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Abstract: We show how to obtain positive energy representations of the group ^
of smooth maps from a union of circles to U(N) from geometric data associated
with a Riemann surface having these circles as boundary. Using covering spaces
we can reduce to the case where N — 1. Then our main result shows that Mackey
induction may be applied and yields representations of the connected component
of the identity of & which have the form of a Fock representation of an infinite
dimensional Heisenberg group tensored with a finite dimensional representation of
a subgroup isomorphic to the first cohomology group of the surface obtained by
capping the boundary circles with discs. We give geometric sufficient conditions
for the correlation functions to be positive definite and derive explicit formulae for
them and for the vacuum (or cyclic) vector. (This gives a geometric construction
of correlation functions which had been obtained earlier using tau functions.) By
choosing particular functions in & with non-zero winding numbers on the boundary
we obtain analogues of vertex operators described by Segal in the genus zero case.
These special elements of & (which have a simple interpretation in terms of function
theory on the Riemann surface) approximate fermion (or Clifford algebra) opera-
tors. They enable a rigorous derivation of a form of boson-fermion correspondence
in the sense that we construct generators of a Clifford algebra from the unitaries
representing these elements of .̂

Introduction

The aim of this paper is to show how geometric data associated to a Riemann
surface lead naturally to unitary representations of infinite dimensional Lie groups
and representations of Clifford and Heisenberg algebras. Our study is related to an
extensive earlier literature. However, we have attempted to make our discussion
comparatively self contained.

Initially we were motivated by a desire to understand some of the literature on
conformal quantum field theory [A-GMV, A-GNMV, A-GBNMV, E]. Significant
progress in this direction has come from the algebraic approach of [DJKM, KNTY].
The starting point of the latter is the so-called tau function and its relation to soliton
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hierarchies. The language of these papers is that of vector spaces of formal power
series, infinite order differential operators (vertex operators) and representations of
Kac-Moody and Virasoro algebras. A more fundamental viewpoint is that of Segal
[S2] in which he postulates an axiomatic framework for conformal field theories
where these vector spaces are endowed with an inner product and the vertex oper-
ators are re-interpreted in terms of representations of loop groups, diffeomorphism
groups, Clifford algebras and intertwining operators. These latter objects replace the
Lie algebraic viewpoint of the earlier work. Our aim in this paper is to provide
some explicit examples of this more geometric and global approach. In particular
we show how to obtain representations of the type considered in [KNTY] from the
following geometric data. We first recall that for any smooth oriented 1 -manifold S
with a spin structure λ (that is a real line bundle such that λ 0 λ = T*S) the real
space Jf*R = Γ(S, λ} has a quadratic form which pairs sections αi and 0.2 to give

The corresponding complex Clifford *-algebra C(JΓκ) has a unique irreducible
^representation with positive energy for any parametrisation of S. When S is the
boundary of a Riemann surface Σ\ on which there is a complex line bundle L\
whose restriction to S is λ ® C, the space 3tf on which this representation acts is
given by C(JfR)//, where / is the left ideal generated by Jfi = T(Σ\,L\\ Fi-
nally, suppose that we have a Riemann surface Σ and a decomposition Σ = Σ\ U Σ2

into two submanifolds which intersect in their common smooth boundary, dΣ\ =
S — dΣ2, and a line bundle L over Σ such that L\Σj =Lj. The decomposition of
Σ into submanifolds naturally defines a decomposition of Jf = 3C\ Θ Jfi into sub-
spaces isotropic with respect to the bilinear form and this data in turn defines a
Fock representation of the Clifford algebra on the exterior algebra over 3C\ . This
space is isomorphic to the irreducible * -representation space J f , but the identifica-
tion is only unitary when Σ is the Schottky double of Σ\ and the line bundle L is
compatible with the Schottky involution.

The first two sections follow this approach, but in the case of the Schottky dou-
ble it is more natural to replace the real Clifford algebras by Araki's self-conjugate
CAR formalism, [Ar], and this is done from Sect. 3 onwards. Given a complex line
bundle L on Σ compatible with the Schottky involution, L ® L is the complexifica-
tion of T*S so that there is a pairing between 3C\ and Jf2 = 3C\ and each is an
isotropic subspace of Jf = Jfi θ JΓ2. The group ^ of analytic C/(l) valued maps
on dΣ\ acts on Jίy by multiplication and so defines a group of automorphisms of
the Clifford algebra C(Jf ). There are implementible so that a central extension of <&
has a representation Γ on Jf . At the Lie algebra level one obtains a representation
of a Heisenberg algebra thus generalising the paper [JKL].

The main interest in conformal field theory is in the properties of the represen-
tation of ^ (or more generally in the groups of smooth compact Lie group valued
functions on dΣ\, see Sect. 6). One of the main results of our work is a proof
in Sect. 3 and 4, that when Σ is a Schottky double (using standard tools of rep-
resentation theory due to Mackey together with earlier results of Segal [SI] and
Carey, Ruijsenaars and Palmer [CR, CP]), this representation is cyclic (in fact irre-
ducible), with cyclic vector Ω say, and that one may explicitly compute the "matrix
elements"

(Ω,Γ(g)Ω), ge$.
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The resulting formulae imply those involving the tau-functions of [KNTY] at least
in certain cases. In Sect. 2 we indicate how one should interpret [KTNY] when Σ is
not a Schottky double although we do not derive explicit formulae. (Special cases
of the results of Sect. 2 to 4 were announced in [CHM].)

In [CHM] we sketched how the boson-fermion correspondence should appear in
this framework as a relationship between the protective representation of ^ and the
Clifford algebra. In the present paper we prove an explicit form of this correspon-
dence in the case where Σ is a Schottky double. Our proof differs from previous
work in a number of ways. First, it starts from a more fundamental representation
theoretic viewpoint (for example in [KNTY] the correspondence is more or less
built in by the assumption that the tau function is the generating function for both
the Heisenberg and Clifford algebras). In our approach the starting point is the ge-
ometric data described above. This leads to a geometrically defined inner product
on the exterior algebra and hence to unitary group representations on Hubert spaces
such that the correlation functions satisfy Wightman positivity. The latter is essential
for a bona fide quantum field theory. When one does not have a Schottky double we
know how to interpret these correlation functions (Sect. 2), however they no longer
satisfy positivity and we do not investigate the meaning of the boson-fermion cor-
respondence in this generality. Another interpretation of these correlation functions
is given in [Rl, R2]. The second point of particular interest in our approach is the
discovery of a generalisation of Segal's vertex operators [SI] (for genus zero) to
surfaces of arbitrary genus.

In Sect. 6 we investigate higher rank bundles over Riemann surfaces on which
one has an action of the group of smooth maps from dΣ\ to a compact Lie group
G. We consider the case G = U(N) in detail by using a covering space argument
similar to that of [SW]. We thus reduce the higher rank case to that of line bundles
dealt with in the earlier sections. Again we indicate how to interpret Segal's vertex
operators for higher rank bundles over curves of arbitrary genus. In Sect. 7 we
investigate how the KMS condition in genus one [CHI] generalises to higher genus
surfaces.

We should like to thank the referee for some helpful comments and in particular
for suggesting a better proof of Lemma 3.3 and the geometric interpretation of W
which follows it.

1. Fermions on a Riemann Surface

We shall follow the algebraic description of fermions presented in [CEH] and
[CHM], which for convenience we recall here. Let L be a line bundle over a
Riemann surface Σ9 and suppose that the surface has an open covering by two sets
U\ and C/2. Writing Γ(Σ,&(L)) for the global sections of the sheaf Θ(L) of germs
of holomorphic sections ofL and Hl(Σ,(9(L)) for the first cohomology group with
coefficients in the sheaf, the Mayer-Vietoris sequence can be written as

0 -+ Γ(Σ, G(L)) -> Γ(Ul9 Θ(L)) θ Γ(£/2, 0(L)) -+ Γ(U, Π £/2, Θ(L))

In the case of fermions we choose L to be an even spin structure for which
Γ(Σ,0(L)) vanishes (as happens generically, [F]). By Serre duality Hl(Σ,Θ(L))
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also vanishes and the sequence reduces to

0 -> Γ(Uι,Θ(L))®Γ(U2,Θ(L)) -> Γ(Uι Π U2,0(L)) -> 0 ,

from which we deduce that there is a decomposition

Γ(£/ι Π 1/2, 0(£)) = Γ(Uι,0(L)) Θ Γ(£/2,

Let us now suppose that Σ\ and Σ2 are closed submanifolds of Σ which intersect
in their common smooth boundary

Σλ Π Σ2 = dΣi = dΣ2 .

For j = 1 and 2 we choose a sequence of neighbourhoods Uj which shrink down to
ΣJ9 so that Γ(Uι Π U2,0(L)) increases to JΓ = Γ(Σι Π Σ2,0(L)) = Γ(dΣι,0(L)).
The spaces Γ(Uj,0(L)) increase to give spaces Jίfj such that

JΓ = JΓi Θ JΓ2 .

Since L is a spin bundle the tensor product of sections α/ G Γ(Uj, @(L)) gives a
section of the canonical bundle K. Choosing an orientation of dΣ\ we may integrate
αi 0 α2 round the boundary to get a natural symmetric non-degenerate bilinear form
on JΓ,

(αι,α2)= / αi 0α2 . (1.1)
δΓ!

If both sections αi and α2 have holomorphic extensions to U\ (or C/2) then their
product also extends and by Cauchy's theorem the integral defining (αi, α2) vanishes.
From this we deduce that Γ(Uj9 0(L)) and its limit JfJ are isotropic, for j — 1 or 2.
It is easy to see that (1.1) is a non-degenerate bilinear form on JΓ and therefore
defines a pairing of the subspaces JΓi and JΓ2.

Any decomposition of an inner product space into isotropic subspaces

gives rise fo a natural representation Ψ2\ of the Clifford algebra of JΓ on the
exterior algebra ΛJΓi. Elements α of JΓi act by exterior multiplication,

Ψ2\(oι) : αi Λ α2 Λ Λ αr i— > α Λ αi Λ α2 Λ Λ αr ,

whilst elements of JΓ2 act by inner multiplication,

r

^21 (α) «ι A α2 Λ Λ αr ι-» ̂  (— l/"1^^) Λ «ι Λ α2 Λ α^-i Λ α^+i Λ αr .
£=1

(The pairing of the isotropic subspaces JΓi and JΓ2 extends to their exterior algebras
and the inner multiplication action of JΓ2 is just the transpose of exterior multipli-
cation on ΛJΓ2.) These conditions determine Ψ2\ and ensure the usual relations

Ψ2l(β)Ψ2l(*) + Ψ2l(*)Ψ2l(β) = (j8,α) ,

for all β and α in Jfi Θ JΓ2.
For 7 = 1 or 2, there is a cyclic vector Ώy = 1 Θ 0 Θ 0 e Λ JfJ , called the

vacuum vector. With respect to the pairing of ΛJΓi and ΛJΓ2, Ψ2\ and Ψ\2 are
dual representations of the Clifford algebra.

We summarise the discussion above.
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Proposition 1.1. Associated to every decomposition of a Riemann surface Σ as
the union of submanifolds Σ\ and ΣΊ "with common boundary and a generic even
spin structure L over Σ, we have the following data:

(i) A non- degenerate bilinear form (1.1) on the real analytic sections 3C of
L restricted to Σ\ Π Σ^.

(ii) A Fock representation of the Clifford algebra over tf defined by (1.1)
on the exterior algebra over the space of sections of L restricted to either Σ\ or
ΣΊ. These representations are dual to each other.

We now introduce the (not necessarily orthogonal) projection P^ onto JfJ along
Jffc. Since 3C\ and Jf*2 are isotropic we have

so that PΊ\ and PU are transpose maps with respect to the bilinear form. It follows
from the definition of ^21

Given another decomposition Jf* = JΓ3 Θ Jf2, there is a natural map Γ2

3 from
to ΛJfi which maps Ώ3 to Ω\ and intertwines the Clifford algebra represen-

tations ^23 and Ψ2i, which is defined by

This is well-defined since ^23(^)^3 vanishes if and only if α is in the ideal gen-
erated by Jf2 and then Ψ2\(u)Ω\ vanishes too.

The normal arena for quantum field theory is a Hubert space, which, by the
Riesz representation theorem, means that there is an antilinear identification of the
space and its dual. Such an antilinear map arises naturally from the geometry if one
takes Σ to be a Schottky double (cf. [JKL,CH1]) with its natural antiholomorphic
involution taking z £ Σ\ to the corresponding point z in Σ^ (thus fixing each point
of the boundary). Thus, as a real manifold, ΣΊ is an oppositely oriented copy of
Σ\. For more on Schottky doubles, see [F, H].

Proposition 1.2. Let Σ be a Schottky double.

(i) The Schottky involution induces maps of forms and ^-forms, written for

brevity as α(z) H^ α(z). The image is an antiholomorphic \-form, so that its com-
plex conjugate is holomorphic.

(ii) Defining α(z) = α(z), we obtain an antilinear map, ~ with

(&,β)= / α(z)]8(z) = (α,j8),
dΣl

(i.e. ~ is antiorthogonal).
(iii) The map in (ii) satisfies (α, α) = fdΣ α|2, and hence (α,β) = (cχ, β) defines

an inner product on JΓ.
(iv) There is a natural isomorphism of the Clifford algebra over Jf with the

fermion algebra (or algebra of the canonical anticommutatίon relations: CAR)
over 3C regarded as a pre-Hίlbert space in this inner product.

Proof. The statements (i), (ii) and (iii) are clear. For (iv) observe that in general
whenever there is an antiorthogonal involution ~ which maps Jf\ to JΓ2 (where
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Jf = Jfi θ Jf^) and vice versa, and such that (α, α) > 0 for all non-zero α one
can define an inner product

on 3C and, in particular, on the subspace JfΊ. The map ~ and this inner product
both extend to ΛJfi, which can then be completed to give a Hubert space 3F\. In
this situation we drop one suffix and write P\9 Ψ\ instead of P^\ and ϊ^i

To complete the proof let α £ $C\ and φ £ Λ Jf* i . Then we have

= (φ,
We therefore deduce the important relation that for α £ Jfi,

<F(α)* = Ψ(&) .

Applying ~ the same applies for α £ Jf^, but we shall not need that. Thence the
Clifford algebra relations can be recast into CAR form as

Ψl(*)*Ψl(β)+Ψl(β)Ψl(*)* = ( * 9 β ) ,
and

Ψ ι ( * ) Ψ ι ( β ) + Ψ ι ( β ) Ψ ι ( * ) = 0,

for all α and jβ in Jfj . This completes the proof but in fact more is true.
Setting φ = Ω\ and ψ = Ψ(β)Ω\ in the preceding proof, the formula for the

two point correlation function can be recast as

which is the usual formula for the Fock space correlations. From this, or by direct
calculation, one also can deduce that PI =P*9 so that P\ is an orthogonal projection.

Lemma 1.3. [CHM] The projection P\ is given by an integral operator. Its kernel
is the Szegδ kernel, A, which can be written explicitly in terms of the theta function
θ[e] associated to the same even half-period e which specifies the choice of spin
bundle L, and the Schottky-Klein prime form E, which is a —^-form in each of
its arguments'.

v "' 2πiθ[e](0)E(y,x) '

This formula makes it clear that A can be defined for any surface, Σ whether
or not it is a Schottky double, and we shall see later that there is a more general
formula for the correlation functions which also works outside the Hubert space
setting.

2. Equivalence of Representations

There is a special case of the preceding situation for which more detailed informa-
tion is available. Henceforth we assume, following Segal [S2], that the boundary of
Σ\ consists of parametrised circles (we make this assumption precise in our next
result).
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Lemma 2.1. Assume there are coordinate charts containing each boundary circle
such that in terms of a local coordinate z, |z| = 1 is the boundary circle. Then the
Hubert space representations of the CAR defined by different Riemann surfaces
Σ\ and spin bundles L which have the same boundary dΣ\ and restriction L\dΣ\
which we constructed in Proposition 1.1 are all equivalent.

This is proved in [PS, Sect. 8.11], but only in the case of a single boundary
component and a particular spin structure, so in this section we shall outline the
modifications needed to prove the lemma in the general case.

The spin bundle can be trivialised in such a way that its sections can be iden-
tified either with functions on the circle or with functions multiplied by z1/2. Thus
square-integrable sections are either identified with L2(Sl) or with z1//2Z2(51). Just
as there is a standard polarisation of L2(Sl) into the two Hardy spaces H+ and
//_, so zl/2L2(Sl) can be polarised into z1/2//+ and z1/2#_. We shall show that the
representation defined on 3F\ using the decomposition into holomorphic sections
on ΣI and its reflection Σ4 = φ(Σ\) is equivalent to that defined by using the ap-
propriate Hardy space decomposition of the sections of L\^ΣI, and so that all such
representations are equivalent.

Let us first concentrate on a single boundary circle. Since the two spin bundles
correspond under multiplication by z1/2, we need only consider the case of L2(Sl).
We cap the circle with a disc and suppose the local coordinate chosen in such a way
that |z| ^ 1 gives the disc and points of ΣI have z| ^ 1. There is an injection, /
of the boundary values of holomorphic sections on ΣI into L2(Sl), and projections
p+ and p- onto the two Hardy spaces. The first thing to be checked is that p-I
is a Hubert Schmidt operator. Now p- commutes with the dilation operators Rp

defined by

(RpfXz) = f(p~lz),

so that p-I = Rpp-R~lL As in [PS], one sees that, for p G (0, \\p-R~11 is
bounded. Since, for such p,Rp is trace-class on //_, we see that p-I is trace-
class, and so Hubert-Schmidt. Finally, the map I is an isomorphism onto its range
so that / = p+I + p-I — p+I + compact. Hence p+I : W ι-» IW differs from an
invertible operator by a compact operator and hence is Fredholm, which shows that
the representation defined by ΣI is equivalent to the usual one defined by the Hardy
spaces H±.

Remark. Having established this equivalence with the standard representation, we
know (see [PS]) that the existence of the equivalence does not depend on the precise
choice of holomorphic local coordinate as the group Diff^1) acts in the Hubert
space of this standard representation (enabling us to change parametrisation).

In the physics literature it is not usual to assume that the Riemann surface is
a Schottky double. Nevertheless fermion correlation functions are written down for
the representations defined by the Krichever map (see Segal and Pressley for a
discussion of the latter). To understand what these correlation functions mean we
need to extend the preceding discussion.

In understanding the Krichever map it is useful to compare the theory obtained
by capping ΣI by its Schottky dual ΣI with that obtained when one caps it with
another space Σ_ to give a closed surface. To do this we need to suppose that Σ_
is the Schottky dual of Σ+. We now have three different ways of decomposing Ctf\

tf = tfλ Θ Jf2 = Jfi θ Jf_ = Jf+ 0 Jf_ .




