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Abstract: In this paper delay equations xn+k — /(*«?• Ά+£-ι) are considered,
where the function / is supposed to be convex, having a unique point of maximum.
It is proved that if there are no stationary solutions then all solutions must diverge.
Considering the one parameter family fμ = μ + / and associating to it a family
of two dimensional maps Fμ it is shown that the set of points having bounded
orbit under Fμ is homeomorphic to the product of a Cantor set and a circle, and is
hyperbolic and stable.

1. Introduction

Any delay equation of order k:

Xn+k = f(Xn,- ,Xn+k-l) (1)

can be associated with a transformation of Rk given by

F(xι,...,xk) = ( X 2 , . . . , x k , f ( x \ , ' - X k ) ) - (2)

Any orbit of the map F is in one to one correspondence with a solution of the
delay equation (1). Here we will deal with delay equations where the function
/ is convex, in the sense that / is a C2 function such that the quadratic form
associated with the second derivative is definite at every point. In this case Eq. ( 1 )
is called a convex delay equation and the map F defined in (2) is called a convex
delay endomorphism. In the rest of this work, we will take this quadratic form
negatively definite, so that / could have at most one critical point that should be
a maximum. A stationary solution of the delay equation (1) is a constant solution
xn = x for every n; the existence of such an x is equivalent to have a solution of the
equation /(jc, ...,x) = x. Moreover, the fixed points of F are the points (x,...,x)9

where x is a solution of f(x, ...,*) =x. So when / is convex the delay equation
associated would have at most two stationary solutions, or, which is the same, the
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endomorphism F would have at most two fixed points. We will prove the following
result:

Theorem 1.1. Let f be convex and suppose that F has no fixed points. Then the
ω limit set under F of any point in Rk is empty.

In terms of delay equations this says that if / is convex and there are no
stationary solutions, then all the solutions must diverge.

Consider a convex first order equation given by f:R—>R9 and suppose that /
is not only convex but there is a negative constant such that f" is less than this
constant. If we push up the graph of / vertically, we will obtain a one parameter
family fμ — μ + /; for this one dimensional map it is easy to see that for every
large parameter the function fμ will have two fixed repelling points and that the
set of preimages of any one of these points accumulates in a Cantor hyperbolic set
which is the complement in the line of the basin of attraction of oo (or, what is
the same, the set of points with an empty ω limit set). Under some new conditions
on the function / that will be defined in Sect. 3, this result remains true for second
order equations; these are open conditions, define a set ,̂ and imply that F is
convex.

Theorem 1.2. There exists an open set <% in C2(R2) such that for any f G °U the
family of endomorphίsms Fμ(x, y) = (y,μ + /(jc, 7)) has the following properties,
for every μ sufficiently large:

a) Fμ has two fixed saddle points.
b) The closure of the stable manifold of one of these points is dίffeomorphic

to the product of a Cantor set K with a circle Sl.
c) The basin of OQ is the complementary set in R2 of the closure of the stable

manifold.

As a corollary of the proof of this theorem a description of the dynamics of Fμ

restricted to the closure of the stable manifold (— K x S1) can be obtained. Each
circle of K x S1 is mapped into an unclosed curve contained in another circle, so
this defines a one dimensional map on K, that becomes equivalent to a shift:

Theorem 1.3. Let Ws

μ be the stable manifold of one of the fixed points of Fμ,

and Wμ its closure. Consider the set: A = Π/ί>o^μ(^/ϊ) Then Λ is compact, Fμ-
ίnυariant, hyperbolic and coincides with the closure of the periodic points of Fμ.
Two different cases can occur: either A is a horseshoe and Fμ/A is a homeomor-
phism, or it is contained in the unstable manifold of each one of the fixed points,
which in this case are equal.

The second alternative of the last theorem it is not generic: the usual case is the
first. Now the dynamics of the maps Fμ are completely described for every large
parameter value.

The results of the first theorem were shown to hold for a particular family of
quadratic delay endomorphisms in Whitley [W], where the dynamics of the family
for large parameter values is also studied; however, their example does not satisfy
the hypothesis of our Theorems 1.2 and 1.3.

A very interesting reference on the subject of delay equations is the book of
P. Montel [Mon], where the theory of delay maps is treated from a general view-
point.
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2. Absence of Fixed Points

As was explained in the introduction the hypothesis of Theorem one is equivalent
to the non-existence of solutions of the equation f(x9 ...,x) =x or, which is the
same, the graph of / does not intersect the diagonal of Rk+l. Let f"(x) be the
Hessian matrix of / at the point x. By hypothesis, / is convex, which means that
if Qx is the quadratic form associated with f"(x\ then Qx(v) = υf"(x)vl < 0 for
each nonzero vector v.

Proof of Theorem LI. As the graph of / does not intersect the diagonal of Rk+l

9

there is a positive number α and a unique point XQ G Rn such that the graph of
/ + α intersects the diagonal of Rk+λ at (*o,...,JCo). Without loss of generality it
can be assumed that XQ = 0; then, using Taylor's expansion around 0, we obtain:

/(*) = -α + i; x+xHx + Rx , (3)

where υ = /'(()), H = /"(O) and R : Rk -> R is a C2 function such that \imx->QR(x)/
x\2 = 0. Denoting v = (v\ , . . . , Vk ) observe that the vector (v\ , . . . , OK, — I ) is ortho-
gonal to the tangent space of the graph of / at 0, which by assumption contains the

diagonal of Rk+l

9 so that ]Γ}/=1 v> = 1. Now define the following Lyapunov function:

L(x\9...,xk) = v\xλ +(υλ + v2)x2 H ----- l-(ι>ι H ----- h^-ιfe-ι + *k (4)

As it is well known, to prove the theorem it is sufficient to show that for every
x G R2, L(F(x)) - L(x) < 0. Then, using (3), (4) and that Σvι = ^ we obtain:

L(F(x)) - L(x) = vlX2 + (ϋi + V2)x3 + + Oi + + vk-ι)xk + /(*) - L(x)

(5)

Now define the function φ : Rk — > R by φ(x) = xHx + R(x) and observe that φ(0) =
0, φ7(0) = 0 and φ"(x} = f"(x} So φ" is negative definite from which it follows
that φ(x) < 0 for every x e Rk, x not zero. This implies that L(F(x)) — L(x) ^
— α < 0 in (5), and the theorem is proved.

3. Dynamics for Large Parameter Values

We will begin by describing the C2-open set ^U for which the theorems are valid.
Let

Af = -sup{3n/(*,.y) : (x,y) £ R2} .

Definition 3.1. Let tyl be the set of C2 functions f : R2 — > R such that the following
conditions hold:

(PI) B^KA;
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where K is a positive number to be defined later

(P2) - 3n/(x,jO ^ |3i2/(*,J>)| V(x,>0 € tf2 ,

(P3) A1 > 0 .

1. (PI) and (P2) together imply that / is convex. Using also (P3) it follows
that lim|(^)Hoo/(.x;,j;) = -oc.

2. It is clear that this set <% is open in the C2 topology.
3. Theorems 1.2 and 1.3 are not valid in general if B < A: take for example

f(x,y) = —Ax2 — By2 with A > B, calculate the eigenvalues of the fixed points of
Fμ9 and observe that they are not saddles.

Now define the one parameter family to be considered: take / G %9 and define:
fμ(x,y) = μ + f(x,y) and Fμ : R2 -> R2 by Fμ(x9y) = (y,fμ(x,y)).

Now let's introduce some elementary curves that will play an important role.
The critical curves of fμ are:

lι={(x,y):dιfμ(x,y) = 0},

I2 = {(x,y):d2fμ(x,y) = 0}.

These curves are in fact independent of μ; l\ is the graph of a function of y,
so that /i = { ( x ( y ) 9 y ) : y € R}9 with

duf(χ(y),y) '

/2 is the graph of a function of jc, so that /2 = {(x,y(x)) : * G Λ}, with

By properties (PI) and (P2) we have that:

x'(y)\ < l/K My and \y'(x)\ < l/K2 \/x .

So K > 1 implies that l\ and /2 have one and only one point of intersection
that will be supposed to be (0,0) by making a translation. From this it follows that
fμ takes its maximum at (0,0).

Also observe that l\ is the set of critical points of Fμ. The image Pμ of l\
under Fμ is the graph of a function zμ(x) = fμ(x(x),x)9 that has negative second
derivative, as is easy to check using (PI) and (P2). So the complementary set
of Pμ contains two connected components, one of which, Pμ9 is convex; actually,

Fμ(R2) — Pμ U Pμ. Any point outside Pμ (J Pμ has no preimages under Fμ\ a point

in Pμ has only one preimage lying on l\\ and points in Pμ have two preimages,
having the same second coordinate and located one at each side of l\.
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Denote by £α(μ) the α-level curve of fμ, that is, £α(μ) = {(x,y) : fμ(x,y) = α}

Lemma 3.1. For every μ sufficiently large a function s of μ is defined such that:

a) (s(μ\s(μ)) is a fixed saddle point of fμ,
b) s(μ) —•> — oo as μ —* -foo,

s'(μ) -» 0 as μ —» +oc,
c) ^4 /oca/ stable manifold of ( s ( μ ) 9 s ( μ ) ) is transversal to ζ(μ), the family of

level curves of fμ.

Proof As was explained before, the fixed points of Fμ are the points (x9x) for
which fμ(x,x)=x. Let g(x) = f(x,x). Using (PI), (P2) and (P3) it is easy to
see that g has negative second derivative bounded below from zero which implies
that the graph of g intersects any line y = x - μ for μ large enough. As g has its
maximum at zero, one of these points will have negative coordinates; let's denote
this point by ( s ( μ ) 9 s ( μ ) ) . It is clear that s(μ) —» -oo as μ —> +00 and that s'(μ) =
(1 — gf(sμ))~l, which implies part b. Let's prove that (sμ,sμ) is a saddle point. The
eigenvalues are given by

where E = Eμ = δ2f(sμ,sμ) and D = Dμ = dλf(sμ,sμ).
Now observe that:

Dμ = / - d\2f(x,x) -
Sμ

0

^ A(\ +K~λ)(-sμ),

where (P2) was used. Similarly, using (PI) and (P2) we obtain that

Γ
μ = J -

Sμ ff ^^22f(x,x) I 1 +
022/(*,*)

dx - l/K2)(-sμ) .
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Therefore Eμ/Dμ > 1 which implies that λ- G (—1,0). In addition it follows from
the facts above that λ+ —> +00 when μ —» +00. This proves part a) of the lemma.
To prove part c) it is enough to observe that an eigenvector associated to λ- is
(l,/l_), while a tangent vector to ξs(μ)(μ) at (s(μ),s(μ)) is (1,—D/E), and it is
easy to check that λ- > -D/E.

The proof of Theorems 2 and 3 is based on the study of the behavior of the
stable manifold of Sμ = (sμ,sμ) (that is defined locally as for a diffeomorphism and
then by taking preimages). Denote by Wμ the stable manifold of Sμ. We will prove
that Wμ has infinitely many connected components, each one diffeomorphic to a
circle. We begin with the following simple fact:

Remark. Let γ be a C1 1-1 curve such that it intersects Pμ transversally at two

points. Then F~l(y) is a C1 Jordan curve. The proof of this fact is easy using that
any point in Pμ has a double preimage. The transversality is used to obtain that

F~{(y) is C1 at the points of intersection with l\.

This is the procedure that makes Wμ contain a closed curve: it is enough to
prove that the local stable manifold of Sμ intersects Pμ in a pair of points to imply

that Ws

μ contains a C1 simple closed curve. It will be shown that this curve has,
in fact, four points of intersection with Pμ; taking the preimage under Fμ of this
curve we will obtain another closed simple curve, which will also intersect Pμ at
four points. Automatically, the following preimages under Fμ give a sequence of
closed curves each one having four points of intersection with Pμ. To prove these
facts we will first show that Wμ is transversal to ξ(μ) before its intersection with
/i or /2; this, as we will see, implies that these intersections actually occur. And
secondly, a technique will be developed permitting us to study the set Wμ as it was
a level curve of fμ.

As / is convex, every level curve £α(μ) is a Jordan C2 curve that encloses a
convex region. In general, if ξ is a Jordan curve then i ( ξ ) will denote the bounded
component and e(ξ) the unbounded component of R2\ξ. As the maximum of each
fμ is taken at (0,0) we have that £α(μ) = φ for α > μ + /(0,0), and that (0,0) <E
/(£α(μ)) for α < μ + /(0,0); in this case, £α(μ) intersects both l\ and /2, the
intersections with l\ correspond to the horizontal tangents of ξα(μ) and those with
/2 to the vertical tangents of ξα(μ). For any fixed μ, the level curves ξ<χ(μ) form
a foliation of R2\(Q,0), that we have denoted by ζ(μ). Let γ be any C1 curve that
is transversal to the family ξ(μ); then we will say that γ is entering ξ(μ) at t if
(/ ° y)'(0 > 0 and that is leaving ξ(μ) at t if (/ o γ)(t) < 0.

Let's denote by Q\ the connected component of R2\l\ U /2 which contains Sμ.
Let α — αμ be a curve parametrizing the connected component of WμnQ\ which
contains the point Sμ, and with the following properties, where we take μ large and
drop the subindex:

• α(0) = Sμ.
• α(f) = (αι(0,α2(0) with «ι(0 > ® for t small.

It follows from Lemma 3.1 that α is entering ξ(μ) at t = 0.

Lemma 3.2. αμ is transversal to ξ(μ).

Proof. Observe first that if at a point t, α is tangent to ξ, then / o γ has a critical
point at t, so that F o y has horizontal tangent at t, and this implies that F2 o y
has vertical tangent at t. Reasoning by contradiction, suppose that at a point s < 0,
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α is tangent to some curve of ξ; let SQ = maxjs < 0 : α is tangent to ξ at s}.
Then, at SQ, F o α has horizontal tangent and F2 o γ has vertical tangent. Now, as
α is part of Ws, which is invariant, it follows that there exists s\ G (so,Q), such
that α has a vertical tangent at s\ (that is, a [ ( s \ ) = 0). Redefine, if necessary s\ as
maximum with this property. Obviously SQ < s\ < 0, and we have to distinguish
between two cases:

i) a!2(s\) < 0 and ii) α^Csi) > 0.

ξ ξSμ(μ)

α(S l)

Case i)

<x(sι)

Case ii)

In case i), observe that α is leaving ξ at s\, because α is contained in Q\\ as it
was entering ξ at zero there must occur a tangency between α and ξ in the interval
C$Ί,0), which is a contradiction with the definition of SQ.

In case ii), there must exist a point s2,s\ < s2 < 0, such that α^fe) = 0. Take
82 maximum with this property. If αj^) < 0, we conclude that α is leaving ξ
at S2, so as in case 1 a contradiction appears. If αjCs^) > 0, define t' > 0 such
that F(α( s2)) = α(O (so αί(O = 0). Now α2(O > 0 implies that there exists

t" e (0,O> sucn mat = 0; thus, taking the image of α(O we find a point of
vertical tangency between α and ξ which corresponds to an s G (s\,0), in contra-
diction with the definition of s\. Therefore 0^(0 < 0, so there exists t'" £ (0,t ')
such that ξ and α are tangent at t'"\ it follows that α has horizontal tangent at a
point in (s^O), which contradicts the definition of s2.

The following two lemmas, that will be used often later, imply that the level
curve of fμ passing through the fixed point Sμ must intersect the set Pμ; this,
together with the previous result will imply that Wμ also intersects Pμ; then, using

the remark above Lemma 1 forces Ws

μ to contain a C1 Jordan curve.

Lemma 3.3. Let τ be a Cl function of μ such that τ'(μ) —» 0 as μ —> oo. Then
for all μ sufficiently large ξτ(μ)(μ) has four points of intersection with Pμ.

Proof. Let's first calculate yμ = max{y : (x,y) € ξ τ ( μ ) ( μ ) } As it is easy to see,
this maximum must be taken at point of intersection of ξ τ ( μ ) ( μ ) with l\ so that
yμ satisfies: fμ(x(yμ),yμ) = τ(μ). This implies that oo as μ —» co because
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f(x(yμ\yμ) — τ(^) ~~ A^ which tends to —oo as μ —> oo by hypothesis. Therefore,
as S\fμ(x(yμ),yμ) = 0, it follows that:

τ'(μ) - 1
μ d2f(x(yμ),yμ) '

From this we obtain that yμ ^ 0 as μ —> oo because S2f(x(yμ),yμ) —» +00. In
addition, the maximum second coordinate of points in Pμ is μ + /(0,0), which
results in greater than yμ for every μ large, because y'μ —> 0. This shows that Pμ

crosses ξ τ ( μ ) ( μ ) vertically.

+ f (0,0)

Now let xμ be the first coordinate of the left point of intersection of /2 with
ξτ(μ)(μ) and xμ the first coordinate of the left point of intersection of /2 with Pμ.
We claim that \xμ\ > \xμ\. Observe that xμ satisfies the equation:

= τ

so that xμ —> —oo as μ —> +00, which can be proved as above.
Using (P3) it follows that:

f(xμ,y(xμ)) =

similarly, but now using (P2), it follows that:
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and this implies that:

401

(1 - \/K)x ^ μ ~ «μ) ^ 0 +

and therefore

liminf ' μ

μ—>oo
(6)

where AQ = \(1 + \/K3).

Now let's estimate the point xμ. It is easy to see that zμ(x) ^ —Box2 + μ, where

#o = f (1 - l/^3), from which it follows that Pμ can be substituted by the parabola

y = -BGx
2 + μ.

This, together with the fact that /2 is contained in the cone \y\ ^ x/K2, imply
that:

, / v^2 -

from which it follows that

lim sup
μ—>+OD

< 1 . (7)

As #o > ^o, (6) and (7) imply the claim. Observe that this should be repeated
for right intersections. So this shows that Pμ crosses ζτ(μ)(μ) also horizontally. This
finishes the proof of the lemma.

Let τ be a C1 function of μ such that τ'(μ) —» 0 as μ —•> cχo. Then the lemma
just proved implies that for any point in P\i(ξτ^(μ)) the partial derivative with
respect to the second variable is not zero. We will need now to find a lower bound
for this derivative and, more than this, we will show that a relation between the
partial derivative with respect to the first and second variables exists. This will be
used later to obtain stable foliations in Pμ\i(ξτ(μ^(μ)).

Lemma 3.4. There exists λ (for example,λ = 10) such that, if (x,y) G e(ζτ(μ)(μ))

Π Pμ and μ is sufficiently large then:

>

Proof Firstly observe that

d2f(x,y(x))+ } d22f(x,s)ds
y(χ)

^ B\y - y(x)\

And in the same manner:

From this we obtain:

\ d ι f ( x , y ) \ ί

B\y- y(x)\

A x(y) — x\
(8)
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Now suppose that a constant λ independent of μ was found such that:

y
x(y)-x

Aλ

~B
(9)

for any point (x,y) of intersection of Pμ with ξτ^(μ). It follows that the same
estimate is valid for any other point in Pμ Π ζ τ ( μ ) ( μ ) (this can easily be seen using
that the tangent vector to Pμ is almost vertical at points not approaching l\, see
the figure). In fact, what we will show is that (9) is valid for (x,y) = (βμ,zμ(βμ),
the point of intersection of Pμ with ζ τ ( μ ) ( μ ) located at Q\. For the other points in
Pμ Π £τ(μ)(μ) me reasoning is similar.

Let's begin estimating the numerator of (9): The level curve ζ τ ( μ ) ( μ ) is given
by the equation fμ(x,y) = τ(μ) which defines a function X(y) in a neighborhood
of the point (xμ,y(xμ)) such that: X(y(xμ)) = xμ, fμ(X(y),y) = τ(μ) and therefore:

X'(y) = -
d2f(X(y),y)

(10)

Derivating once more we can easily obtain that X"(y) < 0; thus, we can assume
that

dιf(X(y),y) = '
because the contrary assumption trivially implies the lemma. As X"(y) > 0,
Eqs. (10) and (11) imply that X'(y) ^ λ, for every \y - y(xμ)\ ^ X~l(xμ\ where
for X~l(xμ) we denote that preimage of Xμ contained in Q\. Now this implies that

for y G

\X(y)-xμ\ ^ (12)

Let / be the line χ—Xμ = —λ(y - y(xμ)). It follows that the vertical distance
from (xμ,y(xμ)) to / is

Xμ Xμ

λ (13)
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Now, if (βμ, zμ(βμ)) is the point of intersection of Pμ with /, then it follows
from (12) that

-zμ(βu) (14)

But βμ can be estimated easily, because Pμ can be substituted by the line y — y(xμ) —

—2BQXμ(x — Xμ) (this follows from the fact that l^'OOl > —2Boxμ for x < xμ\ and
this gives, just intersecting this line with /:

y -

and following:

2B0xμ(\ -

Finally, using (13) and (15) we obtain:

Therefore we can take μ large in such a way that

(l/λ+l/K2)\xμ-xμ\ (15)

+

This provides, using also (14), an estimate for y(βμ) — z(βμ).
Now join this with (8) and the fact that the horizontal distance from (βμ,zμ(βμ))

to / i is less than \Xμ\ to obtain that:

d2f(βμ,sμ(βμ)
2Aλ -Xμ

B

2Aλ

Thus, using the estimate for xμ and xμ obtained in the previous lemma it follows
that, for μ sufficiently large,

d2f(βμ9Zμ(βμ)

For the last step to work, we make λ < \fK, so for any λ satisfying this, the
lemma is proved (recall (9)). In particular, we can take λ = 10 if AT is large enough.

This provides the necessary techniques to obtain stable foliations.

Lemma 3.5. Let τ be a C1 function of μ such that τ'(μ) —> 0 at infinity. Let Rμ =

Pμ Π e(ξτ(μ)(μ)) and define Gμ = Γl^o^W Then* tf V ίs sufficiently large, there

exists a C1 stable foliation of Gμ invariant under Fμ.

Proof. Fix any μ large enough and drop the index μ. Observe first that F(G) C G.
Define, for each Λ: G G a cone Cx = {(u, υ) : v/u < ε} where ε is a positive number
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to be chosen. Now, for (u, v) G Cp(X) we have:

, , -1
(ud2f-v,-udιf) = (16)

where the derivatives are calculated at F(x). Furthermore

udλf

ud2f — v
Sif

d2f - v/u d2f/2

if ε < 132/1/2. But F(x) G G C e ( ξ τ ( μ ) ( μ ) ) so that the previous lemma can be
applied to obtain:

^ 2/λ < ε ,

if ε = 3/λ. This ε also satisfies ε < |32/|/2 if μ is sufficiently large, because λ(= 10)
is independent of μ, while |c>2/| —» oo for points in e(ξτ(μ)(μ)). This proves that
( M I , U I ) G Cx if (M, u) G C/T(JC). In addition, using (16):

1(^,^)1 = 1^1 +

|n|(|52/| - |w/ι;

> _ M ^ ^Γ-
2 ( l + β ) ι >2|(M,t;)

This proves that DF"1 leaves the family of cones invariant and expands the length.
As it is known this implies the existence of the foliation (see [HPS]), thus proving
the lemma.

Proof of Theorem 1.2.

Step 1. W* has infinitely many connected components.
It is known, by Lemma 3.2, that the connected component of W£ Π Q\ containing

Sμ (parametrized by the curve α), is transversal to the family of level curves ξ. This
means that α(ί) G e(ξSμ(μ)) for t < 0, because /(α(0)) = sμ. In addition, by Lemma
3.1, it follows that lim^oo^ = 0, and thus Lemma 3.3 (with sμ in place of τ), can
be applied to obtain that ζSμ(μ) intersects Pμ in Q\. Joining these facts it follows
that α also intersects Pμ unless it doesn't reach 12 or Pμ. But in this latter case
we will find a contradiction: firstly, this implies that there is a two periodic orbit
{p\, p2} such that ρ\ and p2 are the extreme points of α. Now it follows that the
direction given by the tangent to α at p\, is non-contracting. On the other hand,
observe that:

<

where t\ is such that a(t\} = p\ and the last inequality follows from Lemma 3.4.
Now the equation above implies that the tangent direction to α at p\ is contained in
the stable cones as defined in the previous lemma: so this direction is contracting,
and we find a contradiction.
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Until now we have thus proved that α (and so also Wμ) intersect Pμ at one

point. Let's denote by u\ the curve F~ ](α)\α and let's show that it also intersects
Pμ\ in fact, let Sμ be the preimage of Sμ which is not Sμ. The image of that part

of oci that lies between l\ and Sμ9 is located above Sμ, and this implies that u\ is

outside ζSμ(μ) between l\ and Sμ. At Sμ9a\ intersects ξSμ(μ)9 and after this, α j is
contained in e(ξs (μ))9 so that Lemmas 3.3 and 3.4 can be used as before to obtain

that αi also intersects Pμ. Therefore, we have proved that Wμ contains a C1 curve
intersecting Pμ transversally at a pair of points, which implies that Wμ contains a

closed simple C1 curve that contains the point Sμ9 and that will be denoted by W\.

(.,y0Λ

Let yo be the second coordinate of the intersection of ζSμ(μ) with l\. It is clear

by Lemma 3.2 that W\ is contained in {(x9y) : y > yo} As the image of W\ is
contained in W\9 it follows that W\ C i(ζyo(μ)) Now let's calculate the dependence
of yo on μ : yo must satisfy the equation fμ(x(yv)9yo) = sμ9 hence it follows that:

1

This implies, as in the proof of Lemma 4.2, that y'Q(μ) —> 0 as μ —> oo. Therefore
Lemma 4.2 can be applied to yo in place of τ to obtain that ζyQ(μ) intersects Pμ at
four points and so W\ also intersects Pμ in four points. This means that the preimage

F~l(W\) contains another closed simple C1 curve that will be denoted by W2. Now
we will prove that W2 also intersects Pμ at four points. To do this apply the same
idea as before: first observe that W\ C {(x,y) ' y < y\}9 where y\ is the maximum
of the second coordinates of points in ξyQ(μ)9 then it follows that W2 has to be
contained in e(ξyι(μ))9 so it suffices to show that y\ —> 0 and use Lemma 3.3. In
fact yλ satisfies the equation fμ(x(y\\y\) = yo so that 1 + d2f(x(y\)9y\)y{ = y'Q9

which implies that y\(μ) -^ 0 as μ —» oo, thus Lemma 3.3 says that ξyι(μ) (and
so also Wi) intersects Pμ at four points. Thus the preimage of W2 has also two

simple closed C1 curves as preimages, which, by simple inspection of the location
of preimages must be both contained in e(W2) and ί(W\). Furthermore each one of
these new curves must intersect Pμ at four points, and so each one has a pair of
curves as preimage, and so on. This implies that Wμ has infinitely many components,

each one of which is a closed C1 curve.
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Step 2. The complementary set of the closure of Wμ is the basin of oo, that is,
the set of points with empty ω limit set. If we prove that e( W\) is contained in
the basin of oo then it will follow that i(W2) — F~l(e(W\)) is also contained
in the basin of oo. Now the preimage of this open disc is an annulus whose bound-
ary is the preimage of W^ It follows that Wμ accumulates on the complementary set
of the basin of oo; as this is an open set, Step 2 is proved; so what we must show
is that e(W\} is contained in the basin of oo. Every point in e(W\) must also lie
in e ( ξ y Q ( μ ) ) so that Lemma 3.5 can be applied to obtain a stable foliation each of
whose leaves intersect Pμ. This induces a one dimensional map from Pμ into itself,
that has a fixed point corresponding to Sμ, and either carries every point to oo
or has another fixed point. But the latter case is impossible because it would
imply the existence of another fixed point of Fμ with negative coordinates (recall
Lemma 3.1).

To finish the proof of Theorem 1.2 it remains to show that the closure of Wμ is
a Cantor set of closed curves. To do this we will need an unstable foliation defined
outside the curve W2.

Lemma 3.6. Let μ be sufficiently large and define H = f\n^QFμ(Pμ)\

U«>o^π(z*(^2)) Then there exists an unstable, almost vertical, C1 foliation de-
fined on H and invariant under F.

Proof. First observe that if x G //, then a preimage of x is contained in H. For
each point in H define a cone C = {(u,v) : u/v < ε}, where ε is a small number
to be defined. Take (u9v) G C and c G H\ then, calculating DFx(u,v) = (u\,υ\\ we
obtain:

\Uι/Vι\ = < <
\d2f\-\d.f\\uiv

where Lemma 3.4, was used and ε = 3/B. This proves that ( u \ , υ \ ) £ Cp(X) for
(w, v) G Cx. Furthermore:

!(«,,»,)! = hi + H = M + |ud,/ + ι>a2/| ^ H(i + \d2f\ - 13,/||«/»|)

^> .̂"«-
It follows that DF expands the length of vectors in the cones and the lemma

follows by the results of [HPS]. _
Define I\ = i(W\ ) Π Pμ and 72 = F(I\ ) Π i(W\ ), (A denotes the closure of A). I\

is the union of two_curves and I2 is the union of at most four curves. What we
must show is that W* Γ\I\ is a Cantor set.

Observe that the stable foliation obtained in Lemma 3.5 can be extended
to Λ\UB20/ίΓ

II('(^2)) = -Pί«
n^ because '(^2)3«(^,00) and yΊ(μ )-*0 as

μ — > oo, which was shown in Step 1. This defines a map π which carries points in
W* Π 72 to /i along the leaves of the stable foliation. Now the proof will be com-
pleted by observing the three following facts:

1. The map F restricted to I\ Γ\F~l(I2) is an expansive map because I\ and
/2 are almost vertical lines and Lemma 3.6 can be applied. This implies that this
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restriction of F satisfies bounded distortion properties and so it preserves cross ratios
of intervals (this is a well known fact).

2. The map π has been defined as induced by a stable foliation of a C2 map,
Fμ. This implies that π also has to satisfy bounded distortion properties (this is an
observation of Newhouse that can be found in [PT]). Now, as above, the map π
also preserves cross ratios.

3. Maps which preserve cross ratios of intervals define Cantor sets (this is a
simple fact).

The proof of Theorem 1.2 is complete.

Proof of Theorem 1.3. Fix any large value of μ, suppose first that there exists
some integer n > 0 such that F restricted to Fn(R2) is one to one. Then obviously
F/Λ is a homeomorphism. (Recall that A = Γ\>o^'7(^?) ) To prove that F/Λ is
a shift we proceed as for a horseshoe: first give an itinerary j(x) G 2Z to each x in
A and then prove that j conjugates F/A with the shift. To obtain the hyperbolicity
just use the foliations shown to exist in Lemmas 3.5 and 3.6. If there is no n > 0
such that F/Fn(R2) is one to one, then it follows that the unstable manifolds of the
fixed points must coincide because there is a contraction in the horizontal direction.
Now A is contained in the unstable manifold of Sμ (and of the other fixed point).
Finally, the hyperbolicity follows from Lemma 3.6 and the fact that these unstable
manifolds have to be contained in the unstable foliation.
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