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Summary. We express the momentum current (= stress) tensor for a periodic fluid
with two hard disks per unit cell in terms of a single particle billiard. We establish
a central limit theorem for the time-integrated stress tensor and thereby prove the
existence of a strictly positive shear and bulk viscosity.

1. Introduction

One of the great challenges of statistical mechanics is to prove the existence of
finite (and non-zero) transport coefficients for a system of particles governed by
Newton’s equations of motion. For a one component fluid these transport coefficients
are the shear and bulk viscosity and the thermal conductivity. There are several,
presumably equivalent, ways to define them — the clearest and least ambiguous of
which is through the Green-Kubo formula. Let us briefly recall the basic structure.
We consider an infinitely extended, one component fluid in thermal equilibrium. The
equilibrium average is denoted by (-). In three dimensional physical space the fluid
has five locally conserved fields: the particle density n‘¥(z, t), the three components of
the momentum density n(®(x, ), a = 1,2,3, and the energy density n¥(z,t), which
depend on location z € R? and time ¢ € 2. [These are distributions on phase space
indexed by z, t. Their precise form is of no importance for what follows. More details
can be found in [17,21].] By the local conservation law we have, in a distributional
sense,

%n(“(x,t)+div 79z, t) =0, (1.D

i=0,...,4, with the local currents . [Since the interaction between particles has
some range, the local currents are not uniquely defined. However, the space averaged
currents always are, cf. Sect. 2.] The Green-Kubo formula for the transport coefficients

reads then
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) = 3 (1) () (1) .(7)
Lop = 2kBT/dt/d (Jo’ ()7 57(0,0)) = (7(0,00) (550, 0)>) (1.2)

o, B =1,2,3,4,7 =0,...,4, with T the temperature of the fluid, where we used
already the stationarity of the equilibrium measure in space-time. By rotation invari-
ance and by time reversal symmetry in fact only three out of the 15 x 15 coefficients
in (1.2) survive. They can be expressed by a linear combination of shear and bulk
viscosity and by the thermal conductivity [17,21].

Within molecular dynamics [13] it has been noted for some time that, at least in
principle, transport coefficients are well defined also for systems with a finite number
of particles. The main observation is that for a periodically repeated fluid the total (=
space averaged) currents are meaningful and transport coefficients can still be defined
via the finite volume version of (1.2). Then (1.2) equals the covariance matrix of the
time-integrated total currents, normalized by v/¢. Thus the mathematical issue is to
prove a central limit theorem for the time-integrated currents.

The simplest, yet nontrivial, case turns out to be a periodic fluid with two hard
disks per unit cell. Using the well developed theory of billiards [19, 5-12] we establish
a central limit theorem for the time-integrated stress (momentum current) tensor.
Thereby, the first time for a mechanical system, we prove the existence of a non-zero
shear and bulk viscosity. For two particles the thermal conductivity vanishes. For that
case three disks per unit cell would have to be considered, which is a much tougher
problem, since the boundary of the corresponding billiard has submanifolds of zero
curvature.

So far, essentially the only mechanical system for which finite transport has been
proved is the periodic Lorentz gas [5-11, 17]. In this model a single point particle
moves through a periodic array of convex scatterers, where it is elastically reflected.
It is assumed that the time between collisions is uniformly bounded. The analogue
of the total current is now merely the velocity of the particle in a unit cell with
periodic boundary conditions. When integrated in time it yields the position of the
particle in the periodically extended scatterer configuration. The central limit theorem
for the position means that the particle diffuses in physical space. The corresponding
diffusion coefficient is determined by the Green-Kubo formula, i.e., as a time integral
over the velocity autocorrelation. For the viscosity we will find a similar structure
with one crucial difference: the time-integrated momentum current tensor has no such
direct mechanical meaning. (We should mention that Knauf [16] considers a particle
in two dimensions moving in a periodic potential which has an attractive singularity.
He proves the K-property for the dynamics at sufficiently high energy and a central
limit theorem for the velocity.)

Our paper is organized as follows. In Sect. 2 we discuss the transport coefficients
for periodic fluids in d dimensions with an arbitrary number of particles per unit cell.
In Sect. 3 we specialize to two hard disks. Using conservation of total momentum we
arrive at a single point particle which is elastically scattered off a piecewise convex
boundary. We remind the reader of some basic notions in the theory of billiards in
Sect. 4 and prove the central limit theorem in Sect. 5. In an appendix by M. Fliefer
the viscosity is computed by molecular dynamics and compared with the one of larger
size systems.
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2. Transport Coefficients for Periodic Fluids

We divide B¢ into cells (hypercubes) of linear dimension ¢ and consider a fluid
periodically repeated over all of 24 with N particles per unit cell. They interact via a
central force, —VV. Equivalently, we consider N particles, position ¢;, momentum
pj. mass m, on the d-dimensional torus A = [0, ¢]%. They interact via the pair force
F(q) = =3 ,cza VV(q — nf), which is constructed as a sum over periodic images.
In the short range case considered here, in fact the sum consists only of a single
non-zero term.
As a distribution, the momentum density is defined by

N
/ Az f@n' (@, 1) =" flg,O)p)al), 2.1
A

J=1

«a = 1,...,d, for all smooth test functions f on A. We determine then the stress
tensor, T,g(z,t), through the conservation law

e & e _d/di _
[ et g n > [ et Formoen=0. @2

We have
N

d 1
7 Zf(%)l’g = Z — ;- VIg)p;
=1

= 2.3)

1 N
+5 2 (@) = F@)Fg; — ),
i#g=1

where we used that F((q) = —F(—¢). Let us consider now one pair ¢ # j of particles.
Then for an arbitrary smooth curve A — 7,,(A) € A with 7,;(0) = q,, v,,(1) = q, we
have

1
(@) - f(@) = / AN, () - V £, (V). (2.4)
0

Inserting in (2.3) and comparing with (2.2) we obtain the stress tensor

N
X 1
Tag(#,0) = Y6 = (1) —pa(ipys(t)
7= (2.5)

N 1
1
+ 5 Z /0 d/\'yzga(/\)(s(’%](/\) - x)Fﬁ(QJ(t) - %(t))-

i#7=1

The stress tensor depends on the choice of ,,. This reflects that the interaction
between particles is not strictly local. One conventional choice is to take the shortest
straight line joining ¢; with g;. However, for our purpose we need only the total stress
tensor, which is independent of the choice for v,, provided ;; 0+,, has zero winding
number. We have
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Tap(l) = /Adda?Tag(:v,t)
N 1 1 N (2.6)
=D —Da®pis®) + 5 D (61 — a®)aFsla,®) — ai(t).

g=1 wtg=1

Here ¢; — ¢, is the shortest distance on the torus A.

We are now on familiar grounds. We fix the total momentum to be zero and the
total energy to be F. Expectations with respect to the corresponding microcanonical
measure are denoted by (-) g n. The mechanical flow on phase space is stationary
under (-) g n. If the dynamics is ergodic and has sufficiently good mixing properties,

then we expect that the time-integrated stress tensor, normalized by v/%,

t
\%/0 ds(Tap(s) — (Tap(0)) 2,N), 2.7

satisfies a central limit theorem. The corresponding variance is formally given by

Dagys = /dt (TapOT46(0) BN — (Tap(0) BN (T1s(0) BN ) » (2.8)

o, B,7,6 = 1,...,d. Up to conventional factors, D is the viscosity tensor for the
periodic fluid. For d > 3 it should be proportional to the volume |[A| = ¢¢ and
Dog~s/2kpT|A] should converge to F/_(,(gw of (1.2) in the infinite volume limit.

By symmetry actually most of the coefficients in (2.8) are either equal or vanish.
First note that

Daprs = Dasap = Daaye = Dap,oy 2.9
since D is given through a correlation and since
Tap(t) = 734(1) (2.10)

because F' is a central force. Secondly, the fluid is invariant under rotations by right
angles. Let us define a linear operator, &, acting on the space of d x d matrices by

(Z A)op = Zfim:] Dqg,v6A~s. Then our discrete symmetry can be written as
Y (RT"AR)= R-Y(Z AR (2.11)

for all matrices A and all matrices R which rotate by 90°. Equations (2.10) and (2.11)
imply that the only nonvanishing coefficients are Dng og = Dga,as and Do gg-
Furthermore, for « # 3, v £ 6,

Dog.ap = Dys6y Daayaa = Dss,ps, Daa,8s = Dyvy.s6- (2.12)

Thus there are in fact only three independent coefficients. Traditionally they are ex-
pressed through the shear viscosity

1 1

=— ——D 2.13
7 4] 25T 12,12 (2.13)

and the bulk viscosity
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4—7 kB z(ngua,ﬁﬁ (2.14)

The third viscosity coefficient is an artifact of the periodic approximation. Under full
rotation invariance (2.11) implies 2D,8 08 = Daa,aa — Daa,gs, & # 3, in addition
to (2.12). Then n, ¢ are the only viscosity coefficients.

For the thermal conductivity we follow the same route. The total energy current
turns out to be given by

JE@)-Z 5Py (1) — pj<f>+ Z(qj(t) ql<t>)—pj<t> F(g,(t) = qi(1)). (2.15)
z#] 1

Again the goal is to prove a central limit theorem for the time-integrated current,

1 t
— | ds(y — (Je0) e N). 2.16
\/E/o s(je(s) — (Je(0) E,N) (2.16)
The corresponding covariance matrix is formally given by
D(a];) = /dt ((Ea®iEs) BN — (jEaO)E N (jESO0) EN) - (2.17)

Because of invariance under discrete rotations D;Eﬁ) = Kb,g. Conventionally the ther-
mal conductivity is defined by

1 1 ()
= T4 7% = DI, (2.18)

Tas(t) is even and je(t) is odd under the reversal. Therefore the cross terms
between (2.16) and (2.7) vanish.

3. Viscosity for Two Hard Disks

To prove a central limit theorem for (2.7), (2.16) is a formidable task and no general
results are available. Thus we might as well try the simplest, yet nontrivial case,
which clearly is NV =2. If p; + p; = 0, then

, 1 1
mjE = S @i+ PIp) + 5 (@ — @) +p) Flg —@)=0. (.

Thus the thermal conductivity vanishes and we are left with the viscosity only. For
thermal conductivity we would have to take N > 3.
Since the total momentum is conserved, we transform canonically as

q=4q — Qq, P=p1— P2,
1 1 (3.2)
e =5 (q1 + @), pe=3 (p1 +p2).

Then the relative motion is governed by

d d
m = ) = p(t), a p(t) =2F(q()), (3.3)
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where ¢ € [—4, g}d with periodic boundary conditions (d-dimensional torus). Impos-

ing the center of mass momentum p. = 0, we obtain for the stress tensor

1
Tap(l) = I Pa(Opp) + qa () F3(q(D), (3.4)

a,f=1,...,d

For the central limit theorem we certainly need the dynamics (3.3) to have good
mixing properties, which we ensure by taking V' as a hard core potential. To simplify
even further we choose d = 2. We have then a periodically repeated fluid in the
plane consisting of two hard disks of diameter R per unit cell. They interact through
perfectly elastic collisions. Dynamically equivalent are two disks on the two-torus.
We streamline our notation. We set p = mwv and the mass m = 1. To have the relative
speed [v| = 1 we set E = 5 (p? + p3) = 1/4. The relative velocity is then specified
by an angle, ¥, with 0 < 1 < 2m. We take a unit two-torus, i.e., £ = 1. Then the
only parameter left is the hard core radius R, which can be used to label the reduced
density, i.e. density/closed packing density, according to p* = \/3R?. We distinguish
two dynamically very different cases, cf. Fig. 1. If 0 < R < 1/2, then the fluid
particles can easily enter the next cell and in fact may move a long distance without
collision. We call this case “infinite horizon” because the corresponding one-particle
billiard (3.3) has infinite horizon. If 14 < R < 1/,/3 the disks are confined and cannot
pass each other. The one-particle billiard has a “finite horizon” and its domain has
a “diamond” shape. Note that because of the imposed quadratic symmetry closed
packing cannot be reached. Before stating the central limit theorem, we discuss each
case separately.

Fig. 1. Two disk fluid

3.1. Infinite horizon, 0 < R < 1/2. The one-particle billiard is the two-torus
[—1h, 1/2]2 with a disk of radius R? centered at the origin, cf. Fig 2. Let t,, be the time

of n™ collision and v’(t,,) be the postcollisional, v(t,) = v'(t,_;) the precollisional
velocity. Then the time-integrated stress tensor, 7,5(10,t]), reads
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Fig. 2. Corresponding billiard problems: a) infinite horizon, b) finite horizon
L
Tap([0.8]) = %/o ds va(s)vs(s)
= (3.5)
s g‘;x(tn < 04altn) (' (tn) = V(tn))s.
The invariant measure is Z~'dg;dg,dd. If we denote its average by (-), then
(Tapl0.t]) = daptpp. (3.6)

pp is sometimes called the dynamical pressure and agrees with the thermodynamic
pressure in the infinite volume limit [18]. For two disks we have

pp =4 — 7R (3.7)

We may simplify (3.5) by subtracting a function bounded in time. Let us again
approximate the hard core by a very steep but smooth potential supported on the
disk of radius R and let g(y) = y for |y| < (1/2) — ¢ and smooth on the unit circle
[— 1/, 1] otherwise. Then

d 1
Tap(t) = 7 (12 9(ga®)vs(t)) + 5(1 — g (qa®))valt)va(t). (3-8)
Let
ma(n) = sign(va(ty)) X [number of crossings of the line g, = 1/2
between ¢, and 41, to =0, ty =t if £, <t < tpe1l

Then the central limit theorem has to be proved for

1 1 |1 S
—=Tap(0, 1) = —= | = > x(tn < Oma()va(ty) — Saptpp | - (3.9)
Vit V|2 ;

One may suspect that the central limit theorem fails for (3.9) because of the long
free paths as in fact it happens for the Lorentz gas [3,5,6,8,10,11]. Note however that
Vo (f)vg(t) suppresses phase space volume. E.g., if in the correlation (712(¢)712(0))
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only contributions up to the first collision are taken into account, then a decay as
t=3 (integrable) results, whereas the corresponding velocity autocorrelation for the
Lorentz gas decays as t~' (nonintegrable) only. On the other hand, for sufficiently
small diameter the 45° channels open up and our heuristic argument yields a ¢~
decay. We leave the central limit theorem for the infinite horizon stress tensor for
future investigations.

3.2. Finite horizon, '/ < R < 1/\2. If we shift our coordinate system by (1/, 1)),
then the one-particle billiard has diamond shape corresponding to four disks of radius
R centered at (£, +15), cf. Fig. 3. The dynamic pressure, cf. (3.6), turns out to be

~1
pp = (1 — V4R — 1) (4 (1 — VAR — 1 — 7 R¥(1 — %arccos 5%))) :
(3.10)
pp diverges at R =1//2 as (4—41/2R)~" and decreases at R = /> as a square root.
Sometimes this is considered as a precursor of the gas solid transition for the infinite
hard sphere system.
As before (3.5) may be simplified by subtracting a bounded function. Since the
billiard has finite horizon, ¢ is a smooth function and

d (1 -
Tap(t) = = (5 qa(t)vﬁ(t)> +(3(qa (1)) — qa())Fa(g(t)). (3.11)

Here £ is a smoothened version of the hard core billiard force. § appears because of
the shift of the origin. We have

—1hfory >0

1 for y <0} = (1/2‘9) ) (3.12)

9y —y = {

with @ the standard step function. The central limit theorem has to be proved for
1

Vit vt

L
S O/(t) = 0(ta))s = Sastp .

1 o
— Fap10,1) = —= [ 37 Xt £ D02 = O)qalta)
1 (3.13)

3.3. Central limit theorem (finite horizon). We have 7,3 = Tgo. To simplify notation
we set T = (11, T2, T3) With
1
71((0,t]) = 2 (711 (10, 2]) + 72(10, 1) — ppt,

1 .
7210, 81) = 3110, 1) = 70, D), G

73((0, ¢]) = T12(10, t]).
According to (2.12) the covariance matrix for 7 has the form
(] 0 0
D=0 o, 0]. (3.15)
0 0 03






