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Abstract: We prove asymptotic completeness for short- and long-range TV-body
Stark Hamiltonians with local singularities of at most Coulomb type. Our results
include the usual models for atoms and molecules.

Section 1. Introduction

In the present paper we will prove asymptotic completeness for short- and long-
range TV-body Stark Hamiltonians. The results include the usual models for atoms
and molecules. The Hamiltonian for TV v-dimensional particles with charges qι and
masses m/ in an external electric field S is

By a standard procedure we remove the center of mass motion and obtain the
Hamiltonian

H = -A-E x+V on L\X) ,

where the v(TV - 1 ) dimensional configuration space X is given by

yv
X = {x e JR.vN : Σ MIX, = 0}

/=!

and the resulting electric field E G X is given by

where Q and M stand for the total charge and mass respectively.
We assume £ΦO, that is <f ΦO and there exist 1 ̂  i < j ^ N such that ̂  φ %-.

This paper is a sequel to [HMS1], where absence of bound states and of singular
continuous spectrum for H are proved. These results were obtained for a wide class
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of potentials with singularities of at most Coulomb type and the decay assumption
at infinity

o(l) foτ\y\->oo,

plus in addition an assumption on the second order derivatives. Here we shall need
more decay assumptions on the potentials. Although we shall not elaborate in this
introduction we mention that roughly the short-range case is defined by the condition

^ , ,

while the case 0 < p ^ | is referred to as the long-range case.
Let a be a decomposition of the particles 1 through N into clusters

a = ( c \ , C 2 , . . . 9 c k ) , k = #(a) .

We say a C b iff each cluster in a is contained in some cluster in b. Let αmin =
((1),(2),. ..,(#)).

A necessary condition for the existence of a channel (defined as for the TV -body
problem without an electric field) is that the corresponding cluster decomposition
a is such that all particles in each cluster have the same charge/mass ratio. This
follows from the results in [HMS1]. There exists a largest of these cluster decom-
positions which we denote by a.

We are now ready to phrase our results.
Up to Bollard modifications needed to describe the internal motion (if the in-

ternal interaction between particles within clusters of a is long-range in the sense
used for E = 0, cf. for example [D]) the (short-range) wave operators

W± = s - lim Qxp(itH) exp(-itHa)(Pa ®7), a C a (1.1)
ί— »±oo

exist and are complete, that is

0 Range (W±) =

Here Ha is the Hamiltonian H with the intercluster potential (denoted by Ia) re-
moved and Pa is the eigenprojection corresponding to the internal motion within
the clusters of a.

In particular for a — am m the (free channel) wave operators are given by

=s- lim Qxρ(itH) exp(-ιf//0),
—t

= 2where HQ = H0mm = p2 - E x.
In the case

V i 3 ,

there is only the free channel. Thus we obtain that the wave operators corresponding
to αmin exist and are unitary. Since generally αφαmin we need the internal Dollard
modification for this example.

The limits in (1.1) do not exist in general for long-range potentials. Apart from
the internal Dollard modifications (suppressed in this presentation) we shall need in
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this case a phase factor
/

-ifld(Es2)ds

e o (1.2)

as introduced in [Z] for the 2-body case (cf. also [G2] and [A]). (In (1.2) the
factor la should be read as the intercluster potential with the singularities removed.)
Up to this additional modification we prove the existence of (1.1) as well as the
corresponding completeness result.

In [Tl] and [K] asymptotic completeness is proved for 3 -body short-range sys-
tems. For 3-body long-range systems a (partial) result was obtained in [A], It
required strong fields and the assumption a — αmjn. (Clearly asymptotic complete-
ness involves only the free channel under the latter assumption.)

In [T2] asymptotic completeness is shown for 4-body short-range systems under
the condition a — am m.

In [T3] asymptotic completeness is shown for N-boάy short-range systems under
the condition (on E) that for all cluster decompositions a with #(a) §; 3 there exists
1 ^ / ^ #(a) such that

Σy€C|gy . Q
\ — > " ^ i JT '

Finally [K] contains asymptotic completeness for arbitrary N (including Coulomb
potentials) assuming a strong field and in addition a = αmjn.

All the results mentioned above, except for [K], hold for non-singular potentials
only. In our paper we prove asymptotic completeness for short- and long-range
systems with local singularities of at most Coulomb type without any restrictions on
charge/mass ratios (except for /sφO). Other local singularities of Lp type (p > v)
can be handled using the methods developed in [HMS1] but we prefer to concentrate
on the physically relevant Coulomb singularity.

The free classical Stark motion in the center of mass frame is given by

x=x0 + 2ξ0t + Et2 . (1.3)

Motivated by this the following two local smoothness results should not be surpris-
ing. The first tells us that \x\ grows at least as fast as t2 and the second implies
that the motion will concentrate along the field direction.

(1) The multiplication operator (x)~p,p > | is locally //-smooth.

(2) The multiplication operator h(x)~ϊ is locally //-smooth, where h denotes
the square root of any non-negative smooth function homogeneous of degree
zero outside the unit ball and zero in the direction of E.

Here (x) = (1 -f- *|2)2. The statement (1) follows from a resolvent estimate [HMS1,
Theorem 6.3] and (2) is verified using a local commutator estimate. The proof of
this local commutator estimate relies on a uniform estimate of [HMS1] (Proposition
2.3 in this paper) in conjunction with an idea of Tamura [Tl].

In the short-range case asymptotic completeness follows easily from (1) and (2)
(cf. [Tl] for the 3-body case). In the long-range case a difficulty arises in a step
where one proves existence of a certain modified wave operator. One would like to
estimate (cf. (1.3))

{x - Et2}exp(-ίtH)ψ = 0(0 ,
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for a dense set of ι/^'s. Instead of proving this we introduce an intermediate evolution
U(t) satisfying that

s- lim U*(t)exp(-itH)
t~+ ±00

exist and such that one can prove the estimate

{x - Et2}U(t)ψ = 0(0 .

This process involves a minimal velocity estimate which is proved using a conjugate
operator constructed in [HMS1, Appendix B] and the abstract theory of [Sk].

Another ingredient in our procedure is asymptotic completeness for TV-body sys-
tems without an electric field [SS, Gl and D]. This statement is directly applicable
in the last step of the proof(s).

We find it convenient to consider the problems within the framework of gener-
alized Schrodinger operators although this involves a technical condition (denoted
by (C)) which holds in the above physical framework. In Sect. 2 we make the nec-
essary definitions and introduce various conditions to be imposed on the potential.
Furthermore Sect. 2 contains (1) and (2) and various results from [HMS1] needed
in this paper. In Sect. 3 we prove the local commutator estimate used in the proof of
(2) and in Sect. 4 we prove an asymptotic localization result which follows from (2)
and can be viewed as an elaboration of (2). In Sects. 5 and 6 we prove existence of
some short- and long-range modified wave operators and in Sects. 7 and 8 we use
these to prove existence and completeness of the wave operators discussed above.
All results in Sects. 3-8 are stated for non-singular potentials only although they
all hold with local singularities of at most Coulomb type included. In Sect. 9 we
discuss this point and state our most general version of asymptotic completeness.
In Appendix A we prove a minimal velocity estimate needed in Sect. 6.

Section 2. Definitions and Preliminary Results

We shall use the framework of generalized Schrodinger operators throughout the
whole paper. Let {Xa}ae^ be a finite family of subspaces of a real finite dimen-
sional vector space X, equipped with an inner product. We assume without loss of
generality that Xa = X^ =Φ a — b. We denote by Xa the orthogonal complement to
Xa and we introduce a partial ordering on stf by

a C b ̂  Xa C Xb .

The orthogonal projection onto Xa is denoted by Πa.
The family of subspaces is assumed to satisfy

(1) 3αmin,αmax G ̂  such that Xamin =X and Xamax = {0} ,
(2) Mα,b G j/, 3c <E j/ such that Xα Γ\Xb = Xc.

For x E X we denote by xα and xα the orthogonal projections of x on Xα and
Xα respectively. Similar notation will be used for components of the momentum
operator p.

We use the notation E e ̂ \{0} for the electric field vector.
Since the sets

Xα\ U Xb, flΦflmax
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form a disjoint covering of X\{0}, there exists a unique άή=amax such that

E G X&\ U Xb .

and V(x) = Σ W) , (2.1)

Notice that α satisfies Eα = 0 4=> α C ά.
The generalized Stark Hamiltonian is

where the potentials Fα are real functions on Xα (for 0φ0min) We define the cluster
Hamiltonians, which are again generalized Stark Hamiltonians, by

Hα=H0 + Vα, Vα(x) = £ Vb(xb) ,
bCα

and the intercluster potentials by

Iα=H-Hα = V-Vα=ΣVb. (2.2)
b(£α

We can write the cluster Hamiltonians as follows:

Hα = / / f l ® / + /(g)Γ f l, onL2(JTα)0L2(^), (2.3)

where

Hα = -zlα _ £« . ;tα + K" (2.4)

and

Γα = -zlfl-^ j f β , (2.5)

where we denote by Δα and Δα the Laplacian on L2(Xα) and L2(Xα) respectively.
If £"fl φ 0 the operator //fl is again a generalized Stark Hamiltonian with respect to
{Xα θ^j^cα a$ a family of subspaces of the vector space Xα . If Eα = 0 we have
an ordinary generalized TV -body Hamiltonian.

Below we introduce a list of various conditions on the potentials Vα,α G s# .
These conditions involve a fixed strictly positive ε and will be combined differ-
ently in different contexts in the paper. For notational convenience we assume that

(vi) vaecl(xa\\va(xa)\-
(V2) Va G C2(Xa) and \d«Va\ = (9(1), |α| ^ 2.

(V3) |Fα(jc*)| = O(\xa\~ϊ-κ).
(V4) |VFa(;cfl)| = O(|jcfl|~£).
(V5) |Kfl(jcα)| = Od^l"1-^, when Ea = 0.
(V6) 1^(^)1 = O(\xa\-ί:) and

(V7) |δαKa(;cβ)| = O(\xa\-lϊ~*\ |α =2.

(V8) I W)| = Odjc0!-^-1)-6) and |VK f l(x f l)| - O(\x?\-^-*\ when^fl = 0.
(V9) The potential Va is measurable and obeys

V (χa}\ < C V \xa — r I"1

*fl l , Λ y | = ^ a/_^ |Λ 'y I ?
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with r\9...,rn £Xa, and it has distributional derivative satisfying

If Ca is non-zero then dim(^α) ^ 3.
(V10) supp(Ffl) is a compact subset of Xa.

We say that the potential is/has/satisfies

(SR) Short-range if Va satisfies (Vl-3) and (V5) for all a erf.
(LR) Long-range if Va satisfies (Vl-2) and (V6-8) for all a e rf.
(SC) Singularities of at most Coulomb type if Va satisfies (V9-10) for all a e rf.

We use the corresponding notations Fsh0rt? Pίong and ^sΐng respectively. By the
condition on the potential

v = 'short i ' long ι ' s ing ?

for example, we mean that each term has the indicated form explained above. We
find it convenient from time to time to impose some other combinations of the con-
ditions (VI— 10). When we write that V — Σaerf V<* satisfies a certain combination
of (Vl-10) we mean that Va satisfies the combination of these conditions for all
a erf.

Before we continue we will introduce some notation. Let (x) = (1 + x\2)Ί,

x = -A- and ω — τfτ Similar notation (A) = (1 + Ml) 2 applies to numbers and self-

adjoint operators. By F( < R) : IR — > [0, 1] we will denote the sharp charac-
teristic function for the set (— oo,/£). We will denote by χ( < R) : IR — » [0, 1]
a smooth characteristic function satisfying χ(s < R) = 1, s < R and χ(s < R) =
0, s > 2R. Let F( ^ R) = 1 - F( < R) and χ( > R) = I - χ( < R).
For a given real valued function h we denote by F(h < R) the composition of
the functions h and F( < R) and likewise for χ(h < R). For δ > 0 the notation
η$ stands for any smooth function η : IR — > [0, 1] such that η(t) = 1 for \t\ ̂  δ
and η(t) = 0 for \t\ > 2δ.

In order to include singularities we introduce the technical condition

(C) For all b G rf for which the singular part of VΊ, is non-zero and for all aή=b
with FβφO and ΠaΠb^O

dim (Range 77^77^) ^ 3 .

In the remaining part of this section we assume (C),

F = F, + Fsing

and we will specify V\ for each result.
We note that the Hamiltonian (2.1) is essentially selfadjoint on C£°(X) if V\

satisfies (VI) since by [HMS1, Proposition 6.4] V is //o-bounded with bound less
than one.

This paper depends strongly on the following three results of [HMS1]. The first
two follow from [HMS1, Theorem 6.2] and [HMS1, Theorem 6.3].

Theorem 2.1. Assume V\ satisfies (Vl-2). Then the spectrum of H is purely
absolutely continuous.
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Theorem 2.2. Assume V\ satisfies (Vl-2) and let p > 0. Then the operator of

multiplication by (x}~*~p is locally H -smooth. That is for all f G Co°(R) there
exists C > 0 such that

for all \l/ e L2(X).

Proposition 2.3 [HMS1, Corollary 6.7] (cf. [HMS1, Proposition 3.7]). Assume V\
satisfies (VI). Suppose R > 0 and Π \ X -^ X is an orthogonal projection such
that 77£φO. Then

\\ηό(H - λ)F(\Πx </0 | |->0 /or (5^0,

uniformly in λ e IR.

Assuming in addition to (VI) either (V3) or (V4) we will be able to prove a
local commutator estimate (cf. [Tl] for a proof in the 3 -body case), which implies
an improved smoothness result.

Throughout the paper we denote by qQ the function

ω f) . (2.6)

Proposition 2.4. Define the observable A = (x)~ϊ(ω p)(x}~*. Assume V\ sat-
isfies (VI) and either (V3) or (V4). TTzefl ίλere exists δ > 0 swc/z that for all
λ e IR flftd refl/ / <E Co°((λ - <M + 5))> we Aαt e ίAe estimate

f ( H ) i [ H 9 A ] f ( H ) ^

where B = B(λ) is bounded,

Since A is //-bounded (cf. (3.1) below) this result together with Theorem 2.2
implies

Theorem 2.5. If V\ satisfies (Vl-2) and either (V3) or (V4), then the operator

<70{jt)~4 is locally H -smooth.

Clearly the above results hold upon replacing H by any cluster Hamiltonian

For convenience we define the spaces

Qk(X) = {qe C°°(JO: q real, \(d*q)(x)\ g Cα{^-'a|}, * G R .

We will by q^ and ~qk denote elements of Qk(X} and vectors with entries in Qk(X)
respectively. This shall frequently be tacitly understood.

We now introduce three functions 71,72 and 73 which will be used extensively
throughout the paper. They are assumed to satisfy

(Jl) jι G C°°(X) and is homogeneous of degree 0 for \x\ > 1.
(J2) 0 ^ ji ^ 1 and jl = 1 in a neighbourhood of ω.
(J3) The support of y/ satisfies

b£a

hj\ = 71 and 7372 =72-
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Note that (Jl) implies y/ e Q0(X) and (Jl-2) imply (1 - jl}(q^k G QQ(X) for
any k e IR.

The property (J3) assures that for b (£_ a and x e suppfj,) we have

\x*\>Cb9ix\, (2.7)

for some constant Cbj > 0. Notice that (J4) implies that

( l - y ι ) ( l - Λ ) = l - y 2 and ( l - y ι ) V Λ = V Λ . (2.8)

All results in Sects. 3-8 hold for potentials of the form

K = F, + Fsmg ,

where KI satisfies some combination (depending on the given context) of the con-
ditions (Vl-8) and under condition (C). For simplicity we will only state and
prove results in the case Fsjng = 0 leaving the general case to be discussed in
Sect. 9.

Section 3. Proof of Proposition 2.4

Put A = (x)~*(ω p)(x)~* and DQ = x p.
We will need the following two elementary results which hold for V satisfying

(VI), cf. [HMS1, Lemma 3.1].

(3.1)

and
(x)-lp2(H + iΓl e@(L2(X)). (3.2)

Note the A is //-bounded by (3.1) and hence the commutator i[H,A] is naturally
defined as a form on 2(H). First we state a result due to Tamura [Tl].

Lemma 3.1. Let V satisfy (VI). We have the following inequality

Proof. It is easy to verify that

i[£ *,Λ] = -<*>-* |£|{*)-i (3.3)

and

WA} = -?±™. (3.4)
<*}2

We have the identity
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We apply this result to the commutator

for r ^ \ + k.

and obtain after symmetrizing

i[p\A] = -I<*)-3{(ω . p)D0+D*0(ω p)}(x)-\ + q_Ί_ .

Using the inequality
(ω p)D 0+Dj(ω. p) ^ 2p2 ,

we get

i[p\A] ^-{*)-V(*)-l+<7_7.

By (2.1) we can substitute p2=H + E x-V. Combining this with (3.3-4), we
conclude the result. D

The next lemma is elementary and its proof is left to the reader.

Lemma 3.2. Assume V satisfies (VI). Let s, r, k ^ 0, z G <C, Im(z)φO 0«rf S be
an H -bounded operator. Then we have the following:

(1) (//-z)-1 : 2((xY) ^ 2)((xY) and (x}r(H - z)~λ (x}~s £ @(L2(X)) for
r ^ s.

(2) (x}r(H -zΓ1 : ̂ ({jc}5) -> @(H)andS(xY(H - z)~} (x}~s G ^(L2(^)) /or
r ^ 5.

(3)

(4) (*)Ί(//
for r ̂

(5) S(x)r[(H — z)~l,q-k](x)s extends from @((x)s) to a bounded operator on
L2(X)for r ^ \+k-s.

Furthermore as &(L2(X))-valued functions on {z G C|Im(z)Φθ} the operators in
(1-5) are continuous and bounded by polynomials in \z\ and llmίz)!"1.

We shall use the fact that given g G C£°(IR), there exists g G C^°(C) satisfying

000 = ^IIR(^)

and
Vk G N3Q ^ 0 such that \dg(z)\ ^ Ck\lmz\k . (3.5)

Then we have, cf. [Ho, p. 63],

g(x) = - f(dg)(z)(x - z)~}dudv, z = u + iv. (3.6)
π c

By (3.5-6) and Lemma 3.2 we obtain

Lemma 3.3. Assume V satisfies (VI). Let s, r, k ^ 0, / G C^°(IR) and S be an
H -bounded operator. Then we have the following:

(1) /(//) : @((x}s) -> 2((x}s) and (x}r f(H)(x}~s G @(L2(X))forr ^ s.
(2) ( x } r f ( H ) : @((x)s) -^ @(H)andS(xYf(H)(x}-s G @(L2(X))forr ^ s.

for r ^ \+k.



518 I. Herbst, J.S. M011er, E. Skibsted

(3) [/(//),<?-*] : L2(X) -+ @((xγ2+k)and (x)r[f(H\q-k} £ @(L2(X))for r <,

(4) 6c)r[/(77),4-*] :L2(X)^@(H)andS(xY[f(H\q-k\ G @(L2(X))forr ^

2 ' ""

(5) S(xY[f(H\q_k\(xY extends from S)((xY) to a bounded operator onL2(X)
for r ^ ^ 4- k — s.

When we refer to Lemma 3.3(5) without specifying S it is tacitly understood
that 5 = 7.

Using Lemma 3.3(5) with k = |,,s = \,r = 0 and S = F — 77, we obtain for
0 G C0°°(1R),

Let / G C0°(R) be given. By choosing g G CQ°(R) such that fg = f one obtains
the following result by applying (3.7) to Lemma 3.1.

Lemma 3.4. Let λ G IR and f G CQ°((/I — l,λ + 1)) 6e reα/, α«J suppose V satis-
fies (VI). Then we have the local commutator estimate

f(H)i[H,

where B — B(λ) is bounded.

Lemma 3.5. Assume the potential satisfies (VI) and either (V3) or (V4). Then
there exists δ > 0 swc/z r/zαί /or all λ G IR αwJ real f G C™((λ -δ,λ + δ)) we
have

where B = B(λ) is bounded.

Proof. We write

= £ {72ω . VK6(^) + (1 -72)ω

First we consider the terms localized away from the field direction.
Let λ G IR and / G C0°°((/l -δ,λ + δ)) for some δ > 0 to be chosen later. In

the following computations we abbreviate

and
ω.

= (1 -J2)
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Notice that hb is bounded. We write using (2.8),

-? (1 -y 2)ω

where

519

= f(H)ηδ(H - λ)q_1hbq_Lηδ(H - λ)f(H)
4 4

= Γ, + Γ2 + Γ3 ,

- λ)hbηs(H - λ)q_ίf(H) ,
4

Γ2 = 2R.e{f(H)[ηδ(H - λ),q_L]hbηδ(H - λ)q_ιf(H)}
4 4

7-3 = f(H)[ηs(H - λ),q_i]hb[q_ί,ηό(H - λ ) ] f ( H ) .
4 4

- λ)hbηδ(H - λ) = R)hbηδ(H - λ)

> R)hbηδ(H - λ) .

(3.8)

We start by estimating the second term. Since by assumption |VF/,(jμ)| = o(\) we
can choose R large enough such that

Fix such an R.
To estimate the first term we can assume Eb Φ 0, since otherwise we will have

ω Wb(xb) = 0. This observation assures that we can use Proposition 2.3. Thus
there exists δ = δ(b) > 0 such that for all λ G IR we have

ηδ(H - λ)F(\xb\ <R)hbηδ(H-λ)

^ ηδ(H - λ)F(\xb\ < R) (sup \hb(x)\\ ηδ(H - λ) ^
lχex )

We can now estimate

(3.9)

We can estimate Γ3 using Lemma 3.3(5) twice, with s = \, r — 0 and k = ^,

for all feCS°((λ-δ,λ

We c
obtaining

Γ3 = f ( H ) ( x ) - L 2 B ( x ) - - 2 f ( H ) . (3.10)

To estimate Γ2 we use Lemma 3.3(5) with s = k = | and r — | and Lemma

3.3(1) with r = 5 = \ and obtain

(3.11)

where S is bounded.
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Combining (3.8-11) we have obtained a δ = δ(b) > 0 such that for all λ e IR
and / e C0°°((/l - cU + <5)),

, (3.12)

where B = B(λ) is bounded.
Clearly (by choosing the smallest) we can assume that δ does not depend on b.
Now we consider the terms localized along the field direction.
If b C a we have ω Wb(xb) = 0. If b <£ a, we have by (2.7) that

(3.13)

if V satisfies (V4).
For V satisfying (V3) we obtain using (3.1)

ω
72

where S is //-bounded. Using Lemma 3.3(5), with S as the //-bounded operator,
*=ί + f » s = | + f and r = 0, we can derive (3.13) for this case also. Combining
(3.12) and (3.13) we now conclude the lemma. D

Proposition 2.4 is a direct consequence of Lemmas 3.4 and 3.5. D

Section 4. Asymptotic Localization

In this section we prove that asymptotically any state will be localized in an arbi-
trarily small conic neighbourhood of the field.

We will introduce the notation

φ(t) O \l/(t) = φ(t) + o(l), t-* +00

for families ψ(t) and φ(t) of functions in L2(X}. It will be used in this and subse-
quent sections.

We will need the following lemma.

Lemma 4.1. Let i e {1, 2, 3} and g £ C(R) such that g(x) -+ 0 for \x\ -> oo.
Then the following operators are compact for V satisfying (VI).

(\)j,(g(H)-g(Hs)\
(2) [g(Ha),ji] for any a (Ξ s/.

Proof. Clearly it is enough to consider g € CQ°(!R). Because of (3.5-6) it is suffi-
cient to show that the operators

j,((H-zΓl-(Hs-zΓl) and [(Ha-zΓlJi]

are compact for fixed z with Im(z)Φθ. First we note that the operator f(x)(Ha—
z)~l is compact if f(x) = o(I) (cf. (3.1-2)). This gives the result for the
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commutator. The compactness of the first operator is seen from the identity

using the compactness of the commutator above and (2.7). D

The following fact which holds for V satisfying (Vl-2) follows from Theorem
2.1 and will be used in conjunction with Lemma 4.1,

w- lim Qxp(-itH) = Q. (4.1)
ί— >±oo

Proposition 4.2. Let V satisfy (Vl-2) and either (V3) or (V4). Then we have for
any ψ G L2(X\

lim (1 -j2)exp(-itH)\l/ = 0 .
t— »±oo

Notice that j2 could be chosen with support in an arbitrarily small conic neigh-
bourhood of the field direction.

Proof. The first step will be to verify existence of the modified wave operators

W±=s- lim W(t) ,
t— »±oo

where
W(t) = exp(zϊ//)(l -j2)Gxp(-itH) . (4.2)

Next we will show that W± = 0 thereby concluding the proposition.
We will only consider the case t — » +00 since the case t — > — oo is similar.
Let φ = f(H)ιfo, where / G C0°°(IR) and 0b £ I2(^). By Lemma 4.1 and (4.1)

we have
g G C

Hence we can write

W(t)ψ ~ g(H)(l -j2)\l/ + fg(H)exp(isH)i[H9 1 -y2]exp(-w^)^rfj . (4.3)
o

We compute the commutator using (2.8) and (3.1),

i[H, 1 -72] - 0«*Γ2) - 2V/2 P = 0({%)-2) + ̂ _ι^_ι ,
4 4

where q_\= (x)~ϊq0(l — j\) and S is //-bounded. Consider
4

where

Tι = 9(H)q_,Sg(H)q_,f(H) and T2 = g(H)q_,S[q_,,g(H)}f(H).
4 4 4 4

Applying Lemma 3.3(5) to T2 with the above S,k = \,s = \ and r = 0 we obtain
the existence of the limit of (4.3) by Theorems 2.2 and 2.5. We have thus proved
existence of the modified wave operator.

We shall now prove that W+ is zero. Consider

-?<Ao, ιAo e L2(X\f G C0°°(IR) .
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We will use the following notation to denote the expectation of an observable A in
a state ψ,

We abbreviate

and estimate using the Cauchy Schwarz inequality

ι///Άl|4

. (4.4)

By Theorem 2.5 the left-hand side is finite. (We used that qQ is bounded.) By the

choice of ψ and (3.1) we can estimate the expectation of (x)2,

«*> *>*,) = WO, <*

= 0(0 . (4.5)

Combining (4.4) and (4.5) we can find a sequence {tn}new such that tn —» +00 for
n —> oo and

lim (qfyψfa) = 0 . (4.6)

Estimating

we obtain by (4.6) that
lim 11^(4,^11=0.

w—»oo

Thus PF+ is zero. D

The simple sequence argument applied at the end of the above proof was also
used in [E].

The idea of utilizing a smoothness estimate (as the one given by Theorem 2.5)
to obtain a pointwise estimate (cf. Proposition 4.2) was used in a different but
somewhat related context in [He]. (See also [E].)

Section 5. Modified Short-Range Wave Operators

In this section we prove existence of some modified short-range wave operators
which will be used in Sect. 7 to prove existence of wave operators and asymptotic
completeness in the short-range case.

Proposition 5.1. Assume V satisfies (Vl-3). Let

W(t) = exp (itH)J2 exp (-itHa).

Then the modified wave operators

W± = s - lim W(t)
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and
W± = s - lim W*(t)

exist.

Remark. Since both limits exist W+ is in fact the adjoint of W+ (motivating the
notation). A similar remark applies to W^.

Proof. We will only prove the existence of W+ since existence of the other three
wave operators are proven similarly. The proof goes along the line of the first part
of the proof of Proposition 4.2.

Let φ = f(H)φb, where / e C0°°(R) and φQ G L2(X\ By (4.1) and Lemma 4.1
we can write

W*(t)ψ ~ g(Hs)W*(tW, g e C0°°(R), gf = f .

Then we can compute using (V3) and (2.7-8),

and

= 0((x)-2)

where q_\_ = (x) 4<700 ~~7ι) an(i S is //-bounded. We can now apply Lemma

3.3(5) (cf. the proof of Proposition 4.2) and conclude the existence of the limit by
Theorems 2.2 and 2.5. D

Section 6. Modified Long-Range Wave Operators

In order to prove asymptotic completeness in the long-range case we will need some
modified long-range wave operators introduced in [Z] for the 2-body case (cf. also
[G2]).

The modified wave operators are

W^ = s - lim Wz(t),

* = s - lim

where

and

Notice that Uά(t) is the time evolution corresponding to the time dependent
Hamiltonian

Hά(t) = Hά + Iά(Et2). (6.2)

All results in this section hold for V satisfying (Vl-2) and (V6-7).

Uά(t) = e e x p ^ i t H s ) . (6.1)
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Proposition 6.1. The modified long-range wave operators W^ and W^r* exist.

The existence of W^ will be proved in a simpler and more direct way than the
existence of W^*. For the latter problem we shall need an intermediate evolution
U(t) generated by a time dependent Hamiltonian H(t).

To define H(t) we let θ be as in Proposition A.I in Appendix A. Let K =
θ, I E \}. The time dependent Hamiltonian generating U(t) is

H(t) = Hs + I(t,x) ,

where

3. (6.3)

From the definition of I(t,x) one obtains for |α ^ 2, 0 ^ p ^ ̂ ^ +ε and
n e N U { 0 }

(6.4)

where m(0) = 0, m(\) = 2 and m(2) = 1.
To handle this intermediate evolution we shall need two smoothness results.

Lemma 6.2. There exists C > 0 such that for all p > 0 and ψ e L2(X) we have

J\\(xΓ^(Hά-iΓlU(tm2dt ^ C\\ψ\\2.
o

Lemma 6.3. There exists C > 0 such that for all ψ E L2(X) we have

00 .

/ \\q0M"*(Hs - iΓ2U(t)ψ\\2 dt ϊ C\\φ\\2 .
0

Proof of Lemma 6.2. We can assume that p ^ ^. Since

β~ - i)"1 <^ P) = { W"^^ - O"1^ /> - 0}{(^ P - iΓl(E ' P)} ,

we obtain by (3.1) and Lemma 3.2(2) with S — (x}~ϊ(E p + /) and s = r — ^

that (x)~ϊ(Hά — i}~l(E p) is bounded. By an interpolation argument it is thus
sufficient to find a C > 0 such that for all ^ e L2(X),

J\\(E p>-i-2^£/(0^||2Λ ^ Cm2 . (6.5)
o

Let

A ( t ) = U*(t){E p}U(t)

and

p} exp(-itHa) = E p+ \E\2t . (6.6)
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Then the difference

A0(t)-A(t) = fU*(s)E - VI(s,x)U(s)ds =
o

by (6.4). This result implies

\ \ ( A ( t ) Γ l (A0(t))\\ = 0(1) .

By an interpolation argument we thus obtain

\\(A(t))-s(AQ(t))s\\=0(l)

for 0 ^ s ^ 1.
We can now estimate

\\(E pΓϊ-

Applying this estimate to the left-hand side of (6.5) and by using (6.6) we obtain

.

/ II (£ p)-2-2»U(t)ψ\\2dt rg Cf l\{A0(t))-2-2»ψ\}2 dt
0 0

CO

= Cj\\(E.ξ+\E\2t)-2-2oψ\\2dt

= C\E\~2j / \
X ξ E

where ψ denotes the Fourier transform of ψ. We are done since p > 0. D

Proof of Lemma 6.3. Define the observable

where A is the observable from Sect. 3. By (6.4) with α| = 1, p = ^ and n — 0 we
obtain

i[H(t),(Hs - I)'1] = (Ha - i)-}i[p2J(t,x)}(Ha ~ iΓl - O((tΓ^2e) .

We compute using this estimate in conjunction with (6.4), Lemma 3.1 and the fact
that ω Ws = 0,

,A] Z (Hδ + ίT2-\(Hs - iΓ2

(HS + iΓ2{<*>

s + iT2^\(
(X}

L2

(HS + iΓlW-
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where B is bounded. In the last step we used Lemma 3.2(5). The result now follows
from Lemma 6.2. D

Lemma 6.4. For ψ = (x}~λ f(pa)(Ha - /)~ V / £ C^(Xa) and φ G L2(X) we
have the estimates

{x - Et2}U,(t)φ = 0((t))

and
{x - Et2}U(t)φ = 0((ή) .

Proof. For ψ of the above form we compute (using (6.4))

U*(t){x& - Et2}U(t)ψ = (xά + 2pst)ψ - 2 / / U*(r)VsI(r9x)U(r)\l/drds
0 0

For Us the same procedure applies. We are thus left with proving

and

We represent U*(t)xάU(t)\l/ - xάψ as an integral and use the fact that pά(Hά +
I(t,x) — i)~l is uniformly bounded in t to conclude that it is sufficient to prove

(H* + I(t,x) - i)U(t)ψ = 0(1) . (6.7)

This statement for U(t) replaced by Ug(t) follows from the identity

(H* - i)U,(t)φ = Us(t)(Hs - i)ψ .

To prove (6.7) we compute

= (H* + I(0,x) - i)ψ + / t/*(

= 0(l) + 2fU*(s)VsI(s,x) pδU(s)ψds .
o

By another application of (6.4) we compute

PaΨ + / U*(s){E - VάI(s,
0

Combining these statements we conclude (6.7) and hence the lemma. D

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1. Throughout the proof we will only consider limits at plus
infinity. To prove existence of W^* it is sufficient to prove existence of the strong
limits of

ί/?(0t/(0
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and
U*(t)j2exp(-itH).

Let ψ be of the form considered in Lemma 6.4. We compute using (J2), (6.3) and
the choice of K,

• / Uΐ(s)i{I,(Es2) - I(s,x)}U(s)ψds

t

- f U~(s)ί{I(s,Es2) - I(s9x)}U(s)ψds ,

where t > to = max{l, —τ=} By Taylor's formula, (6.4) and Lemma 6.4 the right-

hand side has a limit as t —> +00.
Let ψ = (// + 0~2<Ao,Άo = f(H)(x)-lφ,f G C0°°(IR) and φ G L2(X\ We write

using Lemma 4.1, (4.1) and Proposition A.I,

U*(t)j2 exp (-itH)ψ ~ U*(t)(Hά + i)~2J2 exp (—i\

f U*(s)((Hδ + i)~2{Ti(s) + T2(s)
o

~2
where φ} =(HS + i)~2χ(\x\ > 2κ)j2φo and

T2(s) = iχf±>2κ} J2(l(s,x) - Iδ),
S

Γ4(s) =/[/(,?,*), ( f̂l- + 0 ]

We treat the terms one by one. In the following we denote by B(s) and 5(5-) families
of bounded and //-bounded operators such that ||/?CsO|| and \\S(s)(H — i)~l\\ are
uniformly bounded in time, respectively.

We abbreviate q_\_ = (x)~4q0(\ — j \ ) and calculate using (3.1) and (2.8),
4

Tλ(s) = q ιS\(s}q , + (s)-lS2(s)F (-^ < 4κ] . (6.8)
4 -4 \(ήl )

The contribution from the first term can be shown to have a limit by Lemma 3.3(5)
with k = |, s = ^ and r = 0, Lemma 6.3, Theorems 2.2 and 2.5. As for the con-
tribution from the second term we invoke Proposition A.I.
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From the definition of I(t,x) and (J4) we obtain

.- > 2κ
" \(s)2

We compute

2K Λ = <*<,>-' )F < 4. , (6.9)

and thus we obtain integrability by Proposition A.I.
Using (3.1) and (6.4) with |α| = 1, p = \ and n = 0 we get

We will now show the existence of W%
Let φ = g(Ha)fa, fa = (x)~λ f(P&)(H& + /Γ V, where / G C0°°(Ai), ^ 6 C0°°

(IR) and φ G I2(^Γ). Let h G C0°°(1R) satisfy that hg = g. Using Lemma 4.1, (4.1)
and Proposition A.I (with // replaced by H^) we obtain

> 2κ

Γ3(J) + Γ5

>o

where ^2 = h(H)Qxp(itQH)χ(1^Ί > 2κ)j2Uά(tQ)ιl/ and f > ί0 = max{l, -̂ }.

The terms Γ^s) and T^(s) are as above and

\j2(Ia-Ia(Es2)).

By (6.8-9) and similar arguments we can show the existence of the limit of the
contributions from T\(s) and T$(s). We write using (J2), (J4), (6.3) and the choice
of K,

. / JC| \ . , 2 .
le(f<\ /'<y I ^~> /1/ I ΐ ^ i l l v V I I I C Γ^C I I5 \ " / — 'A I ^ 'ΓT **̂  ^</v i /21 -i V 1^5 Λ I ι\ιj)j-L/>j it .

V w 2 /
This tells us that the contribution from 75(s ) is integrable by Taylor's formula,
(6.4) and Lemma 6.4 provided that we can prove

[{x - Es2}, g(Ha)Wa(s)fa = 0((s)).

By Lemma 6.4 and a simple interpolation it is sufficient to verify

[x,g(Ha)](x)~i G &(L2(X)). (6.10)

To do that we compute for Im(z)φO,

This formula in conjunction with (3.1), Lemma 3.2(2) and (3.6) implies (6.10). D
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Section 7. Short-Range Systems

In this section we will prove existence of wave operators and asymptotic complete-
ness for short-range systems.

We denote by Pa the eigenprojection of Ha for aή=amιn. If this projection is
non-zero Theorem 2.1 implies a C a.

Theorem 7.1 (Existence of short-range wave operators). Assume V satisfies (SR).
Then the wave operators

W^ = s - lim Wa(t\ a C a ,

where

Wa(t) = Qxp(itH)Qxp(-itHa)(Pa 07)

exist. (Here the tensor symbol refers to the decomposition L2(X) = L2(Xa) 0
L2(Xa). For a — am\n,P

a 07 = 7.) Their ranges are closed and mutually
orthogonal.

Proof. We will only prove the existence of W^,a C a, since the others are verified
to exist similarly. Let ψ = ψά 0 fa G L2(Xά) ®L2(Xά) and a C a. We write

Wa(t)\l/ = exp(itH)exp(-ίtHa)exp(itHά)exp(-ίtHa)(Pa <

= exp(ιϊ//)exp(-ιf#flO(^

where

Hά

a = (pά)2 Λ- Va on L2(^).

By the existence of the wave operators for the usual TV -body problem [SS,G1,D],
there exists

φ* = lim exp(itHά)exp(-itH°)(Pa®I)ψά .
/^+oo

We can thus write using Propositions 4.2 and 5.1,

W a ( t ) \ l / ~ exp(itH)exp(-itHά)(φ° 0 fa)

- W(t) (φά 0 fa) - PF+(φα~ 0 fa) ,

which implies the existence of the wave operator.
Since the wave operators are partial isometries their ranges are closed. Mutual

orthogonality follows from mutual orthogonality for the usual TV -body problem and
the above calculation. D

Theorem 7.2 (Asymptotic completeness for short-range systems). Assume V satis-
fies (SR). Then the wave operators are complete. That is

Φ Range (Wa

±)=L\X).
tfCα

Proof. We will only prove completeness for t — ->• H-oo since the other case is proved
similarly. Let δ > 0 and φ G L2(X). Choose φ = £"=1 ψf 0 fat/ G L2(Xά) 0 L2(Xά)
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such that ||fΓ+ι^ — φ\\ ̂  δ. Then by Propositions 4.2 and 5.1

Qxp(-itH)\l/ ~ exp(-itHaW+ψ = (exp(-/Y77fl~) 0 Qxp(-itTs))φ + Ot(δ) ,

where 0/((5) G L2(X) satisfies ||0f((5)|| ^ (5 uniformly in time. We can now apply
asymptotic completeness [SS, G1,D], for the usual TV-body problem to obtain the
existence of ι/ 7̂ £ L2(Xa\ a C a and 1 ^ 7 ^ / 1 , such that

where Ψa — Σ'j==\Ψίίj®Ψάj Since 5 is arbitrary Theorem 7.1 now implies the
result. D

Section 8. Long-Range Systems

In this section we use the modified long-range wave operators from Sect. 6 to prove
existence and completeness of the long-range wave operators Wpa to be defined
below.

Let
# = / * - / « = Σ Fa, aca. (8.1)

bed
b(ta

We introduce the Dollard modifications corresponding to the usual generalized
Λf-body system defined by 5,

4(ξ,t) = (ξά - ξa)2+I°(2t(ξ° - ξa))9 aca.

The Dollard type Hamiltonians are

HD,a(t) = Ha 0707 + 70 4( P, t)®I + I®I®Tά + h(Et2 ), a C

where we have decomposed L2(^) = L2(Xa) ®L2(Xά θXa) ®L2(Xά). The corre-
sponding evolutions are

UD,a(t) = e~lo *ss{exp(-itHa) 0 exp(-/5 (/?,/)) ® exp(-zϊΓα~)}, α c 5 ,

where

Sϊ(ζ,t) = t(ξά - Γ)2 + fl°(2s(ξ« - ξa)}ds .
o

(This choice of S% is not unique.)
The Dollard type wave operators are

Wj£a = s - lim exp(ίtH)UD,a(t)(Pa 07), a C a ,

where 7*^ are the eigenprojections of 77fl.
Using [D, Theorem 3.6], Propositions 4.2 and 6.1 we can apply exactly the same

procedure as in Sect. 7 to obtain the following results.

Theorem 8.1 (Existence of long-range wave operators). Let V satisfy (LR). Then
the wave operators W^a, a C a exist and their ranges are closed and mutually
orthogonal



Asymptotic Completeness for yV-Body Stark Hamiltonians 531

Theorem 8.2 (Asymptotic completeness for long-range systems). Let V satisfy
(LR). Then the wave operators Wpa, a C a are complete, that is

0 Range (r±J =
aCd

Section 9. Inclusion of Singularities

In this section we will explain how to include singularities of at most Coulomb
type in our results of Sects. 3-8.

We consider potentials satisfying (C) and

V = V\ + ^sing ,

where V\ satisfies a combination of the conditions (Vl-8) depending on the context.
The only situation where inclusion of singularities cannot be handled using only

the //-boundedness of the Coulomb potential [HMSl, Proposition 6.4] is the esti-
mate (3.9) in the proof of Lemma 3.5.

To obtain (3.9) with singularities we have to prove that

\\ηδ(H - λ)hbηδ(H - λ)\\

is small when δ is small, where hb is given as in the proof of Lemma 3.5. A
similar statement was an ingredient in the proof of [HMSl, Theorem 6.2]. We can
assume Vb has a singular part (otherwise we can use Proposition 2.3 as before)
and without loss of generality that n = 1 and r\ = 0 in (V9). As before we can
assume Ebή=Q. Let p > 0 be given. Then by (V9) it is enough to find δ > 0
such that

(9.1)

To do this we use [HMSl, Lemma 6.8] to obtain δ\,02 > 0 such that

- λ)-F(\x»\ <δ2) <?-

Since Ebή=0 it follows from Proposition 2.3 that

,,(//-AW

for δ > 0 small enough. Thus by choosing <5 < y small one obtains (9.1).
We have the following generalization of the results in Sect. 7.

Theorem 9.1. Assume (C) and V = Kshort + Ksing. Then the wave operators W^,a C
α exist, their ranges are closed and mutually orthogonal. Furthermore they are
complete.
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As for the results in Sects. 6 and 8 these hold under the condition (C) and

V = V\ + Fshort + Ksing ,

where V\ is assumed to satisfy a combination of the conditions (Vl-2) and (V6-8)
depending on the section.

To obtain the existence of the modified long-range wave operators in Sect. 6
we replace la by Ia\ in (6.1-3), where I^\ is given in terms of V\ which satisfies
(Vl-2) and (V6-7J. As for the results of Sect. 8 one should define lά

a (cf. (8.1))
in terms of V\ = V\ong (Notice that the wave operators depend on the splitting of
the potential which is non-canonical).

The results in Sect. 8 generalize to

Theorem 9.2. Assume (C) and V = V\ong + ^short + Psίng Then the wave operators
Wpa,a C a exist, their ranges are closed and mutually orthogonal. Furthermore
they are complete.

Theorem 9.2 implies

Corollary 9.3 (Coulomb systems). Let Va = τ%, qa G IR and assume (C). Then

the conclusions of Theorem 9.2 hold.

Notice that in this case FίongΦO if αφfl m in, but we can take I^\ = 0 in the
purely multiplicative phase factor.

By Corollary 9.3 and [B, Si, FH] we obtain the following result for the physical
Stark Hamiltonian with Coulomb interactions.

Corollary 9.4 (Coulomb systems). Let H be given as in Sect. 1 and suppose
υιj(y} — ITT > v ^ 3. Then the wave operators Wp m exist and are unitary oper-

ators on L2(X\

In a similar way one can prove asymptotic completeness for Born-Oppenheimer
molecules.

Appendix A. Minimal Velocity Estimate

In this appendix we will prove the following proposition.

Proposition A.I. Assume (C), V = V\ + FSing and that V\ satisfies (Vl-2). Then
there exist p, θ > 0 such that for all f e C0°(IR) we have

F (ft < θ] e*p(-itH)f(H)(x)-{ = 0((tΓP} for |ί| ̂  oo .

Proof. Let / G C^°(IR). Consider the observable

A = l-{E(x} p + p. E(x)} = E(x) - p - l-V E(x),

defined in Appendix B in [HMS1]. By [HMS1, Proposition B.4 and Corollary B.6]
we can use [Sk, Corollary 2.5] (with 0 = 1 , ΪQ — 1, KQ = 0, «0 — 2 and βo,αo ^ ̂
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such that 0 < ^ < jS0 < α0 < 1 ) to obtain p, δ > 0 such that

F (r < 2δ\ <sxp(-itH)f(H)(H + i)(A)-1 = O ( ( t ) - p ) for t -> +00 .

Although Corollary 2.5 in [Sk] is not directly applicable since it requires H to
be bounded from below the result still holds. To see this we remark that [Sk,
Lemma 2.11] can be proved without the lower boundedness assumption by using
the representation formula (3.6). For that one needs a slight modification of [Sk,
Lemma 2.10].

Since (3.1), Lemma 3.2(2) and [HMS1, (B.5)] imply that (A)(H + i)~} {*)"'
is a bounded operator we thus obtain

F < 2δ exp(-itH)f(H)(xΓl = 0({/}-") . (A.I)

We can assume p ^ 2.
Let χ and ψ be abbrevations for

and exp(-ί//0/(#X*ΓV <P e L\X) ,

respectively. Here θ > 0 will be chosen later.
In the following all estimates are uniform with respect to φ, \\φ\\ g 1. We

compute using [HMS1, Proposition 6.4] and (3.1)

2θ\E\(t)2\\χφ\\2

= Vθ(t)\\χψ\\
t)

c2

Using this estimate we calculate

£ J2 (sup \E(X) Θ(2\E\

+ , (A.2)

where
Mo = θ{\ + (4\E\ + 2) sup \E(x)\2} .
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We can also estimate
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A2

= δ2(t)2\\χψ\\2-δ2(t;2/Λ2

xΦ

A2

Putting (A.2-3) together we obtain

: 2 / Λ 2δ2(t t) -̂ 1 2: (δ2 - Mt))(t)2\\χψ\\2

(A.3)

(A.4)

We now choose Θ > 0 such that Mg < y. To estimate the left-hand side we
notice that the commutator

A2

W2<'

as can be shown by first writing it on the form [#(-7^1), %] for some g E C^

and then applying (3.6). We thus obtain

A>_

(t}2
< 2 -6

This result in conjunction with (A.I) and (A.4) yields

\\χφ\\ gC,<*)-". Π

Note added in Proof. After the submission of this paper the authors realized how to remove the
technical condition (V7) assumed for the main result, Theorem 9.2. This is done by proving a
weaker version of Lemma 6.4 using certain differential inequalities.
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