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Abstract: To a trajectory of the billiard in a cube we assign its symbolic trajec-
tory-the sequence of numbers of coordinate planes, to which the faces met by
the trajectory are parallel. The complexity of the trajectory is the number of dif-
ferent words of length n occurring in it. We prove that for generic trajectories the
complexity is well defined and calculate it, confirming the conjecture of Arnoux,
Mauduit, Shiokawa and Tamura [AMST].

0. Introduction

Consider a rectangular billiard in IRS+1, that is the dynamical system defined by
the free motion of the point between collisions with the boundary of the billiard
domain and elastic reflections at the collision instants, with the billiard domain being
a (s + 1 )-dimensional cube with the faces parallel to coordinate planes.

This dynamical system is equivalent to the trivial system with constant velocities
on a torus and is studied in much detail (see [T] for a survey). However, there are
questions still attracting a lot of attention in the literature, such as the question of
the coding of trajectories by listing its consecutive collisions with the boundary.

Specifically, to a trajectory one associates an infinite word in alphabet
<$/ = {0,..., s} as follows: each time the trajectory meets a face of the cube parallel
to the 7th coordinate plane, one writes down j. The resulting infinite word will be
called a symbolic trajectory. In exceptional cases the trajectory meets more than
one face simultaneously, but such cases are not generic and will not be considered.

The resulting symbolic trajectories arise in numerous problems related to number
theory, quasicrystals, computer graphics, etc. These trajectories were abundantly
studied in the two-dimensional case (where they bear also such names as Sturmian
trajectories or Beatty or Wythoff sequences); a sample bibliography can be found
in [B, LP, S]. Although multidimensional generalizations are investigated much less,
one can find quite a lot of results on those in the papers mentioned.
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The complexity of a trajectory is defined as the number of different words of
length n occurring in the associated symbolic trajectory considered as a function
of n. The problem of the determination of the complexity for rectangular billiards
was apparently first studied by M. Morse and G.A. Hedlund in [MH], where it
was completely solved for two-dimensional billiards. They have shown that the
complexity is independent of the trajectory (provided that the coordinate projection
of velocity are rationally incommensurable) and is equal to n + 1.

Of course, the most striking fact here is the independence of the complexity
of a particular trajectory. This independence persists in the three dimensional case,
which was considered by Arnoux, Mauduit, Shiokawa and Tamura [AMST]. They
have shown that the complexity of symbolic trajectories is n2 + n -\- 1, as was con-
jectured by Rauzy in [R]. The authors made their own conjecture concerning the
complexity of the symbolic trajectories in the multidimensional case, based on some
quite mysterious assumption of symmetry in s and n. In fact, their formula follows
immediately from the independence of the trajectory result (see part 5 of the present
paper).

Here we prove their conjecture, giving the general formula for the complexity
of symbolic trajectories associated with rectangular billiards in arbitrary dimension.

The method of the solution is as follows. The set of all subwords of length n
of a symbolic trajectory we call the ^-thesaurus. It is obvious, that if the velocities
are rationally independent, then the thesaurus does not depend on the initial point
of the trajectory (since the system is minimal), that allows us to speak about the
thesaurus of the (generic) velocities vector.

First, we write down explicitly the condition for a word of length n to belong
to the ^-thesaurus of a velocity in terms of consistency of a certain system of lin-
ear equations and inequalities. Further we investigate the change of the ^-thesaurus
when the vector of velocities varies. These changes happen when the inverse veloci-
ties are rationally dependent only, that is when a resonance occurs. If the resonance
is simple, that is there is at most one (up to multiples) vanishing integer combina-
tion of inverse velocities, then we show that there is a one-to-one correspondence
between words leaving the thesaurus and the words coming into the thesaurus when
the resonant value is traversed. That proves that the complexity of the billiard is a
well defined function of n only (that is it takes the same value for all nonresonant
velocities). To finish, we calculate the ^-thesaurus for a special velocity vector,
which yields the main result of the paper:

Theorem. The size of the n-thesaurus of the generic velocities vector (that is such
that both its component are independent over Q and their inverses are) is

n(s'n} ( Λ ί n\
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1. Basic Constructions

Let B c IR5+1 be a rectangular area bounded by the hyperplanes {x, = 0}, {*/ = //},
/ = I9...,s. Without loss of generality, we will take all // = 1 to restrict ourselves
to the unit cube case. The movement of the particle in B is defined as follows: it
moves freely with velocity v = (VQ,...,VS) until it reaches the boundary where it
reflects elastically (that means that if the collision point belongs to the face parallel
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to the /th coordinate plane, then Vj ι— » — i;/). The usual procedure of the first 2Λ + 1-fold
covering of B by the torus and then of the covering of the torus by IR5+1 leads to the
description of the motion of the point as the projection of the free motion in IR^1

with velocity u; the collision instants correspond to the instants of the intersection by
the lifted trajectory of the hyperplanes xt = n, n £ Z. Excluding lower dimensional
cases we can assume that all v} ΦO; without loss of generality, we can even take all
vl > 0. For any j the instants of intersections of trajectories with the hyperplanes
Xj = n form, obviously, an arithmetic progression with the difference a} = (Vj)~l .
Therefore the symbolic trajectory, corresponding to a billiard trajectory with the
given velocity v can be described as follows: we mark points in IR belonging to the
7th progression by j and then read all the marks in their natural order. We assume
that no point is marked simultaneously by more than one number; this is true for
almost all trajectories with given velocity vector (trajectories with the given velocity
are parameterized by their starting point modulo a shift along the trajectory, which
gives the ^-dimensional torus as the space of trajectories; trajectories for which the
corresponding arithmetic progression have common points form a countable union
of (s — 1 )-dimensional tori). Trajectories for which no point is marked by more
than one letter (or, equivalently, which never hits (s - 1 )-dimensional faces of the
cube) will be called generic.

It is more convenient to work with the vector a = (ao,...9as) of inverse veloc-
ities or differences of the arithmetic progressions in question. We will say that a
word q in the alphabet j/ = {0, . . . , s} of length n is α-admissible, if there exists
a generic trajectory with velocities inverse to a, such that q is a sub word of the
length n in its symbolic trajectory (it follows immediately that if the differences
for a/s are Q-independent, then q is a subword of the symbolic trajectory for any
generic trajectory as the system is minimal). The union of all ^-admissible words
of length n is called the ^-thesaurus for a and is denoted as &~(a).

We will represent the presence of q in &~(ά) as some condition on a polyhe-
dron depending on the word and velocities. Introduce the following (3(s +!) + «)-
dimensional space W with coordinates

. , xs x\ , . . . , xn XQ , . . . , xs

(1.1)

The meaning of the coordinates x is the following. To an ft-subword of the
symbolic trajectory n consequent instances correspond when the particle hits the
boundary. The numbers x\9...,xn represent just these instants. The number x~ (x*9

respectively) represents the last moment before x\ (the first after xn) when the
particle hits a face parallel to the /h coordinate plane.

We will often consider W as the direct sum of its 2(s + 1 ) + ^-dimensional
t-part Wx and (s -f 1 )-dimensional α-part Wa\ the projection of W on its a part will
be denoted as pa.

The conditions of precedence mentioned above are encoded by the following
inequalities defining a polyhedral cone C C W\

...,x~) g x\ g X2 ^ ^ xn ^ min(^,. . .,*+) . (1.2)

Now for any word q of length n in the alphabet jtf we define the linear space

W(q) G W as follows: let 77 = {/'(,..., /j7 , } C {!,..., «} be the subsequence of in-

dices in {!,..., ft} for which q, — j. Then the linear subspace W(q) is defined by
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the conditions that the sequences

x, ,
Ί/,l

"v ' "*y'' ' * ' "*y

form arithmetical progressions with the differences a} for j = 0, ...,5-.
A simple count shows that the dimension of W(q) is (2s -f- 2) independently of

q: one can vary the first terms of the arithmetical progressions and their differences
arbitrarily.

Further, we define the convex polyhedral cone

P(q) = CΓ\W(q), (1.3)

and its intersection with the fibers of the projection pa of W on its β-part

p-\a). (1.4)

These polyhedra play in the sequel quite a fundamental role because of the
following.

Lemma 1.5. The word q belongs to the thesaurus ^"(β) exactly when the following
equivalent conditions hold:

1. P(q) has the maximal dimension 2(s + 1) and a point (x,a) G W is interior
in P(q)\

2. P(q,a) has the maximal dimension (s + 1) in the fiber pa

 {(a).

Proof. Let the word q be a part of the symbolic trajectory associated to a generic
trajectory with the vector of inverse velocities a. Let . . . ί_ i , ί0, t\ , . . . be the instances
of collisions. Then, assuming that the word starts, say, at the first term, one can by
setting Xi = tj, i = l,...,n and attaching to x]~(Xj~) the last moment of the appear-
ance of j before t\ (the first moment of occurrence of j after tn) get an interior vector
of P(q) as all the inequalities defining P(q) are in fact strict at the point. That means
that a small vicinity of the point (x,a) (with x = ( X Q , . . . , X ~ , x\,...,xn, X Q , . . . , X + ) )
in W(q) belongs to P(q\ and the projection of the vicinity to Wa is open there,
that proves 1.

Assertion 2 follows immediately from 1.
Assume 2. It implies that there exists a point (x,a) G P(q,a) such that all the

inequalities defining P(q) are strictly satisfied. Having such a vector x one easily
constructs a piece of trajectory with differences a which has the word q as a part of
its symbolic trajectory. Extending the trajectory to both sides (which can be done
unambiguously) and disturbing a little the arithmetical progressions to avoid multiple
points in their union - that always can be done as the fact that the considered point
is interior in P(q,a) means that they are different and small distortion do not change
their order - gives the desired generic trajectory.

The following statement generalizes Corollary 4 of [LP]:

Corollary 1.6. If a word q belongs to the thesaurus &~(a\ then the reversed word
qm also belongs to it.

Proof. The mapping

takes a point in P(q,a) into a point in P(qm,a).
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2. Changes of Thesaurus, Flows in Graphs and Linear Programming

Now we are going to study the changes of the thesaurus when a varies in some
way. Our goal will be to establish the constancy of the thesaurus size. To prove
it we join two arbitrary vectors of generic inverse velocities a\9d2 by the segment
/ and consider its preimage under pa in W. The intersection of the preimage with
any of the cones P(q) is a convex polyhedron P/(q) again, and Lemma 1.5 implies
that the changes of the thesaurus occur exactly in those points of / where some of
the polyhedra P(q,a) lose their full dimension. Such points we will call critical.

The totality of all polyhedra P(q) (where q are words of length n) is finite, and
each of these polyhedra has a finite number of faces, so the set of the critical points
in / is finite. Choose one such point a* and two neighboring points <z/,<z0, between
which no further critical point besides α* occurs. That implies that the thesaurus
before a* is that at α/ and the thesaurus after a* is that in a0. Choose a linear
function / on the Wa such that /(«/) < I(a0\ and lift it to the whole W.

Lemma 2.1. The word q belongs to 3~(a^) - &~(a0) if and only if P/(q) has max-
imal dimension 5 + 2 and I reaches its maximal value over Pj(q) on P(q,a*)-a
face ofP(q)ι.

Proof. The fact that q G ̂ ~(α/ ) means by Lemma 1.5 that P(q,a) has the dimension
5 + 1 for all a G / between α/ and α*, thus the dimension of P/(q) is 5 + 2. If
for certain a between a* and a0 the polyhedron P(q9a) were nonempty, then the
polyhedron P/(q) would contain the cone spanned by a point in P(q,a) and P ( q 9 a j )
and for any a' between a* and a the fiber P(q,a') would have full dimension 5+1,
so that the word q would belong (by Lemma 1.5) to 3Γ(a') and also to &~(a0).
Therefore all the sections P(q,a) are empty for a after α* and the maximum of /
is attained on P(q,a*}.

Inversely, if the maximum of / is attained on P(q9 a*), then all the polyhedra
P(q,a) for a after a* are empty. Further, if the dimension of P/(q) is s + 2, then
some of the fibers P(q,a) have the dimension s + 1 and thus all of them before α*,
as P(q,a*) is nonempty.

To investigate implications of the criticality of a point we introduce a graph and
a flow on it. The vertices of the graph correspond to x-coordinates in W and the
edges to constraints defining the polyhedra P(q).

Let q be a word in j/ of length n. The graph Γ(q) has 2(5 + 1) + n vertices
υ~9...9υ~'9 v\9...9vn'9 v+9...9v+. The (oriented) edges of Γ(q) are of two types:
first, independent of q, are following: connecting each vy9j = Q9...9stov\; v\ to

V29 V2 to v $9...9υn_\ to vn and vn to each of Vj~9j = 0,...,5. This ^-independent
part is a tree and will be denoted as Γ; the edges of this tree will be referred to as
m-edges. The edges of second type are q specific and connect vj~ to v./ this latter

one to v.j and so on until v.f . This last vertex is connected to i t. (Recall that
< 2 'Ί/,1

Ij = ( / 1 , . , . , / ι / j ) is the subset of {!,...,«} consisting of indices / such that qt =7;

if the subset is empty v~ is connected directly to i t.) We will call them /-edges
and will mark them by the corresponding letters of s$.

The edges of the graph Γ(q) correspond to constraints defining the polyhedron
P(q)9 m-edges corresponding to inequalities defining the cone C and /-edges to
equalities defining W(q).
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Recall, that a closed flow in an oriented graph is a function on its edges such
that the Kirchhoίfs current law is satisfied: for any vertex the sum of all flows
(values of the function) over the m-edges is equal to that over all owί-edges.

Recall also some basic facts from the linear programming theory which will be
used in the proof of the following proposition (see, e.g. [FF]):

Fact. A. Let P be a polyhedron in IR5 defined by a system of linear equations
and inequalities

<K ^ 0; φβ = 0 ,

α = I,...,A; / ? = ! , . . . , B φ's and ψ's-linear ίnhomogeneous functions. Assume
that the maximum of a linear function I is attained on a face F of the polyhedron,
and y is a relatively interior point of the face. Then there exists a linear combi-
nation ("whose coefficients are called Lagrange multipliers) of the linear functions
constraining the polyhedron (i.e. ψ's and φ's), with nonnegative coefficients ofψ's,
whose sum with I is a constant. Moreover, the linear combination can be chosen
in such a way, that the coefficient for ψ^ is positive exactly when ψ^y) = 0 (LP
duality).

B. Inversely, if a linear combination of the constraining function with non-
negative coefficients for the linear functions entering inequalities defining P plus I
is constant, and all the constraining functions with nonzero coefficients vanish at
y G Λ then I achieves its maximum over P at y.

Proposition 2.2. Let a* be critical and the word q either vanishes from the the-
saurus or appears there when a varies through I. Then there exists a non-zero
closed flow on Γ(q\ and if x is a relatively interior point of P(q,a*\ then m-edges
in the support of the flow correspond exactly to those inequalities which becomes
equalities on x and the flow through any of these m-edges is positive.

Proof. Choose Lagrange multipliers

my ^ 0 for x\-x~ ^ 0 ,

πii ^ 0 for xi+\ — xl ^ 0 ,

m+ ^ 0 for jc/ -xn ^ 0 (2.3)

for inequalities defining cone C.
The constraints, defining the linear subspace W(q) are either

Xi - x~ — aj — 0, or jc/ - x^ — a} — 0, or x* — jt, — α/ = 0 ,

and we attach Lagrange multipliers /~,/ M / and /* to them respectively. Thus to
each constraint and, consequently, to each edge of Γ(q) a Lagrange multiplier is
associated.

We will need one more set of multipliers for the constraints forcing a to belong
to the line through at,a0. (Notice that there is no need to introduce multipliers for
dj ^ 0 as the inverse velocities are positive by assumption.)

So, according to the Fact of the linear programming theory (as stated above),
if a* is critical, and (x,α*) is an interior point of P(q,a*\ we can choose a set of
coefficients (Lagrange multipliers), such that the resulting linear combination plus
/ is constant.

Consider now these multipliers as defining a flow Φ on Γ(q\ Indeed, to each of
them corresponds a unique edge in the graph, so that the jc-part of the corresponding
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function is the difference of the x's at the ends of the edge. The equality of the linear
combination to — / plus a constant means exactly that the defined flow is closed:
the coefficient for any of the c's is the algebraic sum of flows to the corresponding
vertex, and / does not depend on the c's (in other words, the Lagrange multipliers
define a closed 1-cocycle on Γ(q)).

The statement about w-edges in the support of the flow is tantamount to the LP
duality.

A cycle in a graph is called simple if it passes through any edge at most once. A
simple (non-oriented) cycle in the oriented graph Γ(q) is said to be subordinated to
the flow Φ, if the only w-edges it contains are from the support of Φ and it traverses
those ra-edges in accordance with their orientation. To any simple cycle a closed
flow corresponds; it takes a constant (positive) value on all edges of the cycle. Such
closed flows will also be called simple and subordinated if the underlying cycle is.

Simple subordinated cycles are important as they generate bounded resonances
at a*. A resonance is a vanishing linear integer combination of ay's. A resonance
will be called bounded if the sum of absolute values of its coefficients does not
exceed the number of edges in Γ(q).

Lemma 2.4. Let a* be critical, x be an interior point in P(q,a*) and Φ be a
closed flow defined by the Lagrange multipliers at x. Then to any simple cycle
subordinated to Φ a bounded resonance at a* corresponds.

Proof. Any edge of the cycle corresponds either to equality *7 - xtι - a} = 0, or to
equality of one of the following formats:

x~ — x\ = 0 or jc/+ι — Xι = 0 or x~ ~ — xn = 0

(the w-edges are in the cycle if the corresponding Lagrange multiplier is positive
only, which makes them equalities). Summing up all of them we obtain a bounded
resonance at a*.

Lemma 2.5. For any closed flow Φ subordinated cycles exist. Moreover, any closed
flow can be decomposed into a positive linear combination of simple subordinated
flows.

Proof. Reverse the orientations of all /-edges with negative flow, so that the flow
through any edge is nonnegative. A subordinated cycle can be then found by the
following algorithm: pick any edge in the support of the flow and go along the
arrow. In the reached vertex choose a new adjoining edge along which the movement
according to its orientation is possible - such an edge always exists since the flow
is closed. Iterating we will reach a vertex already seen at a stage, thus getting a
subordinate cycle. To prove the decomposition part of the lemma, define the closed
flow on this chosen cycle by assigning to each edge in it the minimal flow of the
edges gone through. Subtracting the resulting closed flow from the initial one we
will obtain a flow with a smaller support. Iterating finishes the proof.

3. Simple Resonances

We say that the critical point α* is simple if all bounded resonances at the point
are integer multiples of a single resonance n a* = 0. The condition of simplicity
strongly restricts the structure of possible simple cycles subordinated to the flows
associated with the critical point a*. In fact one can prove that the support of such
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a flow is necessarily a simple cycle or contains /-edges of only two types. We will
prove here only a weaker result needed in what follows.

Proposition 3.1. Let q e ^(α/) — 3~(a0}\ a* e / be a simple critical point on the
segment /; x be an interior point of P(q,a*) and Φ be the associated closed flow.
Then at most one of the edges x~ —> jci and at most one of the edges xn —> x^
belong to the support of Φ.

Proof. Consider a cycle subordinated to the flow Φ. For any mark j we define a
j-segment in the cycle as a sequence of /-edges with this mark bounded by edges
of other (necessarily not /-) types.

First, we will prove, that for any simple cycle subordinated to the associated
flow and for any mark j there is at most one j-segment in the cycle. Indeed, let
s\,S2 be two j-segments separated by some pieces of the cycle c\,C2, so that the
whole cycle has the form

-s\ - c\ - s2 - c2 - s\ - .

We can now form two new cycles joining the ends of c\ and c^ by j-segments
(Fig. 1). These two cycles are clearly simple and subordinate as the m-edges remain
unchanged.

An easy check shows that the closed flow whose support is the initial simple
cycle is now the sum of thus constructed closed flows. Decomposing if necessary
these flows further we arrive at a stage of the situation when each of the new cycles
has at most one j segment. If the initial cycle had more than one j segment, then
among these cycles exist both cycles going through j edges in positive and negative
directions.

Each of the cycles generates a nontrivial (as «/φO) resonance, a multiple of n
by assumption. The fact that both positive and negative multiples of n occur means
that both / and — / can be represented as linear combinations of the constraining
functions with nonnegative w's (as the constructed flows are subordinated), and
thus both / and — / achieve their maxima on Pq at the point (x,a*) (part B of the
linear programming Fact). It follows that Pι(q) = P(q,a*) in contradiction with the
assumption, that Pι(q) has dimension s -f 2.

Thus each of the simple subordinated cycles has at most one j segment, and the
direction of traversing them is the same for all cycles.

j-segments j-segments

New cycles
New cycles

Fig. 1. Simplification of simple subordinated cycles.
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j i

J2
Two cycles (solid and dotted arrows)

from which a new cycle is made.

Fig. 2.

Assume now that the support of the associated flow contains two (m-)edges
v~ —» ui and v~2 —> v\. Let 71,72 be two simple subordinated cycles containing
these edges correspondingly. Let s be the segment of the cycle 72 starting in v\
and ending at the beginning of the first j i edge. Then cutting short along j i -edges
to v~ and from there to v\ we obtain a new subordinate cycle (Fig. 2). This cycle
contains no J2 edges as they obviously cannot belong to s, but contain more j i
edges than 72- Therefore the resonance defined by the cycle cannot be a multiple
of n - a contradiction. Similar reasoning gives x+ part.

Corollary 3.2. For any interior point x of P(q, a*) at most one of inequalities
x~ ^ x\(xn = χ^) becomes equality.

Proof. It follows immediately from Propositions 2.2 and 3.1.

4. In-Out Correspondence

Now we will prove the crucial result: if the critical point of the segment / is simple
(that is satisfies at most one resonance modulo natural multiples) then the number
of words disappearing from the thesaurus equals the number of words appearing
there. To do it we construct the in-out correspondence as follows.
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Let x be a vector in Wx, and q a word of length n. We can consider these data
as defining a marking of JR.

A marking of real line by elements of stf is a mapping from IR to the set of
subsets of s0. We will consider only finite markings, that is such that the number
of points mapped into a nonempty subset of s$ is finite. The size of the subset
to which a point is sent is called the multiplicity of the point; the sum of all
multiplicities is the multiplicity of the marking.

The marking defined by x G Wx and word q is constructed as follows. We
assume that points x^ are marked by j, and xt is marked by #/. If a point ξ e IR is

marked by several letters (that is some of the coordinates x^ or jc/ coincide), then
we assemble all these letters together and send the point ξ into the corresponding
subset. All points which are not equal to any of coordinates xf,xt are sent to an
empty subset of stf. The multiplicity of this marking is 2(s + 1) + n.

We will call a marking good in the middle if there is a segment [£_,£+] c IR,
such that

1. The sum of multiplicities of the points in each of the half lines (-00, £_)
and (£+,oo) is (s + 1), and

2. The marking of [£_,£+] is simple, that is each point in the segment has
multiplicity at most one.

A good in the middle marking defines a word of length n: one just reads these
middle n letters in their natural order. This word we denote by Q(x\q}\ it coincides
with q if x is an interior point of C.

When a line in W is given (with some parameter /), the coordinates jtj~,jc/,jCy"
become a linear function of / and a movement along the line can be considered as
an evolution of these points steadily moving in IR. We will be using this convenient
terminology throughout this section.

Let a* be our simple critical point, the word q belongs to ^"(α/ ) — $~(a0) and
P(q,a*) be the face of the polyhedron P/(q), where / attains its maximum. Let x*
be a relatively interior point of the polyhedron. Choose a line L through (jt*,0*)
which projects onto / under pa and such that one of the halflines on which (**,α*)
divides it belongs to P/(q). We will call this halfline the at-side, and the other
one-the a0-side. It is clear that one can choose the resonance at #* as a parameter
on L, so that /(α*) = 0 and / is nonpositive on Pι(q).

Lemma 4.1. Points of the line L close enough to (x*,a*) define a good in the
middle marking of IR.

Proof. The statement is trivial for points on the αrside of the line. If that is not
the case for the β0-side, then a pair of the marked points coincide identically along
the line L. The pair cannot include any of */ points, as each of them is separated
from the rest on the α/ side. Equally, it cannot be a pair x~, jtt. So we assume that

x~ — jc+ identically on the line. To affect the middle part of the marking on the

flo-side, the pair should move through x\ when a = a*. That yields xj~ = xj~2 = x\
at jc-a relatively interior point of P(q,a), and thus

x\ - x^ = 0; x\ - xJ2 = 0

at Jt* G P(q,a*). This contradicts Corollary 3.2.
The ;c+ case is similar.
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Thus we have a good in the middle marking defined by (.x*,α*) on the ασ-side
of the line and form the word q' = Q(q,x). This correspondence q H-> qf is called
an ίn-out one.

To use it we have to prove first that it is unambiguous.

Proposition 4.2. The ίn-out correspondence is defined unambiguously, that is, does
not depend on the choice of the interior point x* £ P(q,a*) and of line through jt*.

Proof. Let L,L' be two lines through a relatively interior point jc of P(q,a) which
pa maps onto /, such that the α/-sides of both of them belong to Pι(q). Assume
that the markings on their α0-sides define different words q',q". Let V be the two-
dimensional plane spanned by L,L'. This plane is fibered by the level lines of pa

and both the lines L,Z/ are transversal to the fibration. These lines cut segments in
each fiber of pa. The difference of the words defined by the middle parts of the
corresponding markings implies that inside the segment a couple of these middle
points coincide. The finiteness of the number of such couples yields existence of a
line L" in V between L and L' which is projected onto / and along which a pair of
^-coordinates coincide identically. The pair cannot contain any of the jc/'s, as it
would contradict the assumption that the α/-sides of both L,L' are in Pι(q\ where
these points are distinct from the other ones. Similarly, the pair cannot be jcy~, c^.

So, the pair is of the type x~, xJ2 or jt+, Λ t. The fact that the points in the pair

belong to the middle n points on the α0-side of L" implies that this coinciding
pair passes through the point x\ or xn respectively in the course of the movement
along the line L" from a, to the α0-side. That would mean that at x*x\ — x~ =

0; x\ — x~2 — 0, or xn — x+ = 0; xn — JT+ = 0, in contradiction with Corollary 3.2.

Let now x, x' be two different relatively interior points in P(q,a\ Choose two
lines L 3 x, L' 3 x' with their at parts in P/(q) lying in a two-dimensional plane V
and projecting onto /. The assumption that the words defined by their a0 parts are
different means again that between L and L' in V there is a line along which some
pair of x coordinates coincide. Reasonings as above prove it impossible.

Now we can give a combinatorial description of in-out correspondence. Take
an interior point x of P(q,a*). If x~ = x\ at x, then we add the letter j at the

beginning of q, if x^ = xn, then the letter j is appended to q. These operations are

unambiguous by Corollary 3.2. A block in the thus extended word is a maximal
subword of consequent letters such that the corresponding coordinates coincide at
x. For example, if q = 001201 and xf~ = x\ < X2 = xi < X4 < X5 = xβ < . . . , then
the extended word is (10) (01) (2) (01) and blocks are bracketed.

Proposition 4.3. The word q' is obtained from q by inυersing all blocks and erasing
letters at the beginninglend of the word if they were appended there.

Proof is obvious. A line through jc with the 0,-side in P/(q) defines a family of
markings with marked points moving steadily in IR. If at the critical moment some
points are distinct, then their order in IR remains the same some time around the
instant. If some number of points crash together, then their order after the collision
reverses.

In the example above, the word q' will be then given by reversing blocks:
(01) (10) (2) (10) and by erasing the first letter: q' = 110210. (Notice, that this trans-
formation corresponds to the resonance a§ = βι )

One further thing we need to show is that if q leaves the thesaurus during the
movement from α/ to a09 then q' appears there.
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Proposition 4.4. If q,qf are in in-out correspondence, and q G ̂ "(α/) — 9~(a0\
then q' G 3~(a0) - <T(α/).

Proof. By the construction of g', the polyhedron P(q') has full dimension since the
fact that the marking defined by a point (x',a') on the 00-side of the line L passing
through (**,α*) is good in the middle means that all inequalities constraining P(q')
are strict at the point corresponding to the marking. So we know that qf £ $~(a0)
and we need to prove only that it does not belong to «^"(α/).

Let 7 be a simple cycle in the graph Γ(q) subordinated to the flow Φ defined
at x G P(q, a* ). The constraints corresponding to the edges in γ are all equalities at
x and the sum of the corresponding linear functions is a negative multiple of / on

One can consider this cycle also as a cyclical chain of letters of the extended
word used in the combinatorial description of in-out correspondence. It is obvious
that the m-edges join the letters within a block and that /-edges join (equal) letters
in different blocks. The transformation that reverses blocks sends this cyclical chain
into a cyclical chain with the same properties in the extended word q1 . This cyclical
chain defines in its turn a simple cycle in the graph Γ(q'): /-edges continue to con-
nect the letters as in each block all letters are different (otherwise the corresponding
points were unable to collide) and an /y-edge continues to connect consequent let-
ters j even if they are swapped inside their blocks by transformation; the m-edges
in the chain connect neighboring letters in blocks and they remain such. We will
denote this new cycle in Γ(q') as /.

The point x G P(q,a*) defines a trajectory (degenerate) which, by construction
of q' ', can be disturbed slightly to produce a trajectory with q' in the thesaurus. Let
us consider the corresponding point xf G P(q',a*). At this point all the inequalities
corresponding to the m-edges entering the cycle / become equalities, as they join
points inside blocks which have equal ξ-coordinates. Reverse the orientation in / to
restore the original directions in m edges. Then the sum of all the linear functions
in constraints corresponding to edges in / is a positive multiple of /, because the
collections of /-edges in y arid / coincide, but the edges have reverted orientations.
It follows (by Fact B of the linear programming theory) that the functional / reaches
its minimum at x' and thus «^~(<z/) is empty.

The last step is to prove the reflectivity of the in-out correspondence.

Proposition 4.5. If q\-> q'9 then q' ι-» q.

Proof. Let x<EP(q,a*) be an interior point. It defines a trajectory which can
be slightly disturbed to produce a generic trajectory with q' in its thesaurus. That
means that we can associate to this trajectory a point on the boundary of P/(qf);
in P(q',a*) to be specific. Altogether this gives a mapping from the interior of
P(q,a*) into P(qr,a*). It is immediate that the mapping is an affine embedding.
If the dimensions of these polyhedra P(q,a*) coincide, then an interior point x G
P(q9 a* ) corresponds to an interior point x1 G P(q, a* ); the line L 3 x used to define
q' corresponds to a line Lr 3 x' with the ασ-side in Pι(qr) and with the good in
the middle marking on its α/-side defining the word q. This, clearly, implies the
reflectivity.

It is enough to prove that the dimension of P(q',a*) is not greater than that of
P(q> 0* ), as the embedding of the latter polyhedron into the former one yields that
the dimensions are equal.
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The dimension of polyhedron P(q, a*) is less than the generic one (s + 1) be-
cause some of the inequalities constraining the polyhedron become identical equal-
ities and thus shifts of some of the arithmetical progressions forming the trajectory
become dependent. These equalities correspond to m-edges entering the closed flow
Φ constructed in Proposition 2.2. Each of these m-edges can be extended to a simple
cycle y in Γ(q). Reasoning as in the proof of Proposition 4.4, one can construct a
simple cycle y' in Γ(q'). Under this operation m-edges go to m-edges and the letters
which mark the vertices they connect remain the same. As the sum of constraints
corresponding to the edges of y' vanishes to a* (as a multiple of the resonance),
all the inequalities among the constraints are in fact equalities. It follows that the
dependence of shifts of arithmetical progressions present on P(q,a*) persists on
P(q',a*) and the claim follows.

Corollary 4.6. The size of the thesaurus is constant in two endpoints al9 a0 of a
segment containing a single simple resonance point a*.

5. Proof of the Main Theorem

Theorem. The size of the thesaurus for a generic velocity vector is given by the
formula

k=Q

Proof. Let a\,aι be inverse velocities. Choose a piecewise linear path joining them
in the space of inverse velocities, such that endpoints of each segment of the path
were linearly independent over Q and each point of the path belonged to at most
one bounded resonance hyperplane (n, ) = 0. Such a path can be chosen as the
number of bounded resonances is finite and the points where multiple resonances
occur have codimension 2. Using Corollary 4.6 we see that the size of the thesaurus
is constant in the endpoints of the segments forming the path and thus the sizes of
thesaurus in a\ and a^ are equal. To find it we choose a special vector of inverse
velocities. Namely, let αo = 1 and a\9...9as be arbitrary numbers larger than n,
such that the whole tuple a^...,as is Q-independent. Then the thesaurus can be
easily described: a word q belongs to the thesaurus exactly when it contains at most
one letter j with j ^ 1. The number of such words can be calculated immediately.
Indeed, each of the words is specified by the number k of letters j with j g: 1 by
the positions in the word of letters of these letters ((£) possibilities); by the set

of letters j with j ^ 1 used ((£) possibilities) and by one of k\ variants of their
allocation there. Summing it all up one gets the stated answer.

6. Concluding Remarks

6.1. As a corollary of the presented result we get the remarkable symmetry noted
in [AMST]: the size of the ^-thesaurus in IR/+1 is a function symmetric in n and s.
Actually, as it was shown in [AMST] this property almost characterizes this function
and thus it would be very interesting to have a construction directly proving this
symmetry. I believe that the size of the ^-thesaurus can be described in terms
of the facet combinatorics of an appropriately chosen polyhedron and that n <-» s
symmetry would follow from Dehn-Sommerville relations. Such an approach would



56 Yu. Baryshnikov

give a much clearer insight into the combinatorics of symbolic trajectories, but so
far I do not know how to realize it.

6.2. Lemma 1.5 provides in principle an algorithmic method to define whether a
word is a piece of symbolic trajectory of a billiard. One has to check the compati-
bility of a system of linear inequalities, which can be effectively done.

6.3. Using the geometric approach of [AMST] one can generate a subdivision of
the s-dimensional torus parameterizing the billiard trajectories with given velocity
into the convex polyhedra corresponding to different words of the thesaurus of size
n. The volumes of these polyhedra closely relate to the reccurrence function of
symbolic trajectories, that is the size of the word in which all words of the n-
thesaurus appear. The moving of the inverse velocity through a resonance results
in the degeneration of some of these polyhedra, and thus enables one to describe
the asymptotics of the minimal of their volumes. That gives an approach to the
investigation of the reccurrence function. I hope to return to the question in a
separate paper.
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