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Abstract: A local generalized symmetry of a system of differential equations is an
infinitesimal transformation depending locally upon the fields and their derivatives
which carries solutions to solutions. We classify all local generalized symmetries of
the vacuum Einstein equations in four spacetime dimensions. To begin, we analyze
symmetries that can be built from the metric, curvature, and covariant derivatives
of the curvature to any order; these are called natural symmetries and are glob-
ally defined on any spacetime manifold. We next classify first-order generalized
symmetries, that is, symmetries that depend on the metric and its first derivatives.
Finally, using results from the classification of natural symmetries, we reduce the
classification of all higher-order generalized symmetries to the first-order case. In
each case we find that the local generalized symmetries are infinitesimal generalized
diffeomorphisms and constant metric scalings. There are no non-trivial conservation
laws associated with these symmetries. A novel feature of our analysis is the use
of a fundamental set of spinorial coordinates on the infinite jet space of Ricci-flat
metrics, which are derived from Penrose’s “exact set of fields” for the vacuum
equations.

1. Introduction

Symmetry plays an important role throughout theoretical physics and one of central
importance in field theory [1, 2]. Indeed, in the construction of a field theory physical
considerations usually demand that the field equations (or the Lagrangian) possess
certain symmetries. These symmetries include Poincaré symmetry, gauge symmetry,
diffeomorphism symmetry, various discrete symmetries, and a host of specialized
symmetries needed to ensure the conservation of appropriate quantum numbers.
Symmetries also play an important role in the mathematical analysis of differential
equations [3,4]. Originating with the work of Lie, symmetry group methods and
their recent generalizations have proved useful in understanding conservation laws,
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in constructing exact solutions, and in establishing complete integrability of certain
systems of differential equations.

The symmetries encountered in field theory are usually of the type commonly
referred to as point symmetries. A point symmetry of a system of differential equa-
tions is a 1-parameter group of transformations of the underlying space of indepen-
dent and dependent variables that carries any solution of the equations to another
solution. If a point symmetry preserves an underlying Lagrangian for the system of
equations, then there is a corresponding conservation law. However, not all conser-
vation laws stem from point symmetries. To account for all local conservation laws
in Lagrangian field theory one must enlarge the notion of symmetry to include gen-
eralized symmetries [5]. In this paper we will define a generalized symmetry to be
an infinitesimal transformation, constructed /ocally from the independent variables,
the dependent variables, and the derivatives of the dependent variables, that carries
any solution of the differential equations to a nearby solution. The importance of
generalized symmetries is underscored by their role in completely integrable systems
of non-linear differential equations. In particular, the integrability of a system of dif-
ferential equations is often (but not always) reflected by the existence of “hidden”
generalized symmetries [3, 6, 7].

In recent years considerable attention has been devoted to applications of sym-
metry group methods to a variety of non-linear partial differential equations, but
relatively few complete results have been obtained for the Einstein equations. It
is, of course, natural to inquire whether or not the Einstein equations admit any
hidden generalized symmetries, but the apparent complexity of the ensuing analysis
has, to date, precluded substantive progress. The existence of hidden symmetries of
the Einstein equations would lead to solution generating—classification techniques,
and perhaps even information about the general solution to the Einstein equations.
There are hints that such symmetries may exist. The two Killing vector reduction of
the Einstein equations leads to an integrable system of partial differential equations
[8,9]; the self-dual Einstein equations exhibit an infinite number of symmetries and
can be integrated using twistor methods [10,11,12]. A complete generalized sym-
metry analysis provides a systematic and rigorous way to unravel some aspects of
the integrable behavior of the gravitational field equations. In particular, such an
analysis indicates whether the rich structure of special reductions of the Einstein
equations extends to the full theory via local symmetry transformations.

An equally important consequence of a generalized symmetry analysis stems
from the fact that the existence of generalized symmetries of the Einstein equations
is a necessary condition for the existence of local differential conservation laws for
the gravitational field [13]. If such conservation laws could be found, they would
lead to observables for the gravitational field [14]. It has long been an open prob-
lem in relativity theory to exhibit such observables, and the lack thereof currently
hampers progress in canonical quantization of general relativity [15].

In this paper we will give a complete classification of all arbitrary-order local
generalized symmetries for the vacuum Einstein equations in four spacetime dimen-
sions. We shall show that the only generalized symmetries admitted by the vacuum
Einstein equations consist of the diffeomorphism symmetry that is inherent in the
Einstein equations and a trivial scaling symmetry. More precisely, we will prove
the following theorem.

Theorem. Let

hap = hab(xl,gij,gij,h[, cee ,gij,hy--hk)
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be the components of a k™-order generalized symmetry of the vacuum Einstein
equations R, = 0 in four spacetime dimensions. Then there is a constant ¢ and a
generalized vector field

X’ :Xl(xl’glja gij,hl)”~7gl],h1-~~hk_1)
such that, modulo the Einstein equations,

hab = CGab + vaXb + vaa .

This result was announced in [16].

The plan of this paper is as follows. In Sect.2 we begin with a summary
of the theory of generalized symmetries, and we present elementary applications
of this theory to the Einstein equations. The technical machinery needed for our
analysis is then summarized. A complete account of this machinery can be found in
[17]. Section 3 is devoted to applying our techniques to a model problem, namely,
classifying a relatively simple class of third-order generalized symmetries. All our
subsequent analysis follows the pattern of this example. In Sect. 4 we classify natural
symmetries, which are symmetries built from the metric, curvature and covariant
derivatives of the curvature to any order. In Sect. 5 we classify first-order generalized
symmetries, which require a considerably more intricate analysis than that needed
for natural generalized symmetries. In Sect. 6 we extend the analysis of Sect. 4 to
obtain a classification of all generalized symmetries. The analysis of Sect. 6 uses
an induction argument to reduce the classification to that of first-order generalized
symmetries. The Appendix contains various results from spinor and tensor algebra
which we use repeatedly.

We believe the methods that are used to prove these results are of no less
importance than the results themselves. In classifying the generalized symmetries of
the Einstein equations we have developed an effective spinor—jet bundle formalism
for analyzing mathematical properties of the Einstein equations and related equations
[17]. By far, the most important ingredient in this formalism is the use of what
Penrose calls an “exact set of fields” for the field equations [18, 19]. These are spinor
fields which allow us to parametrize the jet space of vacuum Einstein metrics. In
future work we will apply these spinor—jet techniques to related aspects of general
relativity. Specifically, our methods can be used to classify systematically (i) all
closed p-forms that are built locally from a Ricci-flat metric, (ii) all symplectic
forms for the Einstein equations, and (iii) all divergence-free symmetric tensors built
locally from Einstein metrics. Finally, it is worth pointing out that the existence of
an exact set of fields is not limited to the Einstein equations. For example, the
generalized symmetries of the Yang—Mills equations are amenable to analysis using
these techniques [20].

2. Preliminaries

In Sect. 2A we briefly review the geometric theory of generalized symmetries for
differential equations and their role in constructing local conservation laws. For more
on generalized symmetries and their applications, see [3]. In Sect. 2B we derive the
defining equations for the generalized symmetries of the vacuum Einstein equations
and present some preliminary results concerning solutions to these defining equa-
tions. We then summarize in Sect. 2C the technical machinery needed to compute
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the generalized symmetries of the Einstein equations. A complete presentation of
the results in this latter section can be found in [17].

2A. Generalized Symmetries for Classical Field Theories. In classical field theory,
the fields are usually identified with sections ¢: M — E of a fiber bundle n: £ — M.
In general relativity, M is a 4-dimensional manifold and = is the bundle n: 9 — M
of quadratic forms on the tangent space TM with signature (— + ++). A section
g:M — % is a choice of Lorentz metric on M.

Let nt,: JX(E) — M be the bundle of ™ order jets of local sections of E. A
point ¢ € J¥(E) is, by definition, an equivalence class of local sections defined in
a neighborhood U of the point x = 7,(c); two local sections ¢, ¢y: U — E are
equivalent if ¢, and ¢, and all their partial derivatives to order k agree at x. If
¢@:U — E is a local section of E, then the canonical lift

(@)U — JXE)

is the map that assigns to each point x € U the k-jet j¥(¢)(x) represented by ¢ at
x. There are also canonical projections

i JHE) — JU(E),

defined for all X = /. When / =0, we write 7k:J*(E) — E. The infinite jet bun-
dle ©57:J>°(E) — M is similarly defined. For a more detailed presentation of jet
bundles, see [3,21].

A differential form w on J*°(E) is called a contact form if, for every local
section ¢: U — E,

(@) (0)=0.

The set of all contact forms on J*>°(E) is a differential ideal in the ring Q*(J°°(F))
of all differential forms on J°°(E), and we denote this ideal by €(J°°(E)).

A generalized vector field Z on E is a vector field along the map 77°, that is,
for each point o € J*°(E), Z, is a tangent vector in T,(E), where p = ng°(o). If
Z is a generalized vector field on E, then there is a unique vector field prZ on
J(E), called the infinite prolongation of Z such that

(1) for each 0 € J*°(E), (75°)[(prZ),] = ano(a), and
(i1) prZ preserves the contact ideal, that is, under Lie differentiation

Loz €(J7(E)) C CIT(E)).

We shall give local expressions for Z and prZ shortly. A generalized vector field
Y on E that is m-vertical, i.e.,
7z"‘(YO') = O ’

for all ¢ € J°°(F), is called an evolutionary vector field. Evolutionary vector fields
determine “infinitesimal field variations,” and their prolongations determine the in-
duced variations in the derivatives of the fields. Finally, a generalized vector field
X on M is a vector field along the map w5y, and a generalized tensor field A of
type (p,q) on M is a smooth map

A:J¥(E) — TP(M)
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along 75y, where 7,/ (M) is the bundle of tensors of type (p,q) over M. Note that
if Z is a generalized vector ficld on E, then Z);, = n.(Z) is a generalized vector
field on M.

Every generalized vector field X on M defines a unique vector field totX on
J°(E), called the total vector field of X, with the properties

(1) (3 )«[(tot X )s] = Xnilc(g), and
(i1) tot X annihilates all contact 1-forms, that is, if @ is a contact 1-form, then
totX — w = 0.

We remark that if X is a generalized vector field on M and Xz = (n3°).(tot X),

then
prXp =totX .

In other words, totX is also a prolongation of a vector field and therefore totX
preserves the contact ideal.

If Z, and Z, are generalized vector fields on E, then there exists a generalized
vector field Z3 such that [pr Z, pr Z,] = pr Z;. We call Z; the generalized Lie bracket
of Z, and Z, and write

(2, 2] =75 .

It is also straightforward to verify that if totX; and totX, are two total vector
fields, then [tot X, tot X2] is also a total vector field, [tot Xj,tot X;] = tot X3. (Hence
the set of all total vector fields on J°°(FE) is a connection of general type on
J>X(E) — M)

Now supposc a system of differential equations for the sections of E is given.
These are the field equations for the classical field theory. If these equations are of
order k (typically k = 2), then they determine a smooth subbundle

R — JE)

with projection 7i,: #% — M. We call #* the equation manifold for the classical
field theory. The total derivatives of the field equations to order / then define the
"™ prolonged equation manifold

.%k—H ‘—>Jk+l(E) .

The field equations, together with all their total derivatives, determine the infinitely
prolonged equation manifold

R — JP(E).
It is customary to assume [22,23] that the maps

n.;%r]:’%l-kl N %/
are surjective for all / = k& and have constant rank. The fiber dimension of nf“
represents the number of “degrees of freedom” available in constructing a formal
power series solution for the field equations to order / + 1 from a given solution
to order /. Roughly speaking, equations that are not “over-determined” will satisfy

the surjectivity assumption. As we shall see, the vacuum Einstein equations satisfy
these surjectivity and constant rank assumptions [17].
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Definition 2.1. A generalized vector field Z on E is called a generalized symmetry
of the given field equations if prZ is tangent to the infinitely prolonged equation
manifold R, that is, for all 6 € R,

(pr2), € T;(£>).

Generalized symmetries are sometimes called Lie-Bdicklund symmetries. If Z,
and Z, are two generalized symmetries for #°°, then the generalized Lie bracket
[Z,,2,] is also a generalized symmetry.

We now give local coordinate descriptions of these various notions. If (x', p*) —
(x'),i=1,2,...,nand « = 1,2,...,m, are local coordinates on n: E — M, then the
standard local coordinates for J*°(E) are

iooa o o o
(x P (Pip (pzliz’ T (Pilzzwzk’ c ) ’
where, for a given local section ¢* = ¢*(x'),

ak o
P U = 5 T

The contact ideal ¥(J°°(F)) is spanned locally by the contact 1-forms
0y = A0}y, — Oy

for k =0,1,2,.... These forms satisfy the structure equations

do;.., =dd N0} ., .
A generalized vector field Z on E assumes the form
;0 0
z-a4L yp O
Ox! dp*

where
i iy i s d
A =4 (xf,(pﬁ,(pfi,...,gogmik), and B* = B“(xf,(p/’),(pfl,...,<p,{lm,-k).
A generalized vector field X on M and an evolutionary vector field ¥ on E take
the form
0
oo’

where, again, the coefficients 4' and B* are functions of x’, ¢* and the derivatives
®j,...;, to some arbitrary but finite order. The vector field totX is given by

-0
X:AIT and Y = B*
xl

tot X = 4'D; ,
where D; is the total derivative operator

0 0 0 0
D= — 4@+ —— 4@ ..
T e T gy T i ggr

We write
Diyyy...iip. = DyyDyy -+ Dy, .
The prolongation of Z is given by the prolongation formula [3]
pI'Z = AID, + Z D,’liz.,.ik(Ba — (pf‘A’)_a___ (21)
k=0 a(Pili2~~1k
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d

Note that, in particular, the prolongation of the evolutionary vector field ¥ = B* 307
is 0o 3
prY =73 (Di,iz--.ikB“)é‘T‘—“ . (2.2)
k=0 (pi]iz~~~ik

We now remark that (2.1) and (2.2) together prove the following theorem.

Theorem 2.2. Let Z be a generalized vector field on E. Then there exists a unique
evolutionary vector field Z., such that

prZ =totZy + prZey , (2.3)
where Zy = nx(Z).

The evolutionary vector field in (2.3) is

0
Zoy = (B* — @A"Y — . (2.4)
0p*
X =4 % and X> = A%% are generalized vector fields on M, then
i J i I\ 0
[X1, 0] = [41(D,Az) = A(DiAD] = .

If v, = B?aiw and ¥, = Bg% are evolutionary vector fields on E, then

0
[Y1,Y2] = [pr Y1(B3) — pr Yz(Bgf)]w .

An evolutionary vector field Y = B* agg defines “infinitesimal field variations”

5(/)?‘1,,,,.,, [ =0,1,..., which depend locally on the fields and their derivatives. Ex-
plicitly, 097 ..; is defined by letting the prolonged vector field prY act on the
coordinates ¢7 ...; which are viewed as functions on J*°(E):

0@7 . = PrY(@f i) = Dy, B 0" 0]y ) -

If
A/f(xl’(paa(p?(]a'“’(p?‘]uqk):0> ﬂzla”"m (25)

is a system of field equations for the fields ¢, then % C J*(E) is the manifold de-
fined by these equations. The infinitely prolonged equation manifold #*° is defined
by the Egs. (2.5) together with the equations

Diliz..AilA/} == 0
for I =1,2,....

It now follows that if X is a generalized vector field on M, then tot.X (or more
precisely Xz = np°(totX)) is always a generalized symmetry for any system of
equations. Total vector fields are therefore viewed as trivial symmetries. A general-
ized symmetry Z is also considered trivial if Z vanishes on the prolonged equation
manifold #°°. Two generalized symmetries are said to be equivalent if their differ-
ence is a trivial symmetry. Theorem 2.2 implies that every generalized symmetry
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Z of a given system of equations is equivalent to a generalized symmetry Y which
is m-vertical, that is, to an evolutionary generalized symmetry.

The evolutionary vector field ¥ = Byﬁi(p“ is, according to the tangency condition

in Definition 2.1, a generalized symmetry of (2.5) if and only if the coefficient
functions B” satisfy the linear total differential equation

ko
>

o4
=0 3%‘..,',

[D,.,B’1=0 on 2. (2.6)

This equation is called the formal linearization of (2.5), or the defining equation
for the generalized symmetry Y.
Let us remark that when Z is an ordinary vector field on E, that is,

. 0 ; d
7= A0l ) + B0l

op*’

and (prZ)(4p) =0 on the equation manifold 4z = 0, then Z is called a point
symmetry of the equations. Point symmetries are in one-to-one correspondence with
first-order evolutionary symmetries

-

_ pBit a2 zi
Y—B(x7(l’ ’(/)i)a(pﬁ»

with B* a collection of affine linear functions of the first derivatives ¢7.

Finally, we cite a version of Noether’s theorem as it applies to generalized
symmetries [3]. Recall that a local differential conservation law V for the field
equations A = 0 is a generalized vector density

V = Vi(xkﬂ (Pza (p;ll LR (pf{] R/ )»x_
on M such that the total divergence
Divl =D;V' =0 on Z>°.

A conservation law ¥V is said to be trivial if there is a generalized skew-symmetric
tensor density

ok %
S = Sl/(x > (ny (rDzy] > (70;/112’ B (pj(l ---1/)
such that .
Vt=D;SY on % .
Two conservation laws are said to be equivalent if their difference is a trivial conser-
vation law. Following Olver [3], an evolutionary vector field ¥ = B“CTZ’;—y is called

a characteristic vector field for the conservation law V' if
DivV = B’4, (2.7)

identically. Under mild regularity conditions on the equations 4z =0, it can be
shown that every conservation law V'’ is equivalent to a conservation law ¥ whose
divergence satisfies (2.7). It is a simple result from the variational calculus that if
A, are the components of the Euler—Lagrange operator £,(L) for some Lagrangian
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L= L(_xl, @1, (pla] yeees QDlyllk ),

oL oL oL
El)=— D=+ - E£D,..., =—,
Of( ) aq)g [aqoldl + 131 1k a(plyllk

then every characteristic vector field Y for a local differential conservation law
for the equations A, = 0 defines a generalized symmetry. The converse need not
be true. For example, scaling symmetries of Euler-Lagrange equations typically will
not lead to conscrvation laws.

2B. The Formal Linearization of the Einstein Equations. To study the general-
ized symmetries of the Einstein field equations, we let n: % — M be the bundle
of Lorentz metrics over the spacetime manifold M. Standard local coordinates for
JH(%) are .

(xla glja glj,ll PR )gi]"iliz"-ik) .

The Christoffel symbols Fl-’;, the curvature tensor R,” k» and their derivatives are now

considered functions on J¥(%). The covariant derivatives of a generalized tensor
field on M are defined in terms of total derivatives. For example, if

Aa = AdX', Gijs Gijiiys Gijiivins -+ -+ Jijuiyin--iz )
are the components of a generalized 1-form on M, then
Viydy = Dpd, — T A,
04, 04, 04, 04,
:_‘1‘_g",b+—.C/",'b+"'+ﬁ79",' —T%A4. .
axb aglj ! agl/,l] R Ogl].llu~1k i kb abe

We now compute the formal linearization (2.6) of the vacuum Einstein equa-
tions.

Proposition 2.3. Let
; 0
Y = hap(X's 91j5 Gijiy» -5 Gijuiy iyl )—agab

be an evolutionary vector field on the bundle 4G of Lorentz metrics. Then Y is a
generalized symmetry of the Einstein equations R,, = 0 if and only if

[—g90787 — g 86] + g (670 + 826 )| VeV ahay =0 (2.8)
whenever R;; and its covariant derivatives to order k vanish.
Proof. This is an easy computation based upon the identities

(pr YY) = 29" [Nihs + Vb — Vihi] (2.9)
and
(pr V)R ) = Vi(pr Y(I'}))) — Vi(pr Y(Iy)) - (2.10)

These formulas are, of course, familiar from the variational calculus. We emphasize
that now (2.9) and (2.10) are to be viewed as identities on J*(%), where they are
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direct consequences of the prolongation formula

d d
pr Y =hyp—+ (D hab) + (Dljhab) + o

09ab 09ab 09ab,ij
We remark that Proposition 2.3 could also be formulated in terms of the Einstein
tensor G;; and its derivatives. The symmetry conditions so-obtained are equivalent
to (2.8). a
0
Let X :X"(x)% be a vector field on M with local flow ¢,;: M — M. Then
¢; induces a local flow on ¥ with corresponding vector field Xon% given by
= 0 ox* 0X*° 0
X=X"— — | =—9g4 )=
x4 ( PR ga> 09y
The associated evolutionary vector field is, by (2.4),
Xev = —(ViX; + VX, )

9ij

It is well-known [24] that X, or equivalently Xev, represents a point symmetry of the
Einstein equations corresponding to the diffeomorphism invariance of the Einstein
equations. This observation motivates the following definition.

Definition 2.4. Let

. 0
X = Xa(xla gljs glj,il 9 ,gij,i1i2~~i1 )@

be a generalized vector field on M. We call the euolutionary vector field

Hx = (ViX; + ViX; )
9y
where X, = g,;X’, the associated generalized diffeomorphism vector field on 4.
We remark that if X; and X, are generalized vector fields on M, then
[‘%fxlﬁ‘%&z] = ‘%/[Xl,le .
Proposition 2.5. For any generalized vector field X on M, the associated gener-

alized diffeomorphism vector field Ky is a generalized symmetry of the vacuum
FEinstein equations.

Proof. By virtue of (2.9), we find that
(pr AT = VVX! + R, X7
and hence, by (2.10),
(pr Ax)R;j = (V,R;))XP + R,V XP + R, , VX7,
which vanishes when R;; = 0 and V,R,; =0. [

We call the symmetry Ay a generalized diffeomorphism symmetry of the
Einstein equations. Note that the generalized diffeomorphism vector fields #y will
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be symmetries for any generally covariant set of field equations on . In particular,
Proposition 2.5 generalizes to the Einstein equations with cosmological constant.
There is one more obvious symmetry of the vacuum Einstein equations R;; = 0.

Proposition 2.6. For any constant c, the vector field
% 2 (2.11)
= Cd;; .
¢ gij agij

is a point symmetry of the vacuum Einstein equations R;; = 0.

Proof. This proposition follows from the fact that (pr %)(Ef) =0, and hence
(pr )(R;;) = 0. Alternatively, h;; = cg;; clearly satisfies (2.8). [

On a 4-dimensional manifold M we have

(pr Z(VGR) = c\/gR .

Thus the scaling symmetry % of the Einstein equations does not preserve the
Hilbert Lagrangian (even up to a divergence) and therefore does not generate a
conservation law. The generalized diffeomorphism symmetry /"y is a characteristic
for a conservation law for the Einstein equations, namely,

V,2vgX:G7) = (ViX; + VX)) /gGY .

But the conserved vector density V/ = 2,/gX;G7 is trivial.
We remark that the scaling symmetry % and the point diffeomorphism symmetry

X are the only point symmetries of the vacuum Einstein equations [24].

2C. Spinor Coordinates for Prolonged Einstein Equation Manifolds. Let &% C
J¥(%) be the set of k-jets that satisfy the Einstein equations and the covariant
derivatives of the Einstein equations to order k£ — 2,

& = {/*(g)(x0) € JN(9)| Gy = 0,Gyjs, = 0,.... Gyjisyip_, = 0 at j5(g)(x0) } .

Here and in what follows, we will either use the vertical bar or V to indicate covari-
ant differentiation. If A, = hﬂb(xf,gij, Gij. j1>--+»9ij, j1--j, ) 18 @ generalized symmetry
of the vacuum Einstein equations, then the linearized equations (2.8) must hold
identically at each point of &**2. To solve these equations we shall need explicit
coordinates for these prolonged equation manifolds [17].

To this end, we let I’ ;k be the Christoffel symbols of the metric g;; and induc-

tively define higher-order Christoffel symbols by
r

i m
I; Jk—1Jk) ?

Jojr-ie = 1—‘(11‘0]1"']1(—1»!‘1;) — (k- 1)Frln (2.12)

(k=2
for k = 1. These higher-order symbols arise naturally from the prolongations of the
geodesic equations and play a prominent role in T.Y. Thomas’ theory of normal
extensions [25]. We will, on occasion, denote the generalized Christoffel symbols
(2.12) simply by I'*. Note that I j...;. 1s completely symmetric in the indices
Joj1 -+ Jjr and depends on the metric and its first & derivatives.

Next, let [18]

Oijijr-ie = 9urdisR ("ol » (2.13)
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for k = 2. This tensor is a generalized tensor on M of order k, which we denote
by OF. Note that Qi j1--y 18 symmetric in ij and j; --- ji, and satisfies the cyclic

identity
OiGjr-j) = 0. (2.14)
It is then possible to prove [17] that the variables
i T os Dggrogs Qurins -+ Qipg ) (2.15)

can be used as coordinates for the bundle J#(%). Furthermore, if [Qg. I+ g Jiraceree
is the completely trace-free part of Qg ..., (trace-free with respect to g;;), then

local coordinates for &% are given by

i i
(X ,gljarjojl.../‘l’[Qi/',h"'j/]txﬂ&:CﬁcC) for / é k. (216)
Now we consider the spinor representation of the curvature tensor [19],
A'B'c’D!
Rabcd — RABU) 5
where
IIBIC/D, IB/ C/D/ A/B (& /D/
Riger = = ¥ ept” + ¥ E488cp
'’ A’B’ B’ .c’n’
(I)AB cD + qyép €4
11 Iy I~/ /1
+ ZA(CACCBDﬁA( CBD - {ZADSB(ngD CBC ) . (217)

The totally symmetric spinors ¥ zcp and 45" correspond to the spinor represen-
tation of the Weyl tensor. The symmetric spinor q)ﬂ;”/ corresponds to the trace-free
Ricci tensor, and the scalar A corresponds to the scalar curvature. If we set

l/ /
A8 J,\

[Qab./l cJy ]Iracetiee QABJI ‘ H

then it is not too difficult to show that

4B’ ! A5l g
QA[i/;]l = gl lPABJIJ )Jk + a0, 811, ‘P_Z .[.J,JJ/:) K , (2.18)
where ey y )
(PJ:' /]/:+22 = V(J: VJZ ; ‘ij—ljkjkﬂ»ljk +2)
and /
‘I’,l j:izz = Ejl V ) k=1 17k42)

In summary, the spinor coordinates for the prolonged Einstein equation mani-
fold & are

! gl gl gt !/ /
; i —J, 53, Sy ]
1 1 i 17234 1 k—2 k+2
G Tl e Ty s Wi W75 w2 W2y (2119)

For instance, the spinor coordinates for &% and & are
1yl gl gl
; ; I,
1 i I 1¥29374
' 9ijs Ui Topins Yotz 7’ )
and

/ ! Loyl gl gl gt

STULY) —J, L3, J.

. ri r p 1127374 /i 112737475
g I 1011’ Joivi2? * Joiviadze N2 l3 s 'PJ > TN d3dads? T ) -
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/

J J :
The symmetrized covariant derivatives ¥ Jll Jz Zand ¥ Ji Ji 5 corresponding to

Penrose’s notion of an exact set of fields for the vacuum Einstein equations [18].
Henceforth we refer to these spinors as the Penrose fields for the vacuum Einstein

equations, and we denote them by ¥* and 'f’k We remark that to pass between the
coordinates (2.19) and (2.16) we use any soldering form /4" such that

A/
gy = 01" T -

We have the following important structure equation for the Penrose fields [18].

Proposition 2.7. The spinorial covariant derivative of ‘P I J}l:z, when evaluated
okl
on &%, is given b
S S
Vi lIIJl"'Jk+2 =¥ S T {*x}, (2.20)

where {%} denotes a spinor-valued function of the Penrose fields W2, %", .. Wk,
—k—1
U

The fact that the lower-order terms {*} are of order less than or equal to k — 1 is
essential to much of our symmetry analysis.

It now follows that the restriction to &* of any tensor on J*(%) built locally
from the metric, curvature, and covariant derivatives of curvature, say

Tayap(Gij>Gij. jy>- - Gij, jy-ogi ) s
may be uniquely expressed as a function of the Penrose fields, that is,

A A —Jl gy gl ..y
] Vd 1Y2374 1 k=2 1 k42
Toyoay < TAI,,,AP(%IWMW s U ). (2.21)

Under an arbitrary SL(2,C) transformation A%, the spinor 7 satisfies the identity

/ / /
Bp— BB

T' [/1 P] = AAPA;%- A”T T, (2.22)

where A - ¥ denotes the action of SL(2,C) on the Penrose fields, for example,
(A - Vagep = AGAFACAN Pogrng -

We call spinors (2.21) that satisfy (2.22) natural spinors of the Penrose fields
P2 P2 'I’k ik,
Jyedp oo , e
We Iet 5 5/5”2, Iz Jl/] J£+22, and 0" 7 denote the (symmetrized) partial dif-

gl g )
: : . 1 k=2 1 k+2 1
ferential operators with respect to the coordinates ¥ Nedira P 5o and I'!

For example,
Oy (W ypep) = 5£1J1 57 5? o

As a consequence of (2.22) we have the following result [17].

Proposition 2.8. Ler T/4 ! F’ v be a natural spinor of the fields P°, W2, ..., Wk, WPk

L . Al .
The spinorial covariant derwattue of T A:... A: is a natural spinor of the Penrose
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fields W2,W2,..., WL Wk and is given by

!/ !

k ’
B Ay Ay J/+2 1 B g J{ Iy
Vg Tay.s) = Izz[a ZTA] Aq]v

JiJria

k ’
-J BI —JlJ
LD LR e A & A

We close this section by deriving a spinor expression for the linearized Einstein
equations (2.8) that we shall use to compute generalized symmetries. Starting from
(2.8), and using the spinor correspondence

VVi e VeorVop  hay o hgug g e PP
the defining equation (2.8) takes the form
[— 86086’0’5;45;14’,5%5, — BB 5 5C 5052

4 e1Ce (58,68, 6055 52,08 BNV cer Vpprhagarg =0 .

(2.23)

Since hypyp = hpypr 4, We have that
hapan = hpayp + %SAB'SA'B'}! , (2.24)
where the trace & of hypyp is given by
h= SABSAIBI}ZABA/B/ .

Substituting (2.24) into the last two terms of (2.23), we find that all the trace terms
cancel leaving us with

[—ePeC'D 5,501,08.65, + e5Cet'C 58,08,6065, + B¢ C 50 55,5155
X VeerVpprhypyg = 0.

—N’
We now multiply this expression with arbitrary spinors o™, & ' , BN, B to get our
final spinor form of the linearized equations.

Theorem 2.9. If hi5 w are the spinor components of a generalizeai symmetry of the
—N
vacuum Einstein equations, then for all spinors oM, %, BV, B

!~ _ /—B’ Fal _ /—D’
[—ecpe” P ausa® B+ epce < auppa® B
1~ / —, /
+epee C appua B IVEVARE, =0 on 6472 (2.25)
In general h'5 ‘m 15 a function of the coordinates (2.19), that is,

ININIBY 7 ! ! !
4B . i 172734 S R/
WAy = WA (0 T T W PR W ey

When 5, is a natural generalized symmetry,

1NN Y / ’
AB /112037 Tk _J “Jisr
WA = WA (Wi W Wy
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In both cases, h'/5, satisfies the SL(2,C) invariance properties

AGAD AL AB AR, (x,0,T, W) = hSR,(x, A - 6, T, A - V),

where A - o, and A - ¥V denote the action of SL(2,C) on the soldering form and
Penrose fields.

3. Third-Order Symmetries of the Einstein Equations: A Model Problem

The complete classification of higher-order generalized symmetries of even the sim-
plest partial differential equations, let alone the Einstein field equations, is almost
always a daunting computational task. In this section we shall characterize a par-
ticularly simple class of third-order generalized symmetries of the vacuum Einstein
equations. Subsequent sections of this paper will extend this analysis in full gen-
erality. Our goals here are principally to elucidate our basic computational scheme
and to introduce notation and techniques which will be used repeatedly in what
follows.

Recall that a third-order generalized symmetry of the Einstein equations is a
symmetric rank-2 spacetime tensor

hap = hab(xi> Gijs Gijhs Gij, bk gij,hkl) (3.1)
that satisfies the linearized equations (2.8). The standard jet coordinates on J3(%),
(X', Gijs Gijko Gijonk> Gijohkt) »

are ill-suited to the problem of solving Eq. (2.8) because they are not well-adapted to
the structure of the Einstein field equations. In Sect. 2 we showed that any function
(3.1) can also be expressed as

: o
hab = hav (X', Gijs Tis Digs Lints Qi ins Qijknt)

where the generalized Christoffel symbols 1;}@,1;};,,, are defined by (2.12), and the
curvature tensors Oy ., O kn are defined by (2.13). However, a generalized sym-
metry of the Einstein equations is only defined up to terms which vanish when
Rij =0, Ry =0, ..., and so, with no loss of generality, we may replace the de-
pendencies of %, on Oy, and Qyjuy by their trace-free parts. These trace-free
tensors are best represented by the Penrose fields and so we can assume that the
general form of the third-order symmetry is given by

. / . . . ’ YL U

hay = ha (', 63, Ty T Uit ¥ty sz Wj;A2A3A4A5> i ﬁ:AZA}A“AS) :
(3.2)
In the next section we classify arbitrary-order symmetries depending upon the
Penrose fields alone (natural symmetries). In Sects. 5 and 6 we complete the gen-
eralized symmetry analysis of the Einstein equations by considering higher-order
symmetries with dependencies typified by (3.2). In this section we shall simply

analyze natural symmetries whose spinor components are of the general form

/
AB __ 1 AB Ay
W = Paigr (P 05445 'PAIAZA3A4A5) : (33)
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Admittedly, this is a somewhat artificial problem, but it serves us well for the
purposes of this section. We shall prove that if (3.3) satisfies the linearized equations

[—ePeCP 5, 51,6865, + ePCe'C 57,08,6000) + 86 C 50, 60,51 851
X VeerVpprhges =0, (3.4)
when R;; =0, Ry =0, Ry = 0, and R, 5, = 0, then there is a vector field
Xy = Xg (Vs totsay) »
and a constant ¢ such that ,
hﬁfé/:: CgABEA/B/‘+"7j/A35 + Y7§/)<ﬁ .

To begin the analysis of (3.4), we first expand the covariant derivatives of hj/%,
by the chain rule (Proposition 2.8) to find that, because of (3.3),

ah /B/ ahA/B/
V A/B/ - W(VD’ Vi aya344) + (V A1A2A3A4A5)
A1A2A3A4A5
A A2 434 D
= (0p"1725 4hA’B/)5UA1A2A3A4D’
Ay ArA3444 AD
+ @y IO s aeasr T D) (3:3)

where we have used the structure equations (2.20), and {*} reflects terms quadratic
in Y, pcp. We take another covariant derivative and, retaining for the moment only

E/
the terms involving ‘P ¢ 4sCID! and ‘P ' 5‘1’31,..35, we find that

Ay--A A CD
V VD/]’IA/B/ = (alp y ShA/B/)'lU - AsC'D’

+(aw AsalpBl BShA,B,)‘P ASC,‘P‘ PSRRI

. A
where {*} denotes terms depending upon the Penrose fields ¥4, ...4,, ¥’ Ai~~ dso and
7
terms linear in ‘I’jiﬁlé.
The critical point to make now is that, in using the structure equations (2.20)
to evaluate V hAE /5 and Vc V AR A,B,, we have made full use of the Einstein

. 1454} AL 4, .
equations. That is to say, the fields ‘P 1 2 and 4 A: A;,, 4 are completely arbitrary

and (3.4) is an identity in these higher-order Penrose fields. All the analysis that
follows depends upon this fact.

Thus, in (3.4) the terms depending upon ¥ A:j§A3 4, must vanish identically. Tak-
ing into account the symmetries of this spinor field, we conclude that the derivative
6.;/11 Aspd B ‘i satisfies the complicated algebraic equation

B4 <As ; A7)A 4 s A7)B
B 683/(/1%851/ 5h|A7,)\A, + e 68A/(A;8q/ Sh};,)}A, =0. (3.6)

Our next task is to analyze this equation completely. This is almost impossible
to do without first introducing some appropriate notation. Then we can bring to
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bear some decidedly non-trivial—but completely algebraic—results from the two-
component spinor formalism. To begin, we set

VA, 50,3 B) = 0wy S W s B B 3T)

As we explain in the appendix, this notation indicates that [0%/] is a spinor which
is completely symmetric in its first 5 indices. We use a semi-colon here to separate
the arguments of [63 #] that correspond to the derivative indices from those attached

to the spinor 43/, We emphasize that the values of dy Al s pd B “p are completely

determined by the values of (3.7).

We now multiply (3.6) by x4, --.lpAﬂAﬁBJA'EAzEAWA/ﬁB to arrive at the
more palpable, but completely equivalent equation,

(B, V) (B, W)LOW(W°, s, o, % )
+ (o, ) (@ )OGS, Y5, B, B Y) =0 (3.8)
If we set o = f and & = B, this equation reduces to
s h (¢5, $7¢5 a’ &’ J) :0
or, because of the symmetry of 442 i
Ry, s Y, ¥, %) = 0. (3.9)
In components this first equation is equivalent to

a (A4 AShA)B

v e =0 (3.10)

We now recall (Proposition 7.2) that if 74142454 is a spinor that is symmetric
in 414, -+ - As and satisfies
T A5, A) —

then there is a symmetric spinor S41424344 such that

TAVAYAs A _ (A Ay Asdy gAs)A
In terms of our index-free notation, we write this equation as (see Proposition 7.2)
T, 0) = (f,0)S(W*) .
We apply this result to (3.9) to conclude that
(G hI, s B3 ) = (0, S T B3 (311)

We can decompose [(ﬁ,h](l/ﬁ,w; a, B, @, f) into its symmetric and antisymmetric parts
in the arguments corresponding to ¥ and f, and then use (3.11) to conclude

Unfortunately, this representation of [d3/4] does not incorporate the symmetry

W, o B B) = [OWRIGY, U3 By o B 7). (3.12)
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It is a rather difficult algebraic problem to simultaneously impose both (3.9) and
(3.12). Theorem 7.7, in the appendix to this paper, solves this problem and we may
write

Dph)W°, b0, B 3 B) = (b, 2) (W, BYA(Y, Yap)

+ (b, )@ YW, B, B)
+ (s BYB W, 0, 7). (3.13)
Written out in components, this reads

A Aydy-A AB A4y ,|BlAy 4434ads) A4, Ay A3A445)B
UIAJZ sh 8<18H2AA’A’B’ _“’(le/M’IWB’)K“S

Ay Az AgAs)A
—{‘(‘{‘B/(A/W2345)

With the symmetries as indicated in (3.13), the spinors 4 and W are uniquely
defined by 03,4. This result completely solves (3.8).
The next step is to analyze the consequences of setting to zero the terms in

(3.4) which are quadratic in the Penrose fields ‘I/ s To accomplish this we
differentiate (3.4) with respect to ‘I’C] CyCs and '1"1), Dy-Ds and multiply the result

.. —C!_
by “symmetrizing” fields Vi, Ve, - - Vs, %o, 7Dy - ZDs» and Y ‘zD/l. Because

A C1CyeC A
[U C£ SlPAllAz -As l,bCl lpCz WCJP l///h'a[//’lz %5‘# : 5
we obtain the equations

=200, 1) (W DWW s 25 T, B, 8 )
<‘p ﬁ) <W ﬂ)(all’o‘}’h)(wsa Ea 157 75 % %> 7’ &)
B) (T B0 h)W°, s 2, T o W0, 0, )

+ (1
+ (W, o) (L (O s T B 1 T B)
+ (ot ) (T D0 U 0 T B, Y, B) =0 (3.14)

The six terms in this equation (one appears twice) come from each of the 3
terms in (3.4). Each term of (3.4) contributes twice to (3.14) because the coefficient

of these terms is quadratic in the Penrose fields pli dydyeds- NOTE that we have again

used semi-colons to separate the arguments of 3, 83 h corresponding to the different
partial derivatives.

Using (3.9) we immediately find that all the terms in (3.14) vanish but the first,
so that

(@0 7, T .3, B) =0
In components this equation is

6'{//4/ Ul[/Bl hA'B/ —0,
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and hence 442 Y/ must be linear in the third derivative fields ‘I’jl' dyds: This then
implies, by the uniqueness of the representation (3.13), that the spinors 4 and
W in (3.13) can only depend upon the second derivative Penrose field ¥ pcp.

This exhausts the information arising from the coefﬁcients of the highest deriva-
LY . BB, . . .
tive term ¥ A' 4aig, and the quadratic terms ¥’ A: urag Vpi5a..5, 0 the linearized

equations.
To summarize the results up to this point, we have shown that the generalized
symmetry (3.3) must take the form

A1A2A3 ABA] Ay ---AgB g4 Ay AgA 4 B
Wiy = 4} i Ly T W Pyt W Yy ay R s

where the spinors 4, W and h all depend on Y 5cp.

The next step is to examine the terms in the linearized equations (3.4) which

involve the spinor )
!
b}/ l BIBZ
AyAy-As ~ B1By---Bg *

. . A
Taking into account the fact that h%5, is linear in ¥ iy dy-roas» and the structure

5
. . A’A’
equations (2.20) for the derivative VC, A; A;_,_ 4g> WE find the relevant terms to be

¢y Ay Ay A3 A, Ble Bs 14 c b
Ve VD RAE, =0y oy hAfB/)(WA1A2A3A4c'WB,BZ~.-B5D’

D ,
+ Vi s lPBIBZ~~B5C') + {*}.

! Y

y A

Thus, when we differentiate (3.4) with respect to 'IIAIIAZ"'AS’ TB;BZ_,_Bé and con-

. —A’_ / _pl
tract with the fields vy, - - - Yus. x5, - 15> and ¥ 1751752 we conclude, after some
simplifications, that the derivatives

[0 0uhlOW*: 2 7 o . % )
= 0y A W s, 1 1 TSt
satisfy the algebraic conditions
=204, ) (U, DB ORI, Yo B )
+ (U, B, BLERaRhI 0 T ¥, 1, )
+ (W, ) (W, DGR T B b, ¥, B)
B (7 Loy hl G v, o v, %)
2% 0) (7 B0G0ph) 50, s B, W, B)
+ (W, B (s E) ROV, o, 1, T )
+ s ) (W, B0 RR Y s B 1 T B) = 0. (3.15)

+ (%
+(
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These equations we analyze in 2 steps. First, Eq. (3.9) implies that the coefficients
of (y, )%, f) and (y,a)(¥, &) each vanish, and so we can rewrite Eq. (3.15) as

=200, 2) (b, 7) [0 0phI(x" 5%, s, B, 3 )
+ (W, ) (W, D00 hIW 1, T By s s B)
+ 0RO R U B 1 T B}
+(W, B, B{L0%0u I 2 7 s W, @)
+[0W0W G o . 7, @)} = 0. (3.16)
Setting @ = f/ = ¥ in Eq. (3.16), we conclude that
[0% 0 hIGs v, Yo B, ) = 0
In terms of the decomposition (3.13), this implies that
[ AN 0 0 ) =0, (3.17)

and so 4 in (3.13) is independent of the spinor ¥ 4zcp, i.e., 4 is independent of
the Penrose fields. Together, Egs. (3.16) and (3.17) show that

(0% 00, s B3, B) = (W ) (@ V)G W50, B B)
+ (0, BB DG WIGH Y, 2 7). (3.18)
Next, we set « = f and & = f in (3.13), and substitute from (3.18) to arrive at
20, )W DLEWICHY, 0 8) =(1 ) (T WG WIW o v @)
+ (6 W) (T DLW 1 o)
+ (. ) (0, DLW Y, 2. 9)
+ (b D) DI 2 7).

The right-hand side of this equation is unchanged by the simultaneous interchange
of Y with y and  with 7, so we conclude

[ Wt wa) = [0 W10 1 o)

Written out in full, this equation is the curl condition

=

v
v

B1ByB3B4A A1 ApA3A4A4
6WA/1 25354 B aWAll 24344

R TR 0¥5,8,8,8,
We therefore deduce that there are functions

X;’ = X,‘;”(IIIAlAzA3A4 )

such that oy
X

w4 3.19

4 O 4, 4y434, ( )

Together, Egs. (3.17) and (3.19) solve (3.15) completely.
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Define
ki = Wy — (VX + Vi X5). (3.20)

By Proposition 2.5, k%42 /g 18 also a generalized symmetry. On account of (3.19), a
simple computation shows that

OWk1W s o, B3, B) = (W o) (W, BYA(Y  ap) . (3.21)

This means that k4,5, takes the form

B _ gAyAgds gABA]
k:;‘/B/—A A,B/ WA1A2A3+hA/B/'
We have already shown that the spinor 4 is constant. We now show that this

spinor must in fact vanish. To do this we must isolate the terms in (3.4) which
14l

are linear in the fourth order Penrose fields ‘P::jé,, g This can be done by simply
expanding the total covariant derivatives as we did in (3.5). However, this proce-
dure is somewhat complicated, and does not readily generalize to the higher-order
symmetry analysis we shall give in subsequent sections. We therefore introduce an
alternative, more powerful, approach to this step in our analysis, one based upon
the commutation rules for the total covariant derivative operator V5, and the partial

derivative operator dy’152 5
p B'B
172
Al ALy
Lemma 3.1. UF = F(WA1A2A3A4’ lI/AlAZ"‘AS’ lI,AlAz-HAs)’ then
B By--B BBy-B ByB
oy (VA F) = vg,(aq,B,iB% ) — P GgD,(B,aWB‘ 2 BE L (322)

. A
IfF :F(WA;A2A3A4’ 'I/AIIA2~‘-A5)’ then

Owyt ™ (VR F) = VR 0y ) — P ep gy (3.23)

Proof. These formulas follow directly from the chain rule (Proposition 2.8) and the
structure equations (2.20). O

Note that we can express (3.22) and (3.23) more succinctly as
[ (VE WS ) = VRLAFIWS ) + UPUp [0 FIS )

and
[ (VB W ) = VDLW FIW ) + Yy [05F10*) .

We can apply this lemma to the spinor V&, V5,k45, we find

3 IVE VR KAE WO 0)
= Ve ALy (VD ki)Yo ¥ )+ YD [0 (VAN W)
= P VENRWKE W ) + ¥ VB0 KAE 1, )
FYYPYp [05 k5100 (3.24)
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We now use (3.24) to compute the derivative of (3.4) with respect to ‘I’ P Az g
Taking into account (3.9), we find, after some lengthy but straightforward manipu-
lations, that

(B, ) (B, WML KN, i, ) + 04 [V k421005, ¥}
+ (o, w> (@ W[OSk B, W, B) + M"'[vg/a%pk:/z/](wi%}
gl I SIS, B .7 B) = O (3.25)

In (3.25) we set @ = f =y and use (3.21); we find that

—A' —3
Wy (VA1) =0. (3.26)
In components (3.26) is the condition

(D A1A2A3)
V(D’ A1 abAl) =0.

By differentiating this equation with respect to the spin connection coefficients, it
is straightforward to show (see Proposition 7.6) that this condition forces

AyAxAy
AA A A’ 0,

that is,
dyii s Al — ¢

A/

Therefore, (3.20) becomes
A/B/ le B/ + V X/f/ + hA/B/(WA1A2A3A4)

The spinor niE “/p 15 a second-order generalized symmetry of the Einstein equations.
We can analyze its structure by repeating the steps of this section. In particular, the
derivative of h48 ‘g With respect to the Penrose field ¥ 4pcp has the form

[ 0, BT B) = (b, ) (W, BYAGY?, T, B) .

The spinor A4 is shown to vanish as before. Thus /%2 “/p 18 seen to be independent
of the Penrose field W pcp. It is straightforward to verify that the only constant
solution to the linearized equations (3.4) is the spinor form of a constant times the
metric. Thus we have

Wb =cePeyp .

This completes the classification of generalized symmetries of the form (3.3) for
the Einstein equations. The rest of this paper is devoted to extending the analysis of
this section to the general higher-order symmetry. The computations are somewhat
more intricate, but the ingredients are much the same as exhibited in this simple
example.
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4. Natural Generalized Symmetries of the Vacuum Einstein Equations

In this section we obtain a complete classification of all natural generalized symme-
tries of the vacuum Einstein equations, that is, we find all solutions to the linearized
equations

Iy _ =B 7 =D
[—ecpe” oufsa’ B + epce”  aufpd” B

+ ence’ Cappu® B ISR, =0, (4D
where . . )
W = (P PR

is a natural spinor depending upon the Penrose fields to order k. Equation (4.1) and
all subsequent equations in this section hold by virtue of the Einstein equations and
their derivatives.

Before beginning the detailed analysis of (4.1), let us review the principal steps.
Since 417, is assumed to be of order %, the linearized equation is an identity to
order k + 2 in the Penrose fields. It is easy to see that this identity can be written
symbolically as

AR 4 G gkl skl gttt
ot L T Ly 0, (4.2)

where the coefficients o, f,...,v0 are complicated expressions of order £ involv-
. . . . —2 —k
ing hjf;, and its repeated derivatives with respect to W2, ¥, ... ¥k ¥ . Each

of the coefficients «, f8,...,v must vanish identically because the fields ¥**+2,

—k+2 — k1 . . o
Pkt B may be freely specified on &2 As is standard practice in

symmetry group analysis, we analyze this complicated identity beginning with the
highest-order conditions &« = 0 and = 0.
Let 0fh and 9h denote the partial derivatives of A%, with respect to ¥*

and ?k. The conditions &« =0 and = 0 impose certain algebraic conditions on
the spinors d% A and 6’;-,11 which, when carefully analyzed, lead to unique spinor

decompositions that we shall write symbolically as
dyh=A+B+W and 0sh=D+E+U. (4.3)

This we do in Sect. 4A; see Propositions 4.3 and 4.4. Each term 4, B,..., U in these
decompositions separately satisfies the algebraic conditions arising from « = 0 and
p = 0. In Sect. 4B we show that the vanishing of the coefficients 7,0, force 47,

to be linear in the highest-order Penrose fields ¥* and ?k, so that the spinors
A,B,...,U in the representation (4.3) are all at most of order £ — 1. The analysis
of the conditions p =0 and 7 =0 is accomplished in two steps. In Sect. 4C we
prove that 4, B, D, E must actually be of order k£ — 2, and that there is a generalized
natural vector field R -
2 W k—1 wh—
X =X,(v2, 9, v LY )
such that
w=0ay,'X and U=0;"X.
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We let

v, =hi, — (ViX5E+V5X0).

/B/ -

Then l”‘fz, satisfies (4.2) and (4.3) with W =0 and U = 0. In Sect. 4D we find that
the remaining coeflicients 4, B, D, E in (4.3) now satisfy certain covariant constancy
conditions, from which it readily follows that 4 =B =D = F = 0. The classifica-
tion of the natural generalized symmetries of the Einstein equations is then com-
pleted by a simple induction argument. Note that our analysis of natural symmetries
completely parallels that of Sect. 3.

We begin by fixing some notation. If

T

/ /
Cl- Cyq

- T ‘Z:(W{?z,...,wk,?")

is a natural spinor of type ( p,q) and order k, then the partial derivative of T CC,ICC,"
1 q

with respect to ¥/ is a natural spinor of type (p + [ + 2,9 + [ —2). We shall write
[ Te LI 2y

[('N’A] A1+z TC] Cp]wAl l//1+2 ..._;1522 . 44)

A A Ao

Further, let ¢',..., ¢? and 51,...,5 be arbitrary spinors; we shall write

[ TIW20 ¢ d, b 6,
G IS U A VSR R i

A semi-colon will always be used to separate arguments corresponding to derivatives
. . . o . Ay --A
with respect to the coordinates (2.19). Partial derivatives with respect to‘I/ Af :
142

will be similarly denoted. Examples of this notation can be found in the prev1ous
section.
We shall repeatedly need certain commutation relations between the partial

A <A . .
AZ”“ and 8¢ Al e ? and the covariant derivative operator

m=2 m+2

derivative operators 6qx Al

c
'

Proposition 4.1. Let o o
T =T (V2,92 P", ™)

be a natural spinor of order m. Then
coqemt3 Ml - Mot mt2 M2
[y VST ) = P 0p T 10" 0 ), (4.5)
and
m —m—2
VST W20y )
m42 M2 - S R m] M3
= [NSORTW" 207 D)+ ldy ' T Y ), (46)
and similarly,

(VST ") = P T W “7)
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and
—m +2

[amvCT ](wm 2 l//
= [Voap T W

m—H

) YYlOT TG ) (48)

—m+2

Proof. These formulas follow directly from Proposition 2.8 and the structure equa-
tions (2.20). Examples of these formulas can be found in Sect. 3. [J

44, The Y**2 and W' Analysis. We suppose that #*2

"y 18 @ natural generalized
symmetry of the vacuum Einstein equations of order :

z— k wr
W, = W (WL, P

In this section we derive necessary and sufficient conditions for the vanishing of
the coeflicients o and f in (4.2), and we analyze these conditions in detail.
We have, by two applications of (4.5),

: —k N
(O AVEVIHEAW ) = w8y VoW
—k—2
= l/’ClPDII/C l//D/ ak hA/B/](l//k+27lp )
Therefore, if we differentiate Eq. (4.1) with respect to W**2 it follows that
(Bo) Bp MW 2 e )

_ - k=2 - =
+ ) @RI 20 B p) = 0. (4.9)
When k& = 3, this is exactly Eq. (3.8) obtained in our model problem.

Similarly, we differentiate the linearized equations (4.1) with respect to [
and use (4.7) to find

B (BN R0 1, 7)
+ (o) (3, %[aghw"-z,w"“; B B) =0. (4.10)

Proposition 4.2. If' 1}, is a natural generalized symmetry of order k for the
vacuum Einstein equations, then

[O% MW 20

k—2

L) =0 (4.11)
and s -

[a{;‘,h](wk—27 lﬁ 5 lp, a, 6?, lp) = 0 . (412)
Proof. In Eq.(4.9) we set « = ff and & = B to deduce that

[ MW 20 o) =

The symmetry h,,/p = hp,p, then leads to (4.11). In Eq. (4.10) we set o = f and

% = f3, and then use the symmetry of hypp to arrive at (4.12). Note that (4.11)
and (4.12) are necessary and sufficient for (4.9) and (4.10) to hold respectively. [J
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Theorem 7.7 allows us to explicitly characterize all natural spinors that satisfy
(4.11) and (4.12).

Proposition 4.3. The spinor [é*{},h](t//“z,wk_z; «, B, @, ) satisfies the symmetry con-
ditions (4.11) if and only if there are natural spinors,

A=AW D, B=BUMYT w=w U aw),  (413)
such that
(20" o )
= (@) BAWF T TP + (0.0 (0. BBW P )
+ @RI L) + BB Y 0 (414)

The spinor A is symmetric in its first k and last k arguments; the spinor B is
symmetric in its first k + 4 and last k — 4 arguments; and the spinor W is sym-
metric in its first k + 1 and following k — 3 arguments. With these symmetries, the
spinors A,B, W are uniquely determined by d,h. When k = 3, (4.14) is valid with
B=0and W = W*,a,%). When k =2, (4.14) holds with B =0 and W = 0.

We note that the case £ = 3 is treated in Sect. 3.
Let us remark that (4.14) contains the algebraic form of the generalized diffeo-
morphism symmetry. Indeed, if

X = XA, e T

is the spinor form of a natural vector field of order & — 1, and we let
dji/ = Vj/X:/ ‘|‘ vng;/ 5
then, by (4.5),
—k—2 I ke k-3 =
(D)W 20 o B B) = (e (@) [0y XY BB
— —k-3  _
+ (L BB NOy X ) (405)
We observe that with # = 0% ' X the right-hand side of (4.15) coincides with the
expression involving W in (4.14). In Sect. 4C we shall prove W satisfies integrability
conditions that imply W = &% 'X.
There is an analogous decomposition for 6’,‘;—,}1.

Proposition 4.4. The spinor [6%%1](1#" _Z,JHZ; o, ., f) satisfies the symmetry con-
ditions (4.12) if and only if there are natural spinors,

D=p' v, E=E@ . U=u@ T W an),  (416)
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such that
[mw 29 o .7 )
= (.3) (0. DD W) + (o) (0. HEW Byt )
+ D) UG BB + BB UG e m) . (417)

The spinor D is symmetric in its first k and last k arguments; the spinor E
is symmetric in its first k +4 and last k — 4 arguments, and the spinor U is
symmetric in its first k + 1 and following k — 3 arguments. With these symmetries
the spinors D,E,U are unique. When k =3, (4.17) is valid with E =0 and U =

UGH 0, %). When k =2, (4.17) holds with E = 0 and U = 0.

4B. The WrH1pktl whtlph+l gpd Wktlwk+l gnalysis. In this step we prove that

if 447, is a natural generalized symmetry of order &, then 4%, must be linear in

the highest derivatives ¥* and P*. To begin, we use the commutation rules (4.5)
and (4.6) to find that

—k—1
(ak-Hak-Hv /B/)()//H_?,y)(k 1. l//k+3 l// )

= [6@“{%%(8@ DHENWT )
V(0 VW _l)}](xk“i" h
= [0 (YT (B VRN 20
+UPT VE@ RN NG
= WV 2T + VD d T @S2 0 7 272 . (4a)

We differentiate the symmetry equation (4.1) twice with respect to Y*! and
use (4.18); after some elementary simplifications we obtain

—k—2

=200, 0 W D) @)W T T e B B)
+ <!ﬁ>ﬁ>@E(@lp@’fyh)(w"”ﬂk_Z;x"“,?’”;a, L7.%)
+ (1 B) (7. Y@y DA 2,5 /‘“ VAR RVRTA-

+ () G a W LTS B T )
—k—2

+ (L) (LA e W T L B L) =

In the notation of Eq. (4.2) this is the condition y = 0. Using Proposition 4.2, we
immediately find that this equation simplifies to

(@)W T T B B) = 0. (4.19)
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This proves that hA, , is at most linear in the variables ¥*. Likewise, if we take the

second derivative of the linearized equations (4.1) with respect to P and usc
Proposition 4.2, we obtain

(@m0 T S BE ) = 0, (4.20)

which implies that A%, is linear in the variables 7 Finally, differentiation of

/B!
the symmetry condition (4.1) with respect to 7 and phtl followed by use of
Proposition 4.2, leads to

@Y R B B = 0. (421)
Together, Egs. (4.19), (4.20), and (4.21), which follow from setting the coefficients
7, 0, and ¢ in (4.2) to zero, prove the following proposition.
Proposition 4.5. Let
2 Wyl kgt
Ay =R (PP,
be a generalized symmetry of the vacuum Einstein equations. Then 'y, is at most
linear in the top-order Penrose fields W* and [

Corollary 4.6. The spinors A,B,W and D,E,U in Egs. (4.14) and (4.17) are at
most of order k — 1.

Proof. This corollary follows from Proposition 4.5 and the fact that the spinors
A,B,W and D,E, U in the decompositions (4.14) and (4.17) are unique. [J

At this point we are able to prove that there are no natural generalized sym-
metries of the Einstein equations of differential order two in the metric, aside from
the scaling symmetry (2.11).

Corollary 4.7. Let hji,(‘l’z,—'lﬂz) be a natural generalized symmetry of the vacuum
Einstein equations of order 2. Then

AB AB
hA/B’ = CEygr &,

where ¢ is a constant.

Proof. According to Proposition 4.3 and Proposition 4.4, we have that

[0 h1* s . B2 B) = (o) (0, B) AW, BB)
and D ,
[0%MW s B2 B) = (0.3 (4, B)D( ™, 2B) -
Proposition 4.5 implies that the spinors 4 and D are independent of the Penrose

fields ¥? and ?2. Because /4 is SL(2,C) invariant, 4 and D are SL(2,C) invariant,
and consequently they are constructed solely from the ¢-spinors. It is easy to check
that there are no spinors with the rank and symmetries of 4 and D built solely from
the e-spinors. Therefore 4 = D = 0. This implies that 447, is constructed only from
the ¢-spinors from which the corollary follows. [
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4C. The Wrwk+ kel ywh @™ g T gnalysis. In this section we
shall prove that the spinors 4,B8,D and £ must be of order £ — 2, and that there
exists a natural type (1,1) spinor X of order £ — 1,

X4 =X, 90, PP, (4.22)

such that s s
WY T a) = [0 X1 Y T E), (4.23)

and k +1 —k+1
U e w) = [0 XTI ea). (4.24)

We obtain these results by analyzing the equations arising from the coefficients of

phyke! ph g gkt and W in the linearized equations (4.1).

We begin with the WKW terms. Because 47, is linear in the Penrose fields
Pk ‘P , we can use the commutation rules in Proposnion 4.1 to deduce that
[akq/a/lcp-val /B/](yk+2,—k 2. l//k+3 lp )
— WCWDI//C lPD/ '«k lal'}/hA%/](l//k+l w /k+2 7/( 2)
—k—2

YTy [0 S NG T TR

__ —k—2
+ PTG T TR (4.25)

We now apply the operator 6’;,6'{,,“ to the linearized equations (4.1) to find, after

substituting from (4.25) and simplifying, that
20 ) Dy A TR B )

+ (L BY (b By B ml J VARV ARS TR RTA)

e (BB Ay ,ﬂ,w,w)

+ (6 BT )G O hl G 7 W‘“ VAR TR

LA i) VA e e VY VRN )

+ (L BT B Al 7 0 73

+ (L) (@l ARG T BB = 0. (4.26)

The symmetry condition (4.11) implies that the coefficients of (x, 8)(%, ) and
(z, o) (%, %) each vanish, and so we can rewrite Eq. (4 26) as

20 ) W) 10 G e pa )
(e (a1 Akl T T T B L B)
+ (o104 h](/*',y" SRR PN )|
B B (10 A T R ey D)
[0 A Y ) = 0. (427)
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In this equation we set & = § = to arrive at
[0k 3k (A, 743 e, w lp V.3 B) =0.
In terms of the decomposition (4.14) we have that
W B) = (L) BB,

and so this equation implies that

05 B L7 =0 (4.28)

In other words, B is independent of the spinor Y*~!. Likewise, by setting &@ = f = ¢
in Eq. (4.27), we conclude that

[0 A1 7 =0, (4.29)

and so A is independent of the spinor W*~!. Together, Egs.(4.14), (4.28), and
(4.29) show that

[ e mGA L 7 g B
= () @ YIS W 7 T T BB

—k—3

+ WL BB WG T T e d) . (4.30)
We next set « = f and @ = f in (4.27), and substitute from (4.30) to arrive at
200, ) (B DI WA 7 )
= (L) (LA MY ;x"“f“"*il//,&)
+ ) TR I LT )
W) D0 WA 7 T )
+ (W) By W7 ). (431)

The right-hand side of this equation is unchanged by the simultancous interchange
of Y with y and  with ¥ so we conclude

[ T WG 73 T ) = (05 AT A A )

(4.32)

Equation (4.32) is necessary and sufficient for Eq. (4.31) to hold, and is one of the
integrability conditions needed to establish Eq. (4.23).
In exactly the same fashion we can apply the operator 6’;-, 6’;-,“ to the linearized

equations (4.1) to show that

ak_—lD](lpk—3 E"“.-k ) = (4.33)
[6/( IE lpk -3 l// —k+4 k 4)__0 (434)
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Moreover, we have that
[allcp 1 (wk 3 ‘// —k+1 "k_3,<x,&)
_ I S
= [0V Y ) (4.35)

Before applying the operator 8"' 6"“ to the linearized equations, we first use
the commutation rules of Proposmon 4.1 and the fact that h" , 18 linear in Pk and

'P to deduce that

['\k ak«Hv /B/](X/( 2,—/\+2 [//k+3 l,b )
= —k—3

= lpclp llllC”’pD/[ak ak 1hA/B/]( k— Z’Xk+2; l//k+1,l// )

+ ¥y Dl//c’)’n/ 0/‘ la" hA/ /](/‘ 3 k+1 W‘” Jk—Z)

k—2

+ /CwD/C/lpD,[ak Iak ’B/](/k 3 —k+l;¢/k+2’w )

Using this result, if we differentiate (4.1) with respect to 7 and ¥**! and take
into account the leading order symmetry conditions of Proposition (4.2), we have

207 () 185 O mGA A R T )
() (B ([ AW T A By )
105 A T T Bz B
B BB S T A R R )
105 kAL R Sz = 0. (436)
With o = f =, and then with @ = f =, Eq. (4.36) implies
8 B A T =0 (437)

and

[0 AN 7y = 0. (438)

We set o = f and @ = f§ in (4.36) to find

—k—2
30, 0L, 0, )

W) BI85 dymA =, 7y

— (o) (Ga [ M T AT a0,

_ 3 —k—2 _
H [0 ARG T S )} (4.39)
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Again, in exactly the same manner, the 6’.},(’){},“ derivative of the linearized
equation (4.1) yields

[a"—‘D](w"+‘,J"‘3;7",xk> ~0, (4.40)
ak lE |//k+1 l// —k+4 k 4)__0 (441)
as well as
W) (57 1857 s mr 73w 20 00,5, )

= (o) G A AT w7
[ ARG T ) (442)
Equations (4.28), (4.29), (4.33), (4.34), (437), (4.38), (4.40), and (4.41) prove

the following proposition.

Proposition 4.8. Let iy, be a natural generalized symmetry of order k. Then the
spinors A, B, D, E appearing in the decompositions (4.14) and (4.17) are at most
of order k — 2.

On taking Proposition (4.8) into account, the substitution of (4.14) and (4.17)
into (4.39) and (4.42) gives rise to

2<s//,x><$,z>[6"-‘lW](xk—%z“‘;w"+‘,$"‘3,a,&>
= (L) F A U T 7 A )

+ (L) @ U1 A )

k=3

+ W) e WG 7 T )
+ W) @I W S a) (4.43)

along with
200, ) S UG 7350 )
= (L) S WIS A )
+ ) @A W )
+ () ()0 U](x“',y"‘%w"“,wk*%a,m
+ W) @D UG W . (dad)

In this last equation, we simultancously interchange ¥ with y and ¥ with 7; a
comparison with (4.43) allows us to deduce that

_ —k— _ _ —k—=3 _ _ _
[0 WG 7Y L) = [ U TR A )
(4.45)
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Equations (4.32), (4.35), and (4.45) are the integrability conditions for (4.23) and
(4.24).

Proposition 4.9. Let hjf;/ be a generalized symmetry of order k. Then there is a
natural vector field of order k — 1,

X0 = XAP2 P,k

such that the spinors W and U in (4.14) and (4.17) are the gradients

[ A 0 ) = g ), (4.46)

and
[ X100 ) = 0@ ) (447)

Proof. We have already seen that the linearized equations (4.1) imply the in-
tegrability conditions for Egs.(4.46) and (4.47) are satisfied. It is easy to check
that

/
By 3 BBy 3B 4 2 TP k=2 K2 ogk—1 gt !
A/ = fdt‘l’gl By Bk+1W3; B (Y=, 9,..., P59 TP )

“Bp 3B By _34 2 W =2 w2 k-1 k!
+fdt‘1’31 B U . BZ“A,(‘P,‘P,...,Y/ AN S T |

defines a real, natural vector field that satisfies Egs. (4.46) and (4.47). O
4D. Reduction in Order of h'},. Let us set

B B
/B/4VXB’+V A”

where X7 is defined in Proposition 4.9. By Proposition 2.5, we know that dA,B, is

a solutlon to the linearized equations (4.1) and so defines a generalized symmetry
of the vacuum Einstein equations. Therefore

AB AB
IA/B/ — h /B/ d /Bl

is also a generalized symmetry. Since
(42T . B)
= WLy @G T BB + W BB w )
and
(510 20" 0, 8,3 B)
= A ) UG BB+ BB NUW W 05),
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we have, from our basic decomposition (4.14) and (4.17),

(%000 2,0 0, .5, B)
— (W), A, B BB) + (5,3 (5 BYBO 2B ) (4.48)
and

(500020 0, 8,5, B)
= (5@ (5 BYDG W 2aB) + (L) (0, BEGE aBpt ). (4.49)

As in Sect. 3, we now show that the linearized equations (4.1) force
A=B=D=E=0, (4.50)

and hence
Wy =VuXy + Vo Xi+ e, (4.51)

where /12, is now of order k — 1.
A'B

To prove (4.50) we differentiate Eq. (4.1) one final time with respect to Y*+!
and use the leading order symmetry condition satisfied by /47,,, namely

[ N2 ) =

to arrive at
B B DA T, 3) + [Div N LT m)
+ ) @I N0 B0 B) + Div 0040 BB
+[Grad &y 1. ;¥4 20" e mB) =0, (4.52)
where Grad is defined in (7.15 ) and
Div AN 20 s a) = @ [VE 18 0020 (4.53)
In (4.52) we now set o = f = y; by virtue of Eq. (4.48) we then find
[Grad By, ;W0 ) =0. (4.54)
Similarly, if we set @ = ff = ¢ in (4.52) and use (4.49) we find that

[Grad Ay "0 ) = 0. (455)

Proposition 7.6 implies that 4 = 0 and B = 0.
We have thus found that

[N 29 0 0B =0,
Likewise, by differentiating the linearized equations (4.1) with respect to P! we
can show that D =0 and £ = 0 so that

[0 N 20" 0 g7, B) = 0.

These last two equations prove (4.50).
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Theorem 4.10. Let , .

o = n (PR, PR
be a natural generalized symmetry of the vacuum Einstein equations of order k.
Then there exists a natural vector

X4 = XHPLT ekt

4 =
of order k — 1 and a constant c, such that
ji/ =cC SABSA/BI + Vj/le'/ + vng;/ on épk .

Proof. 1f k =2 this theorem reduces to Corollary 4.7. Let £ > 2. We have shown
that

jz;/ - Vj/X:/ + V[B;/X;/ + I;I?B/,
where /47,, is a natural spinor of order £ — 1. A straightforward induction argument
now shows that /47, can be reduced to a function of the Penrose fields V2, V2 at
the expense of changing the vector field X?). We apply Corollary 4.7 to the natural

generalized symmetry /47, to show that
iy =c %oy,

and our classification of the natural generalized symmetries of the vacuum Einstein
equations is complete. [

5. First-Order Generalized Symmetries

In this section we begin our classification of a/l generalized symmetries of the
vacuum Einstein equations by determining all first-order generalized symmetries.
As mentioned in the introduction, the calculation of the higher-order generalized
symmetries reduces to that of the first-order generalized symmetries. While the
analysis of the higher-order symmetries is similar in spirit to that of the natural
symmetries, as presented in the previous section, the analysis of the first-order
symmetries is rather more complex and merits a separate presentation.
To begin, let '
hap = hap(x', Gup> 9o k)

be the components of a first-order generalized symmetry. We emphasize that the
functions 4, are no longer assumed to be the components of a natural tensor and

hence may depend explicitly upon the coordinates x’ and the first derivatives of the
metric g;;,x. The linearized equations

1

[—g“ 8165 — g o800 + g“ (876 + 650V Vghay = 0 (5.1)

involve the metric and its first 3 derivatives, and must be satisfied when the Einstein

equations
Ry =0 and V. Ry =0 (5.2)

are satisfied. In accordance with the results of Sect. 2, we write A, as a new function

hab = hab(xl’ Gij» I-j‘lk)
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and express the linearized equations in terms of the jet coordinates
{x1$ glja [}lk’ I}ihks 17/1/([’ Qlj,k[a Qij,/f/m} (53)

for J3(%), which were introduced in Sect. 2 (see (2.12) and (2.13)). The Einstein
equations (5.2) hold if and only if the variables Q,, sy and Q,; um are completely
trace-free. Consequently, the linearized equations (5.1) for the first-order generalized
symmetry must hold identically for all values of

{xla gzj, F;ks jhk’ jhk[) [Ql/ kl]tlacefree> [Ql} klm]tracefree} .

In order to determine the dependence of the linearized equations on these adapted
jet coordinates we will need the following structure equations for the coordinates
(5.3):

Digi = gl + gklf,, ; (5.4)
Dkr —Fljk+2lej+rnll /k+rmj z;(nv (55)
Dlrf',-k = F:h/kl + %Q;I,i/‘k 107 (tjrk)m + %r(sz N Im — 3F(1k Jyml > (5.6)
and
Vszj,kl = Qij,klm + %(Qm(i,/')k/ + Qk/,l/m)~ (57)

We will use the following notation. The derivatives of 4,, with respect to the

metric ¢,, and connection variables I’} will be denoted by

a ha
Ohap and  0°hy = Ohab

ahab:-ag—rs 6F’ .

Note that these quantities are symmetric in the indices »s and ab. If

0 0
X:X"a—%, Y:Y“ﬁ, and o = o.dx”,
we let
[0,h1(00; XX ) = 00,00 X “X (0 Py )
and

[Orh) (oo, Y XX ) = 0,0, Y XX (0 hay) -

We denote by o the vector field obtained from the 1-form o by “raising the index”
with the metric,

0
O(I': _ grsay

g EXT s
and we denote by X’ the 1-form obtained from the vector X by “lowering the
index” with the metric,
X" = g;X'dx! .
The natural pairing of X and o is

X, 0) = X'o; .
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Proposition 5.1. Let h,, = hab(x’,g,j,lﬁ) be a first-order generalized symmetry
for the vacuum Einstein equations. Then there are zeroth-order quantities

My = My(x' g,))

such that ‘
0 hay = S, M), (5.8)

Proof. Since
Vahay = Dahay — Lyghiy — Lyghai

= (07 hap) s + { %},

where {*} denotes terms involving the variables x', g;;, I}, Q7). we conclude
using Egs. (5.6) and (5.7) that

vcvdhab = (6;‘.Shab)l_‘/{5cd + {**} >

where {%%} denotes terms involving the variables x',g,;, Fj’h, Lo Ql{hk, Q,{hk,.
Hence, by differentiating the linearized equations (5.1) with respect to I}, and
contracting the result with X' X/ Yo, 050.04, We arrive at

(o, o) [Orh] (o, ¥ XX)
= (X, o) {— (X, a)[Ortr h](owt, ¥) + 2 [Orh](am, Y07 X )} . (5.9)
Here we have defined the trace of /4, in the usual way:
trh = ghy, .

When o is a null 1-form, the expression in brackets on the right-hand side of (5.9)
must vanish. By Proposition 7.4, this implies that there are quantities M}, such that

—(X,o)[rtr B)(oer, Y) + 2 [0rh) (oo, Y3 0F X)) = (o, a) M (X, Y, o),

where
M(X, Y, o) = M3, XY o .

Thus (5.9) reduces to
[Orh](oo, Y; XX) = (X,0)M(X, Y, ). (5.10)

We have shown that Eq. (5.10) is necessary for (5.9) to hold. It is also sufficient.
This is easily verified if we observe that (5.10) implies

[Orh) (oo, Yo X ) = L((of, ) M(X, Y, 00) + (X, )M (o, Y, 1))

and
[Ortr h)(oo, Y = M (a7, Y, o).

It remains to be shown that Mj, is independent of the connection variables I',.
To this end we first differentiate Eq. (5.10) with respect to I“j’k to obtain

[OrOrh) (BB, Z; a0, Y XX ) = (X, o)[0rM1(Bf, Z; X, Y, 2) . (5.11)
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The left-hand side of this equation is symmetric under interchange of (f,Z) with
(o, Y), and therefore

(X o) [0rMI(BB, Z, X, Y, ) = (X, B)[OrM(ae, Y X, Z, B) .
Using Proposition 7.5 we conclude that [07M] takes the form
[OrM1(BB.Z; X. Y, 0) = (X, B)W (o, B, Y, Z) , (5.12)
where W has the symmetry property
Wa,p,Y,Z)=W(p,a02,7).

Equation (5.11) becomes

[Ororhl(BB, Z; 0o, Y XX ) = (X, a) (X, )W (o, B, Y. Z) . (5.13)

Next we observe that the structure equations (5.4)—(5.7) imply
VeVahay = (0307 hap)Diq D + { %},

where {*} denotes terms that are at most linear in the coordinates Iy Using this
equation, we now differentiate the linearized equations with respect to I, and I},
to find that

(B, )[0rorh)(BB, Z; act, Y3 XX ) + (X, B) (X, a) [0 drtr (P, Z; 0, )
= (X, B)Orarh)(BB. Z; 02, Y Xo*) + (X, a)[Or Orh)(BP, Z; o, Y XBF) .
Into this equation we substitute from Eq. (5.13) to deduce that
(%, o) (X, o) (X, B) — 3 (X, B2, o) — 3 (X, e)* (B, )]
x W(a,B,Y,Z)=0.

Because the expression in square brackets is not identically zero, this equation
implies that W = 0 and therefore ;M = 0, as claimed. O

Next we turn to an analysis of the terms involving Oy in the linearized
equations (5.1). In the following proposition we let

Msr — cft grt and M = gab Mgt rt ,
and we let g+ = =1 denote the usual totally antisymmetric tensor density.

Proposition 5.2. If hy, = hap(X', 9,5, T}, ) is a first-order generalized symmetry of
the vacuum Einstein equations, then there are quantities

Ve=V%x',g;) and W= W' g;)

such that
MET = SEVT 4 g g e W (5.14)

Proof. Because

Vahao = 30 ha) 0l s + (07 hap )T + {* 1,
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where {*} denotes terms involving the variables X Gis Fj?k, we can show
VeVahay = 305 hat)Ql e + 30 han) Ok s + {H K},

. . . . . i k k k
where {*%} now indicates terms involving the variables x', gi;, I}}, I3, Tis Qijki-

Therefore, for the linearized equations to hold we must have that
[—g075] — g™ 5:0] + g*070] + g™ 3767 1[3 (0 hap) Qi + 505 han) Ok ya] =0

(5.15)
for all Q"  and QP , that are completely trace-free. We multiply (5.15) by X'X/

o, rsle
and substitute for 0}*As from Proposition 5.1 and for Q" and Q. from (2.13)
to obtain
[_MbShXCXd _|_ MCShXbXd]

I
X | 15 (Rphesla + Ranesls + Rsheal

+ Riped|s + Ronevla + Ranesip) + 3 (Ronasie + Ropale)| = 0.

By using the algebraic curvature symmetries and the Bianchi identities, every term
in this equation may be expressed as ecither a multiple of M®"X X9R s or

M"Y X9R 4. The coefficient of the former term vanishes, while that of the
latter term is one. Thus (5.15) holds if and only if

M X XU Rgpera)vacetree = 0 - (5.16)
To analyze this condition it is convenient to revert to spinors. We set
MBB’AA’HH’ — M O,gB’ O_,;A’ O_f—lH/ ,
and use (2.17) and (2.20) to write
[Ronbe|diacetree < esténc Vst ctprp + &5ttt ¥ suscon’ »
so that the condition (5.16) is equivalent to
X X0 S [esnesc Ysta crprp + sty ! ¥ suseppr] = 0 (5.17)

for all Penrose fields ¥ and ¥3. We differentiate this expression with respect to
Y sy and multiply the resulting equation by WY YWc¥ni,y to conclude

&4y’ lﬁA'ﬁHl//BMBB/AA/HH/ =0. (5.18)
Similarly, differentiation of (5.17) with respect to ¥,y o1y leads to

e W Uy MO =0 (5.19)
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To solve Egs. (5.18) and (5.19) we decompose M as

BB 44" HH' BB’ 44" HH' / 74 BB A H' =BBAH /1!
M :P HH +SBB{,‘AH8A 4 +TBAH8AH—|—T 8411 (520)

5

where the spinors P,T,T are each symmetric in the indices 4H and 4'H’. Note
that the spinors T" and 7' correspond to the skew symmetric part of M in (5.14).
Equations (5.18) and (5.19) now imply that

BB AH

ll/A ‘//H lpB =0

and L o
Uy T =0,
These equations can be analyzed using Proposition 7.2; we find that there must
. . ’
exist quantities Z** such that

YTy !t ! 1 pl /7
T8 A H ' gl B g , (5.21)
and
BB AH

70 = P 7 (5.22)

We insert (5.21) and (5.22) into (5.20). We then write the resulting equation in
tensor form to complete the proof. [

We now turn to an analysis of the conditions arising from the Iy, I"), terms

in the linearized equation. This analysis will enable us to prove that every first-
order generalized symmetry is, modulo a generalized diffeomorphism symmetry, an
evolutionary zeroth-order symmetry.

Proposition 5.3. Let hyy = hap(x', gij, I ) be a first-order generalized symme-
try of the vacuum Elnstem equations. Then there are zeroth-order quantities

Vi = Vix',9;) and hab = hab(x gi;) such that

hab = hab + VaVb + VbVa .
Proof. Let

hab = hab - (vaVb + vaa) s

where V, = gu V" is defined by Proposition 5.2. Then Zab is a first-order generalized
symmetry and therefore, by Proposition 5.1, there exist zeroth-order quantities ]\7[[‘; =
Mj,(x’,gij) such that

O hay = O M), (5.23)

Moreover, by construction, M will satisfy Proposition 5.2 with ¥/ = 0, and hence
M = MED + g g e W' . (5.24)

This decomposition will allow us to prove, from the coefficient of I'(, I, in the

linearized equations, that ]\Aﬁ’ = 0, that is,

= ab(x glj)

The derivation of the condition arising from the coefficient of I}, I’} in the

linearized equations is the longest single calculation in this paper. To begm we first



Classification of Local Generalized Symmetries for Vacuum Einstein Equations 519
compute
0502 O (Vo V) = ocsoc[oc,,[Dc(é‘f.’hab)é(‘Q 81O ghay — 361185 (8 hap)

T8 hap) — TL33(0%R) — TS0 hia)]
(5.25)

The second term on the right-hand side of this equation is found to be
20,005V hay = 0504 [ Da(03 hap) + 29,05(0 hay) + 21 (8 ) + 204 T (8 ay)
— T (0 h) — TL(05 ) — 8485 s — 8453 hya] - (5.26)
Together, Egs. (5.25) and (5.26) imply that
XY ettt B p g [ 027079 (V oV g B )]
= 4B () [0gOrhap)(BY s 001, X ) + 20004 [0, Orhap) (X s BB Y )
— cte BB Y "[0r ) (00 X ) — 0 BB V" [0 Pna )00, X ) — ottt X ™[O s J( BB, Y )
— oyt g X" [0 )(BB. Y ) — Baecta Y " [Or b )0, X)) = Boecta V[0 g (220, X )
+ 20004 (X, B)[Orhap) (@B, ¥ ) — et (Y, 0 [0rhas (BB X )

— BeBa (Y, 0)[Orhap)(, X ) .

We substititute this equation into the linearized equations (5.1) multiplied by Z'Z/
and use (5.23) to obtain, after considerable algebraic simplifications,

2(Z, ) {[0,M(BY"; B, X, ) — O,M (aX”; .Y, )}
+2(Za)(Z, By {[0M1(aX s o, Y, B) — QM (BY ;07 X, )}
+2(Za) (o BY{[0gM V(X "3 Z, Y, ) — OgM(BY”; Z,X, )}

+ 2o ) (Z, P){[0,M1(BY"; Z. X, o) — 0,M (aX"; Z, Y, )}

B

)
—(Z, o) (BE BYM (Y, X, ) — (Z, B)* (o, ocW(YX %)
F{Z o) (@ Y)M(B X, B) — (Z.o)> (X, pYM (. Y,
+ (o, o) (Y, 0)(Z, B) — (Z,a) (Y, ) (o, BIM(Z, X, )

+ [(Zoa) (X, BY (o, B) — (o, a) (X, B)(Z, PYIM(Z, Y, )
—(Z, o) (Y, 0)(Z, pYM (o X, ) + (Z,o) (X, B)(Z, BYM (o7, Y, 1)
+ 2(Z,a)(Z, B)(oF, PYM(Y, X,0) = 0. (5.27)

As a check of the accuracy of this equation, we used Maple to verify that the
diffeomorphism symmetry, for which

M(X,Z,Ex) = Z[GHV](Z"OC;X) - (X, )V (Z),
and V; = V,(x', gx), provides a solution to (5.27).
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In order to simplify Eq. (5.27) using (5.24) we set

Ny = LMz + Mg™),

a

N(Z B,o) = N¥ZBr, and  det(X,Y,Z,U) = tapeaX°Y"Z°U“,
and observe that

[0gMV(By; 2, X, ) = [0,N1(By; 2, X", ) + det(Z, X, o, [0, W1(By)) + L(X. {YN(Z.7.0)
+ X NZBo) = 5o, Bded(Zy* X, W) — (B, y)denZ o X W)
We substitute this equation into (5.27) and use the fact that
N(Zo,B) = N(Z p,%) (5.28)
to deduce, again after lengthy algebraic simplifications, that

(Z,a)?K(B, Y, B*, 0, X) + (Z,a)(Z, B)K (o, X, ", B, Y )

+[(Za) (o, B) — (Z. B)(&F, ) ]K (0, X, Z, B, Y) = 0, (5.29)
where

KX, Z,,Y) = [0,NNoX " Z,Y", B) — [,N1(BY*; Z, X", )
+det(Z, 7, Y, [0,W](aX"))
—det(Z,o X,[0,WBY")) + HZ BNV, 0. X") = HZ N (X, B,77)
+ HZ Bydet(Y,of , X, W)+ (o, B)det(Z, Y, X, W)+ 1(Z, a)det(*, X, Y, W). (5.30)

Equation (5.29) implies that K(o, X, Z, f, Y) = 0 whenever (Z, o) = 0. Therefore, by
Proposition 7.5, there exist quantities L such that

K(o, X, Z,B,Y) = (Z, o) L(X, B, Y ).
Substituting this expression back into (5.29) and simplifying the result, we find
(B B)L(Y, 0, X) + (o B)L(X, B, Y) = 0.

In this equation we set o = f§ to conclude that L = 0 and hence K = 0.
In the equation

K(,X,Z,B,Y) — K(X",0%,Z,8,Y) =0 (5.31)

we put ¥ = % and Z = o* to deduce that N = 0. We then substitute this result in
(5.31) with Z =af to get W =0. O

We are now ready to complete our classification of first-order generalized sym-
metries.

Theorem 5.4. Let hyy = hap(x', gy, Fif) be a first-order generalized symmetry of the
vacuum Einstein equations. Then there is a constant ¢ and zeroth-order quantities
Vi =Vi(x',gi;) such that

hab = CYap + Va Ve + Vb Va .



Classification of Local Generalized Symmetries for Vacuum Einstein Equations 521

Proof. Proposition 5.3 reduces the proof to showing that the zeroth-order symmetry
Zab is in fact a constant times the metric. This follows from the classification of
the point symmetries of the Einstein equations [24]. We include the proof here for
completeness.

Let us begin with the conditions placed on Zab by the vanishing of the terms in
the linearized equations involving I'f ,. From the structure equations (5.4)—(5.6) it
is a straightforward matter to show that

~ Ot
VeVahay = Za_igmp[ ned T 3and] hpa [Fg)dc § (fdb]

— hp [T+ 200, + (%}, (532)

where {*} denotes terms depending only on the variables x’, g;;, I k. We multiply

the linearized equations by XX/ and differentiate them with respect to I'f.;. The
result, after multiplying by opo.04Z% and simplifying, is given by

(o) [0gh)( 270 XX ) = (o, X){2[0,h)(Z0 e 0° X ) — (o, X)[04tr B)(Z°)} . (5.33)
Proposition 7.5 now implies that there exist zeroth-order quantities 4 such that
[0,h)( 770 XX ) = (o, X)A(Z", X)) .
The symmetry of (8{,2) in Z’a implies that
(0, X)A(Z°, X)) = (2", X)A(0, X ) ,

and therefore, by Proposition 7.5, there exists a zeroth-order function I = F(x', g;;)
such that
A(a, X) = (o, X)F .

We have therefore found that
[0,h](00; XX ) = (o, X )2 F . (5.34)

It is easily verified that this equation is necessary and sufficient for (5.33) to hold.
Next, we differentiate (5.34) with respect to g;; to obtain

[0,0,h1(BP: 005 XX ) = (0. X)*[0,F)(B) -
The left-hand side of this equation is symmetric under interchange of o and f§, and
we therefore have
(o0 X) [0, F(BB) = (B.X)*[0,F N (ot)
From Proposition 7.5 it is easily seen that this equation implies
[04F(axt) = 0. (5.35)

Equations (5.34),(5.35) imply that iz\ab is of the form

hay = F)gas + kap(') (5.36)

Now we turn to the conditions on Zab arising from the terms in the linearized
equations depending on Qg 4. It is straightforward to show, using (5.32), that this
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condition takes the form

, o, hpe 3

Oyt | 2X X CgH =8 — xixhghe 20 2 xix it =0
04,1 6g,1 2

when Q;; 4 is completely trace-free. If we substitute from (5.36) the first and second
terms vanish leaving us with

Xinka gak bI[QU k[]tracetree =0.

Because k£, is independent of the metric, this equation implies that k., = 0.
We have reduced 4, to the form

hay = F(x')gap -
We now substitute this equation for /g into the linearized equations to find
_gljvavaF - 2v,’VjF =0.

We differentiate this equation with respect to I ;‘, and obtain

l9,9" + 25, jl] =

o oF .
which implies that o 0, and thus F' is a constant. [J
X

6. Complete Classification of Generalized Symmetries of the Vacuum
Einstein Equations.

We now turn to the computation of all generalized symmetries of the Einstein
equations. Let

BB, = Wi (x,0, T, T2 W2 W2, T PF W5 (6.1)
be the components of a generalized symmetry of the Einstein equations. Initially,

we have [/ =k, so the generalized symmetry is of order k. The repeated covariant
derivative of /47, can be given schematically by

VVh=DDh+y-Dh+(Dy)-h+7v-y-h,

. . . . _pl ol
where y - Dh is a sum of products of spin connections yﬁj, and yf A? and total
derivatives DC h4%.,, and so on. The linearized equation,

) _1=pl ' =n!
[—eene’? o, Bott B + epce” < oy oo BP

+ epee” < ap 7 B IVSVL Py =0 on &2,
(6.2)
is an SL(2, C) invariant identity depending on the variables x', 6,7, G4 p» Tuus? pes
r', r2 w2 w2 . 2 pke2 wkt2 On the Einstein equation manifold &*+2

there are relationships between o, ,. and I'?, ¥2, P2, but in what follows we
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are careful only to consider terms involving ¥/ and ¥’ for / > 3. The rather
complicated lower-derivative analysis was performed in Sect. 5.

In order to analyze the dependence of this equation on our adapted jet coordi-
nates, we need the following structure equations on &**!:

i i i k+1 gk+1 1 k
D/k—HF]O/I “Jk F/ojl Tkt +A1011 Jk+1(6 ¥ '{/ )+ /011 /k+l(r ’F )
i 1 k wk
+ CJO]] ij(O‘,F ? ¥ ’ ¥ )
+E! (o,T",...,TF 1 w2 w2 phk=lpk=ly  (63)

JoJ1 Tk 1

Here 4 is linear in ¥* and WX, B is bilinear in its arguments, C' is linear in
Y% and P with coefficients depending on ¢ and I'!.
We also have (see (2.20))

B J’.A,J/_ A/‘]’,.AJ’»~ A/J/<
Dj BlrlJll'“fllc‘+22 = tijl '1"Jki22 +M“Ul JA+2 G7 'Pk)
Y ,M('Pz LSRN AN ) (6:4)

where M is linear in ¥*. There is an analogous formula for the total derivative
of Pk,

Let . — —
S, o, TV, r2 w2 w2 T Pk k)
be a smooth function. We retain the notation

[0 F1" 20" and 2SI

introduced in Sect. 4 for the derivatives of f with respect to ¥” and ¥", and we
define
of

1
61}0“ - Jm

In many of our subsequent formulas the spinor components

i
Y wjowjl e wjm .

P, 0" ) =

A

Wyr =

;= O' (,L)]
of the covector w will appear. In addition, we will use w as a bilinear map
— —
(o, f) = oo, p’

Finally, we write

(o, 0,5) = WPy o, @

From the structure equations (6.3)—(6.4) we readily derive the following com-
mutation rules. For / = 2 we have

[0F' DY F1(Y, 0%y = o [0 f1(Y, 0™ ") (6.5)

and
(0D Y, 0" ) = o [07 FI(Y, 0") + (D407 f (Y, 0" )
+ I o 1Y 0, (6.6)
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while for / < k& we find that
(5D, LI ) = o [0% F10WF 205 2) (6.7)
and
(0% D% FIW 2052 = i [0 AW A3 + (D4 184 120 2)

I G [0 T
(6.8)

The terms in (6.6) and (6.8) involving [I'' -] and [y! - ] denote a sum of terms
each linear and homogeneous in the spin-connections.

The analysis of (6.2) now proceeds along lines very similar to those presented
in Sect. 4. As in that section, the linearized equations are viewed as identities in
our adapted jet coordinates. Starting at the highest derivative order, the linearized
equations are differentiated with respect to the various coordinates on %42, Ac-
cordingly, we shall not provide all the details of the many calculations involved
in the lengthy analysis, but rather simply list the various steps and the conclusions
obtained in each.

6A. The I'*? Analysis, I = k — 1, k = 2. When we differentiate (6.2) with respect
to I''*2, we find that

(@, ) [0FR(Y, 0" 5%, B, B) + (B, BIOTAIY, 05 o, 0,7)
+ (o, DAY, 0 o, B)y=0.  (69)
In this equation, set w}, = Y* o to conclude that
[O-h1(Y, 0™ o 00,3) = 0
whenever w is a null vector. By Proposition 7.4 this implies there is a real spinor
P =P(Y,0',0,7)

such that
[07h)(Y, "o, 0,8) = — 1w, 0)P(Y, 00, 0, 7).

This fact allows us to use (6.9) to show that the highest I" derivative of 4 has the
algebraic form

[0FR)(Y, 0" 0,7, B, B) = S (e D)P(Y, 0, B, B) + Lo (B, B)P(Y, 0,0, @) . (6.10)

Note that the commutativity of the partial derivatives 0}.0% implies, using Eq. (6.10)
with § =« and § = @, that

(0, DOFPAZ 0™ Y, 0 0,3) = n(e, D[0FPIY, 0 Z ' 0, 7). (6.11)
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6B. The I'"'I'™! Analysis, | 2 k —1, k 2 2. The repeated derivative of (6.2)
with respect to I'"*! becomes, with f =« and f =13,

(0, m[OFLR)(Y, 0™ Zy"™ Y 0, 0,3, )
+ 1o, D)[OF0LRIY, ' Zn™ s o 0, %)
+ (o, D[OFOLAIY, 0 Zn" @) = 0. (6.12)

We now substitute into (6.12) from (6.10), multiply by #(a, %), and use (6.11) to
deduce that

[, 0)n* (%) + (1, ) (2,7) — 2{w, n) (e, )2, 7)]
X [0rPIZn"™ Y, 0 0 3) = 0.

Because the first spinor in brackets is not identically zero, we find that

[0-PYZ 0" Y0 0 7) =0, (6.13)
and thus A4% ‘7 1S at most linear in the variables I L
6C. The WY*+*2I'! and W***I'" Analysis, | = k — 1, k = 2. The commutation rules
(6.5)—(6.8) do not allow us to 1mmed1ately differentiate with respect to Y42 and
Wk+2 to arrive at the Eqgs. (4.11) and (4.12), which were the basic starting equa-

tions for the analy51s of natural generalized symmetries. Nevertheless, if we use the
linearity of h4% ‘g in the variables I'Y, !, we can differentiate (6.2) with respect to ¥*+2

and I'! to ﬁnd that
[0-0%h1(Y, 0 s 2 2y 0 m ) = 0, (6.14)

and —
(0o (Y. oy 2 g 0w ) = (6.15)

6D. The Ikl THIWKEY gnalysis, | = k — 1, k = 2. Here we find, in a very
straightforward manner, that

(%R (W 2 2 Y, 0 e, Ba ) = 0, (6.16)

and
[ LA, 042 Y 0! o, B3, B) = 0. (6.17)

In deriving these equations we used (6.14) and (6.15).

6E. The I'*'I'" Analysis, | = k—1, k =3 and 1 =2, k =2. We differentiate
(6.2) with respect to I/ and I'’*!. In the resulting equation we set f=o, f =1
and substitute from (6.10) to obtain

(o, 0o, [0 PY(Y, 0 Zn' 0, 3) — [0 ' PY(Z,1'; YV, 0, 0, 5) }
+ 20(0, D) { (w0, [ PUZ s Y, 00, 0, 7) + [0-0 T Zon"t Y, 0l o, 0, 7)
F (e Rz Y, 0 oy, 3) ) = 0.
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We multiply this equation by #(«,®) and subtract from it the product of w(a, @)
with the result of interchanging (Z,7) with (¥, w) to deduce that

[Pz V0l 0 3) = [0 PI(Y,0'; Z,n', 0, 7) . (6.18)

6F. A Partial Reduction in Order. Equations (6.13),(6.16),(6.17), and (6.18) show
that there is a vector field

DD G1CNS Y R A )

4 =

such that
[0 ' X1(Y, 0" 0,8) = LP(Y, 005 0,7) .

Hence the generalized symmetry
Wy = Wiy — (VXD + VXD

is independent of the variables I'’, and accordingly we may now assume that the
original generalized symmetry (6.1) is of the type

Wi = hiby(x, o, T T2 W2 W2, TF Lk gy (6.19)

A'B’

This partial reduction in the order of 44, is important because it enables us to
repeat, almost without modification, the arguments of Sect. 4.

6G. Repetition of Steps A through E and the Natural Symmetry Analysis,

l=k—1, k =z 3. We now repeat steps A through E assuming hj?B, to be of the

form (6.19), that is, with the I" derivative-dependence reduced by one order. We
can also repeat steps A and B of Sect. 4 to conclude that now

(0% MW 20 2 0, B3, )
= <¢’a><w7ﬁ>A(¢k’$kS2aﬁ) + <w5 &> (J,B>B(¢k+2aﬁ, -‘Zk_4)
+ (L ) @YW W AT BB+ (W BB W R 07

(6.20)
(0GR 2 25 0, B,%, )
= (. 3) (4, BYDQY W2 aB) + (W) (Y, BYEW 3,y )
+ <J’&> <a7 l/’) U($k+1? wk——:}’ ﬂ’ B) + <J’ B) <B’ lp) U(Jk-,-l’ ¢k735 a’ a) bl
(6.21)
and
[OF ' hI(Y, s 0, 0,3) = — 3 {w, 0)P(Y,0f !, 0, 7) . (6.22)

The coefficients A, B, W, D, E, U, and P are functions of the wvariables
x, 0,..., T2, wk=1 Wwk=1_Note that steps A and B of Sect. 4 are valid even
when £ = 2.

Next we repeat step C of Sect.4 to find that 4, B, D, E are independent
of the variables W*~! and P*~!. We also arrive at the integrability conditions
(4.32),(4.35) and (4.45). Note that Sect. 4C is valid even when k£ = 2.
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6H. The I'*=1'phk+1 pk=l@hk+l rkwk gnd "Wk Analysis, k > 3. The derivative
of the linearized equation with respect to I'*~! and ¥Y**' gives, after taking into
account (4.11),

20 P2 R(Y, o YR 0, 8,7, B)
+ () (@) [0 2RV, o R P B, B)
+ (B (B[00 MY, A o 0,7)
+ (oY) @ ) [0 ORI T Y, o By, B)
+ () (B)lay O T T Y eh ey m) = 0. (623)

In this equation we set o = # =  and then @ = f =  to deduce, in light of (6.20),
that

[52B)(Y, o i Py =0 and [0 241V 0" YR PR =0, (6.24)

Now we set f = o and ff = @ in (6.23); after substituting from (6.20) and (6.22)
we find that

Lol pa  PYH 3 v oty )
+ Lo, D3PI T o )
— (WY T 07
— BRI oy w - o)
= 200 WY,y P 0 (6.25)
In this equation we have defined
-0y =ofy! and (- o=l .

Next we differeﬂtiate the linearized equation with respect to I k and ¥*, then set
o = and & = f, and substitute from (6.20) and (6.22) to find

{0, P)(0,7) — 3w, 0) (f, %) (4, 5) } a“P](W,w"‘%Y,wk-l,a,a)
+ {0, ), ) B2, 05y T 0 7)
~ (o, oc){ (e P PIE T T Y ok g, )

k=3

+ Lo, B P T T ek )
— [, T 0,

— AW o g T w)} =0. (6.26)
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The last four terms in this equation are precisely the four terms on the left-hand
side of (6.25). Therefore, Eqs. (6.25) and (6.26) lead to the integrability condition

A PIE T Y 0f Y m) = [ et T am) L (627)

1

Similarly, an analysis of the I*~'%* ' and I'* 7" conditions proves that

[2D1(Y 0P ) =0 and [B2ENY. T =0, (628)

and

k+1

_ _3 Tk+1 _ _ _ 1.7 - _
U PIW T Y of T a ) = (0201 ef Y R e w) L (6.29)

61 Reduction in Order, k = 3. The integrability conditions (4.32),(4.35), (4.45),
(6.18), (6.27), and (6.29) show that there is a real vector field

X4 = X4(x0,..., 12 w1 G

such that s -
Wl T m) = [0 X1 Y ),
— k41 _ _ _ 2 —k+1 _
U@ e m) = 105 w3 aw),
IP(Y, 0o, ) = [0} XY, 0" 0, 7).

Just as in Sect. 4, we set

1r = hig, — (VUXE + VX, (6.30)
Then ,
P8 = 18 (0, T T2 W2 W0, T2k Y
and

(40 20" 0 .3 )
= (), AT T EB) + (5B (B BB g T (6.31)

(5004 20" 0 8,5 B)
= (5@ (W, BYD 0 20y + (W) (U, EW BBt ) L (6.32)

Finally, we analyze the terms in the linearized equations involving ¥**! and

—k+1 . . .
¥ . To this end, it is convenient to set

RWA2 5 7 0 8,3 F)
= (Y, ) (0, BIAGWH, B + (.3 (. BB 208,



Classification of Local Generalized Symmetries for Vacuum Einstein Equations 529

and
S0 0,3, B)
— (5,3 (0 PP Wk 20p) + (b, ) (0, BYE 5By
Then Egs. (6.30)—(6.32) imply that
I=R-Wys. ¥ 17,

where

~ 1

I=1(x,0,..., 2wkl g1y
The repeated covariant derivative of / thus takes the form
VAVl =(VVER) - P L [(VAR) - V&Y +(VER) . V4,9
+R - (VAVE WY £ VA VE T4 [},
where {*} denotes similar terms derived from § - [ By (6.24) and (6.28), R

—k— . .
and S depend upon x,o,..., %73 w2 p 2, and hence the derivatives V4,V5,R

and V4, V% S are independent of the variables ¥**! and P Moreover, we have
that
R-VAVEW =R . "2 4 {xx},

where {*%} denotes terms of order k in the Penrose fields. Hence R - V4, V5, ¥

. =kl . . . .
does not contain P**! and ¥ . Consequently, if we differentiate the linearized
equations for /2, with respect to W**! and set « = § and & = f§, we obtain

AB
(Grad R)(W, §s ¥ 2, 5" 00,3, 3) + 2000 ) 3 ) [(DI RYY2, 5 0,3)
+ (@ DU g = 0, (6.33)

where the covariant derivative operators Grad and Div are given by (7.15) and

(4.53). With o = and & =, we deduce from this equation the covariant con-
stancy conditions

(Grad A)(y, s ¥, 9" = 0, (6.34)
and .
(Grad BYW, B " 0" Y = 0. (6.35)

Just as in Proposition 7.6, Eq. (6.34) implies that 4 is independent of all the I', VP,
and ¥ variables, that is,
A=A(x,0).

But now, the covariant derivative of A takes the general form

04 o4
VC/AM _ DC A C}.. A — ag ,, C.. A~
crA. cr Aty AT =0o¢ Oxd + 30455 Opp'sa | + Ycil A7

Since
_ Fe C —Cl
ObBB sa = 1 paOep’ + YBaObCB' + Vo ObBC! »
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we find that ;
A“.
Ved: =T, <—a - oeBBfo“€/> +{x},
90:7:4

where {*} indicates terms involving x, g, and the spin connections 7 and 7. It is
now a simple matter to differentiate (6.34) with respect to Iy, keeping in mind that

Fj’k is independent of the spin connections, to arrive at

04
004pp/

At this point we can continue, as in the proof of Proposition 7.6, to deduce that
A = 0. Similarly, B, D, and E satisfy covariant constancy conditions that imply they
too vanish.

We have now shown that a generalized symmetry of order £ = 3 is equiva-
lent, up to a generalized diffeomorphism symmetry, to a generalized symmetry of
order k — 1 depending on x, o, I, i=1,....,k—2 and ¥/, ¥, j=2,.. .k — 1.
A straightforward induction argument then implies that any generalized symmetry
of order £k = 3 is, up to a generalized diffeomorphism symmetry, given by a gen-
eralized symmetry of order 2 depending on x, o, I'', ¥2, and oIt the order of
the original symmetry is k = 2, then by repeating steps Sects. 6A through 6F the
symmetry is again equivalent, modulo a diffeomorphism symmetry, to a symmetry

of order 2 depending on x, o, I'', ¥2, and 7

6J. Reduction to First-Order Generalized Symmetries. The induction argument of
Sect. 61 shows that, modulo the generalized diffeomorphism symmetry, any gener-
alized symmetry of order £ = 2 is equivalent to a symmetry 4 with the functional
dependence

h=h(x,o,T", P2 7).

Sects. 6A through 6D, with / = 1 and k = 2, show that 4 takes the schematic form

h=P(x,0) - I+ ho(x,0, P2, 7).

Sects. 4A, 4B, and 4C show that
h=Px,0) ' +A(x,0) ¥ +Dx0)- P +l(x0).

The derivative of the linearized equations with respect to ¥* gives an equation
similar to (6.33), which we write symbolically as

GradR + DivR + O(x,0) = 0.

We can then repeat the arguments at the end of Sect. 61 to conclude that 4 = 0.

- . . . =3 L .
A similar analysis of the terms involving ¥ in the linearized equations leads to
D = 0. Thus we reduce our analysis to first-order generalized symmetries, which
were classified in Sect. 5 (see Theorem 5.4). We have now proven our main result.

Theorem 6.1. Let A
hap = hab(xl, G175 Gijhys -+ > Gij, by '--hk)
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be the components of a k™-order generalized symmetry of the vacuum Einstein
equations Ri; = 0 in four spacetime dimensions. Then there is a constant ¢ and a
generalized vector field

X4 = Xa(x17 gij’ glj,h] IR gij,hl sehyp )
such that, modulo the Einstein equations,

hap = CYab + vaXb + vaa .
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7. Appendix: Results from Tensor and Spinor Analysis

Here we gather together a number of key results which we shall use repeatedly in
our study of the generalized symmetries of the Einstein equations. Following the
standard algebraic treatment of tensors, we consider spinors as multi-linear maps
on complex 2-dimensional vector spaces. For notational convenience, we separate
groups of symmetric spinor (or tensor) arguments with a comma and we use no
delimiters between arguments within a symmetric set. As an example, if «, f,7,0
are rank 1 spinors, then T(a f3,7,0) denotes a rank 4 spinor that is symmetric in «
and f3,
T(ap,y,0) =T(Bap.0),

but otherwise has no symmetries. Repeated symmetric arguments of a spinor (or
tensor) will be abbreviated using an exponential notation. For example, if 7 is a
spinor of rank (k + 1) that is totally symmetric in its first £ arguments, we will
write

T 3)=TO,...,0,7).
k times

It is important to note that the values of T(¥q¥ - - - Yy, @), where Y, W, ..., Yy are
arbitrary spinors, are completely determined by the values of T(J/*,%).
Our conventions for raising and lowering spinor indices are

Bs = eapp’ and o = e'Buy.
The skew-symmetric inner product between oz and f§4 is given by

() = 04’ = eoufiy = = (B,a1) .

We denote by (X, Y) the metric inner product between two vectors X and Y.
The following propositions are all elementary facts which we shall use repeatedly
[19].

Proposition 7.1. Let P = P(Y*,a) be a rank (k + 1) spinor that is symmetric in
its first k arguments. Then there are unique, totally symmetric spinors P* and Q,
of rank k + 1 and k — 1 respectively, such that

POt ) = Pr(yFo) + (Y, o) 00 ). (7.1)
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If P is a natural spinor of the Penrose fields W2, W2, ..., Wk, Wk then so are P*
and Q.

Proof. If we define P* by

Py = P(yh g,
and Q by

k
(B.2)0(" ™) = = IPW Boo) — PO o BT,
then we find that

POYF,2) — () = P(YF, ) — ﬁmwk,a) - z%P(l//’f-‘a, ¥)
k _
= [P(Y*, ) — POYF o)
= (Y, )0 ).

The uniqueness of P* and Q is established by showing that P vanishes if and only
if P* and Q each vanish. To show this, we set P =0 in (7.1):

P*(JFo) + () O 1) = 0. (72)

If we set o =y in (7.2), we conclude that P* = 0; substituting this result into (7.2)
then shows that 9 =0. O

Proposition 7.2. Let P = P(Y*,a) be a rank (k + 1) spinor that is symmetric in
its first k arguments. If P(Y*, o) satisfies

PO 9) =0, (73)
then there is a totally symmetric spinor Q = Q(W*=") such that
Pyt ) = (Y, )0 ) . (74)

If P is a natural spinor, then so is Q.

Proof. We put « = in (7.1), and use (7.3) to conclude that P* =0. O
We note for future use that (7.4) is equivalent to

k . . .
POt ) = ,%ZW,@Q(W' SR AR P (7.5)

i=1

Proposition 7.3. Let P = P(Y*,a) be a rank (k + 1) spinor that is symmetric in
its first k arguments. If POY*,a) satisfies

(W, o) POYE, B) = (Y, BYP(YF, ), (7.6)

then there is a unique totally symmetric spinor Q of rank k — 1 such that

P ) = (Y, )0 ). (1.7)
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The spinor Q is natural if P is natural. If, in place of (7.6), P(Y*,a) satisfies

(W) POV, B) = — (. B)P(Y*, 1) (7.8)
then P = 0.

Proof. Both of these results are proved by setting o = in (7.6) and (7.8) and
using Proposition 7.2. [

Proposition 7.4. Let T be a symmetric rank-k tensor, and suppose that
7(xX*)=0

whenever X is a null vector. Then there exists a unique symmetric tensor P of
rank k — 2 such that, for any vector X,

T(X*) = (X, X)P(X*2). (7.9)

Proof. The tensor T may be decomposed into a sum of products of metric tensors
and trace-free tensors. Thus we can write T as

T(X*) = To(X*) + (X, X)P(X*2) (7.10)

where T is trace-free and symmetric. The tensor P need not be trace-free. The
spinor representation of Ty is

Al A
(TO)U]"'[lk — (TO)AIH.Ak s

/ /

Al o . o .
where (7)., is completely symmetric in its primed and unprimed indices. With

— 4
X =iy
we now find that
Al oA — —
T(X*) = To(X*) = (To)y) oY -+ Yy -y = 0.
Because this must hold for all y and , we have that Ty = 0 and (7.10) reduces
to (7.9). O

Proposition 7.5. Let T(Y?,X) be a tensor that vanishes whenever (Y,X) = 0. Then
there is a unique tensor U(YP™'Y) such that

T(YP,X) = (Y, X)U(Y"" ). (7.11)

Proof. Since

~

X=X - (V,X)Y
is always orthogonal to Y we have that
T(Y?,(Y,Y)X — (Y, X)Y) =0,

and so
(,Y)T(YP,X)=(Y,X)T(Y",Y). (7.12)
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But then T(Y?,Y) =0 when (¥,Y) = 0 and so by Proposition 7.4,

T(YP,Y) = (Y,Y)U(YP" ).
We substitute this result into (7.12) and (7.11) follows. O

Proposition 7.6. Let
PAI B’ _PAI A;((PZ 1112 ’q/k,wk)

be a natural spinor that is completely symmetric in the indices A;---A, and
B B;. If
;g,PA' A ) =0 on &+, (7.13)
where &**' is the prolonged Einstein equation manifold, then P vanishes.
Proof. Equation (7.13) is equivalent to

[Grad P)(o, 0 0", 2" ) = 0, (7.14)

where we have introduced the notation

[Grad P)(B, B; o, @) = ﬁAﬁA/[Vj, Pl(o,3) . (7.15)

We differentiate (7.14) with respect to ¥**! and use the commutation relation
(4.5) to deduce that

[ PY 2y e —S> =0, (7.16)

Similarly, if we differentiate with respect to ¥ we find that
[05P1( " e w) =0, (7.17)

Equations (7.16) and (7.17) show P to be independent of ¥* and 2 A sim-
ple induction argument proves that P is independent of all the Penrose fields
P AR S 2

The expansion of (7.13) in terms of the spinor connection coefficients yg’,"B and

’
75, now leads to

(CAy  p|DlAy---4r) —(C\DI 1Az Ar)
/(C’[D’PB’B’ B (C’B’ PfD’[B’ B) =0.

This is an identity that must hold for all spinor connection coefficients and therefore,
taking into account the identity

cA c4
Y¢éipéas + Vcigépa =0,
we conclude that

(o B)P(ya =) + () P(Be @) = 0
Setting f§ = y we conclude that

P(o", 7)) =
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Alternatively, one may conclude that P = 0 from the fact that there are no com-
pletely symmetric natural spinors of order zero. O

We close this section with a characterization of spinors with certain symmetries
which arise in our symmetry analysis of the Einstein equations.

k-2 —
Theorem 7.7. Let P(Y**2,y ", o, B, %, B) be a spinor that is symmetric in its first

k +2 and next k — 2 arguments. The spinor P(z//k+2,Jk_2,a,ﬁ,&,ﬁ) enjoys the
two symmetry properties

PO T 0 B3 B) = PO B B (7.18)
and

PO 0 Bl = 0 (7.19)

if and only if there are spinors,

A=AaW5 05, B=BWAH YT o w=w Y T wm), (720
such that

PR 08,5, B)
= (o) (W, BAWH T EB) + (.3 (0, B BOY2ap g
() @O T BB+ L BB ). (721)

The spinor A is symmetric in its first k and last k arguments; the spinor B is
symmetric in its first k + 4 and last k — 4 arguments; and the spinor W is sym-
metric in its first k + 1 and following k — 3 arguments. With these symmetries,
the spinors A,B,W are uniquely determined by P. When k =3, (7.21) is valid
with B=0 and W = W*,a,%). When k =2, (7.21) holds with B =0 and
W =0.

Proof. We begin by applying Proposition 7.1 to the arguments (*—2, ) of P(y**2,

0 4,5, F) to find that

—k—2 — —k—2— _ — = —k=3 _
PO o B B) = HOW 2y TR B3+ (BT B,

(7.22)

where H is symmetric in the arguments (Jkizﬁ). Applying Proposition 7.1 to the

arguments (Y**2, %) of H, we obtain
HW 20 ) = AU 200" ) + W, swt 0 ), (7.23)

where H is symmetric in the arguments (¥*+2a). Because

PR T gy = HOA2L 0y pa) = H 30 g,
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the condition (7.19) implies that the spinor H is identically zero. The combination
of (7.22) and (7.23) now yields

P20 7w g )

—k—2— —_— — k-3 —
= (b, ) SW YT BB E) + (L ATW YT L B) . (7.24)
This form of P satisfies (7.19), but (7.18) does not hold. The key to establishing

the decomposition (7.21) is to satisfy both (7.19) and (7.18) simultaneously. The
condition (7.18) leads to

WS T TR B ) + B B TR T 0 B3
= WL RS T T E ) + T T B B) . (7.25)
In this equation we set @ = f§ = i to find that

W, SQWE LT T B = (WL RS T ),

and hence, by Proposition 7.3, there is a spinor 4 such that

ST LB = (L B AGE . (7.26)

Note that 4 is totally symmetric.
If we now define a spinor S; by

Sl(wk+1>$k—la ﬁ3&) = S(lpkﬁ_lawkklsﬂaa) - <l//> ﬁ>A(l//k’—l[k_la) 5 (727)
then Eq. (7.26) implies that

S T B =0,

We can use Proposition 7.2 to conclude that

ST D) = ST ),
and therefore, by (7.5),

P k—2 _ s
Sl(lﬁk+l’ll/k zﬁHB:&): kfi(‘ﬁﬂ)&('ﬁk“dpk 3ﬁ’ﬁ)
b BASWTE . (28)

We replace one of the arguments ¥ in (7.27) by f and substitute from (7.28) to
deduce that

ST B = P AT ) + G0

+ k—i—]</‘3, ST ). (7.29)
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We next derive an equation for the spinor 7' appearing in (7.24) that is similar
to Eq. (7.29) for S. In (7.24) we set « = § =y and use Proposition 7.3 to show
that there is a totally symmetric spinor B such that

T2 7y p.m) = (haswt g Y. (7.30)
Let

N0 7w gy = T a3y — BB Y Y, (731)
so that, by (7.30), T} satisfies
L0 e =0, (732)

.. —k— _ .
We apply Proposition 7.1 to Tj(y/*+2, 3,0(, p,a) with respect to the arguments
(Y**2, B) to arrive at

N2 0w gy = T 280w + (L BB T ), (733)

where 7T} is symmetric in its first group of arguments (Y**2f8). On account of
(7.32), Ty satisfies _ -
Tl(wk+3>l// ,‘ﬂ»&)zo

and therefore, by Proposition 7.2,

7:l(l//k—*‘}’ -lp—k_37 O(,—OZ) = <lp’ O(> T3('ﬁk+2, Ek—:ﬁ’_)

In this equation we replace one of the arguments y by f to arrive at

Tl(l//kJrzﬁ,Jk_S,oc,&) = /li_i_iw’a)n(lﬁk“ﬁ@k_},‘)
+ ,ﬁ(ﬁ, a>T3(¢k+2,$kW3,&). (7.34)

Finally, the combination of (7.31),(7.33), and (7.34) leads to

TR0 m) = (BB g T + W AT T T 0 E)
k42

S ULl XA

+7 +3</f T2y 7). (7.35)

The symmetry (7.18) of the spinor P and our initial decomposition (7.24) now
imply that

PO 7 0 )
= P 5 7 0 B3 B) + PO T B B

k-2

=, s T TR B + (0 BSGL T R B

+ BTG T B E) + G TR T B B
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Into this equation we substitute from (7.29) and (7.35). After combining like terms,
and using the spinor identity

WL P2 ) — (b BYPWH %) = (o BPOYA 2 ).
we arrive at
U AN XA )
= W)W HAWS T T + (.3 (0 B)BO ap g
+ W) @R + W BB T )
+ (@ A E RS W) BT )
WD T g B (7.36)

In (7.36) we have defined

W(lﬁk+l,$k_3,a,0() _ 2(]; S (wkﬁ—l w _ lT (le-l (//

2

S ) = -

and

Sz(!//“'w )+ UL

2(k 2(k +3)

ki2 k=3 o k+2

The terms involving 4,B, W in (7.36) give the required form (7.21) for P, and
satisfy both the requirement (7.18) and the condition (7.19). The terms involving
S3 and Ty satisfy (7.18) but now are subject to (7.19). If we set & = ¢ and f =
in (7.36), then (7.19) implies that

W, B @ WS T + (B T 2 T ) =0,

T3(1//k+2, Jk_:;’ _)

and so ‘s ‘s
ST = WY ).

Therefore, the terms involving the spinors S; and 74 in (7.36) become

@B EBSGH2G) + W) (BT BT )
—k—3

+ (4, B D Ta(W* ey L B)
= WGBTS BB+ W AT i)

This equality follows from the cyclic permutation of ¥, 5, in the second and third
terms on the left-hand side. We can thus absorb the S; and 7, terms in (7.36) into
a redefinition of W, and this proves the decomposition (7.21).

To prove the uniqueness of the decomposition (7.21) it suffices to show that if

(W) (W, BYAWS " aB) + (0,3 (0, BYBW o,y )

=3 =

(@RI T BB + WL BBk ey =0,
(7.37)
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then 4,B, W each vanish. To verify this, we put % = f§ = in (7.37) to arrive at
K Tk
AW ) =0.

Because of the symmetry of A4, this implies 4 = 0. Similarly, we can set « = § =
in (7.37) to deduce that B = 0. Equation (7.37) reduces to

W) WA BB+ WL B B T am) =0, (7.38)

We set o = ff and @ = f§ to obtain

wot Y T g =0, O
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