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Abstract: Pairs stf c $ of local quantum field theories are studied, where stf is a
chiral conformal quantum field theory and J* is a local extension, either chiral or
two-dimensional. The local correlation functions of fields from $ have an expansion
with respect to s$ into conformal blocks, which are non-local in general. Two
methods of computing characteristic invariant ratios of structure constants in these
expansions are compared: (a) by constructing the monodromy representation of the
braid group in the space of solutions of the Knizhnik-Zamolodchikov differential
equation, and (b) by an analysis of the local sub factors associated with the extension
with methods from operator algebra (Jones theory) and algebraic quantum field
theory. Both approaches apply also to the reverse problem: the characterization and
(in principle) classification of local extensions of a given theory.

1. Introduction

The relevance of V. Jones' theory of (von Neumann) subfactors [1] for 2-
dimensional (2D) models of critical behaviour was first recognized in the work
of V. Pasquier on lattice models labelled by Dynkin diagrams [2]. A spectacular
by-product of this realization was the ensuing ADE classification of su(2) current
algebra models and minimal conformal theories [3]. The above parallel was un-
derstood within the Haag-Kastler algebraic approach to local quantum field theory
[4] in terms of the Doplicher-Haag-Roberts (DHR) theory of superselection sectors
and particle statistics [5] applied to chiral algebras [6,7], and provided an explana-
tion for the Jones index as a measure for the violation of Haag duality (maximality
of local observables) in a given representation, and relating it numerically to the
statistical dimension [8].

In the cited work on subfactors in quantum field theory, the emphasis for the use
of the theory of subfactors was its application to individual superselection sectors of
a given local theory, and the derivation of invariant "charge quantum numbers" such
as statistical dimensions and Markov traces. In contrast, here we shall consider a
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pair of local theories, one extending the other, as a sub factor (actually, a net of local
subfactors) and apply the properly adapted Jones theory to describe the "position"
of the subtheory in the ambient theory. This point of view opens the way to a
detailed understanding of the behaviour of superselection sectors when one passes
from one theory to the other by a generalized Mackey induction and restriction
prescription [9].

In particular, given that the position of a subtheory in another theory is encoded
and characterized by a subfactor, then subfactor theoretical methods can be applied
to conformal models and their local extensions, and must give detailed answers
comparable with the ADE classification and related results obtained by conventional
methods of conformal quantum field theory.

The present article is a comparative study of conventional field theoretical meth-
ods on the one hand and the theory of subfactors on the other hand in application
to the same problem: local extensions of local quantum field theories. A local ex-
tension is determined by the correlation functions of the extending fields. In chiral
current algebra models of conformal field theory, the extending fields necessar-
ily correspond to primary fields of the original theory with bosonic, i.e., integer
conformal dimension A. Their 4-point functions are linear (for chiral extensions)
or bilinear (for 2D extensions) combinations of conformal block functions which
are monodromy-free in spite of the non-trivial braid group transformation of the
individual conformal blocks. Moreover, unlike the chiral vertex operators of the un-
extended theory whose fusion rules coincide with the intrinsic composition law of
superselection charges provided by the DHR theory, the extending local fields must
satisfy truncated fusion rules which involve only other bosonic fields, and which
are therefore only majorized by the DHR fusion.

The truncated fusion rules and the ratios of structure constants (amplitudes of
conformal block functions) in the said combinations are characteristic quantities for
a pair of a chiral current algebra and its extension. They are computed by both
methods. In the first part of the article (Sects. 2 and 3), we study the monodromy
behaviour of the solutions of the Knizhnik-Zamolodchikov (KZ) equation and com-
pute the braid invariant quadratic forms which determine the local 4-point functions
of the two-dimensional extensions. Apart from the generic two-dimensional exten-
sion (corresponding to the A series of the ADE classification), and the chiral D
series extensions which correspond to a global 7L2 symmetry, we concentrate on
the exceptional chiral E& and E% extensions of su(2) current algebras. We compute
explicitly the relative amplitudes of the A and E theories, which turn out to be
rational numbers. In the second part (Sects. 4 and 5), we study the position of the
operator algebra of the subtheory within the ambient theory in terms of the theory
of subfactors. Remarkably, the relevant information already resides in a single pair
of local von Neumann algebras. We analyze which quantities in the general theory of
subfactors, when applied to a given local field extension, contain the desired infor-
mation about the truncated fusion rules and the relevant ratios of structure constants.
We describe how to compute these data in terms of the subtheory (interpreted as
the physical observables) and its superselection structure.

While the first method will be easier to use in specific models and as long as
one is interested only in 4-point functions, the second method is part of a general
theory of local field extensions, confined neither to two dimensions nor to conformal
quantum field theories. It covers also the standard situation of four-dimensional
theories with a compact gauge group where one is interested in the subtheory of
gauge invariant quantities. (In this latter case, the method essentially reduces to
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harmonic analysis and partial wave expansions based on the representation theory
and Clebsch-Gordan coefficients of the gauge group.) It has the advantage to treat
all «-ρoint functions at one stroke. However, in practice it requires to solve in
a first step a complicated non-linear system for the "generalized Clebsch-Gordan
coefficients," which we have carried out only for the simplest model of a field
extension which is not due to a gauge group.

The local extensions of chiral su(2) current algebras studied in Sects. 2 and 3
are distinguished to have the same stress-energy tensor as the original theory, the
stress-energy tensor implicitly entering the analysis through the KZ equations. If
the extending fields are currents of dimension A = 1, this condition means that the
extension is a "conformal embedding" [12]. On the other hand, in Sects. 4 and 5,
we assume the index of the inclusion to be finite. Indeed, for pairs of chiral current
algebras, these two selection criteria are equivalent. Namely, both the finiteness of
the index and the triviality of the coset stress-energy tensor are equivalent to the
finiteness of the branching of the vacuum representation of the ambient theory upon
restriction to the subtheory.

Let now j/ C & be a conformal embedding [12] of two chiral quantum field
theories like the current algebras J&\Q(A\) C ^\(B2\ where A\ — su(2) and #2 =
spin(5) ~ sp(4) refer to the Lie algebras underlying the current algebras, and the
subscripts refer to the level 10 resp. 1 of the central extension. The embedding gives

rise to a pair of braid-invariant quadratic forms M and M in the space of 4-point
conformal blocks of the subtheory ja/ with four given external quantum numbers
(superselection charges) such as isospins / ^ k/2 for j/ = s$k(A\). The quadratic
forms serve to express 2D correlation functions in terms of chiral conformal blocks,
and turn out to completely characterize the model. The form M corresponds to
the "diagonal" WZNW theory [13] over j/, i.e., to the Ak+\ theory in the ADE

classification of su(2) current algebra models at level k [3]. The eigenvalues Dλ'
of M, in the case of 4 equal external isospins /, are the squares of the structure
constants

Dfn=Nfίλ (λ = OΛ . ,min(2U-27) = >»*/) (1.1)

for the ^-channel fusion of two of the isospin / charges into isospin λ intermediate
states. We recall that for 47 > k, the subspace of 4-point blocks with λ > πiki cor-
responds to "unphysical" correlations which violate positivity. Only the "physical"

blocks contribute to M and M.
The form M corresponds to the diagonal theory over the ambient chiral theory

.̂ Since the local fields of the latter are in general non-diagonal with respect to

j/, the form M is a non-diagonal matrix in the ^-channel basis of conformal block
functions which diagonalizes M. The ratios of the diagonal elements of the form

M to the corresponding eigenvalues (1.1) of M are invariant under rescaling of
the 4-point blocks and thus provide a basis-independent characteristics of the non-

diagonal theory associated with the form M. Such ratios were already considered
in the above-mentioned pioneer work by Pasquier [2], and have later been com-
puted for specific conformal embeddings [14]. We shall provide in Sect. 3 below
an independent computation using previous work on monodromy representations of
the braid group [15,16].

Let us turn to the subfactor point of view. As we shall see, one can characterize
a local field extension 3$ of a given theory j/ in terms of a triple (ρ, W,X). Here ρ
is a localized endomorphism of j/ equivalent to a reducible representation π of j/
(the restriction of the vacuum representation of ^), W is an isometric observable
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(i.e., W*W = 1) such that E = WW* projects onto the vacuum representation π0

of J2/ contained in π, and X is a second isometric observable satisfying a system
of identities with W, involving ρ, which guarantees the possibility to recover the
local extension from these data. The field net & is generated by the observable
net stf and one isometric "charged" operator on the Hubert space of π. It contains
fields which create the states in the non-trivial subsectors of π from the vacuum.
The operator X may be considered as a generating functional for all the relevant
"generalized Clebsch-Gordan coefficients" associated with the inclusion. The math-
ematical concept behind this notion is a "harmonic analysis" for subfactors, which
generalizes the ordinary harmonic analysis in the case of a compact gauge symme-
try. The coefficients determine both the truncated operator product expansions and
the amplitudes in the "partial wave" decomposition of correlation functions of local
charged fields. The partial waves due to the subfactor harmonic analysis of charged
fields will be identified with the conformal blocks in chiral current algebra models,
and the Clebsch-Gordan coefficients coincide with the structure constants entering
the quadratic forms as discussed before.

It is important to note that also in this general context, there is always a "stan-
dard" extension (corresponding to the generic braid-invariant quadratic form M in
the case of chiral current algebras) which can be used to fix the normalizations, i.e.,
to absorb the uncontrolled kinematical model characteristics, by computing invariant
double ratios of amplitudes.

Our article is organized as follows. We review in Sect. 2 the monodromy rep-
resentation of the mapping class group 534 of the 2-sphere with 4 punctures in the
space of solutions of the KZ equation, and write down the generic braid invariant
form corresponding to the A series in the ADE classification. In Sect. 3, the explicit
computations are done for two models of special interest, the EQVQn series conformal
embeddings labelled E& and E%.

In Sect. 4, we turn to the theory of subfactors (of finite index) and introduce
some of the basic concepts which are of particular relevance for the application
to (local) field extensions. In Sect. 5, the connection with chiral vertex operators
is established, and the general method to compute relative structure constants in
terms of subfactors is presented. The method is then applied to the Eβ inclusion
and reproduces the results obtained in Sect. 3.

The two parts consisting of Sects. 2,3 and Sects. 4,5, respectively, are to a large
extent independent of each other. The reader may start with either part according
to personal preference. Our point is the comparison of the conceptually different
guises under which the same objects and quantities arise in the two approaches.

2. Braid Invariant Positive Forms in the Space of Solutions of the KZ Equation

We study the 21 + 1 -dimensional space of solutions to the KZ differential equation
[18] for the Mόbius invariant 4-point functions

W(z1,z2,z3,z4) = f(η) , (2.1)
\Zi2Z34Zi4Z23

where ztj are coordinate differences, η is the invariant cross ratio

Z12Z34
- ,
Zι3Z24

/-> o\(2.2)
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and A is the conformal dimension associated with the isospin /:

Δ = Δ! = I( (27 = 0,1,...,*); (2.3)

the functions w (and /) are Sf/(2)-invariant tensors in the tensor product of four
representations i^t of SU(2) with isospin I(i = 1,...,4). The KZ equation reads in
terms of the reduced functions /

0, (2.4)
dη η l-η

where C;/ are the SU(2) Casimir invariants in f 7 ® f y . The solutions to the KZ
equations are referred to as 4-point (conformal) blocks.

The quantum field theoretical background for this set-up can be summarized as
follows. One starts with the algebra of chiral observables j^4 = s#k(A\) generated by
the su(2) current algebra with the central extension of level k. This algebra contains
the chiral affme-Sugawara stress-energy tensor. The primary chiral vertex operators
Vj [17] which intertwine the vacuum sector with the superselection sector of charge
1 (— positive-energy representation of j?4 with lowest energy eigenstates of isospin
/) are assumed to have homogeneous local commutation relations with the currents
("local gauge covariance") and with the stress-energy tensor ("reparametrization co-
variance"). These assumptions imply that the 4-point correlation functions of chiral
vertex operators satisfy the KZ equation [18], as well as the relation (2.3) between
isospin and conformal (scaling) dimension. The 4-point correlation functions of 2D
local conformal fields are then given as braid-invariant bilinear combinations of
chiral conformal blocks, to be studied in Sect. 2B.

2 A. The Mapping Class Group and its Monodromy Representations. The 27 +
1- dimensional space of all 4-point solutions of the KZ equation (2.4) carries a
(projective) representation of the mapping class group $4 of the 2-sphere with 4
punctures. We first construct this representation, into which the level k enters only
via the complex phase

(2.5)

Unless k is a positive integer, this space of solutions violates the positivity of
correlation functions, and the representation of $4 is not unitarizable. Yet, it is
computationally advantageous to deal with generic q in a first step. At a given
level k £ N, positivity is still violated for 47 > k, and one has therefore, in a
second step, to restrict to the (πiki + 1 )-dimensional invariant "physical" subspace

spanned by the ^-channel blocks s^ with λ in the range of (1.1).
The (projectively represented) mapping class group 334 can be identified as the

braid group of 4 strands on the sphere with generators Bh i = 1,2,3, such that

B,B3 = B3Bl9 BtBt+lBi = Bi+lBtBl+l (i = 1,2) , (2.6)

BλB2B\B2Bλ = B3B2B
2

1B2B3 = q~4I(I+^ , (2.7)

satisfying the additional relation

(8,828, )4 = 0-8/<'+1>. (2.8)
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(In the standard definition of 334, the relations (2.7) and (2.8) are assumed to hold
with q=\\ here we are dealing with a projective representation, or equivalently,
with a central extension of the mapping class group.) It can be proven, using only
the above relations, that the monodromy operators B\ and B\ are equal. It then
follows from (2.7) that the "fusion" matrix F has square 1:

B}B2B{ = B2BλB2 =: (-l)2/<?~2/(/+1)F, F2 = I . (2.9)

F plays the role of a 6j symbol (in general, for 4-point blocks of different isospins

//, its matrix elements require 6 isospin labels Fλμ = ̂ 1

μ

/2/3/4).
An analysis of the solutions of the KZ equation shows that (in the case at hand

with four equal isospins /), actually the generators B\ and #3 coincide:

B} =B3. (2.10)

Moreover, there exists a basis of solutions [15] for which the fusion matrix has
only non-zero elements on the second diagonal,

Fλμ = δλ+μt2i μ,μ = 0,l,.. .,2/), (2.11)

while B\ is upper triangular:

Here, [^] are the (real) g -binomial coefficients vanishing for n < m and otherwise
given by

m\ [m]\[n-m\\'

= <

(2.13)

We are using a non-unitary basis (even for 47 5Ξ k when B\ is unitarizable) which
has the following advantages:

(i) it exhibits no singularities for 47 ^ k + 2 (21 ^ k, q given by (2.5));
(ii) the entries of the braid matrices and of the invariant forms are elements of

the cyclotomic field Q(#1/2) (or Q(#) for integer /; qk+2 = -1).

We anticipate here, that the ratios of structure constants we are finally interested
in (Eqs. (3.8), (3.9), and (3.15) below) turn out rational and are therefore invariant
under Galois automorphisms q \-+ qn (n and 2k + 4 coprime) of this field.

The second generator, B2, of $4 is a conjugate to B\ by F:

B2 := FBλF (Bι = FB2F) , (2.15)

and appears as a lower triangular matrix.
It is noteworthy that this monodromy representation of 954 can in fact be derived

without a detailed study of the solutions of the KZ equations. Indeed, the eigenvalues
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of B\ are already read off the 3-point block functions, which are just powers of the
coordinate differences. In a basis in which the fusion matrix F has the form (2.11)
and B\ is upper triangular, the non-diagonal entries of B\ and the matrix B^ are
determined by (2.9) up to a rescaling of the basis. As it was already noted, the
ratios of interest will turn out to be invariant under such a rescaling, too.

2B. The Generic 334 Invariant Symmetric Form. The local 4-point function of the
two-dimensional theory is defined by a hermitian braid invariant form M in the
space of 4-point blocks:

fμ with M+ = M = B+MB (£e93 4 ), (2 16)

where an appropriate power of the coordinate differences has been split off as in
(2.1), and / resp. / depend only on the conformally invariant cross ratios (2.2) of
coordinate differences on the left- resp. right-moving light-cone. (For further details
on the choice of basis /;t see [15].)

The above non-unitary realization of BI has the advantage that the inverse gen-
erators are just given by the complex conjugate matrices

B~l =Bj since q = q~l . (2.17)

The same is trivially true for F.
We are thus looking for a real symmetric form M = (Mχμ) = 1M satisfying the

braid invariance condition

( / = 1 , 2 ) . (2.18)

Proposition 2.1 [16]. For every </Φθ there exists a dίagonalίzable 234 invariant
symmetric form in the space of 4-point solutions of the KZ equation with four
iso spins /,

M = 'SDS, where Dλμ = Dλδλμ . (2.19)

At the values q = e~£+i (k £ N), the diagonal matrix D has m^i + 1 non-zero
elements (with m/d given by (1.1)):

If 41 > k, then D, vanish for m^i < λ rg 27. The transformation matrix S is a
real upper triangular matrix with elements

and Sλμ = δλμ for λ > mkl.

Sketch of a Proof. We consider the similarity transformation

:=SBS~l . (2.22)
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The specific block form S — ( ^ \ j -where Σ is given by S in (2.21) and the

rectangular block Σ' is only present when 47 > k - implies the block form of the

inverse matrix S~l = (Σ

Q ~Γ

n

 Σ J with

The transformation (2.22) brings B\ in a reduced form for 47 > k and diagonalizes
it for 47 ^ k; in both cases '

(B\s))λμ = fc/I(-l)2'-y(i+1)-2/(/+1) for λ,μ rg mk! . (2.24)

In particular, the basis s^ = Sχμfμ of conformal blocks has definite B\ monodromy
on the physical subspace 0 ^ λ ^ #u/. (For this reason we call sχ the s-channel
basis.)

It follows that B* commutes with D and hence (2.18) holds for / = 1. Verifi-
cation of invariance of M with respect to B2 or F requires more work. One could
either use the explicit form of M:

(-l)λ+μ[λ]l[μ]\ [27 + v+l]! 2 [27-v]! 2 [2v+l]
λμ

[21 - λ]\[2I - μ]\[2I + I]!2 ~0 [λ + v+ l]\[μ + v + l]\[λ - v]\[μ - v]!

(2.25)

or transform F to the s-channel basis (F \—> F^ = SFS~l) - see below.

Remarks. t> An expression of the type (2.19), (2.25) for the invariant form was
first derived in [16, Sect. 6] using quantum group techniques. The present formulae
differ slightly because of a different normalization of the basis. They are related by

[21 + l]2Mλμ = I"2/"] [^"1 Zλμ. Such a change of basis does not affect the ratios of

structure constants to be computed below.
> The proposition explicitly provides the transition matrix to the ^-channel

basis, from which, together with the spectrum (2.24) of the braid matrix, all the
basis-independent quantities of interest in the sequel will be obtained by direct
computations.

The braid invariant 2D 4-point function now assumes a diagonal form in the
physical ^--channel basis of conformal blocks sχ with λ ^ ra^/,

mkl

G4 = ΣDγnsλsλ. (2.26)
λ=Q

Summing up we see that, at the quantized values (2.5) of q, and more generally
for any q such that qk+2 = — 1, the (21 + 1 )-dimensional representation 334 of the
mapping class group is reducible when 47 > k. It is also non-unitarizable, the gen-
erators Bi being not diagonalizable (for 47 ^ k + 2). It is the kernel of the form
M that carries a non-unitary factor representation. The (πiki + 1 )-dimensional sub-

representation 93^' preserves a non-degenerate positive form (2.26) and is hence
unitarizable. The resulting (mki + 1 )-dimensional representation may, in general, still
be reducible. As we shall see in Sect. 3A, this fact is responsible for the possible
existence of non-diagonal local extensions.
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The ^-channel reflection matrix F^ (which is related to the exchange of the
factors 1 and 3 in (2.16) and which, for four generic isospins, encodes the entire
fusion information of the model) is, not surprisingly, considerably more complicated
than the original expression (2.11). We have computed it from

F(s} = SFS~} = SU~l = US~l

in terms of the above ^-channel transition matrix S which diagonalizes B\, and the
w-channel transition matrix U = SF which diagonalizes B2:

[2λ+lV[2I-λ]\

giving

F(S) [μ]\[2λ+l]\[2I-λγ. if.
;" [λ]}[2μ]\[2I - μ]l v=0 [v]!

(-02'-;

2[μ - v]![27
.+,^4

- A -

• v]![27 - v]!2

v]![2/ + A - v H-1]! ' '

We note that, even if we use expressions (2.21) and (2.23) beyond the range of their
validity (i.e., for μ > πiki when 47 > k) where some of the entries of the transition
matrix S and S~l are ill-defined at the value (2.5) of q, the F matrix (2.27) is
finite in the physical range 0 ^ λ,μ ^ m^/. Moreover, the restricted (πiki + l)x

(mkι + 1) matrices B\s\ F(s\ and

still satisfy the relations (2.6)-(2.10). This is a non-trivial statement for 47 > k.
The braid invariance of the two-dimensional Green's function (2.26) implies the

relation
F(*}D(kJ} = D(kJ}F(s) (2.29)

with the positive eigenvalues D of the form M given by (2.20). Hence on the one
hand, the s-channel F matrix is symmetrizable, and on the other hand, the ratios of
amplitudes for the diagonal extension are given by

N2 7> F(ί?
λ — λ μλ n i(\\- <130)

3. Ratios of Structure Constants for the £5 and the E% Models

The braid-invariant 4-point functions (2.16), (2.26) give the monodromy free Green's
functions for the 2D local extensions of the chiral su(2) current algebras j^ cor-
responding to the Ak+\ series in the ΛDE classification.

There exists an infinite set of chiral extensions of the su(2) current algebras for
level k a multiple of 4, corresponding to the D2n series (In = k/2 + 2). In these
models, the chiral algebras are extended by an j^4-primary simple current: a Bose
field of isospin and conformal dimension

"ϊ md ^' = TΪ;Γ = ϊ £ N - "•"
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The inclusion of the (nets of) algebras ja4 in the resulting field algebras are well
understood: it is of the DHR type [5,19] with a global Z2 gauge group which
singles out the "observables" ^4 as the gauge invariant elements of the ambient
theory [20] (for a recent review and further references see [21]).

Here we shall deal with the more interesting exceptional extensions correspond-
ing to conformal embeddings [12]. These are not of the DHR type, i.e., the j^4
subalgebras are not the gauge invariants with respect to some global gauge group.

3A. Pairs of Braid Invariant Quadratic Forms for Exceptional Embeddings. There
are just two non-trivial chiral extensions of s&k(A\) corresponding to the conformal
embeddings

ι ) C ^

• C &

where the labels E6 and £8 refer to the E series of the ADE classification [3]. The
superselection structure of the observables in the "diagonal" representation space of
the respective field extensions is encoded in the exceptional partition functions

: I X i +X7| 2 + |X4 + X8|2 + |X5 + X n | 2 , (3.2a)

• Xn + X i 9 + X29|2 + |X7 + Xn + Xπ + X23^ , (3.2b)

where the subscripts on the modular characters χ stand for the dimensions, 27+1,
of the SU(2) representations labelling the superselection sectors of ̂ k. Every term
in these sums corresponds to a superselection sector of the extended chiral current
algebra ,̂ and every sum of modular characters appearing in each term determines
the branching of the corresponding sector upon restriction to sί^ m particular, the
first term added to the vacuum character χ\ in (3.2) corresponds to A/ = 1 sector
of s#k generated by the ̂  currents orthogonal to the stf^ currents. These are the
(7 component) 7 = 3 primary fields for the J&\Q theory in the E^ case, and the (11
component) 7 = 5 primary fields for the j/28 theory in the E% case.

The fact that an j/^-primary field φj (with integer dimension zl/) is a lo-
cal Bose field in the extended ^ theory means that, in particular, there exists a
braid-invariant linear combination of 4-point blocks of the associated chiral vertex
operators. Namely, the commutation of two fields φ/ corresponds to a monodromy
operation on the conformal block functions. In other words, the representation 58 4'
must be reducible and have an invariant subspace of joint eigenvectors of Bt with
eigenvalue 1.

In the s-channel basis of Eq. (2.26), these eigenfunctions are combinations of
the form

, (3-3a)

(k = 28) : 45> + A>s45) + A»45> ' (3 3b)

where Dχμ = 7)^7) depend on the model, and 7)0o = 1 is chosen as a normalization.
Two-dimensional correlation functions then result as products of two chiral functions
(3.3), one for either chiral light-cone. They are thus bilinear in (s^sμ) corresponding

to a non-diagonal version of (2.26) with D replaced by Z), where

Dλμ = DQλDoμ = Dμλ . (3.4)
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The expressions (3.3) are 33^' -invariant. #ι-invariance is automatic since all s-

channel functions S; contributing to (3.3) correspond to the same B\ eigenvalue

1 (= -g*+2), and it excludes by the same argument all other s-channel contributions
with λ different from 0 or 3 (E&) resp. 0,5,9 or 14 (£g). The non-zero elements

of D are determined from F(s^ invariance: lF(s^D = DF^S\ It is sufficient to use the
equation

('FD)0μ = (DF)0μ = 0 for μ = 1 , 2 . (3.5)

This gives for the isospin 1 = 3 current in the k = 10 model:

&>=-%—k = -ττπ <*="> '= 3 > <3 ">
and for the isospin 7 = 5 current in the k — 28 model:

π(s) π(s) _ pW^s) f?(s)p(s) _ f?(s) f?(s)

Π 02 Γ9l Γ0l Γ92 π 01 52 Q2 51 //, ->o ϊ ^\ (1 Ί\' D°9 = s (k - 28, / - 5), (3.7)
52 * 91 l 51 L 92 l 52 l 91

which can be computed from (2.27).
We note that by a change of scale for the s-channel basis functions, D^μ and

Dλμ change by the same factor, hence their ratios are invariant under rescaling. It
is remarkable that these invariant ratios turn out to be rational numbers:

~=2 (£=10,7 = 3), (3.8)

^ = 7. ^ = 7 (* = 28,/ = 5). (3.9)
^55 4 D99 4 v

Remark. In a unitary basis in which Dλμ — δχμ, the matrix F(5) will become sym-

metric (and unitary) due to (2.29). This unitarized F can be obtained from our F
setting

Fλμ = (signFλμ)^/FλμFμλ . (3.10)

In such a unitary basis, the above ratios will simply coincide with D)j.

3B. The Braid Group Representation in the Ramond Sector. The extended model
J»10 = £/\(B2) (see Sect. 3A.) is parallel in many respects to the Ising model and
the su(2) level 2 current algebra theory. All three models have three superselection
sectors with identical fusion rules, and involve a simple current of dimension A = ^.
For ^!o, this field is the SO(5) vector field ψ which is also an irreducible £/\Q
primary field of isospin 2.

The state space of the fermionic field ψ splits into two irreducible represen-
tations with respect to the extended "super current algebra" generated by ψ(z):
the Neveu-Schwarz sector J#Ί Θ JJfs, and the Ramond sector 2tf2, where J^j
denote the level 1 spin(5) current algebra representations labelled by the dimen-
sion d of their lowest energy subspace. The correlation functions of ψ are single-
valued in the Neveu-Schwarz sector, and double valued in the Ramond sector.
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Furthermore, in all three models, the primary dimension in the Ramond sector
is related to the Virasoro central charge

Δ = c9 (3.11)

c being given as ^ times the number of components of ψ (c — | for ̂ 10).
We proceed to compute the 4 x 4 braid matrices in the ^-channel basis of all

j/io conformal blocks of four fields of isospin / = | and dimension A = -̂  which
belong to the Ramond sector of J^ι0 (see Eq. (3.2a)). Then we determine the sub-
representation acting in the subspace of conformal blocks of the extended theory
J*ιo which constitute the 2D local Ramond 4-point functions.

Applying (2.24) and (2.27) for / = |, we obtain

0 0 0\

0 -q2 0 0

0 0 qθ 0

0 0 0 I /

(3.12)

and

1_ [3]

/ "W
4-[3]

3

-1
i 1
\ A

[3]-l
3

1
[2]

0

111
[2]

[3]
~3[2]

0

_!!!
2[2]

[3]-l
3

1 v / l-Λ/3
3 \

2
3[2]

6

4-[3] i

V6

Λ/3-1

\/2

1

6[2] / \ 1

I
λ/3

~7Γ

0
i-

\J2

3

0

I

^I

73

7̂!

(3.13)

The first matrix displayed here was computed with ^-number identities valid for

every Galois transform of q. Evaluating [3] = Λ/2[2] = I + \/3 at q = e&, one
obtains the second matrix (3.13).

We are now looking for an E6-type braid invariant ^-channel quadratic form

D =

0

0

where Ni —
Ni

(3.14)

The equality of the first and the last eigenvalue of ίf ̂  (Eq. (3.12)) ensures B\-

invariance of D. The real parameters Nχ can be determined from F-invariance
'FM = MF of the quadratic form M = 'SDS, which implies

F$ + F$N3 = 0 , F$Nl = F$ + N3F$ .

This yields N $ = — 1/\/6 and N% = 1 for / = |. We obtain the invariant ratios with

the structure constants Dχ = N? of the diagonal theory given by (2.20) or by (2.30):

A/-2
"3 _ 1 0 0 1 _

2 '
= 10, / = - (3.15)
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The same result is obtained for the invariant ratio of structure constants for the
isospin I — \ field, as expected since the latter is the "partner" of the isospin / = |
field in the partition function (3.2a), related by the simple current of isospin 5.
Indeed, according to (2.3),

and hence the matrices B\ (projected into the physical subspace of ^-channel blocks

Sλ, 0 ̂  λ ̂  mki) coincide for / = | and |. It is instructive to verify that, although

the ^-channel F-matrices do not coincide for / = | and |, the invariant ratios (3.15)
are the same.

In computing F(Λ) = US~l for / = | in terms of the s- and ^/-channel transition
matrices S and U (see Sect. 2), one encounters the problem of the reduction from
the 8-dimensional space of KZ solutions to the 4-dimensional physical subspace. It is
simplified by the observation that due to the triangular form of S and £/, the reduced
matrix F^ for 47 > k is obtained by just taking the first m^/ + 1 = k — 27+1
rows and columns of both U and S"1. In particular, for 7 = | we observe that the

symmetrized (unitary) matrices (3.10) corresponding to 7 = | (Eq. (3.13)) and to

/ — \ coincide.
The 2-dimensional braid invariant subspace comprising the conformal blocks of

local Ramond fields of the Jj0 model is spanned by the pair of vectors

ι>2 = '(0,0,l,0), (3.16)

which are ortho-normalίzed with respect to the metric (3.14):

lvabvb = dab (α,i = 0,2). (3.17)

In this basis, we have the following reduced form of the s-channel generators:

(At q — e i 2 , one has [3] = \/2[2]). Identical expressions are obtained for the re-
duced generators acting in the invariant subspace of conformal blocks for 7 = |.

The resulting 2-dimensional representation of $4 is a finite matrix group. It is a
central extension of the 24-element 2-fold covering of the tetrahedron group. This is
worth noticing, since the appearance of finite matrix groups among the monodromy
representations of ®4 is rather exceptional [22].

4. Subfactors for Field Extensions

We turn now to the treatment of the same problem: the determination of relative
amplitudes like (3.8), (3.9), in the algebraic (DHR) framework of quantum field
theory. A theory stf is described by a local net of von Neumann algebras, i.e., the
association Θ \—> j/(0) of observables with the space-time region (9 in which they
are localized. The algebras £/(Θ) generate the global C* algebra j/. The regions
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may be double cones ((9) in two and more dimensions, or intervals (/) on the
light-cone in chiral conformal theories.

In the following, we consider a pair of local quantum field theories given by the
nets of local von Neumann algebras jtf(@) and έ%((9) such that for every region,

j/(0)C«(0) (4.1)

are irreducible inclusions with common unit. Our terminology will be "observables"
for a G «β/ and "charged fields" for b G US, following the notions of the case when
j/ are the gauge invariants within & and taking into account the fact that fields
from & will interpolate inequivalent representations (superselection sectors) of stf.
Nevertheless, the ambient net $ being itself local, it may also be regarded as a net
of observables on its own right (a local extension of j/).

Although we are going to develop a general theory of such extensions, we have
in mind as illustrations of our method two specific such nets, namely

1. the E6 extension studied in Sects. 2 and 3, i.e., the conformal inclusion
[14,23] of the chiral su(2) current algebra at level 10 into the chiral sp(4) current
algebra at level 1, denoted by

J*ch(/) C #ch(/), (4.2)

where / are intervals on the circle (= compactified conformal light-cone), and
2. the tensor product of two chiral su(2) current algebras at level 10 (on both

light-cones) contained in the algebra of the two-dimensional WZNW model [13]:

^2\Θ) = Λ/ch(/) <8> Λ/ch(/) C @(2\Θ}, (4.3)

where a two-dimensional double cone & = / x / is the Cartesian product of two
chiral light-cone intervals.

The local von Neumann algebras in (4.2) can be defined according to [10] as

π^L/G) , where LG is the loop group over the respective compact Lie group G

and L/G the subgroup of loops with support in the interval /. π^ is the vacuum
representation at level k in the Segal construction, and the double primes stand for
the von Neumann closure. These nets of algebras satisfy the axioms of the DHR
theory. The current ja(x) are operator-valued distributions affiliated with the local
von Neumann algebras.

We shall obtain the local von Neumann algebras ^2\θ) in (4.3) by adjoining
to their chiral subalgebras ^2\(9) a single "characteristic" isometry. The latter is
determined implicitly by Proposition 5.2 below along with the general theory [9] of
finite-index extensions of local nets, see Proposition 4.3. It is, however, beyond the
scope of this paper to show that the local Wightman fields of the WZNW model
are affiliated with these algebras.

Let us anticipate here that the model (4.3) is the one described by the stan-
dard diagonal form D in the previous sections, while the form D corresponds to a
combination of (4.2) and (4.3):

stf(2\(9) = Ach(/) <g> Λ/Ch(/) C #ch(/) <g> #ch(/) C J(2)(tf) .

Here, the first inclusion is the tensor product of the chiral extensions (4.2) and the
second inclusion is the standard diagonal contraction of chiral vertex operators for
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<^ch (We shall say more about these "standard" constructions in Sect. 5; see also
[24,9].)

A subfactor A c B is irreducible if the relative commutant is trivial: A1 Π B = C.
This requirement excludes from our analysis all chiral current subalgebras associated
with subgroups unless the embedding is "conformal" [12], since the coset stress-
energy tensor is contained in the relative commutant. However, including the coset
stress-energy tensor into the observables (which then have the structure of a tensor
product of two chiral theories), would again yield irreducible inclusions [10, 11].

We have to recall some subfactor theory. First, we note that we are dealing with
type III] sub factors, since under very general conditions, the local von Neumann
algebras in quantum field theory are hyperfmite type III] factors [25,26]. Associated
with an (irreducible) type III subfactor A C B is a canonical endomorphίsm y G
End (B) such that γ(B) C A is a dual subfactor [8,27]. A C B has finite index if
and only if [8] there is a pair of isometries W G A and V £ B such that the following
operator identities hold:

(a) Wa = Q(a)W (a G A, ρ := y\A £ End(Λ)) ,

(b) Vb = y(b}V (beB),

(c) W*V = ;Γ1/21 = W*y(V) . (4.4)

The real number λ is called the index of the subfactor A c B. These relations
express the duality between A C B and γ(B) C A. They also state that B is the
Jones extension [1] of A by its subfactor y(B\ The Jones projection is E = VV* ,
satisfying the Jones-Temperley-Lieb relation with its dual F — WW*:

λ~λE, FEF = λ'lF .

Associated with these data, there is a conditional expectation μ : B — > A given by

μ(b)=W*y(b)W (b £ B) , (4.5)

and conversely the canonical endomorphism can be expressed in the form

γ(b) = λ - μ(VbV*) (beB). (4.6)

μ is a positive and A -linear map which generalizes the Haar average over a compact
group acting on B with fixpoints A. It satisfies the Pimsner-Popa bound

μ(b) ^ λ~} - b (bεB, b ^ 0) (4.7)

as an operator estimate for every positive operator b G B. This lower bound for
conditional expectations was first introduced in [28] to define the index. It is optimal
since it is saturated by

We note also that W = λ~l/2 μ(F). The physical relevance of these objects will
become clear in due context.

The following results on quantum field theoretical nets of subfactors as in
Eq. (4.1) will be proven (and qualified) elsewhere [9]. Let us just state the es-
sentials. Let the vacuum vector Ω be cyclic and separating for every local von
Neumann algebra <%(Θ) of the theory ,̂ i.e. π°($(@))Ω are dense subspaces of
the vacuum representation space J4f°. This property holds, by the Reeh-Schlieder
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Theorem, quite generally for covariant quantum field theories with positive energy.

Let also Jf 0 = π®(&tf)Ω C 2tf ° be the vacuum representation space of #0 such that
Ω is also cyclic and separating in J*fo for every j/(0). Let furthermore the condi-
tional expectation μ preserve localizations, i.e., map J*(0) onto jtf((9). If the local
subfactors are irreducible and therefore possess a unique conditional expectation,
then μ must commute with the translations (= the rotations of the circle in the case
of a chiral conformal theory). If the vacuum state ω — (Ω, π°( )Ω) on ̂  is the
unique translation invariant state, then it must also be invariant under μ, i.e.,

coo μ — ω on J* . (4.8)

We shall assume the invariance property (4.8) in the sequel. The underlying struc-
ture admits the interpretation as a generalized global unbroken gauge symmetry with
μ generalizing the gauge group average [9, 11].

Under these circumstances, the canonical endomorphism γ defined above for a
fixed local subfactor j/($o) C ^($o) extends to an endomorphism of the global C*
algebra <%, and maps J* into the global C* algebra of observables stf [9]. Restricted
to the observables, y\A turns out to be a localized endomorphism with localization
in @Q, denoted by ρ in the sequel. It therefore describes a (reducible) superselection
sector [5] of the theory j/. Its physical significance is given by the following

Proposition 4.1 [10,9]. Let π0 denote the vacuum representation of ^ on Jf0?

and π° the vacuum representation of 3$ on ffl °. Then π° considered as a reducible
representation of the subalgebra sf is unitarίly equivalent to the representation
πo ° Q of $0 , where ρ is the restriction to <stf of the canonical endomorphism
y.^^stf.

In other words: the reducible superselection sector ρ comprises all the charged
sectors of jtf which are interpolated from the vacuum by fields in .̂ If, as endo-
morphisms, ρ c± @sNsρs, then as representations,

π 0 U ~ π 0 o ρ ~ 0 Λ ^ , (4.9)
s

where Ns are finite multiplicities, and πs = πo o ρs. If the observables j/ are the
gauge invariants under a compact gauge symmetry group of J*, then the decompo-
sition (4.9) is given by the representation of the gauge group, with multiplicities Ns

given by the dimensions of the latter. In the case of current algebras, the branching
rules (4.9) are read of the Kac characters.

Equation (4.9) allows to compute the index λ of the subfactor. It is given by
the formula

(4 10)

in terms of the statistical dimensions d(ρs) = ds of the superselection sectors [5,8]
contained in ρ. In the gauge group case, d(ρs) = Ns, and the index equals the order
of the group.

In the models (4.2), (4.3), the branching of the vacuum sector of $ is well
known, leading to ρ ~ ρo Θ £3 for the inclusion (4.2) and ρ ~ φ/ρ/ Θ Qi for the
inclusion (4.3), where ρ/ are the isopin / sectors of the chiral su(2) current algebra.
ρo = id corresponds to the vacuum representation. In the former case, the formula
(4.10) yields the index λ = do + d^ = 1 + sin ||/ sin -̂  = 3 + \/3. (For the coin-
cidence of statistical dimensions and "quantum dimensions" d(ρι) = [27+ 1] for
su(2) current algebras see [10].)
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The formulae (4.4)-(4.7) remain valid for y considered as an endomorphism
of & and for ρ as an endomorphism of s#. Note that the isometries W and V
are local operators W G J/($Q) and V G $(@Q). We shall refer to the intertwining
properties expressed by Eqs. (4.4(a,b)) by the notation V : id — » y and W : id — > ρ in
the sequel. The latter implies that πo(WW*) is the projection in the representation
space of π0 o ρ which corresponds to the vacuum subrepresentation contained in
(4.9).

For every other subsector πs contained in (4.9) there are corresponding pro-
jections of the form nQ(WSJW*l), where Ws,t'. Qs —> Q are orthonormal isometric
intertwiners in j/(0o); the multiplicity index / runs from 1 to Ns. For simplic-
ity, we shall in the following consider only multiplicities Ns = 1 (covering abelian
gauge groups, as well as our models above). One has the orthogonality relation
ψ* Wt = δst (because otherwise, the intertwiner W* Wt : ρt — > ρs would contradict
the inequivalence of the representations πs and π t ) 9 and the completeness relation

Esw*ws* = * clearly, wQ = w.
Putting

ψs:=Ws*V

we obtain charged intertwiners, i.e., elements of 3d which satisfy the commutation
relations with the observables

ψsa = ρs(a)ψs (a G Λ/) . (4.11)

This equation means that ψs G ̂  make transitions (in the vacuum representation of
^) between the vacuum representation πo of £/ and the charged representations πs.

Conversely
V = ΣWsψs, (4.12)

s

and the commutation relation

Va = q(d)V (a G j^) (4.13)

gives to V the physical interpretation as a "master field" carrying the reducible
charge ρ from which the charged intertwiners ψs are projected out by means of Ws.

A particularly interesting object is the observable operator

X := γ ( V ) e j*(00) . (4.14)

From the definitions it is clear that X is an isometric intertwiner X : ρ — » ρ2. Indeed,
we can compute

X = y ( V ) = λμ(WV*) =

where the expressions μ(ψtψsψu) are observable intertwiners T:ρu^ρtρs. They
are therefore multiples of isometric basis intertwiners Te which project onto the
subrepresentations πu contained in the DHR composition product πt x πs = π0 o

(QtQs)l
λμ(ιl/tψsψ;) = λ(e). Te (4.15)

with numerical coefficients

λ(e)ί = λ ΓXΛ /Ά*) (4.16)
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(The multi-index e stands here and in the sequel for the fusion channel πu -<
πt x πs.)

Denoting by fe = Q(Ws}Wt Te W* the "lifts" of intertwiners Te: ρu —> ρtρs

to intertwiners 1 :̂ ρ —» ρ2, we obtain the expansion

X = ΣKe)Te. (4.17)
e

We note that only channels e contribute to (4.17) for which ρs,ρt,ρu are all subsec-
tors of canonical endomorphism ρ, in spite of the fact that in general ρtρs will also
contain subsectors which are not contained in ρ. We shall relate this observation to
the "truncated fusion rules" in the next section.

The importance of the isometry X is due to the following result, while the
relevance of its expansion coefficients λ(e) will reveal itself in the sequel.

Proposition 4.2 [29]. The irreducible subfactor A c B is uniquely characterized (up
to unitary equivalence) by the triple (ρ, W9X)9 where ρ £ End (A) and W: id —» ρ
and X: ρ —> ρ2 are isometric intertwiners in A, satisfying the following identities:

(i) ψ*X = /r1/2l = ρ(W*)X with λ = d(ρ),

(ii) XX* = ρ(X*)X 9

(iii) XX = ρ(X)X . (4.18)

Clearly, the identities (4.18) follow from (4.4). Conversely, given a triple as in
Proposition 4.2, one recovers B as follows. Put A\ := X*ρ(A)X and B :— the Jones
extension ofAbyA\. This extension is of the form B = AV, where V is an isometry
with FK* = E, the Jones projection. Define γ E End (B) by y(aV) := ρ(a)X. Then y,
satisfying (4.4), is the canonical endomorphism for A C B and ρ = J\A, A\ = γ(B).
The conditional expectation is μ = W*γ( )W.

In our present context, A — <$/((9) and B = &(&), the point about this charac-
terization of extensions (4.1) is that it entirely refers to the observables #0 and their
superselection sectors. Finding such a triple in a given theory stf amounts to find
a field extension $ of the observables of the form (4.1). The problem involves
the knowledge of the "fusion coefficients" of the theory j/, i.e., the coefficients of
expressions like ρυ(Te) (entering ρ(X)) in terms of a basis TgThTJ. These are the
solutions to the Moore-Seiberg "pentagon identities" [30] which are intrinsically
determined by the DHR theory of superselection sectors [7] (but often tedious to
compute).

Let us briefly sketch the "reverse program" of construction and classification of
(local) field extensions of finite index [9].

The main step is to decide which combinations ρ ~ @s Nsρs of the irreducible
localized endomorphisms (sectors) of jtf are canonical endomorphisms of the local
von Neumann algebra A = stf(β§) with respect to some sub factor A\ C A. This
amounts [29] to verify the existence of a pair of isometric intertwiners W: id —» ρ
and X: ρ —» ρ2 in j/($o) solving (4.18). If the desired inclusion is required to be
irreducible, then id -< ρ with multiplicity NQ = 1, and if the index is finite, then
one can prove the bound Ns ^ ds. Therefore, if j/ is a "rational" theory, i.e., it
has only finitely many sectors of finite statistics, then the classification problem is a
finite problem in the form of a non-linear system of the unknown coefficients λ(e)^
(with multiplicities).
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If we are interested in local field extensions, then we have to require in addition
(see below) that the solution X satisfies

ερX=X, (4.19)

where ερ G ρ2(^/)' Π stf(β§) is the statistics operator for the localized endomorphism
Q [5] ερ = U*ρ(U) can be computed in terms of a charge transporting unitary
interwiner U : ρ — > ρ, where ρ is an equivalent endomorphism localized at space-
like distance from ρ.

Every solution (ρ,W,X) to the system (4.18) defines a field net ̂  extend-
ing j/ with finite index λ = d(ρ) as follows. If ρ is localized in $o> one re-
constructs B = $((9$) and y G End (B) from A\ C ̂  = <S#(@Q) as in the paragraph
after Proposition 4.2. Thus ^(00) = ^($0)^ for an isometry F G Jf(00) satisfy-
ing (4.4). Next, one considers the invariant state ω$μ = ω(W*γ( )W) on B. The
GNS representation π° it induces extends to si and satisfies (4.9). In π°, one de-
fines &((9) := jtf((9)UV with the help of charge transporters U G j/, i.e., unitary
intertwiners U:ρ— » ρ, where ρ is localized in 0. Note that ^($) thus defined
contains the identity operator 11 oc W * V — W* UV, since W = UW : id — > ρ is in
,s/(0). Consequently, ^(0) contain and extend jtf(&). This construction yields a
net ^ which is relatively local with respect to jtf, since ρ is localized; namely if
(9 is at space-like distance from 00, then J&(@Q) commutes with

UV a = Uρ(a)V = ρ(a)UV = a UV (a G

The field extension & turns out to be local if and only if the solution X satisfies
also (4.19). Namely, the commutativity of V G &(&<>) with UV G 38(0) at space-
like distance is equivalent to VV = U* VUV ", and hence to

XV = y(V)V = VV = U*VUV = U*ρ(U)W = ερy(F)F = ερXV .

Let us summarize the previous discussion:

Proposition 4.3 [9]. Let s$ be a Haag-Kastler net of observables and ρ a DHR
endomorphism of s$ which contains id -< ρ precisely once. Let W : id — * ρ and
X: ρ — >• ρ2 be a pair of isometrics in si satisfying the identities (4.18). Then the
triple (ρ, W,X) defines a unique irreducible extension ofs/ into a field net & such
that ρ is the restriction of the canonical endomorphism y : & — > <£/, and W and
X = y(V) the associated pair of isometries as in (4.4). The field net & is relatively
local w.r.t. j/, and it is itself local if and only if, in addition, X satisfies (4.19).
The index of the extension equals the statistical dimension d(ρ).

Further details of the proof of Proposition 4.3 beyond the above sketch are found
in [9].

We observe that the system (4.18) alone will have many solutions, e.g., those of
the form ρ = σσ, X = σ(W\ where σ is any irreducible localized endomorphism
of the theory j/ with finite statistics, W : id — > σσ an isometry. These solutions
will, however, violate the condition (4.19), and will therefore not give rise to local
field extensions.

Note that, actually, locality of the field net was not required for the general
analysis in the first part of this section, as long as it has the Reeh-Schlieder property,
and fields commute with observables at space-like distance. However, since it is
not clear which physical principles should determine a "good choice" of a non-
local and therefore a priori unobservable field algebra except that it generates the
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superselection sectors of the observables, we prefer to consider only local field
extensions which offer the option to be regarded as observable theories of their
own right.

If eβ/ are the gauge invariants under a gauge group acting on ̂ , then the system
(4.18) has a solution with multiplicities Ns given by the dimensions of the represen-
tations of the gauge group. The corresponding coefficients λ(e)k

ij in the expansion
(4.17) of X are precisely the group-theoretical Clebsch-Gordan coefficients. Indeed,
one may rephrase the content of the Doplicher-Roberts (DR) reconstruction theo-
rem [19] as follows: every system of sectors of the observables which have finite
permutation group statistics among each other, closed under composition, reduction,
and conjugation, admits a solution to (4.18) with X given by (4.17) in terms of
Clebsch-Gordan coefficients of some compact gauge group. The DR solution is dis-
tinguished by the validity of (4.19) if there are only bosonic sectors of j/, and a
graded variant of (4.19) in the presence of fermionic sectors.

We emphasize that, while our general theory above comprises the case of a
compact gauge symmetry group, the models (4.2), (4.3) we are actually interested
in are not given by a gauge symmetry group. The sectors πs contained in the
restriction π°|.^ are not closed under composition, and their multiplicities differ
from their statistical dimensions. Although the fields are local, the sectors πs have
braid group statistics. None of these features could hold with a gauge group.

Displayed in terms of the coefficients λ(e)^9 the system (4.18) is converted into
a system of identities well-known to hold for Clebsch-Gordan coefficients (with
the 6j symbols as fusion coefficients). The absence of a completeness property in
(4.18) is related to the truncated fusion rules discussed in the next section.

5. Truncated Fusion Rules and Partial Wave Decomposition

Let us now study multiplicative properties of the charged fields ψs ("operator product
expansions"). For a generic charged operator b G @t one has the expansion formula
(generalizing the harmonic analysis in the gauge symmetry case) implied by (4.4),
(4.5),

s (be Λ). (5.1)

In particular, by (4.15),

ιkψs = EWΓeΨu, (5.2)
u

where as before, e is the channel ρu -< ρtρs. We observe, that only charged fields
with charge ρu -< ρ contribute to this operator product expansion, even if there are
other sectors present in the DHR sector decomposition of ρtρs. That this "truncation
of the fusion rules" is consistent, can be retraced, e.g., to the identity (4.18(iii)) as
follows.

Obviously, ιl/tψs is a charged intertwiner : id — > ρtρs, so one might expect that
all charges ρv contained in ρtρs are interpolated by this composite field. But, in
order to project a field carrying charge ρ^ out of \//tψS9 we have to multiply the
latter with T*9 where Te : ρv — > ρtρs. Now, computing T*\l/t\l/S9 or rather its image
under y, we get

y(τ;ψtψs) - y(τ;w?vw;v) = y(T;w?Q(w;) w) = Q(T;W?Q(W;)) xx .
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Using XX — ρ(X)X, we obtain an expression involving ρ[T*W*ρ(W*)X]9 where
the argument in square brackets is an intertwiner : ρ —» ρυ in j/ which must vanish
unless ρυ -< ρ. In other words, since the expansion (4.17) of X contains only Te

for fusion channels which are already contained in ρ, it is annihilated by all Te

leading to other channels. Therefore, the identity T*ψtψs = 0 following from identity
(iii) precisely describes in the operator product expansion for charged fields the
suppression of channels ρv not contained in ρ, i.e., the truncated fusion rules.

We now turn to our main result, the decomposition of correlation functions of
charged fields into "partial wave" contributions, and the decomposition of charged
fields ψs into "chiral exchange fields."

Applying the expansion (5.2) (and (4.11)) repeatedly, we find the following
expansion for vacuum correlations of generic charged fields of the form φ — ψ* a,

(Ω, φn φ,Ω} = Σ Π ̂ ) (Ω, ?;»„) - re>2(«2)7;* α,Ω) , (5.3)
C ί

where Tβj : ρUl — > ρt[ρSl and the sum extends over all vacuum-to-vacuum "channels"
of successive fusion ξ = en o o e\ such that tt = U[-\ and un — 0 = t\. The last
step in this computation, the evaluation of a single charged field of the form ψ*a
in the vacuum state, exploits the invariance of the vacuum state

since μ(ιfe) = W*y(W*V)W = W^W*XW = δs0λ~}/2&. The factor λ~]/2 is absorbed
in the product in (5.3) in the guise of λ(e\) (note that for ρt = id, Te = 1, and
fe = WWSW*, one obtains λ(e) = W*W*XWS = λ~l/2\

We conclude

Proposition 5.1. The (local) n-point functions of charged fields from a field ex-
tension $ of stf have the partial wave expansions Σζ ^ξ ^ξ where the "partial
wave" contributions

^ξ = (Ω,Γenρtn(an) -Γe2Qt2(a2}Γe}aλΩ} (5.4)

are kίnematically distinguished correlation functions which depend only on the
subtheory stf and its superselectίon structure, while only the coefficients

tf{ = Π *(*/), (5-5)
I

involving the factors λ(et) for every single transition in the channel of successive
fusions, bear reference to the extension £%.

The kinematical distinction of the partial waves is exhibited by their response
to variations of the charged fields at intermediate positions; in the models of su(2)
chiral current algebras, these could be Mδbius transformations and global SU(2)
transformations, which are sensitive to the spectra of LQ and Qa = J ja(x)dx on
the corresponding intermediate state vectors. Since these spectra are dictated by the
fusion rules via the intertwiners Te in (5.4), it is clear that the partial waves at hand
are precisely the bounded-operator versions of ^-channel conformal block functions.

Tndeed, the partial waves (5.4) are recognized by inspection as correlation func-
tions of "reduced field bundle" operators F(e,a\ which are defined on the Hubert
space of the representation π°|ιC/ Ξ 05 πs (cf. Proposition 4.1) as a bounded op-
erator version of chiral vertex operators [6,7]: If e is the channel ρu -< ρtρS9 then
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F(e,a) = F(e,ί.)π°(a) interpolates from the subspace for πt to the subspace for πu

by the formula
F(e,a)\t ,Ψ):=\u 9π<>(T;ρt(a))Ψ).

The algebra spanned by finite linear combinations of operators F(e,a) is closed
under multiplication (involving fusion coefficients for the superselection sectors)
and under the adjoint operation. The operators satisfy "exchange algebra" commu-
tation relations at spacelike separation (whence the name "exchange fields" [31,24])
involving matrix elements of the relevant statistics operators (braid matrices). The
corresponding representation of the braid group on the partial waves (5.4) coincides,
for chiral current algebra models, with the representation acting on the "physical"
solution space of the KZ equation, see, e.g., [6].

Due to the identification of the partial wave contributions (5.4) as vacuum ex-
pectation values of products of reduced field bundle operators F(e,a)9 the expansion
(5.3) implies the identification

a), (5.6)
e

where the sum extends over all fusion channels with fixed charge label s. This
formula is remarkable since the charged fields in & which satisfy local commuta-
tion relations and truncated fusion rules as discussed above, arise as specific lin-
ear combinations of reduced field bundle operators which satisfy exchange algebra
commutation relations and do not exhibit truncation. Similarly, while every single
partial wave contribution (5.4) is non-local, the sum (5.3) is a manifestly local
ft-point function. This is possible due to cancellations among the relevant fusion
coefficients, which can be seen independently to follow from the system (4.18),
(4.19) if written as a nonlinear system involving fusion coefficients and braid ma-
trices along with the Clebsch-Gordan coefficients λ(e). A similar statement applies
to the identities

ψ* = dl

s

/2R*\l/s (Rs : id —> ρsρs isometric)

and
β>, = ds/λ 1

valid in ,̂ which we have not discussed here, but which can be proven within
the reduced field bundle, with the identification (5.6), along the same lines. We
refrain from working out the details here, which are not relevant for the following.
Actually, the decomposition (5.6) can also be directly established in terms of the
unitary equivalence between 0π5 and π0!^.

In a given model such as (4.2), the decomposition (5.6) has to be interpreted
in the sense that bounded functions of smeared currents in the su(3) directions
orthogonal to the embedded su(2) are linear combinations of reduced field bundle

operators with coefficients λ(e) determined by the structure of the local subfactors.
In order to compare our present results with those of Sects. 2 and 3, we face the

technical problem that the partial waves cannot be directly identified with conformal
block functions. The latter may, however, be expected to be pointlike limits of
the former when the charged fields are localized in arbitrarily small intervals by
Mόbius (scale) transformations [7]. This heuristic view is of course supported by
the coincidence of the braid group representations upon which a rigorous analysis
can be based (with methods as developed in [32]).
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Instead, the complicated kinematics of such limits are bypassed if one considers
only relative amplitudes Nξ/Nη. Furthermore, since s -channel solutions to the KZ
differential equation are determined only up to a normalization, it is also advisable to
cancel these normalizations by considering ratios of relative amplitudes for different
extensions of the same algebra j/.

We are thus on the safe side (by virtue of Proposition 5.1) if we compare only
double ratios of the form

NUN'
-J^-JL , (5.7)
Nξ/Nη ' l ;

which are completely normalization independent "characteristic" quantities, well-
defined even without control of pointlike limits. Here, Nf and N distinguish the
amplitudes of a given partial wave contributing to correlators of two different local
extensions.

Since the double ratios (5.7) are given by (5.5), we have established the desired
relation between relative amplitudes of conformal blocks and the data of the rele-
vant local subfactors. This relation is based on the identification of the expansion
coefficients λ(e) in (4.17) for the characteristic isometry and in (5.2) for operator
products of charged fields (reflected also in (5.6) for charged fields as elements of
the reduced field bundle).

Let us now compute the amplitudes (5.5) for our first model (4.2) from its
characteristic triple (ρ, W,X). The branching of the vacuum representation of & upon
restriction to s# tells us that ρ ~ ρ0 θ £3 (see Sect. 4). By (4.10), the index is λ =
d(ρ) — do + ί/3 = 3 + \/3. Actually, finite index type IΠi subfactors are isomorphic
to type Hi subfactors tensored with a type III factor [33]. The corresponding type
Hi sub factor associated with the model (4.2) is the well known sub factor of index
λ = 3 + Λ/3 constructed in [34].

Choosing ρ0 = id in its equivalence class, the isometry W : id — > ρ is uniquely
determined up to an irrelevant phase. The coefficients λ(e) for the isometry X
can be computed from X*X = I and the identity (4.18(i)): there are only five
fusion channels ρw -<; ρtρs with all ρs,ρt,ρυ -< ρ, with which we associate isometric
intertwiners as follows:

Ta' Qv^ ρo£o, Tb:ρ3-+ ρ3ρ0, Tc : ρ3 -> ρ0ρ3, Td : ρ0 -> ρ3ρ3, Te : ρ3 -> ρ3ρ3 .

Since ρo — id, we may choose Ta = Tb = Tc — 11 . According to standard notation
[5,6,7], we call R the isometry Td : id — » ρ2. We have therefore:

X = λ(a) ρ(fFo)HWo + *(*) ' Q(W0)W^ + λ(c)

+ λ(d) ρ(W3)W3RW* + λ(e)

where WQ = W : id — > ρ and W$ : ρ3 — > ρ are orthonormal isometries, and EQ =
WoWo and £3 — W^W^ are complementary projections in the commutant of ρ onto
the two subsectors of ρ. Then (4.18(i)) reads

W^X = λ(a)E0 -f λ(c)E3 = A" 1/21 ,

Q(W*)X = λ(a)E0 + λ(b)E3 = λ~l/2l ,

hence λ(a) = λ(b) = λ(c) — /ί"1/2. We are free to choose the complex phases of
R and Te such that λ(d) and λ(e) are also positive. Now, the isometricity of X
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together with the orthogonality of R and Te (i.e., R*Te = 0) implies

X*X = [λ(a)2 + λ(d)2]E0 + [λ(b)2 + λ(c)2 + λ(e)2]^3 - 1

hence λ(d) = V l — λ~} and λ(e) — \/\ — 2λ~λ. We don't need to verify the re-
maining identities (4.18), (4.19) since we know that the extension is local and
yields a subfactor of index λ = 3 + >/3. (Unfortunately, the computation is much
less obvious for the other, E%9 extension treated in Sects. 2 and 3.)

For charged fields with charge 7 — 3, only the channels c = (30), d = (03),
e = (33) are relevant (here, ( j i ) labels an intertwiner Γ(7 /) : ρy -̂  ρ/ρ3 resp. an
exchange field of charge 3 acting on J f/ with values in Jf}). We have

_ !/2

λ(30) = λ~l/2, λ(03)
λ

This gives for the ratio of the amplitudes of the conformal blocks with intermediate
^•-channel j = 0,3 contributing to the 4-point function of the isospin 3 field

A(03)A(33)A(33)A(30) λ-2 ^
(5.8)

1(03)A(30)A(03)A(30)

As discussed before, due to uncontrolled normalizations, one has to compute double
ratios like (5.7) of relative amplitudes comparing two different field extensions.
Indeed, there is always a "standard" extension to compare with, which specializes
for chiral current algebras to the A series of modular invariants [3], and therefore
yields the diagonal extensions as in our model (4.3).

Proposition 5.2 [35,9]. For rational chiral theories <$/ch (i.e., theories with only
a finite number of super selection sectors πs with finite statistics), ρ ~ φ^ ρs ® ρs

is a canonical endomorphism of ^/^ = j/ch 0 ̂ ch satisfying the conditions of
Proposition 4.3, and therefore defines a local two-dimensional field extension
with ^2\(9) = Λ/ch(/) 0 ̂ ch(7) C @(2\(9) for Θ = / x /.

This result is a corollary to the computation in [35] of the associated charac-
teristic isometry X^ satisfying the system of identities (4.18), (4.19). The vacuum
representation of this extension contains all "diagonal" sectors of j/(2) of the form
πs 0 TΓf precisely once.

It is more convenient to deviate from the basis conventions in [35] and choose
a CPT conjugate pair of bases of isometric intertwiners Te and 1$ — j(Te) on the
two chiral light-cones (cf. [9]). The anti-linear CPT conjugation j is an appropriate
Tomita-Takesaki modular conjugation [26,36]. It acts geometrically like a reflection
x <-» — x on the algebras of chiral intervals, and relates conjugate sectors ρ
j o ρ 07. In such a basis, the isometry X^ is simply

(5.9)

where fe are local intertwiners in J/CH as in (4.17) corresponding to the fusion
channels ρu X ρt o ρs as before, fe=j(fe) correspond to the CPT conjugate

<-»• =
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channel ρu -< ρt o ρ5, and ds are the statistical dimensions of ρs. The index equals
A — ̂ v d2

s. The fusion channels contributing to the isometry X^ for the two-

dimensional subtheory (4.3) are of the form e®e, and the coefficients λ(2\e 0 e)
are read off Eq. (5.9). The fact that the corresponding two-dimensional fields

contracted from chiral exchange fields of fixed charge [s], [s] are indeed local fields
acting on the Hubert space 3tf (2) = @t3tft® ^Y> was already established in [24].
Although the diagonal sectors are not closed under composition whenever there are
non-simple fusion rules among the chiral sectors πs, the operator product of the
diagonal fields Φs contains only other diagonal fields due to cancellations among
the fusion coefficients. This is another instance of truncated fusion rules.

From

it is obvious that the amplitudes for the 2D partial waves contributing to a given

λz-point function of integer isospin fields (Ω, Φn Φ\Ω) = Σξ N(2\^ξ & ' -ς are

all equal:

= const. (5.10)

Given the diagonal standard extension, we can predict characteristic invariants for
every other extension which can be read off the respective «-point functions, in-
dependent of all normalizations of partial waves and conformal blocks, by taking
double ratios of amplitudes (5.5) and (5.10),

(Ns/NtWi/Ni) λ(eί)λ(ei) = n\λ(eί)\2

( " )

Here we have used the fact that the coefficients of X and j(X) in CPT conjugate

bases are complex conjugates, λ(e) = λ(e). E.g., for the 4-point function of the
isospin 3 field in the E& model (4.2), we get

in agreement with the result obtained previously (Eq. (3.8) and [14]) by the analysis
of locality in terms of explicit conformal block functions given as solutions to KZ
differential equations.

We emphasize that this method works for every "non-diagonal" extension of a
given chiral theory without controlling the actual pointlike limits of F(e,a) (or even
assuming its existence), since there is always the "diagonal" one which provides
a normalization standard for all contributing partial waves. Moreover, the formula
(5.11) immediately applies to mixed and higher n-point functions.

We conclude this section with another instructive (albeit almost trivial) example
giving rise to anyonic field extensions. We consider a local theory j/ with TV simple
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superselection sectors ρs with TLN fusion rules [s][t] — [s + t (modΛf)]. For simplic-
ity, assume that the automorphisms ρs can be chosen to satisfy ρsρt — ρs+t (under-
stood mod TV), by which all intertwiners Te of the general analysis are trivial— 1.
This choice is always possible for odd N ', and for even N provided the fractional
spin of ρs satisfies NΔS £ TL (cf. [24]). The sector structure is that of the simple
sectors in su(N) current algebras. It also occurs in the models constructed in [37],
where, however, the violation of the spin condition leads to a minor complication
which we want to ignore here. The case N = 2 includes the Dn series of chiral
su(2) current algebra extensions.

We choose a complete system of orthonormal isometries Ws and construct the
reducible endomorphism ρ(a) := Σs Wsρs(a)W* . Then the triple (ρ, W,X ), where
W = WQ and

(with trivial Clebsch-Gordan coefficients for an abelian group) solves the system
(4.18). The charged fields ifc are obtained (up to a normalization factor TV 1 / 2 ) as
the unitary shift operators |ί; Ψ) ι-> \t + s; Ψ) on 0, &Ct. They satisfy ψsψt = Ψs+t

and implement the endomorphisms ρs (in the representation π° = 0π5)

ρs(a) = ψsatf (a G Λ/) .

The gauge group ZN acts by γn(ψs) = e2πms/N ψs with average μ(φs) = <5y0lL Putting

and defining y by (4.6) with index λ— \ΈN\ = N, then y(V)=X and the triple
(y, V, W) satisfies the identities (4.4). Adjoining the charged fields ψs to the local
algebras, we obtain an anyonic field extension $ by the simple sectors of ^.

6. Concluding Remarks

The old hope that the "germ of the observable algebra" generated by the inter-
nal symmetry currents and the stress-energy tensor completely determines a local
quantum field theory turns out to require some qualifications. Two-dimensional con-
formal current algebra models tell us that depending on the value of the level k
(which characterizes both the algebra ̂  and the vacuum state of the theory), there
may be several - one, two, or three for ^k(su(2)) - local conformal field theories
corresponding to the same vacuum representation of ja/*.

The different theories are distinguished by different maximal local chiral exten-
sions $k and by different braid invariant quadratic forms M. The primary local
chiral fields which extend s^k obey fusion rules which are majorized by the intrin-
sic DHR fusion rules of superselection sectors. Both the invariant ratios of structure
constants which are characteristic quantities for local field extensions, and the trun-
cated fusion rules are understood and computed in conventional field theoretical
terms and in terms of the theory of subfactors applied to a single local subfactor

C &(/).
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Our field theoretical computation uses a closed expression for the ^-channel fu-
sion matrix (that is already implicit in [15]) which has the virtue of displaying their
invariance under Galois automorphisms (the individual structure constants as well as
the matrix elements of the monodromy representation of the mapping class group be-
longing to the same algebraic number field). The relevance of such arithmetic prop-
erties has been recently exhibited in a study of the Schwarz problem ("When is the
representation of the braid group a finite matrix group?") for the KZ equation [22].

On the other hand, the application of the theory of finite index subfactors to
local field extensions gives a natural interpretation of the field theoretical structures
in terms of a generalized "harmonic analysis." The "irreducible tensor operators" of
this analysis are the quantum field theoretical charged intertwiners. This approach is
very close to the spirit of Ocneanu who first considered subfactors as "generalized
groups," but gives more evidence to this view than the combinatorial description
in terms of bi-partite graphs and connections [38]. Part of Ocneanu's induction-
restriction graph is reflected in the "truncated fusion rules" which in turn derive
from harmonic analysis in the form of operator product expansions for charged
fields. Through Longo's theorem relating the truncation to the depth of the inclusion
[29], it is nicely exhibited that the generalized symmetry associated with conformal
embeddings is not given by a Hopf C* algebra in general. Longo's characterization
of a sub factor in terms of a triple (ρ, W, X) gives rise to a notion of generalized
Clebsch-Gordan coefficients which does not refer to any assumed linear transfor-
mation law of the irreducible tensor operators. We note that the interpretation of
these structures as a generalized symmetry is not imposed but emerges naturally
from the theory of subfactors.

When one compares our two different approaches, one can also observe some
unbalance. E.g., the role of the Galois automorphisms is not yet understood in terms
of the subfactor approach. In particular, the Galois group acting on the structure
constants does not map a unitary theory into another unitary theory, nor are there
any "Galois relatives" of a subfactor. Indeed, the characteristic ratios of structure
constants like (3.8), (3.9), (3.15) resp. (5.12) turn out to be rational numbers and
are, therefore, Galois invariants.

The characterization of a local extension in terms of a triple (ρ, W,X} as in
Proposition 4.2 logically proceeds in two steps: first, one has to solve the system
(4.18) which, among other things, controls the consistent truncated operator product
expansions. This already yields field extensions which, however, may be non-local.
E.g., a fermionic field theory as an extension of its even (bosonic) subtheory arises
in this way. The locality condition (4.19) is only imposed in a second step. On
the other hand, in the conformal block approach the locality condition seems to
be the only vital step. In fact, we consider the analogue of the first step to be
hidden in the KZ equation, whose solutions automatically give rise to a consistent
fusion.
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