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Abstract: We construct a fully supersymmetric biHamiltonian theory in four super-
fields, admitting zero curvature and Lax formulation. This theory is an extension
of the classical AKNS, which can be recovered as a reduction. Other supersym-
metric theories are obtained as reductions of the susy AKNS, namely a non-
linear Schrodinger, a modified KdV and the Manin—Radul KdV. The susy nonlinear
Schrodinger hierarchy is related to the one of Roelofs and Kersten; we determine
its biHamiltonian and Lax formulation. Finally, we show that the susy KdV’s
mentioned before are related through a susy Miura map.

1. Introduction and Preliminaries

In the last decade there has been increasing interest in superextensions of the soliton
evolution equations. The earlier results concerned the construction of field theories
with fermionic and bosonic fields depending on time and one space variable x
[Kup]. Next, the susy (=supersymmetric) soliton equations were investigated. In
the so-called N =1 susy extensions [MR], in which we are mainly interested, the
field variables depend, apart from time, on the superspace variables x,0, with x
even and 6 odd; the field equations are formulated in terms of the superderivative
D = 00/0x + 0/00, with the property D?> = 0/0x. Also, the N = 2 susy extensions
were introduced, with one even and two odd superspace variables x, 0;, 0, [Mat]; in
this case, two superderivatives D; = 0;0/0x + 0/00; are employed.

The best known methods for constructing soliton equations can be appropriately
generalized to the susy framework. The Lax formalism in terms of fractional powers
was extended by introducing an algebra of pseudodifferential operators in D (or D,
and D,); in this way, some susy KdV equations were constructed [MR, Mat, LM],
and the corresponding biHamiltonian structures were obtained via R-matrix theory
[OP, FMR].

Moreover, the connections between the susy soliton equations and the theory of
Lie superalgebras were analyzed in [IK1-4, MP1], in order to obtain a superanalogue
of the classical Drinfeld—Sokolov theory [DS].
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Recently, the method of prolongation structures [EW] was extended to field
theories with fermionic variables [RH]; as a byproduct, a super nonlinear Schrodinger
(NLS) hierarchy was obtained by Roelofs and Kersten [RK], involving a bosonic
field ¢ = g(x) and a fermionic field @ = w(x). The vector fields and the conservation
laws of this hierarchy were written in terms of ¢, and their x-derivatives; more-
over, it was found that the super NLS equation admits an N = 1 susy formulation
in terms of the superfield ¥ (x,0) := w(x) + 0q(x) and its superderivatives. (This
super NLS equation is different from the one proposed previously in [Kul, CN], for
which a susy formulation in the above sense was not given).

In our previous works [MP1-4], we discussed the susy KdV equations from a
biHamiltonian and Lie superalgebraic viewpoint. Following this approach, in this
paper we propose an N = 1 susy extension of the AKNS theory, involving two
even superfields b = b(x,0), a =a(x,0) and two odd superfields ¥ =y (x,0),
@ = @(x,0). This theory consists of a hierarchy of commuting vector fields, pos-
sessing infinitely many conservation laws; we explicitly construct the biHamiltonian
formulation, giving a pair of compatible Poisson structures for which all the vec-
tor fields of the hierarchy are Hamiltonian. Moreover, we give the zero curvature
representation and the Lax formulation. The classical AKNS hierarchy in two field
variables g = g(x), ¥ = r(x) can be recovered through the reduction

b=a=0, v (x,0) = 0g(x), o(x,0) = 0r(x) . (1.1)

Both the biHamiltonian structure and the spectral problem of the susy AKNS can
be reduced to the classical ones via Eq. (1.1).
On the other side, if we put the constraints

b=a=0, o(x,0) =y (x,0), (1.2)

we get a susy extension of the ordinary NLS theory; by inspection of the first
vector fields and conservation laws, it is found that they can be converted into the
homologous objects of the Roelofs—Kersten super NLS hierarchy. The advantages
of our approach are:

i) the intrinsically supersymmetric formulation of the hierarchy, which is con-
structed directly in terms of the superfield ¥ (x, #) and its superderivatives;
ii) the fact that we give a biHamiltonian and a Lax formalism.

We also consider two alternative reductions of the susy AKNS, which are defined

by the constraints

a=b, o=y and b= -1, Yy =0, (1.3)
respectively. The first reduction gives rise to a modified susy KdV theory; the
second one generates the susy KdV of Manin and Radul [MR]. By comparing the
associated Lax formulations, we obtain a susy Miura map relating the two theories.
(As is known, the classical AKNS theory contains the NLS, modified KdV and KdV
theories as reductions; so, the susy extension considered in this paper possesses the
counterparts of these classical features).

We now illustrate the plan of the paper and the theoretical setting from which
the results came about.

In Sect. 2, we present the main results about the susy AKNS, giving the first
vector fields and conservation laws, the biHamiltonian structure (Table la) and
the zero curvature/Lax formulation (Table 1b). The reductions mentioned above are
discussed in Sect.3 and the main results are summarized in Tables 2-4.
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Subsequently, we illustrate the method we have employed to generate the susy
AKNS; in Sect.4, we consider in particular the biHamiltonian structure and in
Sect. 5 we derive the zero curvature/Lax formalism. Most of the computations in
the paper have been carried out using the MATHEMATICA symbolic manipulation
system; in order to save space, only the essential part of the computational results
has been reported in the tables.

As for the theoretical setting, we refer to the methods discussed in gen-
eral in the previous papers [MP1-2]; different applications of these techniques
were also presented in [MP3—4]. As anticipated above, our approach is essen-
tially Lie superalgebraic and biHamiltonian; it is based on a geometrical viewpoint
which was widely developed for the classical soliton equations (see, in particular,
[FF, MMR, DS, CMP, CP]).

The main geometrical objects in our setting are the loop superalgebras, i.e.
Lie superalgebras of maps V = V(x,0), taking values in some finite-dimensional
Lie superalgebra. The odd part 4, of a loop superalgebra % is a biHamiltonian
manifold, i.e., it carries two compatible Poisson tensors Q and P; at any point V
we have

Ov(oV)=1[4,0V],  Py(6V)=D(6V)+[V,0V] (1.4)

for each covector 6V (identified with an element in the even part %, of the loop
superalgebra). In the above equation, 4 denotes a fixed element of ¥;, whose
choice is in principle arbitrary. The susy AKNS theory discussed in this paper
is derived working with the loop superalgebra ¥ = gl(2,2){x,0}; the elements
of 4 are 4 x 4 matrices, the entries being scalar superfields. 4 is the (constant)

0o 0 0 0

. 0 0 0
matrix

-1 0 0 0

0 1 0 0

The biHamiltonian structure (1.4) can be reduced using a technique proposed
recently in [CMP,CP], where the Marsden—Ratiu reduction theorem for general
Poisson manifolds [MaR] was specialized to the biHamiltonian case. In these papers,
it was shown that the Poisson tensors of a general biHamiltonian manifold can be
reduced to a conveniently defined quotient manifold, and this result was applied
to loop algebras in connection with the classical KdV-type equations. The method
also works in a susy framework [MP1]; in our previous papers, it was applied to
the loop superalgebra ¢ = gl(2,2){x, 0}, giving rise on the quotient space to the
biHamiltonian structure of the Manin—Radul susy KdV.

Here, we are working with the same loop algebra, but the matrix 4 defining
the first Poisson tensor in Eq. (1.4) is different from the one considered in previ-
ous works. The choice of 4 related to the Manin—Radul theory was made on the
grounds of a natural susy extension of the Drinfeld—Sokolov “lowest root criterion”
[DS], also considered in [IK2]; here, we explore a different possibility, which is
suggested by the analogy with the classical AKNS case. With this new choice, the
quotient manifold of the reduction turns out to be a space of quadruples (b, qa, {, @),
where the two first components are even superfields b = b(x, 0), a = a(x,0), and
the other two are odd superfields ¥ = Y (x,0), ¢ = ¢(x,0). Using the reduced
biHamiltonian structure, we generate with a standard procedure a hierarchy of
vector fields and Hamiltonian functions: this is the susy AKNS.

The next steps in our construction are the zero curvature and the Lax formal-
ism of the hierarchy, which are natural outcomes of the biHamiltonian reduction
[MP2]. The zero curvature representation can be seen as a Lax formulation with
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parameter, the Lax operator being a 4 x 4 matrix first order differential operator
in the superderivative D. From here, it is possible to derive a reduced, parameter
independent Lax formalism, where the Lax operator is a 2 x 2 matrix differen-

tial operator acting on a space of pairs (Z‘ ), each component being a superfield
2

¥, = ¥;(x,0). The eigenvalue equation for this operator is

—0, ¥, — YyD¥ — b = A
{ (15)

0V + oDV + a'ty = AP,

which appears to be a natural susy extension of the classical AKNS spectral problem.

The biHamiltonian and Lax formalism of the susy AKNS can be carried over to
the reductions mentioned before, i.e., the susy NLS, modified KdV and Manin—Radul
KdV. In the case of the two KdV’s, it is also possible to derive in a geometrical
fashion the scalar Lax formulation in terms of fractional powers.

This is, summing up, the content of the paper. Before going into the details
of the susy AKNS, we add some (very short and informal) preliminaries about
the basic supermathematics employed in the paper; this is useful for uniformity of
language. Also, we recall the definition of the Lie superalgebra g/(2,2) and the
associated loop algebra.

1.1. Linear superalgebra. We extensively refer to the framework of the previous
work [MP1]. The “numbers” or “scalars” we employ are the elements of a super
(= Z,-graded) algebra. More precisely, we have a real associative superalgebra with
unit L = Ly & L;, whose elements commute in the graded sense (i.e., elements in
the even part Ly commute with every element of L, and elements in the odd part L,
mutually anticommute). The complexification of L is the complex superalgebra A =
Ao ® Ay, where, for k = 0,1, Ay :={u+iv|u,v € Ly }; we define complex conju-
gation setting u + iv := u — iv for each u,v € L. The whole L (or its even part Lg)
plays a role similar to the real numbers, while A (or Ay) plays the role of com-
plex numbers. Throughout the paper, we employ the language of linear algebra
consistently with these choices for the basic sets of scalars. In particular, the
term “space” generally means a module over Ay or a Z;-graded module over A;
a “linear map” between two spaces means a Ay or A-linear map. In dealing with
Z,-graded structures, we always denote with deg(U) the degree, i.e., the parity of an
object U; deg(U) € Z,.

1.2. Superanalysis. Setting up superanalysis requires that the superalgebra L be topo-
logical (in an appropriate sense). We are mainly interested in calculus for functions
of one even variable x and one odd variable 0: x ranges over Ly (or the torus
Lo/Z) and 6 over L,. The set of pairs (x,0) is called the (1|1)-dimensional su-
perspace. A superfield is a differentiable function of x and 0, with values in the
complex superalgebra A; we say that a superfield is even (resp. odd) if it takes
values in Ap (resp. A;). Apart from superfields, that are scalar valued functions,
we also consider vector or matrix valued functions of x and 6. We employ the odd
superderivative D := 00/0x + 0/00, satisfying the identity D> = 8/dx, and we denote
by [dxd6 the integration over superspace. All functions are assumed to satisfy
appropriate boundary conditions in the x variable, so that one can integrate by parts
without introducing boundary terms.
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The action of D is denoted with a prime, and the action of 0/0x with a sub-
script x; so, for example, the third superderivative of a superfield f = f(x,0) is
f"" = fi. For the sake of clarity, we recall a standard notational convention for
superdifferential operators: if f is a superfield, and & an integer, the operator D* f
is the composition of D¥ with the multiplication operator by f; this should not
be confused with the k% superderivative of f, which is a superfield. The context
allows to distinguish the operator from the superfield; in Tables 1-4, notations like
Df, D7'f, (or 0.f, 07! f, etc.) always stand for operators. A general A,-linear
operator 4 mapping superfields into superfields is said to be even (resp. odd) if it
preserves (resp. changes) the parity of superfields; so, 0, is even, D is odd, and the
multiplication operator by a superfield f has the same parity as f. The adjoint of
A is the unique operator, denoted with 4*, such that

[dxd0 f(Ag) = (—1)%E) &) [ Gxd (4* f)g (1.6)

for each pair of superfields f and g. For the product of operators, it is found
that (4B)* = (—1)%eDdeeB)p* 4* implying that (471)* = (—1)%D(4*)~ 1 if 4 is
invertible. Moreover, D* = —D, 0f = —0y; if f is a superfield of any parity, for
the corresponding multiplication operator we have f* = f.

1.3. Supermanifolds and tensors. The introductory remarks about supermanifolds
and tensor fields given in [MP1] are also useful for our present purposes. If .# is
a supermanifold, and m € .#, we denote by T,,.# the (even) tangent space, and by
T # the (even) cotangent space (both of them are Ay-modules). Tangent vectors
and covectors will often be indicated, respectively, by m and om, and the pairing by
(om,m). A vector, or covector field is a section of the (even) tangent, or cotangent
bundle.

The phase spaces of the susy AKNS theory and the other systems considered
in this paper are infinite-dimensional supermanifolds of maps, where each point is
a function on (1|1)-dimensional superspace. Several types of tensors are considered
on these manifolds. As is usual, the term (2,0) tensor means a map m — P,, where,
for each m € .#, P, is a linear operator from 7, .# into T,.#. A (1,1) tensor
is a map m — N,, where N, is a linear operator of T,.# into itself. A (0,2)
tensor is a map m +— £,,, where £, is a linear operator from T,,.# to T,,.#. In
the sequel, we will extensively work with Poisson tensors, recursion operators and
(pre)symplectic tensors on .#. As usually, a Poisson tensor means a skew-symmetric
(2,0) tensor P such that the bracket { f, [} := (d f,PdI) (f,! even functions on .#)
satisfies the Jacobi identity. A recursion operator is a (1,1) tensor N with vanishing
Nijenhuis torsion and a (pre)symplectic tensor is a skew-symmetric (0,2) tensor Q
with vanishing exterior derivative [FF, MMR, LiM].

1.4. Lie superalgebra gl(2,2) and associated loop superalgebra. The Lie super-
algebra gl(2,2, A) (denoted for brevity with g/(2,2)) consists of 4 x 4 matrices with
entries in the set of scalars A. Any such matrix can be written in block form as

U= ()Z( ;,), where each block is a 2 X 2 matrix. The even part of g/(2,2), denoted

by gl(2,2),, consists of matrices with even entries in the blocks X, W and odd entries
in Y, Z; similarly, the odd part g/(2,2); consists of matrices with the parities of the
blocks interchanged. g/(2,2) can be regarded as a Z,-graded A-module, and it is a
Lie superalgebra with the supercommutator [U, V] := UV — (—1)dee)deeMpyy,
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The loop superalgebra 4 = g/(2,2){x,6} consists of g/(2,2) valued functions
of the superspace variables x and 6. An element of ¥ can be represented as
a 4 x 4 matrix where each entry is a superfield depending on x and 0. ¢ is
a Lie superalgebra; the even and odd parts %), %;, as well as the supercom-
mutator [ , ], are defined pointwisely in terms of the omologous structures of
91(2,2). If U = U(x,0) is an element of ¥, written in terms of 2 x 2 blocks, we

define DU := (P D' ). For further details about the topic of this subsection,
see [Lei, Cor].

2. The susy AKNS: Main Results

2.1. The susy AKNS from the biHamiltonian viewpoint. Let us consider a (flat)
supermanifold .#, whose points are quadruples m = (b,a, ¥, @), where b = b(x, 0)
and a = a(x, 0) are even superfields, Y = ¥ (x,0) and ¢ = ¢(x,6) are odd super-
ﬁelds A tangent vector and a covector at any point m are written, respectively, as

= (b a,\,¢) and dm = (b, da, Oy, d¢), where b,ad 51# d¢ are even superfields
and lﬁ @,0b,0a are odd; we have the pairing (5m m) = [ dxd0 (6b b+ da d+
Sy Y +59 ¢) .

The manifold .# carries a pair of Poisson tensors Q, P, which are compatible
in the sense of [Mal]; so, the triple (.#,Q,P) is a biHamiltonian supermanifold.
The explicit expressions for O and P are given in Table la, which also contains
the expression of the symplectic tensor Q := QL.

We remark that Q and P are skew symmetric in the ordinary sense, i.e.,
(6m, Qpom'y = —(om’, 0,,0m) and similarly for P. If we introduce the matrix
elements Oy, as in Table 1a (with i and k ranging through the symbols b,a,{, ),
from the skew-symmetry of Q we infer

Qki — _(_ 1 )deg(i) deg(k)+deg(i)+deg(k)(Qik )* , (2' 1.1 )

where the r.h.s. contains the adjoint of Qj defined according to Subsect. 1.2; the
same holds for the matrix elements of P.
Similarly, the skew-symmetry property (1, Qm’) = —(ri', Q,,m) implies

Q= (—1)keDdeerrl(g, )« (2.1.2)

We now describe the susy AKNS hierarchy. Let us consider the vector field
Ko(m) = m,, i.e., the generator of translations in the even variable x. It turns
out that Ky is Hamiltonian with respect to both Poisson tensors Q and P; indeed,
if we define the Hamiltonian functions ho(m):=— [dxd0 (b +ay + Y ¢'),
hy(m):= % J dxd0 (b, + ¥’ ¢, — ayy), we find that Ko=Pdho = Qdh, (d denoting
the differential). The general theory of biHamiltonian manifolds implies that there
exists a hierarchy of vector fields K; and Hamiltonian functions #; satisfying the
recursion relations

K; = Pdh; = Qdh;yy, (j=0,1,2,...). (2.13)

This is, by definition, the susy AKNS hierarchy(see the summary in Table la, where
we also include the vector field K_; := Qdhg). In spite of the nonlocal character
of the Poisson tensors, the vector fields and the Hamiltonians appear to be local.






