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Abstract: We study the nonlinear stability of general undercompressive viscous
shock waves. Previously, the authors showed stability in a special case when the
shock phase shift can be determined a priori from the total mass of the perturbation,
using new pointwise methods. By examining time invariants associated with the
linearized equations, we can now overcome a new difficulty in the general case,
namely, nonlinear movement of the shock. We introduce a coordinate transformation
suitable to treat this new aspect, and demonstrate our method by analyzing a model
system of generic type. We obtain sharp pointwise bounds and L? behavior of the
solution for all p,1 £ p < oo.
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I. Introduction

An undercompressive shock of an n x n system of conservation laws is a viscous
profile which has less than the usual n + 1 entering (i.e. compressive) characteris-
tics, violating Lax’ condition for linearized stability. Such waves arise as solutions
of conservation laws near regions where the classic assumption of strict hyperbol-
icity breaks down for example in petroleum reservoir models, or other models of
multiphase flow [Ma-Me, Sch-Sh].

Undercompressive shocks have been shown to be generic features in solutions of
Riemann problems of 2 x 2 systems with quadratic flux functions [I-Ma-P1, Sch-Sh],
which have been proposed as canonical models for behavior of general systems near
a point of nonstrict hyperbolicity. Despite violating the classical Lax characteristic
condition for linearized hyperbolic stability, these shocks appear to be stable when
dissipative effects are included, [Zu-Pl-Ma, L-Zu], even though their existence and
profile depend sensitively on the form of the viscosity matrix. (Overcompressive
shocks have distinct behavior, [L4,F-L].)

This illustrates an important point. The stability, and thus the physical admissibil-
ity of nonclassical shock waves cannot be ascertained by hyperbolic considerations,
but rather must be studied in the context of a parabolic system including viscosity.
The question of physical admissibility is particularly important in the case of under-
compressive shocks, since they are a necessary component of solutions to Riemann
problems; their inadmissibility would mean failure of hyperbolic theory to approxi-
mate small-viscosity behavior. Their admissibility, on the other hand, means that it
is possible to have a hyperbolic theory which depends on the viscosity matrix of
the encompassing viscous system. These considerations make imperative the careful
analysis of nonlinear stability of viscous undercompressive shock waves.

Here, we study the behavior under perturbation of an undercompressive travel-
ling wave solution, @(x — st) of a parabolic system of conservation laws

Ut+f(U)x :(D(U)Ux)xa UGR"> (1)

where the matrix D(U) is positive definite. Though there is numerical evidence
for the stability of a wide range of such shocks [Zu-Ma-Pl], a rigorous analysis of
nonlinear stability has only been carried out in a single, nongeneric case [L-Zu].
In the present paper, we develop an analytic framework for the study of general
undercompressive waves, then illustrate the method by the complete analysis of a
particular system of generic type. For simplicity, our discussion is limited mainly
to the case n = 2.

Two main difficulties arise in the analysis of undercompressive shocks, that are
not present in either the overcompressive or standard (Lax) shock case. The first is
that the asymptotic state of a perturbed shock is no longer determined by the mass
of the initial perturbation. This observation, made heuristically and numerically in
[Zu-P1-Ma], is verified analytically in Sect.2.2. The second difficulty is that the
characteristic speed in the wave field transverse to the shock is not bounded away
from the shock speed as in the strictly hyperbolic case, but typically coincides with
it at some point in space. Either one of these two features is enough to preclude
the energy method for proving stability of shocks in systems of conservation laws
[Mat, G.1,L.1, Sz-X].

In this method, the asymptotic state, consisting of a translated shock plus dif-
fusion waves in the outgoing characteristic directions, can be determined from
the perturbation mass by conservation, [L.1], because the number of parameters
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determining the asymptotic state is equal to the number of conservation laws. With
the asymptotic state thus determined, the remainder has zero total mass. The equa-
tions for the remainder are then integrated and energy method applied for the
stability analysis.

In the undercompressive case, the fact that the asymptotic shock location cannot
typically be determined by the perturbation mass means that any analysis based on
integrated variables allows the possibility of an order one error due to incorrect
shock location. It follows that decay of the solution is not forced by the structure
of the integrated equations, and the energy method described above must fail. Fur-
thermore, even in the typical case that shock location can be determined by the
perturbation mass, the amount of the diffusion waves still is not known a priori,
and causes problems for the energy method approach.

The authors have previously shown how to deal with the second, essentially
technical difficulty, in [L-Zu], where we analyzed the stability of a real Burgers
shock within the larger system of the complex Burgers equation. In this case, the
right eigenvectors of f'(®(+00)) associated with outgoing characteristic speeds are
parallel, as a consequence of which the asymptotic location of the shock (though not
the masses of outgoing diffusion waves) can still be determined by conservation of
mass alone. The analysis involves Green’s function methods and direct, pointwise
estimates. Grosser estimates obtainable by energy or semigroup methods do not
seem to suffice.

However, the more interesting, and characteristic aspect of the behavior of un-
dercompressive shocks remains to be understood. An easy consequence of the fact
that asymptotic shock location is generically not determined by the perturbation
mass is that it is not given by any linear functional of the initial data (Sect.2.3),
but rather evolves nonlinearly. This is somewhat reminiscent of the case of asymp-
totic behavior for a hyperbolic system of conservation laws, where the right and
left masses p;, g, of different N-waves also give nonlinear time invariants of the
solution [L.2]. But, in the case of an undercompressive wave, this extra structure
is imposed purely by the dissipation term, and represents the inner structure of the
shock. This we address in the present paper.

Plan of the paper. In Sect.2, we develop a general approach to the stability of
undercompressive shocks, based on the geometric property of the wave. We first
examine the linearized equations around a general undercompressive shock wave so-
lution @(x), taken without loss of generality to be stationary. By considering the dual
equation, we determine all time-invariants of the linearized equations, in particular
the asymptotic shift in the shock location. In the process, we elucidate the different
character of Lax and undercompressive waves. In particular, we demonstrate that
the undercompressive shock undergoes nonlinear movement under perturbation.

Using the time-invariants for the linearized perturbation variable U, we are able
to define a transformation U = E(x)U with the properties that:

(i) U satisfies a system of conservation laws,

U+ (0)0) = U, (2)

which are approximately decoupled.

(ii) The time-asymptotic state of U (corresponding to asymptotic shift in shock
location) is determined by fjgj U,dx, where U, is the coordinate associated with
the compressive characteristic field, a quantity which is exactly decoupled.
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Properties (i) and (ii) allow us to approximate the behavior of (2) by the behav-
ior of its diagonal part, a system of decoupled scalar equations. The scalar equations
have the important property that one of them governs the movement of the shock,
while the other governs the movement of diffusion waves. This holds, of course,
only for the linearized system.

This coordinate transformation is similar in principle to the diagonalization pro-
cedure used to analyze standard (Lax) shocks. However, the method of diagonaliza-
tion takes into account parabolic as well as hyperbolic effects. The particular form
of E(x) is forced by the (necessary) requirements (i) and (ii).

At this point, we must deal with the nonlinear movement of the shock. Ac-
cordingly, we define an instantaneous location of the shock, d(¢), determined by
the minimal requirement that at each time ¢ the solution must be linearly stable
around @(x — d(¢)). This criterion is familiar from studies of traveling waves in
more general settings, such as reaction-diffusion equations [Sat, Ga-J-Ka, Ka]. Also,
note a related analysis in [G.3] treating the multidimensional stability of planar
shock fronts for a scalar equation.

Combining this correction with the diagonalizing transformation for the lin-
earized equations, we arrive at a final, nonlinear transformation,

U(x,t) = E@)[U(x + d(t),t) — &(x,1)], 3)

which is convenient for analysis of nonlinear stability.
In Sect. 3, we apply the methods developed in Sect.2 to an example system,

12,2 _
{ut+ 2(” U )y + vy Uxx (4)
vy + (uv)y = Uy
with shock - he/2)
p(x tanh(x,
d(x) = = .
@=(")-("") ®

This is an e-perturbation of the complex Burgers system treated in [L-Zu]. However,
the property that the outgoing right eigenvectors are parallel has been broken, so that
the undercompressive shock is now of generic, dynamic type. Our first calculation
is to make explicit that, indeed, the analysis in [L-Zu] is not sufficient to treat this
case.

After calculating the nonlinear transformation (2) explicitly, we find that the new
variable, U, satisfies an equation which consists of the unperturbed complex Burgers
equation plus source terms whose decay can be shown to be of sufficiently high
rate. The analysis is completed using the pointwise methods from [L-Zu], which

apply directly to this case. For the transformed (perturbation) variable 0:( ';), we
obtain
Theorem 1 (Main Theorem). Let C > 1 and ty > 0 be fixed, and let
Jio ). [0(x)] < o140,
o0

J do(x)dx =0.

—0oQ
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Then, for o sufficiently small, (1) has a global solution, for which d(t) is well
defined. Further, d(t) = O(1)ed’e™" for b > 0 and the transformed variable, U,
satisfies

i(x,1) = O(1)O[(t + 10) P We(x,t + t0) + KZ2(x,t + o)

2
FKE (1 + 1) + (1 + 1g)PPe 2T

ﬁ(x,t):O(l)é[KC_(x,t+l‘o)+K:f(x,t+to)], (6)
where
1 —t=<x =t
et
We 2 e~ xzt, (7)
—(e)?
e ac x = —t,
t 1 (T2
Kix,t éKv(x:': ,): e i 8

and b,0(1) are constants depending only on C,t,.

Theorem 2 (L” Behavior). The variable ii converges to 0 in LP at the rate t~'2,
while & converges at rate t=**12P o a pair of heat kernels moving with speeds
plus and minus 1, respectively.

This means that the original variable U converges in L? at rate max{t~'/?
t~34412P) 1o the translated shock wave @(x — d(+00)) plus two diffusion waves
in the outgoing characteristic modes, precisely the asymptotic state we should expect
by analogy with the standard (Lax) shock case (cf. [L.1]).

Finally, in Sect. 4, we discuss generalization and suggest future directions.

2. Analytic Framework

In this section, we show how to transform the perturbation equations of a general
undercompressive shock into a standard, asymptotically diagonal form suitable for
the analysis of stability. This transformation is different from the usual, hyperbolic
diagonalization used to analyze perturbations of a classical (Lax) shock; in fact, the
Jacobian of the inviscid flux may not even be diagonalizable everywhere along the
shock profile. Rather, it depends in a fundamental way on the undercompressive
nature of the shock.

1. Preliminaries. We restrict to the 2 x 2 case for simplicity. Let @¢(x — st) be an
undercompressive traveling wave solution of a viscous system of conservative laws,

U+ f(U), — (DUYU;), =0, U€cR?, 2.1

connecting end states
Dy = lim P(x). (2.2)
x—*oo

Then, f/(P+) has real, distinct eigenvalues 4,(P+,) satisfying the characteristic
condition

M(P-co) > 5 > M(Proc); A(Poco) <5 < L(Pico). (2.3)
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Let /i(®@+o0),7i(P1oo) denote the associated left and right eigenvectors. By the
change of coordinates, x’ = x — s¢, we can assume without loss of generality that
s =0, i.e. &(x) is a standing wave solution. We wish to study the stability of @(x)
with respect to a small L' perturbation U,.

For @, we have in mind a weak ([®] = &0, — P_, small) traveling wave
bifurcating from some constant state solution @,(x — s.¢) = U,. By continuity, the
base state U, must be nonstrictly hyperbolic, with 1;(U,) = 4,(U,) = s«, and (by
way of the Rankine—Hugoniot relation) lim[¢]_,0% must be an eigenvector of

S'(U,). This is a generalization of the classical weak shock wave bifurcating from
a strictly hyperbolic base state.
Weak classical waves (cf. [Sm]) satisfy the Lax characteristic condition,

M(@Pooo) > 5 > A(Proo); A(Piog) > 0 Mp(Pic) <s.  (24)

By contrast, nonclassical waves bifurcating from a state of nonstrict hyperbolicity
may be Lax type, undercompressive, or overcompressive. Overcompressive shocks
satisfy

M(Poco) > 5 > A(Proo); 2(P_cc) > 5 > Ma(Pico). (2.5)

Likewise, the characteristic structure is more complicated in the nonclassical
case. Continuous functions 4,(U),;(U),r;(U) typically cannot be defined in any
neighborhood of the nonstrictly hyperbolic point Uy, or even along the profile @(x).
Our labeling of characteristic speeds in (3) thus represents a considered choice, and
is in fact our first step in uncovering a hidden characteristic structure imposed by the
shock @. Note that our labeling scheme does not follow the classical division into
slow and fast waves (4; < 4,), but instead identifies a primary, compressive family
(41) and a secondary, noncompressive family (4,). This expresses more naturally
the qualitative property of the shock.

2. Time Invariants of the Linearized Equations. We begin by studying the lin-
earized perturbation equations. Linearizing (1) around @(x) gives a system

U,=MU, (2.6)

which approximately describes the evolution of the perturbation U = U — &(x),
where

MU = (D' (), — ['(@)U); + (D), ): . (2.7)

As with traveling waves of any type, e.g. dispersive, reaction-diffusion, etc., @(x)
is at best orbitally stable under perturbation, since any translate @(x —d) is also
a solution. Likewise, Eq. (2.7) is at most neutrally stable, since @’(x) is always a
stationary solution, associated with a zero-eigenvalue. @’(x) is just the linearized
version of a unit translation, and an asymptotic state d@’(x) corresponds to a shift
d in the position of the shock.

A necessary condition for decay of U is that its asymptotic shift is zero. Accord-
ingly, our first effort is to derive a linear decay criterion by calculating an expression
for the shock shift in terms of the initial data, i.e. d = d(U,). The function d is
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clearly linear, and is expected to be continuous with respect to Uy, that is, a linear
functional on L'. Since (2.7) is autonomous, we have in fact that

d=dU(-, 1)) (2.8)

for any fixed ¢, i.e. d(U) is a time invariant of the solution U.
More generally, we look for all g(U) which are linear functionals on our solution
space, L', and are time invariants of (2.7). Writing

g(U) = (e(x),U) = joe(x)U(x,t)dt R (2.9)

— 00
with e(x) € L, we find that time-invariance requires that
q

d, — — _
Ozz(e,w:(e,MU):(M*e,U) (2.10)
for all U, i.e. e(x) must satisfy the adjoint equation M *e = 0. Thus, the set of linear
L'-time-invariants of (2.7) corresponds exactly to the set of bounded solutions,
e(x), of
M*e = e f'(®)+ eD(P) = 0. (2.11)

For classical, Lax shocks, the L! asymptotic state, hence all such time-invariants,
can be determined from conservation of mass considerations (cf. [L.1]). That is,
d = e ffooo u(x,t)dx = {ep, U), for some constant vector ey. However, this is not
the case for undercompressive shocks, as was shown numerically in [Zu-Pl-Ma].
We now address this analytically.

Proposition 2.2.1. For ® a Lax wave, the only bounded solutions of (2.11) are
e(x) = constant. For ® undercompressive, there exists a bounded nonconstant
solution e(x).

Proof. We recall that a Lax shock satisfies the characteristic condition (2.4), while
an undercompressive shock satisfies (2.3). In each case, the equation

MU =0 (2.12)

has but a single solution satisfying U(%o00) = 0, namely @’'(x). For, integrating
(2.12), we have
D'(®)P, + (@)U = D(9)U,, (2.13)

so that the frozen system at x = 00 is

D(q)im)_‘f/((p:too)v = Ux . (214)

Denote the eigenvalues and eigenvectors of D(P1oo) ™! f/(Proo) by i,,i,, and ;.
Since det(D) > 0, and the orbit @, exists, we have without loss of generality that i,»
also satisfy (2.4) or (2.3), respectively (otherwise, ) must). But, these conditions
correspond to repellor-saddle, saddle-attractor, and saddle-saddle connections, which
are all unique.

Now, let M*e = 0, and set W = e,. From (2.11), we have

—Wf(D) = W.D(P). (2.15)
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Since the coefficients of (2.15) are asymptotically constant, the requirement
e(x) € L is equivalent to W(x) € L!. In particular, W (Foo) = 0.
The eigenvalues and left eigenvectors of the frozen system

Wi (Pso)D™ (Pioo) = Wr (2.16)

are —-/{,ioo and iiooD“‘(tbioo). We immediately see that W(Foo) = 0 is impos-
sible in case (2.4), from consideration of the eigenvalues alone. For, this would
correspond to an attractor-saddle or a saddle-repellor connection, which is impossi-
ble. We now consider case (2.3):

Lemma 2.1.2. W (x)D(®(x))U(x) is constant in x for solutions U and W of (2.12)
and (2.15).

Proof.
;% WD(®)U = W,.DU + WD'&,U + WDU,,
=-W[f'(®)U + WD'®.U + W (D4, + ['(9))U
=0. O
Note that U(Foo) = 0 implies that
TU(x) ~ 41797 L as x — Foo, (2.17)

where il:Foo and 7z, are the stable eigenvalue and right eigenvector asso-
ciated with D_(diq:oo)_'f’(di;oo). Let W(x) be a solution of (2.15) satisfying
W(0)D(®(0)U(0)) =0 and W(0)=0.

By the lemma, WDU =0, which implies that W(Foo) =0 as well. For,
otherwise,

W(x) ~ e AT D (o) (2.18)

as x — Foo, since —/il;oo and IAWOOD”((I&OO) are the unstable eigenvalue and
left eigenvector of — f/(®+00)D ™' (Pxo0). But, this would contradict the lemma,
since then A

WD(®)U ~ 11¢00D_'(<15:Foo )D(®)F 100 +0 (2.19)

as x — Foo.
Therefore, there exists W £ 0 solving (2.15), with W(+o0) = 0, which implies
a nonconstant solution e(x) of Me =0. O

Remark. We note that U, W € L' play the role of dual variables. Lemma 2.12 and
its use in constructing eigenvectors is reminiscent of the Evan’s function methods
used to study the spectrum of non-self-adjoint operators [A-Ga-J,E, Pe-W,K]. It
would be interesting to clarify this connection further.

3. Linear Decay Criterion. The proof of Proposition 2.1.1 shows that the space of
L' time-invariants is exactly three-dimensional for an undercompressive shock, and
two dimensional for a Lax shock. The extra time-invariant in the undercompressive
case agrees with our intuition that its asymptotic state should consist of a translated
shock and two diffusion waves, rather than the translate and single diffusion wave of
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the Lax shock. Its existence would appear to be a necessary condition for stability
of the shock. _

We must determine the particular time-invariant d(U) = (e(x), U) corresponding
to shock shift. This is easily accomplished by a heuristic argument.

We can approximate the behavior of (2.6) near X = +oo by that of the frozen
(constant coefficient) systems

Ui = (f"(P£0)U)x = D(P100) Ui (2.20)

and consider the asymptotic behavior resulting from initial data given as a point
mass Ug(x) = d(x — xo)v, where v is a vector and xg is near +oco. Under reasonable
assumptions, the asymptotic state is known (cf. [L-Ze]) to be

(x=1g =44 00 )2

Z/,(@ioo Yve™ ar i r(Piso) . (2.21)

If we choose v = (D1 ), then the asymptotic state is a single outgoing diffu-
sion wave, which stays near +oo. In this case, we may expect that the asymptotic
state of (2.20) is very close to the asymptotic state of the linearized equation (2.6).
Since there is no contribution to the shift and the diffusion wave on the opposite
side, we conclude that e(x) satisfies the boundary conditions

e(£00)ry(Pioo) = 0. (2.22)

In other words, e(£o0) are parallel to /(P40 ).
Since d(®,) =1 by definition, e(x) must further satisfy the normalization re-

quirement
(e(x), Py =1. (2.23)

Together, these three requirements exactly specify e(x) within the three dimensional
space of time-invariants.
With this choice of e(x), the criterion for linear decay is

dT) = (e(x),T) =0. (2.24)

We comment that once the shock shift has been determined, the masses of
the two outgoing diffusion waves can also be determined, by the two equations of
conservation of mass. However, we do not need this information in our analysis.

Remark. 2.3.1. In the generic case that e(x) is nonconstant, it is easy to see that
the shock shift for the full, nonlinear equation is not given by any linear functional
of the perturbation U = U — ¢.
For, such a functional would necessarily coincide with the linear shift functional,
d(U) = {(e(x),U). But, then,
d/dt(e,U) = (e, MU) + (e,8,(U))
= <e’ SX(U)>
= [e(x)S:(U)dx

= —[€'(x)S(U)dx

would vanish for all U, implying that either e(x) = constant or else S(U) = 0.
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Thus, we already see that the location of an undercompressive shock must evolve
nonlinearly, in contrast to the standard (Lax) shock case.

4. Diagonalizing Transformation. At this point, we restrict to the case D(®) =1,

for simplicity. Let E(x) = <2g;) satisfy the adjoint equation

M*E =E . f'(®)+ Ex =0, (2.25)
and the boundary conditions
e1(£00)r(Proo) = 0;  ex(d00)ri(Proc) =0. (2.26)

We require E(x) to be nonsingular for all x. This is a structural condition on
which must be verified on a case by case basis. However, it seems to hold quite
generally for weak undercompressive shocks.

We introduce the transformation

U=Ex)U. (2.27)
Multiplying (2.6) by E, we find that
0=EU, - MU)
=EU, +E(f'(®)U,) — EUx
= (EU), + (Ef'(®)U)s — (EU)wx — (M*E)U (2.28)
Since (M*E)U = 0, U itself satisfies a conservation law,
U - {fx)0)%~Ux=0, (2.29)

where ;
f)=Ef(P(x)E™ +2EE7". (2.30)

By the boundary conditions (2.4.1), the convection matrix f(x) satisfies

M(Pioo) 0 )
0 J(Pioo)/)

i.e. (2.29) asymptotically decouples. Thus, the coordinate transform (2.27) is some-
what analogous to the diagonalization usually performed in the analysis of stability
of Lax shocks ([G.1,L.1,Sz-X]).

Further, since e;(x) is a multiple of the shift function e(x), the linear decay
criterion exactly decouples, becoming simply

f(xo0) = ( (231)

[ Uidx=0. (2.32)

—00

Properties (2.31-32) allow us to study the behavior of (2.29) by studying the
behavior of its diagonal part, treating off-diagonal terms as higher order effects. In
fact, they are necessary for this approach to succeed, (2.31) from obvious consid-
erations and (2.32) because the asymptotic behavior of (2.29) and the diagonalized
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system must agree — it is well known that (2.32) determines the asymptotic state
for a conservative scalar equation.

Condition (2.32) is unique to the undercompressive case. Such considerations
are avoided in the standard (Lax) case by the use of integrated variables, for which
the asymptotic state is built in.

Though our approach is similar in spirit to the standard approach used to study
Lax shocks, note that the method of diagonalizing is quite different. In particular, the
vectors e;(x) do not represent actual left eigenvectors of f’(®(x)), which in many
cases do not exist. Rather, they represent effective modes of propagation resulting
from the combined convective and dissipative effects of the shock profile @. Their
existence demonstrates that shock structure can induce hyperbolic behavior, even in
regions of ellipticity.

5. Nonlinear Version. We now turn to the full, nonlinear system (1). As remarked
in Sect. 3, the shock location evolves nonlinearly for the full equations. Accordingly,
we denote the shock location at time ¢ by d(¢) and define the perturbation variable
U as

U(x,t) = (U(x +d(t),t) — &(x)). (2.33)

Here, we have normalized by mapping the shock to the origin before computing
the perturbation.
In terms of U, (1) becomes

U —MU =S8, +d(U,+ ,), (2.34)
where M is the linearized operator (2.7) and
S(U) = f(U) = f(®) = f(®)U ~ &) = 0(1)[T? (2.35)

is the nonlinear source.
Introducing U = E(x)U, we have

U+ (fx)0) — Uy = ES, + dE(Uy + &), (2.36)
or
U +(fx)0)y — U = (S +dU), + (N + d[ED, — E.E~'UY), (2.37)
where 5
S =ES (2.38)
and 5
N =E,S. (2.39)

The location d(z) can be determined implicitly by the requirement that the trans-
lated shock @(x — d(¢)) be at least linearly stable under the perturbation

[UCx1) = P(x — d(1)],

at each time ¢.

Equivalently, we require @(x) to be linearly stable under the perturbation U =
U(x 4 d(t)) — @(x). In the U coordinates, the linear decay criterion is simply the
zero-mass requirement [ U(x,¢);dx = 0 V1, by (2.32).
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Differentiating (2.32) with respect to ¢ gives
oo ~
J U,dx=0. (2.40)
—o0
Integrating (2.37) with respect to x and applying (2.40) gives

T(Nl +d()EP, — E.E~'U]idx =0, (2.41)

—00
or .
fioooNldX

d(t) = == . ,
() JZ [EE-'U — E®,]dx

(2.42)

completing the description of system (2.37).

The linear terms of the left-hand side are still asymptotically diagonal, revealing
the stabilizing hyperbolic structure governing the behavior of a perturbation. Since
we have mapped the shock location to x = 0 in (2.37), the nonlinear source terms
of the right-hand side presumably now represent secondary effects which can be
estimated by the usual strategy of iteration. In Sect.3, we demonstrate how this
program can be carried out to show nonlinear stability around ®(x — d(t)).

3. Application to an Example System

{ . . .
We now demonstrate how the ideas of Sect.2 can be used to obtain nonlinear
stability, by their application to a particular system.

1. Perturbed Burgers Equation. We consider the system of conservation laws

u+ 20? — )+ ey = Uy
t+5( ) G
U + (uv)y = U
and the viscous shock wave solution
X) tanh(x/2)
w-(0)-(") e

System (3.1) is a perturbation of the complex Burgers system (¢ = 0) treated in
[L-Zu], and the shock @ is a real Burgers shock, undercompressive in the surround-
ing system.

The inviscid system associated with (3.1) is of mixed type. The elliptic region is
a ball of radius ¢/4, centered at (_g/ 4), and tangent to the shock profile @(x) at the

origin. Thus, the origin is a point of nonstrict hyperbolicity, specifically, a parabolic
degeneracy. ®(x) is one of a family of undercompressive shocks bifurcating from
the constant state solution @(x) = 0.

In complex form, with z = u + i(v — ¢/4), (3.1) becomes

z + 22 — i8)22¢ = Zyy (3.3)
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v

Fig. 3.1.

revealing threefold symmetry around the point (_f / 4), via the invariance z — oz,

®* = 1. The line {v =0} and its two symmetric counterparts are clearly invariant
manifolds under the flow of both (3.1) and its associated inviscid system. These
three invariant lines form an equilateral triangle circumscribing the elliptic region.
The invariant manifolds of the inviscid flow are the wave curves, which we depict
for reference in Fig. 3.1, superimposed on the elliptic region and the three invariant
lines. These are integral manifolds of the eigenvectors of the flux jacobian, that is,
of the local modes of propagation.
Linearizing U = () about & gives

(3.4)

{ﬂ, —(Qu +€v)y =Ty
El + ((/)E)x - va .

Thus, along the shock profile @(x), the jacobian of the flux function of (3.1) is
—¢ ¢
F(d) = ( O‘f’ ¢) . (3.5)
The associated eigenvalues are

= —d¢; =4, (3.6)

and the left and right eigenvectors are

h=(¢,¢/2); L =(0,1) (3.7)

r1=<(1)); r2=<‘;/2) . (3.8)

Note that for ¢ > 0, the outgoing modes (P, ) are not parallel, so the system
is of generic (dynamic) type, in contrast to the degenerate (fixed shock) complex

and



332 T.-P. Liu, K. Zumbrun

Burgers system (¢ = 0) analyzed previously. We shall see that the behavior and the
analysis are quite different as a result.

2. The case ¢ = 0. When ¢ = 0, (3.4) takes the form

{Llﬁ =u — (q)ﬁ)x — Uy =0 (39)

Ly =7 +((P5)x — U =0.

This system was analyzed completely in [L-Zu]. We state the relevant results here
without proof:
First, if [#odx = 0, then the solution of (3.9) is given by

W) = | W(y,0)G (it y)dy

N : (3.10)
B(x,1) = [ W(p,0)Ga(xt; y)dy
where
T(x,0)2 [ a(y,0)dy,
Gi(x,1;y) = [0~ (O)KF (x — p,0) + ot (0)K (x — 3,10)]
— [ (KT (x — y, 1) + ()K" (x — y,0)],
Ga(x, ;) =a (K~ (x — p,t) + o (VKT (x — y,1), (3.11)
and
x/2 —(xF0)? ,
0¥ (x) = il Kt = K F ) = b . C o)A (x).

T 4 eI

VAt 4t

An immediate consequence is that, for initial data of compact support, # decays

exponentially and o decays as ¢~'/2.
Now, define
1 —t=<x=t
4 —(—n)?
We=( e aa x=t, (3.12)
—(x+1)?
e it x < —t,
and
KEr) 2K (”’ t) L (3.13)
o C )" VanGi ' '
Proposition 3.1.1. Let Liu = (S))y, u(x,0) =0, and C > 1.
i If

IS| = O(D[(t + 1) Welx,t + 1) + (¢ + 1) "9~ M/2]
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and
ISe] = O 2L+ 1) P We(x £ 4 1) + (1 4 1) 70+ 2 RCY
then
[u], || = O()[( + D)2 Wex,t + 1)+ (¢ + 1)~ ™Mer=1e=I2CT - (314)

(i) If
IS| = O(1)(t + 1) PIKG (v, + 1) + K& (x, £+ 1))

and
1Se] = O™ 2t + 1) PIKE (x,t + 1) + K& (et + 1),

then
lul, ug] = OC[(t + 1) P~ Welx,t + 1) + (¢ + 1)~ P~ 12 R2C (3.15)
Proposition 3.1.2. Let Lyv = (8,),,v(x,0) =0, and C > 1. If
()
IS| = O(DI(z+ 1) P2C 4 (1 4 )T IKG (et + 1) + K (x, 1+ 1))

and

1S:] = Oyt~ [KG (k1 + 1)+ K (x, 0+ 1)],
or

(ii)

IS| = O(1)t™ "2 KE (x,t + 1) + K (x, £+ 1)]
and

1S:] = Ot "[KZ (et + 1)+ KX (et + 1)],
then

o] = O()[Kg (x,¢ 4 1) + K& (x, 1+ 1)]

and

o] = O(1)(t + 1) VPIKG (vt + 1) + KE (et + 1] (3.16)

Remark 3.3.1. From (3.10), it follows that v = O(1)[K/} + K] for ¢ = 0 and initial
data of compact support. If we attempt to treat ¢v, as a source term (i.e. negligible
perturbation) in (3.4), we find by Proposition 3.1.2 (ii) that the result is O(1)g[(z +
1)~2W, 4 e~ ¥/2€]. This corresponds to an O(1) shift of the shock, and precludes
the possibility of a nonlinear analysis by perturbation techniques.

This is consistent with the observation that the shock location evolves non-
linearly, Remark 2.3.1. Clearly, the principal behavior of (3.4) is not given by
(3.9) when ¢=0.

3. Linearized Stability. We now apply the ideas of Sect. 2, setting

U(x,t) = E(x)U(x,1), (3.17)

where U satisfies the linearized equations (3.4) and E(x) satisfies conditions
(2.25-26).
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ej(x)

In the present case, the straight-line profile of @(x) makes E(x) = (ez(x)) easy

to compute. From &(x) = ("’g‘)) and the relation (e,),®, = 0 given in 3, Lemma
2.1.2, we have
(e)r = W(x) = (0,w(x)).
Since (0,1) is a left eigenvector of f/(®(x)) for all x, (2.25) becomes w, =
—(x)w, or
wix) = ed o2 _ 1)kl (3.18)

Condition (2.26) is e;(+00)ri(P1o ) = 0. Combining (3.8) and (3.18), we ob-

tain the solution
er(x) 1 e#'(x) _
E(x) = = s 3.19
) (ez(x)) <0 1 > ( )

where # (+o0) = F1/2 and #; = w(x).

We note that e;(x) is not constant, as a consequence of the fact that the eigen-
vectors 7140 are not parallel. This implies that the shock is of generic (dynamic)
type (Remark 2.3.1), in agreement with the calculation in Remark 3.3.1.

Computing
I —eW'(x
E~!l= ( ( )) (3.20)
0 1
and
0 ew(x)
E, = ( ) , (3.21)
0 0
and using (2.29-30), we find that the equations for U = E(x)U become
U =({f0), =0, (3:22)
x —¢ ea(x) . .. ~
where f = 0 6 ) Since f is diagonal at x = o0, and all factors of f

decay as w(x) = O(1)ee " to their states at 4-co, we have a(x) = O(1)e .
Thus, we can rewrite (3.20) as

{Llﬁ = + (—Q(0)i)y — e = (a1 (x)D)y , (3.23)

L25 = 5! + (—(p(x)ﬁ)x - 5)0( =0

where L; and L, are as in (3.9) and a;(x) = O(1)e~ P,
Now the linear source term, (ea;(x)?)y, has form

ee™ M5 = O(1)ee™M/2CeWI2C K E 4 K] = O(1)ee™b e HI/2C
for b > 0(C > 1). By Proposition 3.1.1 (i), this source gives contribution

O(1)ee e~ MI/2C
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a negligible term. Therefore, linearized stability is trivial in the new coordinates,
and the condition for stability is

oo

[digdx =0, or Tel(x)Uo(x)dx =0 (3.24)

—00
as predicted in Sect. 2.

4. Nonlinear Stability. Following Sect. 2.5, we study the nonlinear stability of ¢
by setting

U(x,1) = EQ)U(x +d(1),1) = ()], (325)
where U = (Z) satisfies the full, nonlinear equations (3.1), E(x) is as in (2.22),

and d(t) is the instantaneous shock location, as defined in Sect. 2.
By (2.37) and (2.42), U and d together satisfy the system of equations

U+ (0~ Uy = +dU), + (N +d[E®, — E.EE~'U])
I W . (326)
fiooo[E‘E—lU—Etﬁx]ldx

d(t) =

Using (2.35), (2.38-39), and (3.19-21), and # = 5, we have

1/2i% — 1/2¢*
S:</u __/v>, (327)
—Uuv
~2 ~ ~2
S pg_ (bl(x)u + by (x)itt + b3(x)i ) (328)
(i + ba(x)D)d
NS — (saz(x)(ﬁ J(; as(x)0)o > , (3.29)
and :
[E®, — EE'U] = [®, + E,U] = ( Ea“(x)ov * wx) , (3.30)
where b; = 0(1),b,, = 0(1)O(1)e~F, and a,,(a,), = O(1)e=M.
Defining
T(x,t) = f [N —d(t)(®, + E,U)dx, (3.31)
and using (3.23), (3.30), we rewrite (3.26) as
- eay(x)v O
U= < 0 > + S+ T +d)0),
x , (332)

T LI
d(t) = S5 as(ri+or]dx
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where L = (g) is as in (3.9). Note that 7(£c0) = 0, by (2.41) and (3.29-30), so
that the equation for U is in conservation form.

Proposition 3.4.1 (L' bounded stability). Let C > 1 and let |iy(x)|,|fo(x)| <
se=*"14 and JZ dio(x)dx = 0.
Then, for ¢, 0 sufficiently small, (3.32) has a global solution, which satisfies

d(t) = 0(1)ed*e™" (3.33)
for some b > 0, and
i, 1) = O(1)3[(t + 1)~ Welxt + 1) + (¢ + 1)~ 2 k26T

(1) = O()S[t~ 2(¢ + 1) PWe(x,t + 1) + (¢ + 1)~ 2 HI2¢T
(x,t) = 0(1)5[Kc‘(x,t+ 1)+Kg(x,t+ D],

Tu(x,t) = Ot 2[KG (x,t + 1) + K (x,t + 1)], (3.34)
where
1 —t<x =t
A —G—1)
We={ e x2>t, (3.35)
—(x+l)2
e a4 x < —t,

t 1 —xe)?
Két(x,t)éK<xz,: ,t> = o5 G (3.36)

and O(1) is a constant depending only on C.

Proof. The proof is similar to that of Proposition 4.1 in [L-Zu], though slightly
more complicated.We proceed by iteration. Let {Uy,d;} be the sequence defined
by

Up=0; do=0 (3.37)

and
N eay(x)0y - Lo . . -
L(Uk+l):( 0 ) +[S(U) +T(Up,diy1) + di1 (Ui lx

Ti1(x,0) = 0°(x),
[N(Uy)dx

JTEas(x)iy + @xldx’ (3.38)

disi(t) =

where $,N, and 7 are as in (3.28-29), (3.31), and U° = (§g> denotes the initial
data for Eq. (3.4.2). ~
Short time existence theory (cf. [H-Sm]) guarantees that the iterates {Uy,dy}

converge to a global solution of (4.1), provided that |U| and |ds(¢)| are uniformly
bounded.
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Lemma 4.1.a (A Priori Estimate). The sequence {U;,d,} satisfies

Be(x,t) < Sl(t+ )7 Wl t + 1) + (e + 1)1 2K

T S 0ult™ 2+ DTV W e+ 1) + (1 172 M2,

Br(x, 1) < SlKo (ot + 1)+ Ki(xr,t 4+ 1)],

Doy < k()T VPIKG (ot + 1) + KE(x,t + 1)],

|di(t)] < 0(1)ed;_ ™", (3.39)
with b > 0, where 3y = 0 and, so long as ¢dy, is sufficiently small,

k1 = O(1)(6 + 0} + &%)

The constants O(1) depend only on C.

Proof. We proceed by induction, noting that the assertion holds trivially for £ = 0.

We can write Uy = Uy + Uy, where

LU =0, Upn(x,0) = 0°x) (3.40)
and
L(Uysr) = (8‘"(5‘)'*) + 8T + T(Ugdisr) + di (DU,
. [N dx
Dentl) = Tr O + gn) dn
Ueii(x,0)=0. (3.41)
We first estimate d(¢). We have
T prdx = @]X =2, (3.42)
J §a4(x)ﬁk dx = 0(1)edy [ as(x)dx = 0(1)edy , (3.43)

and
T N(Uy)idx = 0(1)e [ e~ XI(ii + b(x)5)i dx

= O(l)géi(e_lxl/ng:(x,t + 1))fe—|x|/2 dx
= 0(1)edre™"" , (3.44)
for some b > 0. Thus, for ¢d; sufficiently small,

0(1)esze=?"

_ 2 —bt
25 0(eon) = 0(1)edze ", (3.45)

dis1(t) =

as claimed.
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We can now estimate 7. We have

—bt ,—|x|/2
N(Uk)zou)aé,%(e eo > (3.46)
and
. N —bt ,—|x|/2
dk+1(t)(¢x+ExUk)=0(1)eéi(e o ) (3.47)

For x < 0, this implies that

F(Oudisn) = [ IN(T2) — d(0)( @, + E,O1)]dx

—0Q

=0(1)edie ™ [ e M24x

—00

= 0(1)edtetle= M2 (3.48)

Further, T(400) = sz[u-]dx =0, as noted after (3.4.2). Thus, for x > 0, we
can use the alternate representation

T'= [IN —d()[® +EU)dx , (3.49)
obtaining the bound :
T(Ui,dis1) = 0(1)edi(e e 1/2) (3.50)

for all x. That (Ty) = 0(1)ed}e e~/ follows immediately from (3.47-48).

The estimates of d and T are the crucial new features in this proof. The re-
mainder of the argument follows essentially as in Lemma 4.1.a in [L-Zu]:
We have

Li(tis1) = (S (3.51)

and
Ly(Op41) = (S2)x (3.52)

where

L1 = (ear(x)5+ 8\ + T1 +d(0)it) (3.53)

and
Ly =8y 4+ Ty +d()p) . (3.54)

From (3.28), we recall that

Sy = oM)(Ja* + o) (3.55)

and
Sy = wyiiy + b(x)d7 (3.56)

where b, = O(1)e~ .
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Thus,
S)=0M&[(t+ D) 2We(x,t + 1) + (1 + 1)~ e RI2C
+KEt+ 1)+ K (xt+ 1) ;
Si, =02t + D)3 PWex, t + 1) 4 (1 + 1)~ le W2
+ KOt + 1)+ Kt + 1) (3.57)

Combining (3.57), (3.45), (3.50), and the estimates ea;(x)i; = O(1)edre e~ II?2
and e(a; (x)6 )y = O(1)edpePe 2 we have

S =082 + e + e02)[(t + 1) 2 Welx, t + 1) + (¢ + 1) Le™KI2C
+ Kt + 12+ Kt + 1)
L1, =O0(1)(82 + e + )™ 2t + 1) We(x,t + 1) + (1 4 1)~ le™ K2
+KEot+ 1+ KE(xt+ 1) . (3.58)
Thus, applying Proposition 3.1.1 and linearity, we find that
ligs1 = O(1)(O2 + e + 0Dt 4+ 1) " Welx,t + 1) + (¢ + 1)~ 12 RI2€ |
ligsr, = O(1)(82 + edy + &0t~ 2t + D)™PWe(x,t 4+ 1)
+ (£ + 1) e HRCy (3.59)

as claimed. . R

The bounds on 3y and G4, follow similarly, from Proposition 3.1.2. The only
subtlety is to estimate the contribution of the source term b(x)ﬁ,% separately from
the others, using 3.1.2(ii) and the estimates

ind biy = O(1)(t + 1) 2KE (3.60)

(bﬁi ) = (DT )ﬁk + bﬁkﬁkx
= O(I)e_b’e_WngE + O(l)t_l/z(t + 1)—1/2Kci . (3.61)

Here, we have used b = O(1),b, = O(1)e~ !,

As in [L-Zu], we can obtain similar bounds on the linear parts, @1, 11, Ok+1,
and 0y41,, by direct calculation of the convolution integrals in (3.10). Note that the
constant becomes O(1)d in this case.

This completes the proof of the lemma. [

From the lemma, we have ;. < M(é—i—é,% + &6y +85i), for all k. Thus, if
46M? + 2Me + 46M?e < 1, it follows by induction that §; < 2M$ for all k. From
this uniform bound, we obtain both convergence of the iteration scheme, and, in
the limit, the desired bounds on the solution. [
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Remark. With more care, the requirement that ¢ be small can be removed in Propo-
sition 3.4.1. Replacing e~ ¥I/2C by (1/6)e=/2C in (3.34), (3.39), we have

S1 = 0(1) (8 + et + 1) We(x,t + 1) + KE (e, t + 1) + KE(x,t + 1)*]
+ ([0/07 + €3t + 1)~ e MI2CY
81, = 0N + et (e + 1) PWe(x,t + 1) + KE(et 4 12 + K (x, 1 4 1)7]
+ ([04/01 + e0p)[(z + 1)~ e II2¢7 (3.62)
Thus, (3.59) becomes
ligsr = O(1)(0F + &2 + £60; + 6[01/01%)
X [(1 4+ D) Wel,t + 1)+ (¢ 4+ 1)712(1/8)eW12¢T
i1, = O} + 68} + 630k + 5[04/51%)
X [ 2+ 1) P Wt + 1)+ (¢ + 1)~ Pe M2 0 (3.63)

If 6 and (5/5) are taken sufficiently small, then (d;/ 5) remains small and the argu-
ment can be carried out as before.

5. Proof of the Main Theorem. At this point, we have merged completely with
the analysis in [L-Zu]. The L' bounded stability result of Proposition 3.4.1 can be
improved to the L' behavior given in Theorems 1 and 2 by exactly the bootstrap
argument described in Sect. 5 of that reference, which we will not repeat.

IV. Concluding Discussion

1. Generality. Among 2 x 2 systems (1-2), the example treated in Sect. 3 is more
typical than might appear. Quadratic flux models such as (3.1) approximate the
behavior of general 2 x 2 systems in the vicinity of a point of nonstrict hyperbolicity
(cf. [Sch-Sh]). And, as discussed in [[I-Ma-P1-T], a large class of undercompressive
shock wave solutions of quadratic flux models are precisely straight line profiles of
the form

P(x) = ((1/2)(U- + Uy) + (1/2) tanh (ux)(Uy — U-)) , (4.1)

that is, scalar Burgers profiles along invariant lines of (3.1). Thus, it turns out that
Egs. (3.1-2) are representative of undercompressive shocks in a variety of systems.

2. Curved shocks. For quadratic models with D = I and possessing only hyperbolic
degeneracies, in fact all undercompressive shocks belong to the class of straight line
profiles described above. This follows (cf. [[-Ma-PI-T]) from the classification by
canonical gradient models, [Sch-Sh], and a theorem of Chicone on saddle-saddle
orbits of quadratic gradient dynamical systems.

However, for quadratic models, like (3.1-2), which possess parabolic degenera-
cies, there also exist curved-profile undercompressive shocks, in roughly equivalent
number to the straight profile type [I-Ma-Pl]. Numerical study indicates that these
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shocks are also quite stable under perturbation [Zu-Pl-Ma.2]. It should be very
interesting to study their nonlinear stability within the analytic framework set up in
Sect. 2.

3. Extension to n = 3. Additional complications can arise in n X n nonstrictly hy-
perbolic systems, n = 3. However, the ideas of Sect. 2 are still applicable, with
some elaboration.

Let &(x) = @°(x) be a viscous shock wave solution of (1) connecting end-
states @, and let ®* parametrize the family of all such connections, o« € R/. The
j-parameter family @* is the manifold of possible asymptotic states for a localized
perturbation of ®(x), generalizing the one-parameter family of translates of @ that
we considered in Sect. 2.

Likewise, in (2.6-7), the linearization of (1) around @(x), the functions (‘—1 fq:()
are stationary solutions representing instantaneous translation and/or deformation
of &, and generate a j-dimensional linear subspace of possible asymptotic states.
Generically, this subspace contains al/ stationary solutions of the linearized equa-
tions.

To see this, we need only observe that the dynamical system

D(Q:I:oo)_lf/(d):l:oo)v = Ux (216)

describing stationary solutions of (2.6—7) can just as well be obtained by linearizing
the dynamical system for stationary solutions of (1) around the particular solution
. From this observation, it follows easily that the stable (resp. unstable) manifolds
at x = £oo of the linearized equation (2.14) are given by the tangent space along
@ of the stable (resp. unstable) manifolds at x = +o0 of the nonlinear traveling
wave equations. Since the set of stationary solutions is the intersection of the un-
stable manifold at x = —oo with the stable manifold at x = +o0, it has the same
dimension j for both the linearized and nonlinear equations, except in the degen-
erate case that the stable and unstable manifolds of the nonlinear equation are not
transverse.

We will call the dimension j, counting the bounded solutions of (2.14), the
degree of compressivity, #c, of ®. Complementary to the manifold of bounded
solutions are the invariant manifolds of solutions unbounded at both +oco and of
solutions bounded at one end only, obtained by different intersections of the stable
and unstable manifolds at x = +0co. The dimension of the manifold of solutions
unbounded at both ends we will call the degree of undercompressivity, #u, and
the dimension of the manifold of solutions with one-sided bound we will call the
degree of transversality, #t, of @. It is clear from the definitions that

Ho+H#Hu+#Ht=n. 4.2)

Save for this restriction, and the restriction that #c¢ = 1 (necessary for existence
of a shock profile), all possibilities can occur. This classification scheme refines
the simpler counting of incoming and outgoing characteristics that suffices for the
strictly hyperbolic case and for n = 2. Proposition 2.2.1 becomes:

Proposition 4.3.1. Let E denote the space of L' time-invariants of the linearized
equations (2.6-7). Then, dim(E) = #u + n.
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Proof. We refer to the notation in Proposition 2.2.1, associating time-invariants with
bounded solutions e(x) of (2.11). Setting W = e,, we have

Wfl(¢iw)D_l(¢iw) =W (2~16)

and W e L.

But, solutions W € L' of (2.16) can be characterized as those solutions which
are orthogonal to the compressive and transverse manifolds of (2.14) at the point
x = 0. For, claim 2.1.2 implies that any such solution vanishes at x = 00, by the
same argument used in Proposition 2.2.1.

The set of all such solutions W has dimension #u, by (4.2). The integration
of e, = W introduces a further constant of integration, of dimension n, proving the
result. [

This proposition is quite significant. Presumably, the L' asymptotic state of a
solution of the linearized equations (2.6—7) should consist of a stationary wave plus
(#t + 2#u) outgoing diffusion waves. Thus, we expect (#c + 2#u + #t) = (n + #u)
L' time-invariants if the shock is to be stable.

Further, we note that the invariants prescribing the deformations —a%ldi and the

masses of the various diffusion waves are, generically, determined by (#¢ + 2#u)
boundary conditions analogous to (2.22) together with (#c) normalization conditions
analogous to (2.23). More precisely, the invariants e, corresponding to deformation

a%,-‘p satisfy
e, (F00)ri(P1o0) = 0 (4.3)

for all outgoing eigendirections 7, and
_6 =0 44
ey (x), 6otj(p =0 44)

for all j. The invariants e, corresponding to the mass of the outgoing diffusion wave
in the r; direction satisfy

e (£00)r|(Pro0) = O (4.5)
for all outgoing eigendirections »; and
er(x) g ®)=0 4.6)
k s aaj - .

for all ;.
Thus, it is possible to define a diagonalizing transformation

U =E@x)U - (47)

similar to (2.27). We conjecture that (with appropriate conditions on the viscosity
matrix D(U)) all weak shocks are stable in the orbital sense described above, so
long as the matrix E(x) is everywhere nonsingular.

Remark. A formal analogy between the relation we have observed between lin-
earized and nonlinear stationary solutions, and the standard Melnikov integral has
been pointed out by Dan Marchesin.
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4. Examples, n = 3. To conclude, we give examples of the different types of un-
dercompressive waves which are possible in the case n = 3.

In each of these examples, the waves can be shown to be (orbitally) nonlinearly
stable using the diagonalizing transformation and the analysis already performed in
the proof of Theorem 1. Precisely, it can be shown that the L' asymptotic state of
a perturbed shock @° is a shock ®* plus outgoing diffusion waves in each of the
outgoing characteristic modes at x = *o0.

Further, the instantaneous deformation «(¢), defined analogously to d(¢) in 2.5,
evolves nonlinearly in the sense of Remark 2.3.1.

Example 1. Standard undercompressive shock (#c = 1,#u = 1,#t = 1):

u; + %(w2 — ) F eV = Uy
v + (2uv), = Uxx » (4.8)
w; + (2w), = W
tanh(x — a;)
P*(x) = ( 0 ) . (4.9)
0

This shock is undercompressive in one secondary field and transverse in the other.

Example 2. Totally undercompressive shock (#c = 1,#u = 2,#t = 0):

u + %(Wz - uz)x +evy = Uy
v + (2uv), = Uxx » (4.10)
wy + (uw), = Wxx
tanh(x — a;)
d*(x) = < 0 ) . (4.11)
0

This shock is undercompressive in both secondary fields.

Example 3. Mixed overlundercompressive shock (#c = 2,#u = 1,#t = 0):

U+ %(wz - uz)x +evx = Uk
v+ (2W2 - Uz)x = Uxx » (412)
Wi+ (uw)y = Wi
tanh(x — a;)
P*(x) = (tanh(x - a2)> . (4.13)
0

This shock is doubly compressive, meaning that there exists a two-parameter family
of traveling waves connecting the same endstates. It has a single, undercompressive
secondary field. Its behavior has qualities of both overcompressive and undercom-
pressive shocks. Namely, the shock is only stable within the family of possible
deformations, as typical of overcompressive shocks, [F-L,L.4], while the asymp-
totic state evolves nonlinearly, as typical of undercompressive shocks (Sect. 2).
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Finally, we remark that, according to the classical, hyperbolic characteristic
condition, this would appear to be a standard Lax shock. Once again, this illus-
trates the importance of parabolic effects in the behavior of nonstrictly hyperbolic
waves.
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