

We define the space-time graph of a PCA as follows. The set of vertices are the
space-time points (x,n\ xeZd, n = 0,l9... in the time-ordered stacking of the
spatial lattice Έd\ n is the time-coordinate. The graph is completed by drawing
arrows (oriented edges) from each space-time point (x,n) to another point (y,n — 1)
(y — x or y ~ x in so far that there is a non-trivial dependence of px(+l\η) on η(y)
for some realization π).

A path ω on the space-time graph (starting at (XQ,N)) is an (oriented) sequence
of space-time points ω : (xo, N), (x\, N — 1),..., (x>, N — k\xι e Έd, I = 0,..., k <
N in which at each step (x,n) to (y,n — 1) there is an arrow in the graph from the
point (x,n) to the point (y,n — 1).

Consider now the independent oriented site percolation problem on this space-
time graph with (random but highly correlated) densities {k(x,N)} = {kχ}l e a c n

point (x,N) is open (closed) with probability kx (1 — kx). Let G%(x,y) denote the
probability to have an open path from (x,N) to (.y, 0).

The basic coupling of a PCA with itself is a new Markov process (a new PCA)
(σN,σ'N) on the product space Ω x Ω, whose transition probabilities satisfy

?robπ[σN(x)ή=σ'N(x)\σN-i = η,σ'N_λ = ηf] = var(/?x( - \η\px( \η')) S kx . (9)
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Lemma 1. In the basic coupling

Probn[GN{x)^G'N{x)\G^Gf

Q-\ S Σ G%(x,y) . (10)

Proof. From (9) it follows that

f / (11)

if and only if GN-I(X)ΦG'N_{(X) for some neighboring space-time point (x9N — 1).
Hence,

σΛKxίΦσVfaOloo^o] S Probπ[There is a path of disagreement

from (x,N) to ( ,0)]

^ Σ Gπfry). n

Note that the basic coupling also has (as every coupling) the property that

+ σ'N(x)\σ,σ'] . (13)

Combining Lemma 1 with (13) and using that there is at least one invariant measure
for the dynamics, we get Proposition 1 and see that all depends on how well we
are able to control the connectivity function Gπ( , •)• This is the same idea as in
Gielis-Maes (1995) and is the dynamical version of the concept of disagreement
percolation in van den Berg-Maes (1994).

Proposition 1. For every local function / ,

1 1 ^ / - v , ( / ) | | ^Hi/Ill sup ΣG%(x,y), (14)

with vπ an invariant measure for the dynamics.

3.1.1. Ergodίcίty for a "directed" PC A. We consider here PCA with transition
probabilities of the form

Pχ(' \n) = Pχ(' \ηx,η(x + ea),(x= l,...,rf) , (15)

where the {ea} are the unit vectors on TLd.
The nice thing about "directed" PCA is that its space-time graph is not only

timelike oriented but it is also spatially directed : there is no path connecting (x,N)
with (x,M) passing by another space-time point (y,n) with yφx. In particular,
when we project this graph on the spatial lattice (by identifying all points (x,«), n =
0,1,... with (JC, 0)) we get an oriented spatial lattice. Every path ω : (x,N)9(x\9N —
1),...,(xι,N — /),...,(>>,0) from the point (x9N) to the point (j,0) on the space-
time graph gives rise to a directed path on this spatial lattice. The opposite relation
can also be uniquely defined if in addition we specify the times w/ = 1,2,... the
path stays on the site xι visited by the spatial path.

Here we restrict ourselves to PCA's for which {kx} is a set of independent
identically distributed random variables. Stavskaya's PCA (Example 2) is a well-
known example. Another one (in two dimensions) is Toom's model.
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Example 3 (Toom's model). The transition probability is derived from a majority
rule. With {yx} as in Example 2:

p(σ(x)\η) = -[1 +σ(x)(\ - e~λyx)sgn(η(x) + η(x + ei) + η(x + β2»] (16)

Then,

fe = l - e - A y * . (17)

In Propositions 2 and 3 we estimate the connectivity functions G%(x, y) of a directed
PC A. First we derive an upperbound uniform in N.

Proposition 2. Suppose

l'-^l (19)

for constants C\ < oo, ^ > 0.

Proof. Let |x — ̂ | = w. Every path ω : (x,N) —> (^,0) on the directed space-time
graph gives rise to a spatial path ωr : x —> jμ on TLd of length |ω ; | = m. Following
the constuction explained above we may thus write that

Yϊl ϊϊl L

Σ Π^,l Σ Π4r-
|ω'|=m

from which the conclusion readily follows. D

Remarks
1. From the Borel-Cantelli lemma we have from Proposition 2 that Q-a.s. there is
a NXt\ = NXίι(π,Έ(γ^-χ),d) < oo such that if \x - y\ > NXί\, then

^J)^e"^l , (21)

with λ < λ'.
2. The same conclusions remain valid in d = 1 under the assumption that

E ( l o g - ^ — ) < 0 . (22)

This is clear from (20) (but now there is only one path ωf : JC —> y) by applying
the strong law of large numbers.

Define /* such that for all / > /*, k[ < exp(-λΊδ), with 0 ^ δ < 1, i.e.
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Lemma 2. Take 0 ^ β ^ 1 and v > 0 such that (1 - β)(l - δ)v > βd + 1. If

Q(kx ^ 1 - τ) < τ \ (24)

then - with (^-probability one - there exists a Lo = L0(π) such that for L > Lo,

I* S Lι~β for all x e [-Lβ,Lβ]d Π TLd . (25)

Proof A straightforward calculation shows that

\^^i^ . _^ ±j . Λ C [±J , Z-/ J J ^- 11 11 tΛJJ^ Λ l^i j J J . yZ,Ό J

Remember that e~~* ^ 1 — x for 0 ^ x ^ 1 and that Λ///1"^5"1) < 1 for L large
enough. So,

Γ V Γ Ί V ^- TTB Tβλd ΓΛ ̂ d . /* ^ τ\—β\ <^ i / i ί ' / Ό — β ) ( δ — l ) ϋ \ ( 2 L ^ + l ) ίr)Π\
\£\ ΞJ X t [-Li , L J M O J . ί̂ . •> L J ^ l — ^1 — A l~ι J . y£ I J

This is summable if (1 — β)(l — δ)v > βd + 1. Hence we can use the Borel-Cantelli
lemma to conclude. D

The second step in the study of G%(x,y) concerns deriving an upperbound uni-
formly in |JC — y\.

Proposition 3. If

E ( — — ) < - , (28)

then for every 0 < ε < 1/2 we have that if

Q{kx > 1 - τ} < τΓ , (29)

with v — v(ε) high enough, there exist - with (^-probability one - a time NXί2 =

NX2(π,d9Έ( fy-)) < oo and a constant λ, independent of x and π such that for

N'>NX,2,

G»(x,y)^εxp(-λNε) . (30)

Proof For 0 < β < 1 (will be specified later on) take N'^2 such that {N'XtlΫ > Nχ,ι

(see Proposition 2) and ((Nf

Xy2y~β — l) 1"β > Lo (see Lemma 2). Let Λf > N^2.

First we assume that m—\x — y\ < Nβ and start again from

m

ω' .x-^y ιh...,ιm^ι i=\

In every path ω there is at least one site ωt for which // exceeds (N + 1 )/7V̂  >
Nι~β. So,

w j_« m ί k / \

( 3 i ) ^ Σ Σ C f Π f ω/ ) • (32)

Using Lemma 2 with A < λf and <5 as specified later on, and summing over y gives

m m k
(32) ^ exp-WiV1-" - 1)Λ) Σ Σ Σ Π T-^Γ- • (33)
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Condition (28) assures that the sum is finite with Q-probability one. Hence for
β' > β and N large enough,

Gξ(x,y) ^ Qxp-(λN(l~β/)δ) . (34)

In the case \y — x\ ^ Nβ we can use Proposition 2 to see that

Gπ((x,0),(y,N)) ^ exp-(AΛ^) . (35)

Now for 0 < ε < 1/2 we can choose δ and β' > β such that β > ε and
(1 — β')δ > ε. This proves the proposition for N^x > Nf2,x large enough. D

Theorem 1. If

< \ , (36)

then the "directed" PCA has a unique invariant measure vπ. Moreover for every
0 < δ < 1/2 we have that if

Q{kx > 1 - τ} < τ\ (37)

with v = v(δ) high enough, then for every local function f there exist - with Q-
probability one - a time No = 7Vo(π,supp/, rf,E( j^-) ) < oo and a constant m > 0
such that for N > No,

\\P^f-vπ(f)\\ Sexp(-mNδ). (38)

Proof Combining Proposition 1 with Proposition 3 we see that with Q-probability
one there is a unique invariant measure. Furthermore,

sup E GN

π{z,y)

+ sup Σ GN

π{Z,y)\ . (39)
zGsupp/ \y-z\>Nε J

Take No > max{sup J c G s u p p / A^ j i ,sup ; c e s u p p / A^ 5 2} ί then for Nε > No and δ < ε,

(39) ^ Qxp-(mNδ) (40)

with 0 < m < λ and NQ large enough. D
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3.1.2. Ergodίcίty for a general PC A. The paths considered in the associated perco-
lation problem are not spatially directed and kx and ky can be mutually dependent
for x ~ y.

Proposition 4. Take

If

E [ { l o g ( l - l o g ( l - * , ) ) } * ] < o o , (41)

then -for Q-almost every realization - there exists a v(K,d) > 1 such that for
every 1 < v < v(K,d) and m > 0 we can find constants 0 < C\,Cι < 1 such that
when

Q{kx > Ci} < C2 , (42)

there exists a N^x = N^x(π) for which

G%(x,y) S exp(—mmax{|x — jμ|,(log(l + N))v}) (43)

whenever N > NotX.

Campanino-Klein (1991) proved an analogous result for independent bond per-
colation and Klein (1993) for (continuous time) percolation on TLd x R. In their
problems the set corresponding to {&x} contains independent random variables. Al-
though we deal with directed site percolation and kx and ky are dependent if x ~ y,
we can almost copy their proof. The modifications are given in Appendix A.

Theorem 2. Take

K> Id1

E[{log(l - log(l - kx))}κ] < oo , (44)

then -for Q-almost every realization - there exists a v(K,d) > 1 such that for
every 1 < v < v(K,d) and c > 0 we can find constants 0 < C\,C2 < 1 such that
when

Q{kx >Cι}<C2 (45)

the PCA has a unique invariant measure vπ. Moreover, for every local function
f we can find a time No = No(π9f) and a constant B(d,f) < oo so that for all
N>NC,

\\Pnf - vπ(/)|| ^ 5(J,/)exp(-c(log(l +N)f). (46)

Proof Write (14) as

\\PN

πf ~ v*(/)|| ύ HI/HI j sup
[zesuppf \y-z\ g(log(l+JV))»

+ sup Σ GN

π{z,y))\ . (47)
z6supp/|.y-z|>(log(l+iV))» I
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Using (43) and taking No > supxGsupp/A/o,x, then for N > No,

\\Pnf ~ vπ(/)| | ύ B(d9f)exp -c(log(l +N))V , (48)

with 0 < c < m and No large enough. D

3.2. Disordered Interacting Particle Systems. The continuous time version of the
previous dynamics is defined in terms of spin flip rates C(JC, η). They give the prob-
ability per unit time of flipping the value of the spin at site x if the configuration
is η,

Probπ[σ,(*) = η(x)\σ0 = η] = c(x,η)t + o(t) . (49)

See Liggett (1985) for more details on these spin flip dynamics as a class of inter-
acting particle systems (IPS). Also here we have that c(x,η) only depends on η via
η(y), y = x or y ~ x9 via a random interaction. Define

λx = sup{|c(x,*7) - c(x,η')\9η(x) = η'(x)}

(50)
δx = mf{c(x9 η) + c(x9 η

f\ η(x) φ η'(x)} .

Example 4 (Continuous time spin glass). The spin flip rate is of Glauber type:

c{x9η) = Qxp-(^[Hπ(ηx)-Hπ(η)]) (51)

with ηx, the configuration that differs from η in x and

Hπ(η) = - Σ JxyVWiiy) ( 5 2 )

The {Jxy} is a family of real valued independent and identically distributed random
variables. Here,

λx = exp(β Σ |Λ^|) - exp(-/? Σ IΛ Î) • (53)
yr^X y^X

Example 5 (Random version of a majority vote IPS). Let {yx}xezd be independent
identically distributed positive random variables. The spin flip rate is

_

Φ, n) = < ezίϋ ifηχ = s i g n (η(x) / Σ η(y))

y~χ

Here,

δx = e~λyx ,

Ar = 1 - e~λy' . (55)

To show the ergodicity for the continuous time dynamics, we connect to the IPS
a Contact Process on the configuration space {0,1 }π . (See Liggett (1985).) The
extinction of the population of Γs in this process, or absence of percolation in its
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graphical representation, implies ergodicity of the original IPS. The Contact Process
is defined by the following rates:

if ξ(x) = 1

yeAx

with λx and δx as defined in (50) and Ax the set of all neighbors y of x for which
c(x, η) depends on η(x).

The graphical representation of the process on the continuous time lattice 2 r f x R
is obtained by putting cuts on every line {x} x 1R according to a Poisson process
with rate δx and placing arrows from the line y x IR, y £ Ax to the line x x R with
intensity λx.( See e.g. Liggett (1985), Klein (1993)). G^{x,y) is the probability
that (x, t) and (y, 0) are connected in this construction. Absence of percolation (no
infinite clusters) implies extinction of the Contact Process with the same parameters.

Proposition 5. For every local function / ,

\\P'πf - vπ(f)\\ ^ I l l / H i sup ΣGfay) (57)
ZESUpp/ yζjd

with vπ an invariant measure for the dynamics.

Proof We couple three IPS: ritirft a n c^ ζt w u " n r a t e s c(x9η)9c(x,ηf) and c(x,ξ) in
such a way that if \ηo(x) - η'$(x)\ ^ 2ξt(x) for all JC e Z^, then \ηt(x) - η't(x)\ S
2ξt(x) with probability one for all t ^ 0. This can be done by using the coupling
described in Liggett (1985) (p. 130).

Then for every local function,

\Kf(°) - Kf(°')\ ύ Σ <5*/ProbπMx)Φσ';(x)|σ0 = σ,σ0' = σ']
X

g ΣδxfPτobπ[ξt(x)\ξ(0)] ί HI/HI sup Ϋτobπ[ξt(x) = 1]
x xGsupp/

ΈG'π(x,y), (58)

which is stronger than (57). D

3.2.1. Ergodicity in a "directed" IPS. Just as for the PCA, it is worthwhile con-
sidering the class of IPS with transition rates for which

A x = {x + ea,aι= 1,...,</} . (59)

Then, in the graphical representation, there are only arrows pointing in the opposite
direction of one of the unit vectors and there are no paths that reach one spatial
point twice. Further, we suppose that {(δx,λx)} is a set of independent couples of
random variables. (Of course, δx and λx can be mutually dependent.)

We discretize the corresponding Contact Process to apply the arguments used
for a directed PCA. The space time lattice becomes Έd x aΈ. To each space-
time point (x,t) G Έd x aΈ we assign the occupation value 1(0) with probability

e-
f l<5*(l - Q-aδχ). Between each two time layers Έd x {no} and Έd x \{n + \)a]
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we draw arrows from x + ea to x with probability 1 — Q~aλχ. Two sites ( M i ) and
{y,t2) are connected if there exists a time- and space-directed path composed of ar-
rows and open sites. The probability that these two points are linked is denoted by
G%~h((x,y)). Finally, for A = TLά', one can show that G^Jx.y) =>• G'π(x9y) when
a I 0. (For more details, see Bezuidenhout-Grimmett (1991).)

Proposition 6. Suppose
/JL\ 1

< 3 > (60)

^(%,y)) g d exp(-^ |x - j/|) (61)

/or constants C2 < oo α«rf A' > 0 .

Proof. Let w = |x — y\ and ω' the projection of the space-time path ω on Zd,

e~aδω'jL'J

^ Σ Σ Π1 -e-α1"' Πe
ω':x™>y /i,...,/«^1 /=1 y = l

(62)

Letting a | 0 the proposition easily follows. D

Remark. From Proposition 6 we can deduce that there exists a Tx\ = Γxi(

such that for |x — jμ| > TXJ

Gt

π(x,y)SexVλ\x-y\ (63)

with λ < λ'.

Proposition 7. If

) 3 ( 6 4 )

ί/iβn /or ef^rj 0 < ε < 1/2 we have that if

Q{e~δ* > 1-τ} <τ\ (65)

vt /ί/z v — v(ε) high enough, there exist -for Q-almost every realization - a time

Tx,2 — Γ x ? 2(π,t/,E(^)) < 00 and a constant λ, independent of x and π such that

for t > Tx,2

Gίfr O^expί-Λ/8 ) . (66)

Proof. Take m and ωr as before. In the same way as we did in the proof of
Proposition 3 for a PC A, we can show that for T high enough and |JC — jμ| < T^9

G'π{x,y)ύ Σ Σ(e-^'>) Π -aS, (67)
ω':χ^y |=1 ^ J i=\ 1 — e
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Let a I 0, sum over y G Έd and use Lemma 2, with λ < λ', to see that

The sum is finite with Q-probability one. Hence for β' > /?,

If |JC — _y| ^ T&, Proposition 6 says that for T large enough

Gξ(x9y) g exp(-A7*) . (70)

Hence, for a given 0 < ε < 1/2 choose δ and βf > β such that /? > ε and (1 —
β')δ > ε. D

Propositions 6 and 7 allow us to prove the main result for a "directed" IPS.

Theorem 3. If

E ( l ) < h •
then the IPS has a unique invariant measure vπ. Moreover for every 0 < δ < 1/2
we have that if

Q{e~Sχ > 1 - τ} < τv , (72)

with v — v(δ) high enough, then for every local function f there exist - for Q-

almost every realization - a time To = Γ 0(π,supp/,d,E(^)) < oo and a constant

m > 0 such that for N > NQ,

\\Pπf ~ v π (/) | | ^ e x p ( - m ^ ) . (73)

The proof of Theorem 7 is similar to the one of Theorem 1.

3.2.2. Ergodicίty in a general IPS. Define

λ{x,y) = λx + λy . (74)

Note that λ(xy) and δx can be correlated if x and y are (next-) nearest neighbors.

Proposition 8. Let

if I ϊ~ ι

κ>2d ^i + yi + - + - ^

Γ = max{E [{log(l + λ/x v\)}^]E[{log(l + l/δx)}κ]} < oo . (75)

Then - for Q-almost every realization - there exists a v(K, d) > 1 so that for
every 1 < υ < v(K,d) and m > 0 we can find a constant C\ > 0 such that when

E{(log(l + ϊψ-)?} < d , (76)

there exists a Γc ? x = Tc>x(π) for which

G'π(x,y) ^ exp(-/«max[|x - ^|,(log(l + t\))υ]) (77)

whenever \t — s\ > ΓCjX.



96 G. Gielis, C. Maes

Proposition 8 is formally the same as Theorem 3.2 in Klein (1993). However,
we must take care of the consequences of the non-trivial correlations between δx and
λ(xyy In Appendix B we briefly show the necessary modifications to the argument
of Klein (1993).

Theorem 4. Let

Suppose

Γ = max{ E [{log(l + λ(Xty))}κ],Έ [{log(l + l/δx)}κ]} < oc . (78)

Then -for Q-almost every realization - there exists a v(K,d) > 1 so that for
every 1 < v < v(K,d) and c > 0 we can find constants C\ > 0 such that if

- ^ ) ) * ) <Ci, (79)

for every local function f there is a time TQ — 7o(π,/) and a constant B(d,f) < oo
so that

\\Pnf ~ Vπ(/)|| ύ *(</,/)exp(-c(log(l + t))υ) (80)

when t > TQ.

Proof Combining (57) and (77) in the same way as we did for Theorem 2 gives
a proof of Theorem 4. D
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Appendix A

Remark. In the Appendices A and B we give the necessary modifications to the
argument of Klein (1993) and Campanino-Klein (1991).

As we already mentioned, the proof of Proposition 4 is similar to the one in Klein
(1993) and Campanino-Klein (1991). In this paragraph the argument of (mainly)
Klein (1993) is summarized. The most important lemmas are presented, with em-
phasis on the necessary modifications due to the mutual dependence of the kx's. The
same notations and definitions are used as in Klein (1993).

Klein (1993) uses a multiscale analysis. The proof is by induction. In Lemma 3
the induction hypothesis is proven: for every (mo,Lo) we can find constants 0 < C\,
C2 < 1 such that if Q{kx > C\} < C2, then

Q{The origin is (mo,Lo)-regular} ^ 1 - — p . (81)

In the induction step (Lemma 4, Sublemmas 3.2.2 and 3.2.2) it is proven that if

Q{The origin is (mk,L^-regular} ^ 1 - — , (82)
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then

Q{The origin is (/Wjt+i,£*+i)-regιdar} ^ 1 - — — , (83)

with Lk+\ — Lf, α > 1 and m^+i < m^. One can show that for every choice of
0 < rrioo < mo we can choose LQ such that m^ < lim^oo m^ < mo. Then

Q{The origin is (moo,Z^)-singular} ^ —β , (84)
Lk

and using the Borel-Cantelli Lemma we know that - with Q-probability one - there
exists a K such that if k > K the origin is (moo,Z,^-regular. Klein (1993) estimates
Gζ(x,y) in such a (moo,Z^)-regular region.

Lemma 3. For every m, L > 0, there exist constants 0 < C\,C2 < 1 such that if

Q{kx > Ci} < C2 , (85)

then
Q{The origin is (m,L)-regular} ^ 1 - \/Lp . (86)

Proof. For any C > 0 there exist constants 0 < C\, C2 < 1 such that if Q{kx > C\}
< C2, then

Q J sup kx < C \ ^ -}- . (87)
[χeΛL(0) J L y

Because Gπ,#£(0) becomes arbitrary small for decreasing C, the lemma is proven by
taking C small enough. D

Lemma 4. Suppose that condition (41) holds. Let

a = d+Vd2 + d , (88)

and choose v and p such that

t ^ - d ^ a d ) < X l v < λ > ^

«d<p< ^ K ' - d + ad)-a)-ad ( 9 Q )

For every mo and m^, with m^ < mo, there exists L = L(d,β,Γ, l/v,p.mo^m^) <
oo, such that if for some Lo > L we have

Q{0 is (mo,Loyregular } ^ 1 - — . (91)

Taking Lk+ι = L%, k = 1,2,..., we also have

Q{0 is (m^Luyregular } ^ 1 _ — , (92)

all k = 0,1,2,... .
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Proof of Lemma 4. To prove Lemma 4 we need Sublemmas 3.2.2 and 3.2.2.

Sublemma 1. Pick positive integers R,κ and b such that

ίR+l)P

α <

1 < α(l - l/v) + l/υ < K < % < -^ . (94)

a vd

Let m0 ^ mk ^ 1/Lf, with 0 < 0 < 0O = min{α(l - l/v)9 1}.

Suppose there exist x\9...9xR G ΛLk+ι(0) such that ΛL \ \J^0Λ2Lk+\(xj)

is a (mA;,ZA;)-regular region . (95)

Define

Λ= \jΛικ(Xj)nΛL(0). (96)
y=i

Suppose

fe)-1 ^ L j . (97)

Then, if Zyt is large enough ΛLlc+ι(0) is a (m^+i^Ar+O-fegular region with mk+\ ^

Proof The proof is analogous to the proofs of Sublemmas 3.6 and 3.7 in Campanino-
Klein (1991) and Sublemmas 4.2 and 4.3 in Klein (1993). However, there is one
necessary modification that should be mentioned. Consider the sets V\9...,Vk C
Vo C Zd with Vi Π Vj = 0. For i: 1,...,k we define

Bi = Vix{(-T9T)ΠZ}9 (98)

dB - 3(^,5) and B' =B\ \jBt . (99)

Let {(x,N\) —> {y.Ni)} the event that there is an oriented open path in B from

(x,N,) to (y,N2). For (y,t)edB,

{(0,0) -*+ (y,N)}

C |J (J {There exist oriented open paths (0,0) —> dBiγ ,

C LJ U {(0,0) -?U dBh} o {dBh -?U dBi2} o ...

(100)

Note that we used the time-oriented character of the paths. The van den Berg-

Kesten inequality can be used to estimate the probability of the event {(0,0) —>
(y,N)} and we can complete the proof as in Klein (1993) and Campanino-Klein
(1991). D
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Sublemma 2. If

Q{0 is (mk,Lk) - regular} ^ 1 - * (101)

then Q{(95) and (97)} ̂  1 - ^ .

Proof. We call two points xi and X2 non-/-touching if it is not possible to walk from
the box Λι(x\) to Λι(x2) without passing a point that does not belong to any of the
sets. If R-\- 1 points X\,...,XR+\ are non-/-touching, the events {xf is (m,/)-regular}
i:l,2,... are independent,

Q{3x\,X2,...,XR+\ G Λιk+ι(0) that are non Z^-touching and (mk,L ^-singular}

for Zyt sufficiently large by the choice of R. Hence

R

Q {BXI,*2,...,*Λ E ΛLk(0) such that / 1 L , + 1 ( 0 ) \ \J Λ2Lk+ι(xj)

is a (m^,Lyt)-regular region} ^ 1 - , . (103)
1L

For the Q-probability of (97), we have that

Γ Ί Γ Tb

I 1 A I I "" 1 L

^ (2LE + l/Q{log(l +log(l - ^x)"1) > log(l H —7)}

T Kb
Lk

E q i o g Π + l o g Q k ) ) ] )
- τK(b-κd)-κd -

Lk

To prove the sublemma, note that both (95) and (97) are decreasing events. D

Appendix B

The only thing to be done is to observe that the events (1.6), (4.1) and (4.2) in
Klein (1993) have the same Q probability.
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Choose K, b, y, τ such that

α(l - l/v) + l/v < K < - < —Ί ,a υd

0 < y < b - κd9 l/v < τ < α(l - l/v) . (105)

Consider the following events:

8dpLo < e2m* , (106)

<SL0 > e~l/2Lov , (107)

λ L o < eLoV , (108)

with

ί 1 1
Pι= sup < — maxλ(xy) > , (109)

δL= intδX9 (110)

λL= max A/jpv) , (111)

d(ΛL(0),Έd) - {(χ,y) e (Zd)2 : x e ΛL(0\y e Λc

L(0): y ~ x}9 (112)

and the events

R

{There exist XI9X2,...,XR e ΛLk+ι(0) such that ΛLk+ι(0)\ \J A2Lk+\
j=0

(113)

is a (myt,̂ A:)-regular region} , (114)

^ Σ A < ^ ) - Σ l o g ( l - e - δ ' e x p i * ) ^ ^ , (115)
(χ,y)CΛ xeλ

with

Λ= \jΛlk(xj)nΛLk+1(0). (116)
7=1

We only have to prove that there exists a n l o , large enough such that

Q{(106),(107),(108)} ^ 1 - - ί , (117)

and that if

Q{0 is (m,L,)-regular} ^ 1 - - ^ , (118)
Lk

then

Q{(113),(114),(115)} ^ 1 - - i - . (119)
Lk+\
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The lower bounds for Q{(106)}, Q{(107)}, Q{(108)}, Q{(113)} and Q{(115)}

are calculated in Klein (1993).

To estimate Q{(114)} we modify the definition of non-/-touching points: Two

points X(,Xj are non-/-touching if it is not possible to walk from the box /l/(xz) to the

box ΛI(XJ) without passing two points that don't belong to any of the boxes. Note

that (106) to (115) are all decreasing events. Hence, we can use the FKG-inequality

to prove (117) and (119).
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