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Abstract: We derive various asymptotic formulae for the numbers of closed orbits
in the Lorenz and Horseshoe templates with given knot invariants, (for example
braid index and genus). We indicate how these estimates can be applied to more
complicated flows by giving a bound for the genus of knotted periodic orbits in the
'figure of eight' template.

0. Introduction

Let Φt be a flow on S3 (for example a Lorenz flow or an Axiom A no cycles flow)
with countably many periodic orbits (τ^)^. We regard each closed orbit as a knot
in S3. The set of all infinite collections of knots (Kn}^λ has the cardinality of
the continuum. However, for Axiom A no cycle flows for example, the set of such
collections of knots which occur as periodic orbits is countable, so only special ones
can occur. The central problem in the study of knotted periodic orbits of flows in S3

is to classify these families of knots, or more realistically to find restrictions on them.
In his survey lecture [W4], Williams suggested that a useful approach to

this problem would be to associate a knot invariant k ί ( τ ) to each closed orbit
τ (e.g. braid index, genus) and to find restrictions on the sequences (£/(!„))^.
In this paper, we provide a solution for three specific examples of flows. For var-
ious knot invariants, we show that such sequences must satisfy precise asymptotic
formulae or bounds.

In [BW1] and [BW2], Birman and Williams introduced the notion of a template
in S3, which consists of a branched two manifold, with charts of two specific types,
together with an expanding semiflow defined on it. For certain types of flows in S3,
one can construct a template for the flow in such a way that the periodic orbits of
the flow and the semiflow correspond one-to-one, and this correspondence preserves
knot types. (Strictly, one may first need to exclude finitely many orbits.) So we will
study only knotted periodic orbits in templates.
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First we study the Lorenz attractor. The famous system of differential equations

jc' = -10jc+ lO y ,

/ = 28 - y - xz ,

of E.N. Lorenz [Lo] has been extensively studied, (see for example [Gu, R]), as it
is an important example of a "strange attractor" in the Ruelle-Takens sense, [RT].
This model was used by physicists to study atmospheric convection.

Guckenheimer and Williams [Gu, Wl] introduced a mechanism for this attractor
which became known as the "geometric Lorenz attractor". Williams [Wl] con-
structed a template for this flow, and jointly with Birman [BW1], attempted to
determine which families of knots actually occurred as periodic orbits when the
Poincare map T on the branch line had the form Tξ = 2ξ (mod 1).

Our approach is more quantitative. Specifically, we give a precise formula for
#{τ : b(τ) ^ m} and (upper and lower) bounds for #{τ : g(τ) ^ m}. (Here b(τ)
denotes the braid index and g(τ) denotes the genus of a generic closed orbit τ.)
We also give a precise asymptotic formula for the sum

Σ 0W.
b(τ)^m

In all but exceptional cases these numbers are finite, for m fixed. This is the content
of Theorems 1-3. In Corollaries 1-4, we include partial results on the degrees of
the Alexander and Jones polynomials of closed orbits.

Our results hold for a wide choice of Poincare maps. We make extensive use
of the kneading theory for the Lorenz attractor, developed in [Wl]. An essential
observation in all our results is that the link of knotted periodic orbits which exist
on a given template depends only on the kneading invariants. Alternatively, two
Poincare maps with the same kneading invariants have associated semiflows with
essentially the same link of knotted periodic orbits.

In Sect. 5, we discuss the special case of centrally symmetric /^-transformations,
as described in [P3], to illustrate the effect of renormalisation on the link of Lorenz
knots.

Next, we consider a different embedding of the Lorenz template, called the
Horseshoe template. In the special case that the Poincare map takes the form

Γ 2 £ f o r O ^ ί ^ 1/2
(ς) \2(1-0 for 1/2 < £ g 1

this template has the same link of periodic orbits as the suspension of the well
known Smale horseshoe map. We adapt the kneading theory for the Lorenz sys-
tem, and modify our estimates to give asymptotic bounds on #{τ : g(τ) ^ m}. (See
Theorem 4.)

Finally, we consider the "Figure of Eight" template, as studied in [BW2]. This
arises in the study of the planetary orbits of the figure of eight knot. From a more
dynamical viewpoint, this template is determined by taking a suspension flow of
the map

'2 1
1 1
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acting on the punctured torus T2\{0}. Using the fact that the figure of eight template
contains a composite of two Lorenz templates, we outline how to give a lower bound
for #{τ : g(τ) :g m}, using our previous estimates.

1. Preliminaries

Let Bn denote the Burau braid group, [Bi, p. 5]. By a well known result of Artin,
every (tame) knot K in S3 can be presented as a closed braid b, where b G Bn

for some n. The least such n is called the braid index b(K) of K, and is a knot
invariant. Another important knot invariant is the genus g(K) of K, which is defined
to be the minimal genus of any Seifert surface spanning K.

We now define the (one-sided) subshifts of finite type. These were first intro-
duced in a purely mathematical context in [P4]. Let A be a k x £, zero-one matrix
and suppose A is irreducible, i.e. for each z,y, there exists n such that An(iJ) > 0.

Let

°°
'V} :Λ(w Λ ,w Λ +ι) = 1, for each n ^ 0

For fixed θ <E (0, 1), define a metric pe on ΣA by po(x,y) = ΘN, where N is the
largest integer such that Xj = yι for 0 ^ / < N. The metric space (ΣA,PQ) is com-
pact and zero dimensional. Define the shift σ : ΣA — > ΣA by (σx)n = xn+\, which is
a continuous, bounded-to-one map.

The pressure map P : C(ΣA ) — > IR is defined by

where the supremum is over all σ-invariant probabilities μ on ΣA (h(μ) is the
entropy of σ with respect to μ.) If additionally, we assume that / is Holder contin-
uous then the supremum is attained uniquely by a measure πif. (If / depends on
only finitely many coordinates, i.e. for n fixed, f ( x ) = f(xQX\ . . .xn) for all x £ ΣA,
then / is Holder continuous.)

By Abramov's Theorem [A], there is a unique positive real number λ such that
P(-λf) = Q. Moreover,

and the supremum is uniquely attained by the measure ni-χf.
We now briefly discuss Markov maps of the unit interval. Let / = [0, 1], and let

T : / — » / be piecewise C1, where {cz : / = 1, . . . ,r} are precisely those points where
T' is discontinuous. Such a map is called locally onto if for each open J C /, there
exists m such that IJ Lo TJ'J = /• This property was introduced in [P2j. The map
T is called Markov if there exists a finite set of points S = {ξj : j = 0, . . . , v} C /
with ξo — 0, £v = 1 such that

LI { li
/=ι i^α

im Γ(0, im Γ(ξ) U LI lim ΠO, lim Γ(ξ) C S .
/=ι
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For T Markov, let A be a v x v matrix whose entries are 0 or 1 according to the
rules

l if Γtf,.,,*,) :>«;,_„{,)
( }

(The Markov condition ensures these are the only possibilities.) We will always
choose θ = sup{|Γ'(Λ:)|: x G /\{c/: i — l,...,r}}~1. Define a map π : ΣA — > / by

Λ=0

Then π is a semiconjugacy πσ = 7π, and π is Lipschitz, (by our choice of #). The
map π is one-to-one, except for a countable set points where it is bounded-to-one.

Notation. Let f,g : N -> IR+. Write /(/ι) ~ gf(/ι) as /i -> oo if f(n)/g(n) -> 1 as
77 —> cxo, and write / > 0 or g <C / iif

l i m s u p f ^ ^ l .H-+00 /(«)

2. The Lorenz Template

Let ///, denote the branched two manifold model of the Lorenz attractor (cf. [Wl]),
which we have illustrated in Fig. 2.1.

Let Φt : HI —> HI ( f o r t ^ 0) denote a semiflow on HL which is downwardly
transverse at the branch line /, which we parameterise as / = [0,1]. Let T : I —> I
denote the Poincare map, which fails to be defined only at the point c G (0,1).
(See Fig. 2.2 for a typical example). Let p : I —> 1R+ be the first return time map
p(ξ) = mf{t > 0 : Φt(ξ) G /}.

Each closed orbit τ of Φt is a knot in S3. Thus τ has a well defined braid index
b(τ) and genus g(τ).

We now consider the Poincare map T in more detail. For β > 1, we say
T : / -> / is in Lβ if

(i) T is C1 for all ξή=c, for some c G (0,1),
(ii) HmξTc T(ξ) = 1, limαc T(ξ) = 0, T(c) = c, and

(iii) T'(ξ) ^ )8 for all £φc.

Fig. 2.1.
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A particularly simple class of maps that we will consider are the β-trans-
formations, which take the form

if

for some 1 < β ^ 2, α ^ 0 and α + /? ^ 2.
We now discuss the kneading theory for maps T G Lβ. Let Jq =

denote the space of infinite, one-sided sequences of c's and y's and let

denote all finite (or empty) sequences of %'s and ^'s which terminate with infinitely
many O's.

Let X — X\ 11X2, and give X the topology induced by the metric

where u = (un\ v = (vn) and

—1 if un = x

0 if un = 0

ifun = y

Define the shift σ : X —> X by (σw)π —wn+\. Let < denote the natural lexico-
graphical ordering on X, generated by the ordering x < 0 < y.

A point w G X is called eventually periodic if there exist finite words, u, v of
jc's and j's such that w — uv, where v denotes the element vvv £X\. (Here, we
allow u to be empty.) Let Z — XΊ U {w G X\ : w} is eventually periodic.

We say that K = (khkr) e K if khkr G X and

(Al) kι < kr, and
(A2) kι ^ σnkι ^ kr and */ ^ σπ^r ^ kr for all Λ ^ 0.

Define a metric D on 7^ by D(κ;^>,κ;ί2>) = d(k(^\k^) + d(kf\k?}). Let °̂
denote all K = (kι,kr) £ K such that A:/φ3c and A:rφ j.

Kneading invariants arise in the following way. Let T G Lβ, and for ξ £ /, define

c if ξ < c

*b(ί) - < 0 if ξ = c

i f ί > c (2.1)

The infinite sequence k(ξ) = ko(ξ)kι(ξ)k2(ξ) £ X is called the kneading
sequence of ξ G /. Moreover, the map ξ \-+ k ( ξ ) is strictly monotonic increasing,
and the shift σ satisfies σ(k(ξ)) — k(T(ξ)). The kneading invariant of Γ, K = κτ =
(kι,kr) e K is defined to be the pair (&(0), &(!)). A sequence k(ξ) is Γ-admissable
if and only if for all m ^ 0,

(2.2)

and either

or ff"*(0 > *(0) . (2.3)
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In particular, for a finite word w of c's and y's, the periodic word w = www - is
allowable if and only if

£(0) < σmw < k(\) (2.4)

for all m ^ 0.
We say that K G K is linearly realisable if there exists a /^-transformation with

kneading invariant K.
Define the trip number T(w) of a finite, aperiodic word w of c's and jμ's to be

the number of 'xy9 syllables in w, counted cyclically (e.g. T(x2yxy) — 2). Suppose
that a periodic orbit τ has kneading sequence w(τ). Then define the trip number
t(τ) to be t(τ) = Γ(w(τ)).

Definition 1, [G]. ^4n element κ = (kι,kr)^K is called renormalisable if there
exist finite words w\,W2 ofx's and y's respectively, with respective lengths N\,N2

with Ni +N2 ^ 4 such that kι = w^w^w^ ... and kr = w2w™lw™2w™3 .... Lei

ί/ze shortest (non-trivial) such choice be (w[l\w(

2^) of lengths ( Λ ^ T V ) . Then

replacing w\ by x and w^ by y, we obtain a renormalίsed kneading invariant
κ^λ\ If this process can be repeated n times, but not n+\ times, (using the shortest
possible choice at each stage), the kneading invariant is called Λ-renormalisable.
(If T G Lβ then n is finite, by [G].) If K is not renormalisable, it is called prime.

We give an example of renormalisation in Sect. 6.
Part (i) of the following lemma follows directly from the choice of metric D

on K. Part (ii) is [W2], Proposition 1.

Lemma 1.

(i) The set of prime kneading invariants is an open subset of K.
(ii) Z is a dense subset of X.

We now observe that K is prime is a (necessary and) sufficient condition for T
to be locally onto, for any T G Lβ with kneading invariant K.

Lemma 2. ([G], Theorem 2). Let κτ G K be the kneading invariant of T G Lβ. If
KT is prime then T is locally onto.

Lemma 3. If T G Lβ is locally onto and Markov then the transition matrix A is
irreducible.

Proof. By hypothesis, T is locally onto, so for each interval Jj = (ξi,ξi+\) in the
Markov partition, there exists «/ > 0 such that Uylo TJ'Ji = Λ for / = 1, . . . , v. Thus,

given 1 ^ i, I ^ v, there exists j such that J/ Π Γλ/z Φ 0, and since T is Markov,
Jι ^ TJJi. Thus AJ'(i9l)=\=Q, and since /, / were arbitrary, A is irreducible. D

We now prove the existence of a Markov jβ-transformation realising certain
kneading invariants. This is a modified version of a result in [W2], (but see also

[Pi]).
Proposition 1. Let K = (kι,kr) e K be prime. Then K is linearly realisable by a
map T G Lβ. When additionally, kι, kr G Z, the map T is Markov.

Proof. Let K = (kι,kr) G K be prime. First suppose that k\,kr G Z. Then the sets
L = {σnkι : n ^ 0} and R = {σnkr : n ^ 0} are finite. Let X1 = X U {Qkι,0kr} and
extend σ to a map X' -> X. Then let D = L U R U {Ofc/, 0/cr}, so that σD = D. Write
D = {η0, ..., ηv}, where ηQ < ηλ < < ηv.
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Let U E Lβ be any realisation of K and let £/ £ /, / = ! , . . . , v, satisfy k ( ξ i ) = ηif

So in particular, since £(->£(£) is monotonic increasing, 0 = £o < £ι < <

f v = 1, £/({&,...,&}) ^ {&,..-,W, and U(c~)= 1, £7(c+) = 0. (Here £(O =
0*r and £(c+) = 0£/.)

Define a v x v, zero-one matrix ^4 by (1.1). By Lemma 2, £/ is locally onto,
and so by Lemma 3, A is irreducible. Thus by the Perron Frobenius Theorem
for matrices, A has a maximal positive eigenvalue λ with positive eigenvector
e = (e\,...,ev), (i.e. ̂  > 0, for each /). Normalise e so that e\-\- ---- \-ev = l.
Then choose points po,...,pv £ / such that po = 0, p/ = e/ -f e,_ι H ----- h <?2 + e\
for / = 1, . . . , v. Choose T to be the /^-transformation Tξ — λξ + pr (mod 1), where
r = min{/ :^(1,/)ΦO} - 1.

Now suppose that at least one of kι,kr is not in Z. Since Z is dense in X
by Lemma l(ii), it follows that (Z x Z ) Π A " is dense in ^Γ. So we may choose

a sequence a^ = (a* \0r ) such that α^ — > K:. By Lemma l(i), we may assume

that each a^ is prime. Then let TβntQίn be the linear realisation of a^n\ Let (β,a)
be a limit point of (jδπ,αn) in R2. Since the map

given by (x,y)^ κTy,x is continuous, 7βα is the linear realisation of TC. D

3. Asymptotics for Braid Index of Lorenz Knots

In view of Proposition 1, we will now consider a locally onto, ^-transformation
T — Tβ ? α. Let KT G K denote the kneading invariant of T.

Define / : / — > / to be the characteristic function of the interval J = {ξ £
[0,c): Γ(£) > c}, or more explicitly,

/ l - α ( l + j 8 ) 1-oc

V ^2 ' β

Also, let/Λ A = / + / o Γ + /oΓ 2 + + /o Γ^-1.
The following lemma is elementary.

Lemma 4. If κτ e K° then there exists N > 0 such that fN ^ 1.

Remark 1. The condition K:^ E AΓ° may be replaced by the more qualitative
assumption that T has no sources. (A point z e / is called a source if there exists
a non-empty open neighbourhood V of z such that {z} = f\>o ^~w^ )

For the next definition, we assume further that T is Markov with transition
matrix A.

Definition 2. [W3] (i) For each sequence i\9...,ir, (r ^ 2) of distinct ij £
{ 1, 2, . . . , v} such that the product

A(iι , z2 Mfe *3 ) ^OV, *Ί ) Φ 0 ,

feί (i\,i2,...Jr) be the equivalence class under cyclic permutations of this r-tuple.
These equivalence classes are called free knot symbols and the indices / Ί , / 2 , . . . , z V
are called nodes. A free link symbol is a product of free knot symbols, no two of
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which have a node in common. Note that each free link symbol can be regarded
as an element of the symmetric group Sv.

(ii) Let φ : ΣA — » {0, 1} be defined by </>(w) = /(π(w)). Define the trip number
t(y) of the free knot symbol y = (/Ί, /2, . . . , ir) by

For a free link symbol δ = δ\δi' δp, where δ\,...,δp are free knot symbols,
define

Similarly, let l(y) denote the number of nodes in γ and set s(y) = 1 if r is even
and — 0 if r is odd. Extend this to free link symbols by defining

and *(<$) =

Example 1. For K = (x3yQ,y3xQ, we obtain the matrix

/O
0
0
0
1
0
0

L Λ

1
0
0
0
1
0
0
A

1
0
0
0
0
1
0
A

0
1
0
0
0
1
0
A

0
0
1
0
0
0
1
A

0
0
1
0
0
0
0
1

0
0
0
1
0
0
0
1

0\
0
0
1
0
0
0
A i

A =

and the free knot symbols are (12475), (1248635), (124875), (135),
(136475), (136487), (235), (2475), (248635), (486), and the correspond-
ing free link symbols are all the free knot symbols together with the products (135)
(486) and (235) (486).

Let & denote the set {K G K° : K is prime}, which is an open subset of K°.

Theorem 1. There exists a continuous, strictly positive function λ : & —> IR such
that, for any Lorenz semiβow with kneading invariant K,

eλ(κ} eλ(κ)m

%{τ : b(τ) ^ m} ~ —^ (3.1)
(eΛ(K) _ 1 j m

as m —» oo through the positive integers. When kι,kr e Z, u — λ(κ) is the unique
positive solution to

I>-'w"=l, (3.2)
y

where the sum is over all free link symbols y.

Proof. Let κeKQ, K = (kι,kr) be prime and first suppose kι,kr£Z. By
Proposition 1, there is a Markov linear realisation T of K. Define the "braid
index zeta function" for the flow Φt with Poincare map T, by

-1 (3.3)

for any s G (C, whenever the infinite product converges.
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Each closed orbit τ of Φt defines a positive braid on t(τ) strands, which contains
a full twist. (See [BW1], Sect. 5 or the proof of Lemma 5). By [FW], Corollary 2.4,
if b G Bn is a positive braid and b = a A2, where A2 is the full twist braid and a £ Bn

is positive, then n is the braid index of b. Thus we conclude that b(τ) = t(τ) for
all closed orbits τ.

Using the observation that kt(τ) = f n ( ξ ) 9 whenever Tnξ = ξ, n = kp, and p is
the least period of ξ, we may rewrite ζτ(s) as

expE- Σ e-'™-
n=\

As we observed in Sect. 1, the map π is one-one except for at most a countable
number of points, and is everywhere at most bounded-to-one, so using standard
arguments in symbolic dynamics,

ζτ(s) = ζσ(s)

wherever this makes sense. (Here ζσ is the symbolic analogue of ζ? as defined in
[P2].) By Lemma 4, fN Ξg 1 for some TV, so we may now apply the not weak
mixing case of the main result in [P2] to deduce the formula in (3.1).

In particular, ζ σ ( s ) is analytic and non-zero in an open neighbourhood of
Re( s) ^ λ except for a simple pole at Re(s ) = λ, where λ > 0 is uniquely de-
termined by P(—λφ) — 0, by [P2], Proposition 1. For u £ 1R define a v x v matrix
Bu by

Bu(i,j)=A(iJ)e-»«n9

which is irreducible by Lemma 4. Then

det(£M - yl) = £ (-lf*n(p\Bu - yl)(l,p(l)) >(BU - X)(v,p(v)) . (3.4)

Let 7 be a free link symbol. Observe that there are precisely v — /(y) symbols
in {1,2, . . . , v} which are not nodes of the free link symbol γ. For each such symbol
j say, A(jJ ) = 0 by virtue of the fact that c G S. (See Sect. 1.)

Write y = 7172 7r as a product of free knot symbols, where yz = (k[l\ . . . , k^)

and let k[r+l\ . . . , k%+^ be those symbols in {l,2,...,v}, which are not nodes of

y. Then

(Bu - XXfcj'U αf )) = e~"^0) for j = l,...,d, and ί = l,...,r

and

(Bu - yl)(kjr+l\ yχ*jr+1))) = -y, for j = 1, . . . , dr+l = v - l(γ) .

So we have

(Bu - yI)(\,y(\))(Bu - yl)(2,y(2)) •••(!!„
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/=ι

Substituting into (3.4) gives

det(£w - x) = (-yγ + £(_i)*y>+v-'(y)e-«w/-'<y) . (3.5)
y

Let j = Xw) denote the largest positive solution to

From [P2], y(u) = ep(~uφ\ Thus λ > 0 is uniquely determined by y(λ) = 1. We
remark that s(γ) + /(y) = 1 (mod 2), for all free link symbols y. Let c(w) = Xw)"1.
Then dividing (3.5) by (— l)vχw), and substituting Λ: gives that

However, there is always precisely one solution x = x(u) to this equation for each
u > 0. Thus λ is determined uniquely by (3.2).

Now suppose that kι,kr G KQ\(Z x Z). By Lemma l(ii), Z is dense in X, and
hence (Z x Z)Γ\K° is dense in K°. So we may choose kneading invariants a^ =

(a<f\a™)9bW = (b™9b™) e K* such that

(3.6)

(3.7)

and

fl^T*/, ft/Λ )i*/, 4n )i*r, ^ π ) T f e as«->oo. (3.8)

Since K: is prime, and since the prime kneading invariants form an open subset of
K° by Lemma l(ii), we may assume that a^ and b^ are prime, for all w.

Choose realisations U(n\ V(n"> for a(n\b(n"> respectively. Using relation (2.2), and
the observation that the kneading word of a closed orbit determines its braid index,
independent of the realisation map, we have

#{p(n) : i(p<Λ>) ^ m} ^ #{τ : 6(τ) ^ m} ^ ίf{y(π) : Z?(y(w)) ^ m} , (3.9)

where y(w) (respectively p(w)) denotes a closed orbit of the Lorenz semiflow with
Poincare map U^ (respectively V^\ Let λ^ (respectively μ^) be the constants
given by (3.2). Then λ^ is monotonic decreasing, since by (3.8) and (2.2) we are
deleting closed orbits as n increases, and bounded below (by μ(1)), so λ^ j λ+ say.
Similarly, μ^ | λ-. Now suppose that Λ,+ =M_. Then

- lim log(ίf{y(n) : Z?(y(w)) ^ m} - #{p("} : Z?(p(w)) g m})
/W m-^ oo

= λM - μ(n) ^λ+-λ- > 0
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for all n ^ 1. Thus there is a closed orbit τ (in fact infinitely many) such that the
kneading word w(τ) G X\ of τ is allowable with respect to the a^ for all n, but
not allowable with respect to b^ for all n, (in the sense of inequality (2.2)).

From (2.2), given n ^ 1, there exists q such that either σqw(τ) < b" or

br < σ^w(τ). At least one of these two inequalities holds for infinitely many

values of n, so say it is σqw(τ) < b^. Since w(τ) is periodic word in X\, we may

let TV be the least natural number such that σNw(τ) = w(τ). Thus we can always
choose q from the set {0,1,... ,7V — 1}. So for some fixed q$ G {0,1,... ,7V — 1}, we

can find an infinite sequence (wy ) such that σ^°w(τ) < b"J , for j = 1,2,.... Since

b"J —> kι as n —» oo, we have σ^°w(τ) ^ A:/. Further, since &/ is not eventually

periodic, σg°w(τ) < k\. Since a^ —» £/, we can find w0 such that σg°w(τ) < aγQ\

which by (2.2) shows that w(τ) is not allowable with respect to a^n°\ giving a
contradiction. Thus λ+ = λ- = λ, and λ > 0 since λ > μ(1).

The above argument can easily be adapted to cover the cases (kι,kr) G
A : ° Π ( Z c x Z ) and (khkr) G K° Π (Z x Zc). In both these cases, one of the in-
equalities in (3.9) will be an equality.

We now briefly indicate how to extend formula (3.1) to kneading invariants
K G K°\(Z x Z). Since these ideas are fairly well known, we shall only give a
brief outline. It is convenient to rescale our zeta function as

oo 1

ζ(s) = exp Σ - Σ e~sλf W = Π (1 - e~sλ^Γl ,
n=l n Fix(Γ") τ

where λ = λ(κ\ T is the linear realisation of K (which is given by Proposition 1),
and / : / —» {0,1}. We make the following observations:

(i) ζ(s) is analytic and non-zero for Re(s) > 1.
(ii) ζ(s) is meromorphic for Re( s') > 0.

(iii) ζ(s) is analytic and non-zero on Re(^) = 1 except for simple poles at
s = 1 + -̂̂ , for each k G ΊL.

Formula (3.1) then follows using the analogy with the Prime Number Theorem
in [P2].

To prove (i), it suffices to note that, by the continuity of λ,

l/n , \ l/n

lim sup Σ
,-sλfn(x) ^limsup Σ e~RQ(s^(xn <l

for Re( s) > 1.
To prove (ii), note that / is a function of bounded variation, so we can apply

Theorem 2(i) in [BK] to ζ(s).
To prove (iii), note that s = 1 + it is a pole of order p of ζ(s) if and only

if 1 is an eigenvalue of the Ruelle Perron Frobenius operator, ^(_1+/ίμ/, of mul-
tiplicity p, by applying [BK], Theorem 2(ii). Using the convexity argument of
[PP, p. 40], j£?_(i+itμ/ has 1 as an eigenvalue if and only if s = I + ^γ and
further, the eigenvalue 1 is necessarily simple. D

Remark 2. (i) By carrying out some simple manipulations involving the zeta func-
tion ζ(s), we can replace Eq. (3.1) by

eλm

#{τ : b(τ) — m} ~ as m —> oo .
m
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This shows, in particular, that all large numbers are braid indices for closed orbits.
(ii) Let

£ = {(j8,α) C R2 : TβfΛ is locally onto with Γ(0)φO, Γ(1)Φ1}

which is an open subset of IR2, calculated explicitly in [G], The map Ά — > & given
by (β, α) \-> Kτβa is easily seen to be continuous. Thus we may define a continuous

map by the composition Ά — » & — > IR+ which we again denote by λ.

For a closed orbit τ, let em[n(τ) and βmax(τ) denote the minimal and maximal
exponents of x in the two variable generalisation of the Jones polynomial jτ(x, y)
of τ, as defined in [FW]. Let

= emaxCO - emin(τ)

Corollary 1. Under the hypotheses of Theorem 1, either #{τ : e^(τ) ^ m} is
infinite for some m ^ 0, or

2eλ emλ/2
${τ : 6>diff(τ) <, m} > — -. - — - as m -> oo .

(eλ — 1 ) m

Proof. By [FW], Corollary 1.10, b(τ) ̂  (l/2)ediff(τ) + 1, from which it follows
that

{τ : i(τ) ^ m} C {τ : em(τ) g 2(m - 1)} .

The result follows by applying Theorem 1. D

For a kneading invariant K = (kι,kr) e KG, define non-negative integers
by #/ — min{n : (σw&/)oΦ*}, and qr = mm{n : (σnkr)o^y}. Further, let d = d(κ)
be defined by d — qι + qr. Note that for a ^-transformation Γ = 7βα,

and

For certain ^-transformations 7^?α, we now give bounds on λ in Theorem 1 in terms
of the parameters β, α.

Proposition 2. Let T = TβtOL be a locally onto ^-transformation such that Γ(0)ΦO
and Γ(1)Φ1. Let λ be given by Theorem 1. Then

where d = qι -{- qr is computed from (3.10) and (3.11).

Proof. By Remark 2(ii), it suffices to prove the bounds on λ when Γ is Markov.
Since Γ(0)φO and Γ(1)Φ1, we have KT G K° and qι,qr are well defined. By
Abramov's Theorem [A], λ can be expressed as
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where the supremum is over all σ-invariant Borel probabilities μ. Let mo be the
measure of maximal entropy for σ. Then

A(/w0)
A >

since 7βα has topological entropy log/?. Let (ei,^,---,^)' be the normalised right
eigen- vector of A, as in the proof of Proposition 1. Then, for each cylinder set
[/] = {x £ ΣA : XQ — /}, we have wo([z]) = e>\ from the construction of mo in [P4].
Therefore,

where 5 = min{y : Λ((y, 1) = 1}, and r = min{y : A(j,s) = I } . Thus, we have that
mo(π~l(J)) = I/I, and hence

l o g j g = I2 log £

|J| ]8 + α - 1 '

We now prove the upper bound. Note that φd g: 1, (cf. Lemma 4), where d is
computed from (3.10) and (3.11). Hence we have

4. Estimates for the Genus of Lorenz Knots

We first consider a ^-transformation T = 7^a with kneading invariant κτ — (kι,kr) E
KQ. The following lemma extends Corollary 5.3 in [BW1].

Lemma 5. g ( τ ) ̂  \t(τ)(t(τ) — 1) for all closed orbits τ. Moreover, there is a
closed orbit for which equality holds.

Proof. We use the "positive braid representation" for the Lorenz attractor HI, given
in [BW1], and illustrated in Fig. 4.2. (Figure 4.1 is an intermediate stage in obtaining
Fig. 4.2 from Fig. 1.1).

We remark that any closed orbit with trip number t has a representation as an
element of Bt, and further, this representation is as a positive braid.

Let 7 denote a closed orbit with kneading word

if qι < qr

with trip number t(y) = t.
First note that w(y) is allowable. Suppose first that #/ ^ qr. Observe that since

T' > 1, either q\ > 1 or qr > 1. Thus we may assume qι > 1. If the word w(γ)
is not allowable then _

x(xyj < kι

by (1.2). Thus Γ(0) < c and Γ2(0) > c9 and so

1 — α , _ 1 — α
α < — — - and α + aβ > — — ,

P P
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Fig. 4.1. Fig. 4.2.

from which we deduce that aβ2 > 1. Using the relation α + β g 2, we obtain

-β3 + 1 > 0 .

However, this is impossible if β > 1, giving a contradiction. If g/ < qr, we can
prove that w(y) is allowable in a similar way.

Note that y has minimal kneading word length over all closed orbits τ with
t(τ) = t. Further, by increasing the word length (keeping t(τ) fixed), we can only
increase the number of self crossings c(τ) of τ.

At the branch lines B\,B2, y has t — I crossings, and the full twist C contributes
t(t — 1) self crossings. Thus, c(y) = t2 — 1. Hence for any closed orbit τ with

c(τ) ^ t2 - 1 .

Using the formula
(4.1)

for a closed orbit τ, represented as a positive braid on s(τ) strands (from [BW1],
Theorem 5.2),

β(τ) ^ (l/2)Wτ)2 - 1 - ί(τ) + 1) = ̂ ^ ~ l>

for any closed orbit τ. Equality holds for the closed orbit y. D

We now prove an inequality in the opposite direction. Unlike Lemma 5, we
cannot always conclude that equality holds for some closed orbit.

Lemma 6.
g(τ) g (l/2)(?/ + qr)t(τγ - t(τ) + 1/2

for any closed orbit τ.
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Proof. Let γ denote the closed orbit with kneading word

{ g,\ ί-Tl-1

of trip number t(γ) = t, (since q\ > I or qr > 1).
This time, w(y) may not be allowable as the kneading word of an orbit

of T. However, it is realisable, for example, as a kneading word of the map ξ ι— > 2ξ
(modi). Further, we can always estimate c(γ) directly from w(γ), without relying
on a particular realisation of w(y).

Note that any orbit τ with t(τ) = t with word length greater than that of w(y)
is definitely not allowable by (2.2). As in Lemma 5, decreasing the word length of
w(τ) can only decrease c(τ), (keeping t(τ) fixed). Thus for any closed orbit τ, we
have

f t(τ)(t(τ) - 1 ) + qιt(τf + (qr - 1 >(τ)2 if qr £ q,
c(τ) ^ <

[ f(τ)(f(τ) -!) + (?/-! )ί(τ)2 + ?rf (τ)2 if qr < ?/

and hence by (4.1),

- t(τ) + 1)

/2. D

Our main result for the genus of Lorenz knots is

Theorem 2. Let K = (&/,£/•) E AΓ° ft^ prime. For any Lorenz semiflow with knead-
ing invariant K, there exists a constant λ > 0 such that

e

λ

(4 2)

as m —^ oo.

Proof. Let K = (kι,kr) E KQ be prime. Note that d §; 3, and hence g/ > 1 or

The kneading sequences determined by K define the genus of all closed orbits,
independent of the realisation map T. So we may choose Γ to be a /^-transformation
T = Tβ?α by Proposition 1.

We consider the right-hand inequality in (4.2) first. If g(τ) ^ m, then by
Lemma 5, t(τ)2 — t(τ) ^ 2m, and hence

f(Ό ^ (1/2)(1 + A/1 4- 8m).

Hence by Theorem 1,

*3λ/2
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as m — » oo. Since

we have

*{τ : g(τ) < m}
1 J

.
V2(eλ-l) V™

Similarly, for the left-hand inequality in (4.2), we have by Lemma 6,

#{τ : g(τ) ^ m} ^ ίt{τ : (l/2)(qι + qr)t(τ)
2 - t(τ) + 1/2 ̂  «}

as m —> oo by Theorem 1 again. This proves the right-hand inequality in (4.2). D

For a knot K in S3, let Δ(K) e Z[t,t~l] denote the Alexander polynomial of
AT. We normalise Δ(K) so it is a polynomial in ί and so that the coefficient of tQ

is positive. Let degzl(AΓ) denote the degree of Δ(K).

Corollary 2. Under the hypotheses of Theorem 2, either #{τ : degzl(τ) ^ m} w
infinite for some m ^ 0, or there exists a constant λ > 0 swc/z that

ί{τ : degzl(τ) ^ m} >

oo.

Proof. We use the inequality

degzJ(τ) ^ 2flf(τ)

from [Ro,p. 208], from which it follows that

{τ : 0(τ) ^ m} C {τ : degzJ(τ) ^ 2m} .

The result follows by applying Theorem 2. D

Suppose now that K ̂  K°. First assume that &/ = x. For each m ̂  0 and n ^ 1,
let ym,n be the closed orbit with kneading word

A straightforward calculation shows that t(ym^n) = m + 1 and c(γm>n) = m(m + 2)
for each n ^ 1. Hence, by (4.1), g(ymtn) — (l/2)m(m +1), for each n ^ 1. Thus,
it follows that *{τ : 6(τ) - m} and #{τ : ^(τ) = (l/2)m(m + 1)} are infinite for all
m ^ 0.

Similarly, we obtain the same result when kr = y by considering the closed
orbits with kneading words

w(ym,n) = (χy)mχyn

We summarise these results in the following proposition.
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Proposition 3. If K G K\KQ, then

(i) #{τ : b(τ) = m} is infinite for each m g: 0,
(ii) #{τ : g(τ) = (l/2)m(m + 1)} w infinite for each m ^ 0.

5. Average Genus of Lorenz Knots

For an arbitrary Lorenz semiflow Φt, and each ξ £ Λίc}> define the orbit segment
0(ξ) by

- {Φt(ξ) £HL:Q^t< p(ξ)} .

Define the function G : 7 x / -> {0,1} by

1 if O(ξ) crosses over O(η)

0 otherwise

where crossings are counted with respect to the positive braid representation of HL.
When the Poincare map T is Markov, let F : ΣA x ΣA —> {0,1} be given by

F(u9v) = G(π(u), π ( v ) ) .

Further, let ω = m_^, and let π*ω be the projection of ω to a measure on /
under π.

There is a natural one-to-one correspondence between the closed orbits of Φt

and those of T. Also, if T is Markov, there is a one-to-one correspondence between
closed orbits of T and those of σ : ΣA —> ΣA, (with possibly finitely many orbits
excepted).

Let T be Markov, and let τ, y be generic closed orbits of Φ ί ?σ respectively,
under these correspondences. Define b(y) = b(τ\ g(y) = g(τ) and c(γ) = c(τ). Let
a : ΣA —> R and let Λ,(y) = αw(x), where Λ: G y and σw;c = jc and n > 1 least. Also,
for H : ΣA x ΣA —> R, let ^//(y) = 7/w'n(jc,jc), where we define

m-\n-\

ι=0 y=0

The proof of the following lemma uses ideas from the detailed study of
dynamical zeta functions made in [P5]. (The techniques are also similar to those
in [Wa].)

Lemma 7. For real valued functions a\,a^ G C(ΣA\

as m —» ex), where λ is uniquely determined by P(—λφ) = 0.

Proof First let a\,a^ be Holder continuous. We consider the three variable zeta
function

oo 1

ζ(s,Zl,z2) = exp Σ -
n=l
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which is analytic and non-zero for Re(s) > 1 provided that \z\\, |z2| are small (de-
pending on s). Note that ζ(s,z\,Z2) may be rewritten as

C(j,zι,z2) = expΣ Σ ie
y k=\ *

Let

,, s s
>/o) = 1— Έ— (5.1)

wherever this is well defined.
Using the arguments of [P5], η(s) is simply periodic with least period 2πί/λ,

(i.e. η(s + 2πik/λ) = η(s) for all k G Z), wherever this is well defined. Further, η(s)
is analytic in an open neighbourhood of Re(s) ^ 1 except for simple poles at the
points s = 1 -f ^p for each k G Z, with residue

faidωfa

Thus,

^,/o\ J

Ξo

where ιAι(^) is analytic in an open neighbourhood of Re(s) ^ 1. Using the argument
on [P5, p. 132],

k=2 y

is analytic in an open neighbourhood of Re(^) ^ 1.
From (5.1) and (5.2), we therefore have

(» + ικ^-υ

where ^2 (s) is analytic in an open neighbourhood of Re(s) ^ 1. Hence

Σ
n=o
Σ

is analytic in a neighbourhood of Re(5 ) ^ 1. Thus

exponentially fast as « — > CXD. Consequently,

Σ
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as m —> oo. Noting that

V( Λ + l)eλn

n=0

as m — » ex) proves the lemma when 01,02 are Holder continuous.
When 01,02 are merely assumed to be continuous, we approximate 01,02 by

Holder continuous functions. D

The following lemma is elementary and can be proved by induction.

Lemma 8. If Hjt / : N — > R+ for j = 1,2, 0wJ / = 1, 2, ... ,7V are continuous and
bounded away from zero and H\j(m) ~ H^i(m) as m —> oo, for each /,

0s w — > oo.

Theorem 3. Lei TC = (&/,£r) £ KQ Γ\(Z x Z) be prime. For any Lorenz semiflow
with kneading invariant K, there exist constants λ > 0, C > 0 such that

Σ g(τ)~Cmemλ (5.3)
b(τ}^m

as m — > (X). Explicitly, the constant C is given by

1 /G</(π*coxπ*ω)

2(e*-l) (ffd(π*ω))2 ( ' '
and λ is given by (3.2).

Proof. Let &/,&,. e (Z x Z)ΠAΓ° be prime. Applying Lemma 8 to the formula in
Lemma 7, we have that for continuous functions αi,,,^,/, where i = l,2,...,N,

ΛΛ * Άι S a^dω f a2,idω λ

as m —> ex).
Lβt II * 1 1 oo denote the supremum norm on C(Σ^ x Σ^ R), and for 01,02 E

CίΣ^ R), define (aλ 0 j) G C(ΣA x Σ^ R) by (fll - 02)(^, y) = al(x)a2(y). Let
// G C(ΈA x Σ^ IR) be arbitrary. By the Stone-Weierstrass Theorem, given ε > 0
there exists a number TV G IN and functions 0 ι j / 5 02, / E C(Σ^; R) for / = 1,2, ... ,7V
such that

N

H ~ Σ( f ll,ι ' fl2,ί) < ε . (5.6)

A straightforward approximation argument using (5.5) and (5.6) shows that

as m -^ oo.
Next, we note that F is the characteristic function of a set B C Σ^ x ΈA with

(ω x ω)(dB) — 0. Thus by approximation, we may conclude that (5.7) holds with
F replacing H. Noting that c(γ) = Λp(y), we therefore have

Γ c(y} __ L

b(hm (^-1

as /w — >• oc.
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Using our correspondence between closed orbits of Φt and those of σ, we may
replace (5.8) by

"v" (^-1)

as m —> oo. By Theorem 1,

as m —> oo, for a constant C' > 0.
Thus by (4.1),

Σ / \ I \~~^ /• \ I \~~^a(τ} = - > c(τ) + >y\*/ ^ 1 Z-/ ^ V 1 ' / ' Z_^/

1 fFd(ωxω)

' 2(eλ-\) (fφdω)2 (5'9)

as m —> ex). It remains to note that

fFd(ω x ω) _ / Gd(π*ω x π*ω)

Remarks 3(i). For a Lorenz semiflow with first return map a jβ-transformation Γ^α,
the function G is the characteristic function of the set

(//) Using results on the analytic domain of zeta functions for non-Markov maps of
the interval, it should be possible to prove the corresponding version of Theorem
3.

Corollary 3. Let K = (&/,A;r) G KQ Π (Z x Z) be prime. For any Lorenz semiflow
with kneading invariant K, there is a constant C\ > 0 such that

^ 2C\m as m —> oo .

Proof. Combine Theorem 3 with Theorem 1. D

In the spirit of Corollaries 1 and 2, we can combine estimates involving the
Jones and Alexander polynomials. For example, we have

Corollary 4. Let K G KQ Π (Z x Z) be prime. For any Lorenz semiflow with knead-
ing invariant K, there exists a constant €2 > 0 such that

as m -> oo .

6. Renormalisation of Lorenz Semiflows

In this section, we discuss an example in [P3], to illustrate the effect of renormali-
sation of the flow on the link of Lorenz knots. We consider the centrally symmetric
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Fig. 6.1.

Poincare map

-|) (modi)

We assume that T is Markov, and that β > \/25 (which ensures that T is lo-
cally onto by [Wl], Proposition 1). Let Φt : HL —»H L be the Lorenz semiflow with
Poincare map Γ, and let K denote the (prime) kneading invariant of T.

Next, let Ψt be the Lorenz semiflow with Poincare map

(modi),

with kneading invariant χ. It is immediate that χ is 1-renormalisable, with renormali-
sation K. Our aim is to compare the links of closed orbits of Φt and Ψt.

Let α = 1 - (1/2)^/0, γ = U(l - α) and define intervals, /i,.. . ,/5 by

/i = [0,7], /2 = (y,α), 73 = [α, 1 - α] ,

74 = ( l - α , l - y ) , 75 = [l-α,!].

Also let

and
: 0 ̂

U/3 U/5} ,

7/2 = {Ψt(ξ) :0^t< p(x),ξe h U/4} ,

so that ///, = H\ U//2- The following lemma is a reformulation of results in [P3].

Lemma 10.

(i) ψtHλ = HI for all t ^ 0.

(ii) U I /3 w disjoint from /3, #«*/ t/2/3 = /3. Moreover, if U2 \ /3 w rescaled
to a map I —»/, zϊ w e^wα/ to Γ.

(iii) 77z£ region HI contains a single repelling closed orbit which intersects I
twice. The remaining orbits of points of H^ converge to H\ and are captured in
this region in a finite amount of time.

The lemma is best illustrated by Fig. 6.1. (The region H\ is shaded and the
region H2 is unshaded.)
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The interval /3 contains symmetric asscociates (α, 1/2), (1/2,1 — α) which are
mapped one-to-one onto (1 — 7, 1), (0,y) respectively. Moreover, U maps each of
(0,y), (1 — 7, 1) one-one into /3.

Following the procedure in Sect. 4, we now give a positive braid representation
for the template H\.

By Lemma 10(ii), we take T : I — •» 1 to be the Poincare map on the branch
line of H\. Let J be as in Sect. 3, and let g : / — > / be the characteristic function
of I\J, so g — 1 — /, and define ψ : ΣA — > {0, 1} by ψ(w) = g(π(w)). For a free
knot symbol 7 = (i\9 /2, . - . , *V)> let *'(?) — */ΌΊ ) H ----- 1" *KZV)5

 and extend this to free
knot symbols as in Sect. 3. For a closed orbit τ, with τ Π / = {ξ, Tξ, . . . , Tn~lξ} and
n > 1 least, let f'(τ) = g»(ξ).

Our main observation is that a closed orbit τ of Ψt H\ with t'(τ) = t can be
represented as a positive braid in Bt, and this braid word contains a full twist. This
is evident from Fig. 6.2. We can now prove the following lemma in the same way
as Theorem 1.

Lemma 11. Let u = λ\ denote the unique positive solution to the equation

where the sum is over all free knot symbols 7. Then for the semiflow Ψt \H\, we
have

tt{τ : b(τ) ^ m} ~ (<μ* _ ^-^- as m -, oo .

Proposition 4. Let τ^\τ^ denote generic closed orbits of Φt9Ψt respectively,
in HL. Then there exist constants λo,λ\ > 0 given by (3.2), (6.1) respectively,

Fig. 6.2.
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such that

gλi gλim

295

(eλι — 1) m
as m —> oo, /or z = 0,1

Further, λ\ < AO, and hence

exponentially fast as m —> oo.

Proof. The case / = 0 follows from Theorem 1. For the case / = 1, note that, by
Lemma 10, the closed orbits of Ψt \ HI and ^ | H\ differ by a single closed orbit.
Thus we may apply Lemma 11 to deduce the asymptotic formula given above.

From the lower bound in Proposition 2, λ$ ^ 2/Πogβ. On the other hand,
ψ2 = ψ + \l/ o σ > 0, and thus λ\ ^ 2 log β, as in the proof of the upper bound
in Proposition 2. Since β > 1, we have λ\ < λ$. D

Remark 4. Proposition 4 allows us to conclude that the braid indices of the renor-
malised semiflow Ψ grow more rapidly than those of Φ.

7. The Horseshoe Template

We now apply the techniques developed to analyse Lorenz knots to study the knotted
periodic orbits of the Horeshoe template as illustrated in Fig. 7.1.

The template Hh may be regarded as a different embedding of the abstract Lorenz
template.

We consider Poincare maps Γ : / —» / of the form

(i) T is differentiate for tφc, for some c G (0,1),

(ii) T(ξ) -> 1 as ξ ΐ c, Γ(l) = 0, T(c) = c,

(iii) T'(ξ) ^ β for all ξ e (0,c) and T f ( ξ ) ^ -β for all ξ G (c, 1),

for some β > 1, in which case we write T G Mβ. (For example see Fig. 7.2).

Fig. 7.1.

C P

Fig. 7.2.
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In this case a ^-transformation takes the form

( βξ + α for 0 ^ ξ < β~l(l - α) = c

c forξ = c , (7.1)

β(l-ξ) for c < ξ ^ 1

where 1 < β ^ 2, α ̂  0 and α 4- j8 g 2.
Using rule (2.1), each map T £ Mβ determines a space of kneading sequences

Y CX. Define a map 0 : X -> Λf by writing 0(w) = (θ(w)/)~o» where

if wy = * or j, and the jμ-parity of the first j entries of w is even,

if wj — x or y, and the ^-parity of the first j entries of w is odd,

if wj = 0 ,

and

( y if w;> = x ,
w' = {, *»; = >•

Define an order < on JΓ by writing w < u if θ(w) < θ(τv), where < is the usual
lexicographical ordering. It is straightforward to check that < is the order on X
induced by the natural order on the branch line 7.

The kneading invariant of T,χ = (hι,hr) E K is defined to be the pair (A (O),
k(T(c+)). Let K be the space of such pairs, with metric 7), as in Sect. 2.

For a sequence ξ E 7, a sequence k(ξ) E 7 is Γ-admissable if and only if

hi ^ σmk(ξ)

hr < σmh
"' } if Tm(ξ)<c,

σmk(ξ) ^ yh, J

σmk(ξ) = 0 if r™(0 = c .

For a finite, aperiodic word w, let /?(w) be the number of yy syllables in the
word w, counted cyclically. For a closed orbit τ with kneading word w(τ), let

The kneading invariant χ is called />πrae if the kneading space Y determined
by χ has the property that, for every non-empty cylinder set C C Y, there exists N

such that \fn^σnC=Y.

Proposition 5. Let χ = (hι,hr) G K ΓΊ (Z x Z), α«J suppose that χ is prime. Then
T is realisable by a Markov ^-transformation T G Mβ.

Proof As in the proof of Proposition 1, let L = {σnhι : n ^ 0}, R = {σnhr :
« ^ 0} and set E = L U R U {Ojμ/z/, 0/zr}, which is a finite set with σE = E. Choose
any realisation U of χ. Then since χ is prime, U is locally onto, and hence the
transition matrix A is irreducible. Let e = (e\,e2,...9ev) be the normalised pos-
itive eigenvector corresponding to the maximal positive eigenvalue λ for A. Set
PQ = 09pi = et + et-i H \-e\ for / = l, . . . ,v.
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Choose T to be the /^-transformation

ξ + Pr if ° = ξ<ps

(l-0 if p, <ξί 1 '

where r = min{/: 1 ̂  i g v, Λ(l, ι)ΦO} - 1, and s satisfies k(ps) = Oyh;. D

In view of Proposition 5, we now assume that T = 7βα is locally onto.

Lemma 12. For any closed orbit τ,

g(τ) > (l/2)(/(τ) + r(τ))2 - (7/2)(ί(τ) + r(τ)) .

Moreover, equality holds for some closed orbit τ.

Proof. Let p : / — > IR+ be the first return time map on /. We now give a positive
braid representation of the horseshoe template, analogous to that for the Lorenz
template. This process comprises two stages.

Let p denote the unique fixed point of Γ, explicitly, p — β~l(2β -f α — 1). Let A
denote the closed orbit {Φt(p) : 0 ^ t < p(p)}. Replace A by two parallel copies,
(i.e. perform an "orbit splitting" along A as described in the proof of Theorem 2.1
in [BW2]). See Fig. 7.3 for the result of this operation.

Secondly, let T(c+) = z+, T(c~) = z~ , and cut along the orbit segments joining
z+ to c and z~ to c, (Fig. 7.4). Since z+,z~ do not lie on periodic orbits, this
operation leaves the link of periodic orbits invariant.

Rearranging Fig. 7.4 gives Fig. 7.5, and hence Fig. 7.6. _
Consider the closed orbit with kneading word w(y) = (xy)tyr, which satisfies

t(y) — t, and r(γ) = r. As in Lemma 5, one can show w(y) is allowable. Also, c(γ)
minimises c(τ) over all closed orbits τ with t(τ) = t, and r(τ) = r. (Any other orbit
τ with the property t(τ) — t and r(τ) = r must have greater word length, and hence
more self crossings.)

A straightforward calculation gives

c(γ) ^t(t- ( l / 2 ) t ( t - 1) + tr

by counting crossings at Cι,C2,C3,C4 and BΊ respectively,

^ (3/2 )t2 + 2tr + (1/2 >2 - (3/2)r - (5/2)ί .

Fig. 7.3.
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Fig. 7.4.

Fig. 7.5. Fig. 7.6.

Thus for any closed orbit τ,

c(τ) ^ (τ)2 + 2ί(τ)r(τ) + (l/2)r(τ)2 - (3/2)r(τ) - (5/2)f(τ)
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Since Fig. 7.6 gives a positive braid representation of each closed orbit τ of Φt, on
t ( τ ) - \ - r ( τ ) strands, we have by (4.1),

g(τ) ^

- (3/2)r(τ) - (5/2)f(τ) - ί(τ) - r(τ) + 1)

+ r(τ))2 - (7/2)(ί(τ) + r(τ)) . D

We now prove an inequality in the opposite direction. We assume that q\ > 1,
which ensures that Γ(0) < c.

Lemma 13. For αrcy closed orbit τ,

fif(τ) ^ «τ)2/4)(r(τ)2 + 3r(τ) + 29/ - 1) - (l/4)r(τ)f(τ)

-(3/2)ί(τ)-(l/2)r(τ)

Proof. Given r, ί, set r' = nt, where w = [r/f ] + 1 . Let y denote the closed orbit
with kneading word

with t(τ) = t, and r(y) = r' ^ r.
If w(y) is not admissable then we can apply the same trick as in Lemma 6. To

maximise c(y\ we "equidistribute" the jμ's amongst the c's in the kneading word
w(y). Then c(y) forms an upper bound for c(τ) amongst all closed orbits τ with
f(τ) = t and r(τ) = r.

The full twist Q contributes t(t — 1) crossings to c(y), there are at most
(qι — l)t2 crossings at B\, at most (l/2)rt2 crossings at B2, at most (l/2)rt(rt — 1)
crossings at C2,(l/2)ί(ί — 1) crossings at C3 and at most t2r crossings at C4.

Thus

φ) ^ (qι - \)t2 + (l/2)rί2 + (l/2)rf(rf - 1) + (l/2)ί(ί - 1) + t2r

= t2((l/2)r2 + (3/2)r + qι- (1/2)) - (l/2)rt -

Since a closed orbit with ί(τ) = t and r(τ) = r is a positive braid on t + r strands,
we have by (4.1) that

^ «τ)2/4)(r(τ)2 + 3r(τ) + 2gι - 1) - (l/4)r(τ)ί(τ)

-(3/2)ί(τ)-(l/2)r(τ) + (l/2)

for any closed orbit τ. D

Lemma 14. There exists a unique positive real number δ such that

if {τ: t(τ) + r(τ) ^ m] ~ —δ - — - as m -> oc . (7.2)
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Proof. We proceed in a similar manner to Lemma 4 and Proposition 1. Define
/ : 7 -> {0,1} by f ( ξ ) = l/lU/2, where

It is not hard to see that fN ^ 1 for TV ^ #/. Also, fn(ξ) = r(τ) + f(τ) whenever
ξ £ / has least period « under Γ. Let A be the irreducible transition matrix given
in the proof of Proposition 5. Let φ : ΣA — > {0, 1} be defined by φ(w) = /(π(w)).
Then we may apply the main theorem in [P2] to deduce (7.2), where δ > 0 is
defined uniquely by P(— δφ) = 0. D

Theorem 4. Let χ = (hι,hr) £ K Γ\(Z x Z) be prime and suppose qι > 1. For any
Horseshoe semiflow with kneading invariant χ, there exists a constant δ > 0 such
that

δ δtyύ e(9/2)δ

τ: 9(τ) = m}<< (73)

oo.

/ Using Proposition 5, we can choose the realisation T to be Markov and a
^-transformation, T = TβfOL.

To prove the right-hand side of the inequality in (7.3), note that by Lemma 12,

^ m} ^ S{τ: (l/2)(ί(τ) 4- r(τ))2 - (7/2)(f(τ) + r(Ό) ^

:{τ:^) + φ)^ 7 + Vf^}= ί F < τ :
(eδ- l)\/2

as m — *• oo, by Lemma 14.
To prove the left-hand inequality in (7.3), observe that since t(τ) and r(τ) are

non-negative, if t(τ) + r(τ) ^ A: then ί(τ) ^ k and r(τ) ^ A:. Hence by Lemma 13,

(3/4)A:3 + (l/2)(q, -I)k2~2k + (1/2) .

- D + v/d/4)(g; - D 2 +6

as m —> ex), by Lemma 14. D
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This section is a more informal discussion in which we indicate how the results in
Sect. 4 for the Lorenz template HL can be applied to analyse the knotted periodic
orbits of a more complicated flow. We consider the "figure of eight template" //8>
which was extensively studied in [BW2], and is illustrated in Fig. 8.1. Let Φt denote
a semiflow on //g, with Poincare map T along the branch line / = I\ U/2 U/3 U/4.
(As usual / = [0,1].) A typical example of a Poincare map T is given in Fig. 8.2.
For simplicity, we always assume that T is piecewise linear, and that \T'\ > 1.

Let (α/_ι,fl/), for 1 :g i 5Ξ 8, denote the intervals on which T is continuous,
and let β = T'(ξ) for any ξ G (α/_ι,f l i)

Let B = U^o T~n{ciQ,.. .,flg}, which is at most a countably infinite set.
For ξ e!\B, define

and let kt(ξ) = k0(Γξ). Then let

Στ = {k(ξ) = (ki(ξ))^: ξ e /} c X =
«=o

(8.1)

As usual, there is a shift operator σ : Στ —> Στ defined by (σw)n — ww+ι, such
that k(Tξ) = σk(ξ).

Define an order ^ on X as follows. First define

1 if βt > 0

-1 if βf < 0 .

Extend this to finite sequences by

Given w,u eX with w φ M, choose m such that wm φ ww but wy = wy for j < m. Let
w ^ w if

(um - - wm) > 0 ,

Fig. 8.1.
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Fig. 8.2.

(taking 0(0) = 1 when m = 0). This order is then the order on X induced by the
natural order of the branch line /.

It is well known that the limits

u(ί} = lim k(ξ) and u(/) = lim k(ξ)

exist, (for 1 ^ / ^ 8), and that ι/(/),ι;(0 E Στ. (See for example [Bo, p. 37]). These
sequences will be called kneading parameters. Further, Στ can be expressed as

Στ = X: if w/ = */, for all Jt ^ 0} .

asWe define a new template K with semiflow Ψt and Poincare map S : J
illustrated in Fig. 8.3 and Fig. 8.4.

We outline the proof of the following lemma.

Lemma 15. For a suitable choice of Poincare map S, the link of periodic orbits
of Ψt on K is isotopic to a sublink of the periodic orbits of Φt on H%.

Proof. We describe a sequence of operations which convert //8 to K.
Modify T\(dQ9d\) so that it maps (dQ9d\) linearly into (a$9aη) with slope βl9 to

give a new Poincare map T. We delete the redundant part of the template H%. Let

w ( 1 ) = l i m k f ( ξ ) and #(1) = l i m k f ( ξ )

be the new kneading parameters. Since βλ > 0,

and hence

Thus from (8.1), we have Σf c Σ?.
We now repeat this operation on the pairs of intervals (a^aη) and (α5,Γ(α^)),

(#2,^3) and (^4,05), (04,^5) and (aη9a%)9 to obtain the template K' illustrated in
Fig. 8.5, together with the kneading space Σ C Στ.
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Fig. 8.3.

b2 b3

Fig. 8.4.

It is easy to see that the template K' can be isotoped to the template K. Since
all Poincare maps were chosen to be piecewise linear, the Poincare map on I\ U h
takes the form illustrated in Fig. 8.4. (Note that it may not be possible to ensure
that \S'\ > 1.)

Finally, since the kneading sequences, together with the ordering determine the
links of periodic orbits on K' and H%9 it follows from Σ C Στ that the link of
periodic orbits on K' is isotopic to a sublink of the periodic orbits on //8. Π

Let βl9 j37,/?3,/?5 denote the slopes of the modified Poincare map on the intervals
(ao9a\)9(a^aj)9(a29a^)9 and (α4,α5) respectively, as in the proof of Lemma 15. To

ensure that \S' > 1, it is sufficient to suppose that \βλβΊββ\ > 1 and \β3β5β^\ > 1.
We shall always assume this.

The standard Lorenz attractor HL or left handed Lorenz attractor, is as illustrated
in Fig. 1.1. A right-handed Lorenz attractor H'L is defined to be the mirror image of
a left-handed Lorenz attractor, (i.e. the jμ-arm crosses over the .x-arm at the branch
line /).

Lemma 16. The set of periodic orbits of Ψt on K contains the composite of
an arbitrary left-handed with an arbitrary right-handed Lorenz knot, (the left-
handed (respectively right-handed) Lorenz attractor having kneading invariant κ\
(respectively

Proof. We observe that the proof of Proposition 6.1 in [BW2], which concerned a
specific choice of S9 can be applied to arbitrary Poincare maps S. D

We call the pair of (left- and right-handed) Lorenz templates constructed in
Lemma 16 the Lorenz components of (H^Φt).

From now on, let po(H%,Φt) denote the link of all periodic orbits of the semi-
flow Φt on 7/8 We use a similar notation for the other templates. Let (p\\ >(p2}t
be semiflows on HL,H'L with their respective kneading invariants κ\9K2.

Theorem 5. Suppose that the kneading invariants κ\,κ2 given in Lemma 15 are
prime and satisfy κ\9K2 G Kg. Then there exist positive constants M,N such that

^ m}
(8.2)
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Fig. 8.5.

where τ denotes a generic closed orbit of Φt. (Explicitly,

M =

and

where λi9di are the constants associated to the Lorenz components of (H^Φt\
with kneading invariants κί9 by Theorem 2.)

Proof. By Lemma 15, there is a sublink L C po(K, Ψt) such that L consists precisely
of all sums τ\ 4- t2» where τ\ E po(Hι9(p\)t) and 12 G po(H'L,(p2)t\ Since each
right-handed Lorenz attractor is the mirror image of a left-handed Lorenz attractor,
and a knot and its mirror image have the same genus, Theorem 2 holds for right-
handed Lorenz attractors. Also, note that if τ = τ\ -f- 12 then g ( τ ) — g(τ\) +

*{τ 6 po(Hs,Φt): g ( τ ) ^ m} ̂  ${τ e

by Lemma 15,

^ *{τ e po(K, Ψt): τ = τi + τ2, TI e

τ2 € po(H'L,(p2)t\ β(τ\ +τ2) ̂
by Lemma 16,

): τ = τ, + τ2,

τ2

po(HL,(p,\\

£ m}

€ Po(HL,(pγ)ty. 0(τι) ^ (1/2 )

e po(H'L,(p2),} : g(τ2) ί

Applying Theorem 2 to (8.3) gives (8.2). D

(8.3)
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